WO2011024721A1 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
WO2011024721A1
WO2011024721A1 PCT/JP2010/064080 JP2010064080W WO2011024721A1 WO 2011024721 A1 WO2011024721 A1 WO 2011024721A1 JP 2010064080 W JP2010064080 W JP 2010064080W WO 2011024721 A1 WO2011024721 A1 WO 2011024721A1
Authority
WO
WIPO (PCT)
Prior art keywords
amount
ammonia
reduction catalyst
selective reduction
urea
Prior art date
Application number
PCT/JP2010/064080
Other languages
French (fr)
Japanese (ja)
Inventor
久夫 羽賀
橋本 英史
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to DE112010003455T priority Critical patent/DE112010003455T5/en
Publication of WO2011024721A1 publication Critical patent/WO2011024721A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/30Controlling by gas-analysis apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/903Multi-zoned catalysts
    • B01D2255/9032Two zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/021Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting ammonia NH3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/026Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting NOx
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus for an internal combustion engine that includes a selective reduction catalyst that reduces NOx in exhaust gas in the presence of a reducing agent.
  • Patent Document 1 and Patent Document 2 describe a method of estimating the NOx reduction rate in the selective reduction catalyst and controlling the injection amount of the reducing agent based on this estimation.
  • the NOx concentration downstream of the selective reduction catalyst is detected, and the detected NOx concentration and the composition of the exhaust gas flowing into the selective reduction catalyst from the operating state of the internal combustion engine, more specifically, Estimates the ratio of NO to NO 2 . Further, the NOx reduction rate of the selective reduction catalyst is estimated based on the composition of the exhaust, and the injection amount of the reducing agent is controlled. Further, in the exhaust purification device of Patent Document 2, the temperature of the catalyst is detected as an amount related to the NOx reduction rate in the selective reduction catalyst, and the amount of reducing agent injected is controlled based on this temperature.
  • the NOx reduction rate in the selective reduction catalyst varies depending not only on the exhaust composition and the temperature of the selective reduction catalyst as described above, but also on the deterioration state of the selective reduction catalyst.
  • the purification performance varies among individuals.
  • the optimum amount of the reducing agent is different, so that the NOx reduction rate in the selective reduction catalyst apparently changes. Therefore, it is difficult to always optimally control the injection amount of the reducing agent in the exhaust purification devices as shown in Patent Documents 1 and 2.
  • FIG. 26 is a schematic diagram showing a configuration of a conventional exhaust purification device 80.
  • the oxidation catalyst 83 and urea water as a reducing agent stored in the urea tank 84 are placed in the exhaust passage 82 in order from the upstream side to the downstream side.
  • a urea injection valve 85 that injects and a selective reduction catalyst 86 that reduces NOx in the exhaust in the presence of urea water are provided.
  • a temperature sensor 87 for detecting the temperature of the selective reduction catalyst 86 and a NOx sensor 88 for detecting the NOx concentration downstream of the selective reduction catalyst 86 are provided for monitoring the purification performance of the selective reduction catalyst.
  • the NOx concentration of exhaust exhausted from the engine 81 is estimated from a preset map, and urea injection is performed based on this NOx concentration and the catalyst temperature detected by the temperature sensor 87.
  • the amount of urea water injected by the valve 85 is determined.
  • the deterioration state of the selective reduction catalyst 86 can be estimated based on the difference between the NOx concentration detected by the NOx sensor 88 and the estimated NOx concentration of the exhaust gas. In this exhaust purification device, it is possible to correct the injection amount of urea water in accordance with the deterioration state of the selective reduction catalyst 86 estimated as described above.
  • FIG. 27 is a diagram showing the relationship between the NOx concentration and ammonia concentration of the exhaust downstream of the selective reduction catalyst and the output value of the NOx sensor in the above-described conventional exhaust purification device. Specifically, FIG. 27 shows, in order from the top, the relationship between the NOx concentration in the exhaust downstream of the selective reduction catalyst, the ammonia concentration in the exhaust downstream of the selective reduction catalyst, the output value of the NOx sensor, and the urea water injection amount. .
  • ammonia slip the ammonia generated from the urea water surplus here is not consumed for the reduction of NOx, but is stored in the selective reduction catalyst or discharged downstream of the selective reduction catalyst. Therefore, as shown in FIG. 27, the ammonia concentration in the exhaust downstream of the selective reduction catalyst increases when it exceeds the injection amount of urea water indicated by an asterisk. Note that the ammonia generated in this way is not stored in the selective reduction catalyst but is discharged downstream thereof, hereinafter referred to as “ammonia slip”.
  • the urea water injection amount indicated by an asterisk in FIG. 27 is the optimal injection amount in the exhaust gas purification apparatus because both the NOx concentration and the ammonia concentration can be minimized.
  • the output value of the NOx sensor shows a downwardly convex characteristic with the output value at the optimum injection amount as the minimum point.
  • the existing NOx sensor is sensitive not only to NOx but also to ammonia due to its detection principle. Therefore, it is not possible to determine whether the urea water injection amount is insufficient or excessive with respect to the optimal injection amount only by the output value from the NOx sensor. For this reason, it is difficult to suppress the discharge of ammonia while continuing to supply an optimal amount of urea water to maintain a high NOx reduction rate in the selective reduction catalyst.
  • An object of the present invention is to provide an exhaust purification device for an internal combustion engine that can be suppressed.
  • the present invention is provided in the exhaust passage (11) of the internal combustion engine (1), generates ammonia in the presence of a reducing agent, and selects the NOx flowing through the exhaust passage with this ammonia.
  • An exhaust gas purification device (2) for an internal combustion engine comprising a reduction catalyst (23) is provided.
  • the selective reduction catalyst includes a first selective reduction catalyst (231) and a second selective reduction catalyst (232) provided downstream of the first selective reduction catalyst in the exhaust passage,
  • the exhaust purification device includes a reducing agent supply means (25) for supplying a reducing agent to the upstream side of the selective reduction catalyst in the exhaust passage, and the first selective reduction catalyst and the second selective reduction in the exhaust passage.
  • Ammonia detection means (26) for detecting the amount of ammonia between the catalyst and the amount of ammonia (NH3 CONS ) detected by the ammonia detection means is controlled to be a value greater than “0”.
  • the first control input calculating means (3, 4, 42) for calculating the control input, and the reducing agent supply amount (G UREA ) by the reducing agent supplying means are the control inputs calculated by the first control input calculating means.
  • the first selective reduction catalyst and the second selective reduction catalyst are provided in the exhaust passage in order toward the downstream side, and the reducing agent is further introduced from the upstream side of the first selective reduction catalyst and the second selective reduction catalyst.
  • a reducing agent supplying means for supplying and an ammonia detecting means for detecting the amount of ammonia between the first selective reduction catalyst and the second selective reduction catalyst were provided. Therefore, a control input for controlling the ammonia amount detected by the ammonia detection means to be a value larger than “0” is calculated, and the supply amount of the reducing agent by the reducing agent supply means is set to such a control input. Decided to include.
  • the state in which ammonia has flowed out from the first selective reduction catalyst that is, the state in which ammonia is sufficiently stored in the first selective reduction catalyst
  • a high NOx reduction rate can be maintained.
  • a large amount of NOx is temporarily generated due to a sudden change in the operating state of the internal combustion engine, and the generation of ammonia for reducing this NOx is not in time, it is stored in the first selective reduction catalyst. Due to the ammonia, the NOx reduction rate during the transition until the generation of ammonia is completed can be maintained high.
  • ammonia slip occurs in the first selective reduction catalyst
  • the discharged ammonia is stored in the second selective reduction catalyst or consumed for NOx reduction in the second selective reduction catalyst. .
  • it can suppress that ammonia discharge
  • the exhaust flow rate also changes.
  • the exhaust gas between the first selective reduction catalyst and the second selective reduction catalyst is changed.
  • the ammonia concentration also changes. That is, the ammonia concentration changes according to the exhaust gas flow rate.
  • detection means for detecting the ammonia concentration between the first selective reduction catalyst and the second selective reduction catalyst is used so that the ammonia concentration detected by the detection means becomes a predetermined value larger than “0”.
  • the ammonia detection means detects the amount of ammonia between the first selective reduction catalyst and the second selective reduction catalyst, and the detected ammonia amount becomes a predetermined value greater than “0”.
  • the control input is calculated.
  • an appropriate supply amount of the reducing agent can be determined regardless of the operating state of the internal combustion engine, so that ammonia can be prevented from slipping to the most downstream side.
  • the amount of ammonia that can be stored in the first selective reduction catalyst is a first storage capacity
  • the amount of ammonia that can be stored in the second selective reduction catalyst is a second storage capacity
  • the second storage capacity is the first storage capacity. It is preferably larger than the difference between the maximum and minimum capacity.
  • the storage capacity of the selective reduction catalyst varies depending on the temperature of the selective reduction catalyst. Specifically, the storage capacity decreases as the temperature of the selective reduction catalyst increases. Accordingly, when the temperature is rapidly increased in a state where ammonia is sufficiently stored in the first selective reduction catalyst as described above, the first storage capacity is rapidly decreased, and the stored ammonia is reduced to the second level. Released to the selective reduction catalyst.
  • the second storage capacity of the second selective reduction catalyst is made larger than the difference between the maximum time and the minimum time of the first storage capacity of the first selective reduction catalyst.
  • the exhaust emission control device further includes target ammonia amount setting means (3, 41) for setting the target value of the ammonia amount (NH3 CONS ) detected by the ammonia detection means to a value larger than “0”.
  • the first control input calculating means preferably calculates the control input so that the ammonia amount detected by the ammonia detecting means falls within a predetermined range including the target value (NH3 CONS_TRGT ).
  • the NOx reduction rate in the selective reduction catalyst has a smaller response delay with respect to the supply amount of the reducing agent and higher sensitivity than the ammonia slip in the selective reduction catalyst. That is, for example, when the supply amount of the reducing agent is reduced to suppress ammonia slip, there is a problem that the NOx reduction rate in the selective reduction catalyst is remarkably lowered.
  • the target value of the ammonia amount detected by the ammonia detection means is set to a value larger than “0”, and further, the detected ammonia amount falls within a predetermined range including this target value.
  • the control input was calculated, and the supply amount of the reducing agent was calculated including this control input.
  • the supply amount of the reducing agent so that the ammonia amount between the first selective reduction catalyst and the second selective reduction catalyst falls within a predetermined range including the target value, the fluctuation of the supply amount of the reducing agent is changed. Can be reduced. Thereby, the NOx reduction rate in the NOx reduction catalyst can be maintained high.
  • the above control based on the premise that ammonia slip occurs in the first selective reduction catalyst is particularly effective in the present invention in which the second selective reduction catalyst is provided downstream of the first selective reduction catalyst. is there.
  • the first control input calculation means is configured to be able to execute response designation type control capable of setting a convergence speed of the ammonia amount (NH3 CONS ) detected by the ammonia detection means to the target value
  • the convergence rate when the ammonia amount detected by the detection means is included in the predetermined range (RNH3 CONS_TRGT , NH3 CONS_LMTL to NH3 CONS_LMTH ) is the convergence rate when the ammonia amount detected by the ammonia detection means is within the predetermined range (RNH3 CONS_TRGT , NH3 CONS_LMTL to NH3 CONS_LMTH ) is preferably set slower than the convergence speed.
  • the response designation type control that can designate the convergence speed to the target value as the control input for controlling the ammonia amount detected by the ammonia detecting means to be within a predetermined range including the target value.
  • the convergence speed when the detected ammonia amount falls within the above range is set to be slower than the convergence speed when it falls outside the above range.
  • the target ammonia amount setting means sets the target value to a smaller value as the temperature of the exhaust gas of the internal combustion engine or the temperature of the selective reduction catalyst is higher.
  • a general selective reduction catalyst has a characteristic that the amount of ammonia that can be stored decreases as the temperature increases.
  • the target value of the ammonia amount is set smaller as the temperature of the exhaust gas of the internal combustion engine or the temperature of the selective reduction catalyst is higher.
  • the amount of ammonia flowing into the second selective reduction catalyst can be appropriately controlled in accordance with the storable amount of ammonia in the selective reduction catalyst, thus further preventing ammonia from slipping to the most downstream side. it can.
  • the reducing agent further comprises second control input calculating means (5) for calculating a control input based on the rotational speed (NE) of the internal combustion engine and a load parameter (TRQ) representing a load of the internal combustion engine.
  • the supply amount determining means preferably determines the supply amount (G UREA ) of the reducing agent supplied by the reducing agent supply means further including the control input (G UREA_FF ) calculated by the second control input calculating means.
  • the control input is calculated based on the rotational speed of the internal combustion engine and the load parameter indicating the load of the internal combustion engine, and the supply amount of the reducing agent is determined including this control input. Since the amount of NOx in the exhaust gas changes in accordance with the operating state such as the rotational speed and load of the internal combustion engine, the amount of NOx in the exhaust flows into the selective reduction catalyst by determining the supply amount of the reducing agent including such control input. An appropriate amount of reducing agent according to the amount of NOx in the exhaust can be supplied. Thereby, the NOx reduction rate in the selective reduction catalyst can be maintained high. At the same time, by keeping the NOx reduction rate high, it is possible to prevent a large fluctuation in the supply amount of the reducing agent, and to prevent the occurrence of ammonia slip and the reduction in the NOx reduction ratio due to this fluctuation.
  • the amount of ammonia stored in the first selective reduction catalyst is used as a first storage amount, and the first storage amount is estimated.
  • the estimated first storage amount (ST UREA_FB ) is a predetermined target storage amount.
  • Third control input calculating means (6) for calculating a control input (G UREA_ST ) for controlling to converge to (ST UREA_TRGT ) is further provided, and the reducing agent supply amount determining means is controlled by the reducing agent supply means. It is preferable to determine the supply amount (G UREA ) of the reducing agent further including the control input (G UREA_ST ) calculated by the third control input calculating means.
  • the first selective reduction is performed until the first storage amount reaches the first storage capacity. Until the ammonia in the catalyst is saturated, the NOx reduction rate decreases. Further, after the ammonia is saturated, ammonia slip occurs in the first selective reduction catalyst.
  • ammonia slip occurs, the supply amount of the reducing agent is reduced in order to suppress this, and there is a possibility that the NOx reduction rate is lowered again.
  • the first storage amount of the first selective reduction catalyst is estimated, a control input for controlling the estimated first storage amount so as to converge to the predetermined target storage amount is calculated,
  • the supply amount of the reducing agent is determined including such control input.
  • the third control input calculation means it is preferable to calculate a control input (G UREA_ST ) based on the differentiation of the first storage amount.
  • the control input when calculating the control input for controlling the estimated first storage amount to converge to the predetermined target storage amount, in addition to the deviation between the estimated first storage amount and the target storage amount, the control input is calculated based on the differential of the deviation or the estimated differential of the first storage amount.
  • the first storage amount is calculated by sequentially integrating the amount of ammonia stored in the first selective reduction catalyst, so that the dynamic characteristic exhibits an integral elemental behavior. If the control input is calculated based only on the deviation between the first storage amount and the predetermined target storage amount, the control input may vibrate, and as a result, a periodic ammonia slip may occur.
  • the control input in addition to the deviation between the estimated first storage amount and the target storage amount, the control input is calculated based on the derivative of this deviation or the differentiation of the first storage amount. Can be prevented from vibrating.
  • the present invention is provided in the exhaust passage (11) of the internal combustion engine (1), generates ammonia in the presence of a reducing agent, and selects the NOx flowing through the exhaust passage with this ammonia.
  • a second selective reduction catalyst (232) provided on the downstream side of the first selective reduction catalyst in the exhaust passage, a control method for the exhaust purification device is provided.
  • the ammonia detection step for detecting the ammonia amount between the first selective reduction catalyst and the second selective reduction catalyst, and the value of the ammonia amount (NH3 CONS ) detected in the ammonia detection step are: A first control input calculation step for calculating a control input for controlling to be a value larger than “0”, and a reducing agent supply amount (G UREA ) by the reducing agent supply means are calculated in the first control input. And a reducing agent supply amount determination step that includes the control input (G UREA_FB ) calculated in the step.
  • the amount of ammonia that can be stored in the first selective reduction catalyst is a first storage capacity
  • the amount of ammonia that can be stored in the second selective reduction catalyst is a second storage capacity
  • the second storage capacity is the first storage capacity. It is preferably larger than the difference between the maximum and minimum capacity.
  • the control method further includes a target value setting step of setting a target value of the ammonia amount (NH3 CONS ) of the first selective reduction catalyst and the second selective reduction catalyst to a value larger than “0”
  • the first control input calculation step it is preferable to calculate the control input so that the ammonia amount detected in the ammonia detection step falls within a predetermined range including the target value (NH3 CONS_TRGT ).
  • the control input is calculated based on response designation type control that can set a convergence speed of the ammonia amount (NH3 CONS ) detected in the ammonia detection step to the target value.
  • the convergence rate in the case where the ammonia amount detected in the ammonia detection step is included in the predetermined range (RNH3 CONS_TRGT , NH3 CONS_LMTL to NH3 CONS_LMTH ) is the predetermined amount. It is preferable to set it slower than the convergence speed when it is included outside the range (RNH3 CONS_TRGT , NH3 CONS_LMTL to NH3 CONS_LMTH ).
  • the target value is preferably set to a smaller value as the temperature of the exhaust gas of the internal combustion engine or the temperature of the selective reduction catalyst is higher.
  • the control method further includes a second control input calculation step of calculating a control input based on a rotational speed (NE) of the internal combustion engine and a load parameter (TRQ) representing a load of the internal combustion engine,
  • NE rotational speed
  • TRQ load parameter
  • the amount of ammonia stored in the first selective reduction catalyst is used as a first storage amount, and the first storage amount is estimated.
  • the estimated first storage amount (S TUREA_FB ) is a predetermined target storage amount.
  • a third control input calculating step for calculating a control input for controlling to converge to (ST UREA_TRGT ), and in the reducing agent supply amount determining step, a reducing agent supply amount by the reducing agent supply means ( G UREA ) is preferably determined by further including the control input (G UREA_ST ) calculated in the third control input calculation step.
  • the third control input calculation step in addition to the deviation (E ST ) between the estimated first storage amount (ST UREA_FB ) and the target storage amount (ST UREA_TRGT ), It is preferable to calculate a control input (G UREA_ST ) based on the differentiation of the first storage amount.
  • FIG. 1 is a schematic diagram illustrating a configuration of an internal combustion engine and an exhaust purification device thereof according to an embodiment of the present invention. It is a figure which shows the relationship between the amount of NOx in the selective reduction catalyst which concerns on the said embodiment, the amount of ammonia, and the storage amount of ammonia. It is a figure which shows the relationship between the storage capacity and temperature of the selective reduction catalyst which concerns on the said embodiment. It is a block diagram which shows the structure of the module which calculates the urea injection quantity by the urea injection valve which concerns on the said embodiment. It is a figure which shows the change of a NOx reduction rate when the urea injection amount is controlled so that the output value of the ammonia sensor strictly converges to the target ammonia amount.
  • FIG. 1 is a schematic diagram showing the configuration of an internal combustion engine (hereinafter referred to as “engine”) 1 and its exhaust purification device 2 according to an embodiment of the present invention.
  • the engine 1 is a lean burn operation type gasoline engine or diesel engine, and is mounted on a vehicle (not shown).
  • the exhaust purification device 2 is provided with an oxidation catalyst 21 provided in the exhaust passage 11 of the engine 1 and nitrogen oxide (hereinafter referred to as “NOx”) in the exhaust gas provided in the exhaust passage 11 and flowing through the exhaust passage 11.
  • NOx nitrogen oxide
  • the urea injection device 25 includes a urea tank 251 and a urea injection valve 253.
  • the urea tank 251 stores urea water, and is connected to the urea injection valve 253 via a urea supply path 254 and a urea pump (not shown).
  • This urea tank 251 is provided with a urea level sensor 255.
  • the urea level sensor 255 detects the water level of the urea water in the urea tank 251 and outputs a detection signal substantially proportional to the water level to the ECU 3.
  • the urea injection valve 253 is connected to the ECU 3, operates in accordance with a control signal from the ECU 3, and injects urea water into the exhaust passage 11 in accordance with this control signal. That is, urea injection control is executed.
  • the oxidation catalyst 21 is provided on the upstream side of the urea selective reduction catalyst 23 and the urea injection valve 253 in the exhaust passage 11 and converts NO in the exhaust gas into NO 2 , thereby the NOx in the urea selective reduction catalyst 23 is converted. Promote reduction.
  • the urea selective reduction catalyst 23 includes a first selective reduction catalyst 231 and a second selective reduction catalyst 232 provided downstream of the first selective reduction catalyst 231 in the exhaust passage 11.
  • Each of the first selective reduction catalyst 231 and the second selective reduction catalyst 232 selectively reduces NOx in the exhaust in an atmosphere in which urea water exists. Specifically, when urea water is injected by the urea injection device 25, ammonia is generated from urea in the first selective reduction catalyst 231 and the second selective reduction catalyst 232, and NOx in the exhaust is selectively reduced by this ammonia. Is done.
  • the detailed configuration of the urea selective reduction catalyst 23 will be described in detail later with reference to FIGS.
  • the ECU 3 is connected to the crank angle position sensor 14, the accelerator opening sensor 15, and the urea remaining amount warning light 16, in addition to the ammonia sensor 26, the catalyst temperature sensor 27, and the NOx sensor 28.
  • the ammonia sensor 26 detects the amount of ammonia (hereinafter referred to as “ammonia amount”) NH3 CONS in the exhaust passage 11 between the first selective reduction catalyst 231 and the second selective reduction catalyst 232, and detects the detected ammonia.
  • a detection signal substantially proportional to the amount NH3 CONS is supplied to the ECU 3.
  • the catalyst temperature sensor 27 detects the temperature (hereinafter referred to as “catalyst temperature”) T SCR of the first selective reduction catalyst 231, and supplies a detection signal substantially proportional to the detected catalyst temperature T SCR to the ECU 3.
  • the NOx sensor 28 detects the amount of NOx in the exhaust gas flowing into the first selective reduction catalyst 231 (hereinafter referred to as “NOx amount”) NOX CONS , and supplies the ECU 3 with a detection signal substantially proportional to the detected NOx amount NOX CONS. To do.
  • the crank angle position sensor 14 detects the rotation angle of the crankshaft of the engine 1, generates a pulse every crank angle, and supplies the pulse signal to the ECU 3.
  • the ECU 3 calculates the rotational speed NE of the engine 1 based on this pulse signal.
  • the crank angle position sensor 14 further generates a cylinder identification pulse at a predetermined crank angle position of the specific cylinder and supplies it to the ECU 3.
  • the accelerator opening sensor 15 detects a depression amount (hereinafter referred to as “accelerator opening”) AP of an accelerator pedal (not shown) of the vehicle, and supplies a detection signal substantially proportional to the detected accelerator opening AP to the ECU 3.
  • the required torque TRQ of the engine 1 is calculated according to the accelerator opening AP and the rotational speed NE.
  • the required torque TRQ is a load parameter that represents the load of the engine 1.
  • the urea remaining amount warning lamp 16 is provided, for example, on the meter panel of the vehicle, and lights up when the remaining amount of urea water in the urea tank 251 is less than a predetermined remaining amount. As a result, the driver is warned that the remaining amount of urea water in the urea tank 251 has decreased.
  • the first selective reduction catalyst 231 and the second selective reduction catalyst 232 each have a function of reducing NOx in the exhaust gas with ammonia generated from urea, and the generated ammonia is reduced. It also has a function of storing a predetermined amount.
  • the amount of ammonia stored in the first selective reduction catalyst 231 is referred to as a first storage amount
  • the amount of ammonia that can be stored in the first selective reduction catalyst 231 is referred to as a first storage capacity.
  • the ammonia amount stored in the second selective reduction catalyst 232 is defined as a second storage amount
  • the ammonia amount that can be stored in the second selective reduction catalyst 232 is defined as a second storage capacity.
  • the ammonia stored in this way is also consumed as appropriate for the reduction of NOx in the exhaust. For this reason, as the first and second storage amounts increase, the NOx reduction rate in the selective reduction catalysts 231 and 232 increases. Further, when the supply amount of urea water is small with respect to the generated NOx amount, the stored ammonia is consumed for the reduction of NOx so as to make up for the shortage of urea water.
  • ammonia slip when ammonia is generated exceeding the storage capacity in each selective reduction catalyst 231, 232, the generated ammonia is discharged to the downstream side of each selective reduction catalyst 231, 232. In this way, ammonia that is not stored in the selective reduction catalysts 231 and 232 but is discharged downstream is referred to as “ammonia slip”.
  • these selective reduction catalysts 231 and 232 in order to keep the NOx reduction rate high, these selective reduction catalysts 231 and 232 maintain a state in which an amount of ammonia close to the respective storage capacity is stored. It is preferable to continue. However, in such a state where an amount of ammonia close to the storage capacity is stored, ammonia slip is likely to occur, and ammonia may be discharged outside the vehicle. In particular, it is preferable to prevent ammonia slip in the second selective reduction catalyst 232 as much as possible.
  • FIG. 2 is a diagram illustrating the relationship among the NOx amount, the ammonia amount, and the ammonia storage amount in the selective reduction catalyst.
  • FIG. 2A shows the above relationship in a comparative example (1BED + NOx sensor layout) in which a NOx sensor is provided on the downstream side of one selective reduction catalyst
  • FIG. shows the relationship in a comparative example in which the ammonia sensor provided downstream of the selective reduction catalyst (1BED + NH 3 sensor layout) of FIG. 2 (c), two selective reduction catalyst (first selective reduction catalyst and the second selective reduction representing the relationship in the present embodiment in which a ammonia sensor (2BED + MID-NH 3 sensor layout) between the catalyst).
  • FIG. 3 is a diagram showing the relationship between the storage capacity of the selective reduction catalyst and the temperature.
  • the solid line 3a shows the relationship between the storage capacity and the catalyst temperature in the catalyst before deterioration
  • the broken line 3b shows the relationship between the storage capacity and the catalyst temperature in the catalyst after deterioration.
  • the NOx reduction rate in the selective reduction catalyst can be kept high.
  • the amount of NOx discharged from the engine and the supply amount of urea water necessary for the reduction of this NOx are in a generally balanced state, so ammonia generated from urea water Is consumed in the reduction of NOx, and ammonia stored in the selective reduction catalyst and ammonia slip in the selective reduction catalyst are both small.
  • the storage amount of ammonia in the selective reduction catalyst has little change and tends to be small with respect to the storage capacity.
  • the storage amount in the selective reduction catalyst is kept substantially constant.
  • the storage amount May become “0” and the NOx reduction rate may decrease, or the storage amount may be saturated and excessive ammonia slip may occur.
  • the storage capacity of the selective reduction catalyst changes according to the catalyst temperature. Specifically, the storage capacity decreases as the catalyst temperature increases. Therefore, in the layout shown in FIG. 2B described above, since the storage amount is maintained saturated, for example, the vehicle shifts from the low load operation state to the high load operation state, and the catalyst temperature is When shifting from a low temperature (for example, 200 ° C.) state to a high temperature (for example, 500 ° C.) state, there is a possibility that an excessive ammonia slip occurs according to this temperature difference.
  • a low temperature for example, 200 ° C.
  • a high temperature for example, 500 ° C.
  • the ammonia sensor 26 is provided between the first selective reduction catalyst 231 and the second selective reduction catalyst 232.
  • the supply amount of urea water is controlled so that the value of the ammonia amount detected by the ammonia sensor 26 is larger than “0”, whereby the layout shown in FIG.
  • the state in which ammonia is saturated from the first selective reduction catalyst 231 can be maintained. Thereby, a high NOx reduction rate in the first selective reduction catalyst 231 can be maintained.
  • the NOx reduction rate can be maintained high for the first selective reduction catalyst 231 and the second selective reduction catalyst 232 as a whole.
  • the generation of ammonia is completed when the vehicle suddenly accelerates as described above, as in the layout shown in FIG. It is possible to keep the NOx reduction rate at the time of transition until high.
  • ammonia slip occurs in the first selective reduction catalyst 231 as described above, the ammonia discharged from the first selective reduction catalyst 231 is stored in the second selective reduction catalyst 232 or is selected by the second selection.
  • the reduction catalyst 232 consumes NOx reduction. As a result, it is possible to suppress the discharge of ammonia downstream of the second selective reduction catalyst 232 while maintaining a high NOx reduction rate for the first selective reduction catalyst 231 and the second selective reduction catalyst 232 as a whole.
  • the second storage capacity is the first storage capacity. It is preferable to design larger than the difference between the maximum and minimum times. By designing in this way, the ammonia released from the first selective reduction catalyst 231 can be stored in the second selective reduction catalyst 232. Thereby, it is possible to further suppress the discharge of ammonia downstream of the second selective reduction catalyst 232.
  • the second storage capacity is particularly preferably designed to be larger than the difference (maximum capacity difference) between the maximum time and the minimum time of the first storage capacity of the first selective reduction catalyst before deterioration. As a result, ammonia slip in the second selective reduction catalyst can be prevented more reliably.
  • the ECU 3 reshapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, and the like.
  • an arithmetic processing unit hereinafter referred to as “CPU”.
  • the ECU 3 includes a storage circuit that stores various calculation programs executed by the CPU, calculation results, and the like, and an output circuit that outputs a control signal to the engine 1, the urea injection valve 253, and the like.
  • FIG. 4 is a block diagram showing a configuration of a module for calculating a urea injection amount G UREA (amount of urea water supplied) by the urea injection valve.
  • G UREA amount of urea water supplied
  • 4 includes a feedback controller 4, a feedforward controller 5, a storage correction input calculation unit 6, and an adder 7.
  • the feedback controller 4 includes a target ammonia amount setting unit 41 and a sliding mode controller 42.
  • the target ammonia amount setting unit 41 is a target value (hereinafter referred to as “ammonia amount”) detected by an ammonia sensor (hereinafter referred to as “detected ammonia amount”) NH3 CONS .
  • NH3 CONS_TRGT (referred to as “target ammonia amount”) is set.
  • the target ammonia amount NH3 CONS_TRGT is set to a value larger than “0”.
  • the sliding mode controller 42 controls the detected ammonia amount NH3 CONS so as to converge to the set target ammonia amount NH3 CONS_TRGT .
  • feedback injection amount for the urea injection amount G uREA (hereinafter, referred to as "FB injection amount") is calculated G uREA - FB.
  • the feedforward controller 5 sets the maximum NOx reduction rate in the selective reduction catalyst in accordance with the amount of NOx in the exhaust gas that changes depending on the operating state of the engine. as a control input for controlling to maintain, a feedforward injection amount for the urea injection amount G uREA (hereinafter, referred to as "FF injection amount”) is calculated G uREA - FF.
  • the storage correction input calculation unit 6 estimates the first storage amount of the first selective reduction catalyst, and the estimated first storage amount is a predetermined target storage. as a control input for controlling so as to converge to the amount ST uREA - TRGT, it calculates the correction injection amount G uREA - ST for the urea injection amount G uREA.
  • the adder 7 includes an FB injection amount G UREA_FB calculated by the feedback controller 4, an FF injection amount G UREA_FF calculated by the feedforward controller 5, and a storage correction input calculation unit 6.
  • the urea injection amount GUREA is determined by adding the corrected injection amount GUREA_ST calculated by the above.
  • the symbol (k) is a symbol indicating the discretized time, and indicates that the data is detected or calculated every predetermined control cycle. That is, when the symbol (k) is data detected or calculated at the current control timing, the symbol (k ⁇ 1) indicates that the data is detected or calculated at the previous control timing. In the following description, the symbol (k) is omitted as appropriate.
  • the sliding mode controller calculates the FB injection amount G UREA_FB so that the detected ammonia amount NH 3 CONS converges to the target ammonia amount NH 3 CONS_TRGT set by the target ammonia amount setting unit.
  • Two problems that the present inventor has focused on when performing feedback control based on the output value NH3 CONS of the ammonia sensor will be described.
  • FIG. 5 is a graph showing a change in the NOx reduction rate when the urea injection amount GUREA is controlled so that the output value NH3 CONS of the ammonia sensor strictly converges to the target ammonia amount NH3 CONS_TRGT .
  • the output value NH3 CONS of the ammonia sensor rapidly increases and the occurrence of ammonia slip is detected
  • the urea injection amount GUREA is decreased to suppress this ammonia slip
  • the NOx reduction rate is significantly reduced.
  • the NOx reduction rate further decreases.
  • FIG. 6 is a diagram for explaining the concept of control in the sliding mode controller.
  • the horizontal axis indicates time
  • the vertical axis indicates the detected ammonia amount NH 3 CONS .
  • the target ammonia amount set by the target ammonia amount setting unit NH3 CONS_TRGT (> 0), the target defined by than the target ammonia amount NH3 CONS - TRGT small lower NH3 CONS - LMTL a large upper NH3 CONS - LMTH
  • the ammonia slip range RNH3 CONS_TRGT is set, and the FB injection amount G UREA_FB is calculated so that the detected ammonia amount NH3 CONS_TRGT falls within the target ammonia slip range RNH3 CONS_TRGT .
  • the target ammonia slip range RNH3 CONS_TRGT is preferably set in consideration of the detection resolution of the ammonia sensor.
  • the FB injection amount G UREA_FB is calculated so as to exhibit the following behavior.
  • NH3 CONS is a value A
  • an excessive ammonia slip has occurred with respect to the target ammonia amount NH3 CONS_TRGT. Therefore, the detected ammonia amount NH3 CONS is quickly and without overshooting the target ammonia amount NH3 CONS_TRGT .
  • the FB injection amount GUREA_FB is calculated so as to converge.
  • NH3 CONS is a value B
  • since the ammonia slip is insufficient with respect to the target ammonia amount NH3 CONS_TRGT the detected ammonia amount NH3 CONS is quickly and without overshoot to the target ammonia amount NH3 CONS_TRGT .
  • the FB injection amount GUREA_FB is calculated so as to converge.
  • NH3 CONS is a value C
  • an ammonia slip that is not excessive or insufficient with respect to the target ammonia amount NH3 CONS_TRGT has occurred, so that the detected ammonia amount NH3 CONS gradually converges to the target ammonia amount NH3 CONS_TRGT.
  • the FB injection amount G UREA_FB is calculated. That is, the FB injection amount G UREA_FB is calculated so as to constrain the detected ammonia amount NH 3 CONS within the target ammonia slip range RNH 3 CONS_TRGT .
  • the behavior of the detected ammonia amount NH3 CONS as described above is realized by response designation control that can set the convergence speed of the detected ammonia amount NH3 CONS to the target ammonia amount NH3 CONS_TRGT .
  • This response designation type control refers to control that can designate both the convergence speed and convergence behavior of a deviation based on a function that defines the convergence behavior of the deviation.
  • the operation of the sliding mode controller configured to be able to execute this response designation control will be described.
  • a switching function setting parameter VPOLE (k) corresponding to the detected ammonia amount NH3 CONS (k) is calculated based on a predetermined VPOLE setting table as shown in FIG. Further, as shown in the following equation (3), the product of this VPOLE (k) and the slip amount deviation E NH3 (k ⁇ 1) at the previous control and E NH3 (k) is calculated, Is defined as a switching function ⁇ (k).
  • FIG. 7 is a diagram showing a phase plane in which the horizontal axis is the slip amount deviation E NH3 (k ⁇ 1) at the previous control and the vertical axis is the slip amount deviation E NH3 (k) at the current control.
  • E NH3 (k ⁇ 1)> E NH3 (k) is satisfied, so that the slip amount deviation E NH 3 (k) will converge to “0”.
  • the sliding mode control is control that focuses on the behavior of the deviation E NH3 (k) on the switching line.
  • FIG. 8 is a diagram showing the relationship between the switching function setting parameter VPOLE and the convergence time of the slip amount deviation E NH3 .
  • the horizontal axis represents the convergence time of the slip amount deviation E NH3
  • the vertical axis represents the slip amount deviation E NH3.
  • FIG. 8 shows cases where VPOLE is “ ⁇ 1”, “ ⁇ 0.95”, “ ⁇ 0.7”, and “ ⁇ 0.4”, respectively.
  • VPOLE when VPOLE is brought close to “0”, the slip amount deviation E NH3 exhibits an exponential decay behavior with respect to “0”, and the convergence speed thereof is increased. Further, when VPOLE is brought close to “ ⁇ 1”, the convergence speed decreases while maintaining an exponential decay behavior.
  • VPOLE is set to “ ⁇ 1”
  • FIG. 9 is a diagram showing the configuration of the VPOLE setting table.
  • the horizontal axis represents the detected ammonia amount NH3 CONS (k), and the vertical axis represents the switching function setting parameter VPOLE (k).
  • the VPOLE setting table shown in FIG. 9 is set to realize the behavior control described with reference to FIG. 6 described above.
  • four VPOLE setting tables shown in FIG. 9 include four lines 9a, 9b, 9c, and 9d.
  • a VPOLE setting table is shown.
  • the detected ammonia amount NH3 CONS is equal to or larger than NH3 CONS_LMTL and smaller than NH3 CONS_LMTH (when NH3 CONS_LMTL ⁇ NH3 CONS ⁇ NH3 CONS_LMTH )
  • the detected ammonia amount NH3 CONS is equal to or higher than MT3 CONS_ It is set slower than the convergence speed in some cases (when NH3 CONS_LMTH ⁇ NH3 CONS ) and when the detected ammonia amount NH3 CONS is smaller than NH3 CONS_LMTL (when NH3 CONS ⁇ NH3 CONS_LMTH ).
  • VPOLE when NH3 CONS_LMTL ⁇ NH3 CONS ⁇ NH3 CONS_LMTH , VPOLE is set in the vicinity of “ ⁇ 1” (specifically, VPOLE ⁇ 0.95), and NH3 CONS_LMTH ⁇ NH3 In the case of CONS and NH3 CONS ⁇ NH3 CONS_LMTH , VPOLE is set in the vicinity of “0” (specifically, VPOLE ⁇ 0.4).
  • the reaching law input U RCH (k), the nonlinear input U NL (k), and the adaptive law input U ADP (k) are calculated. As shown in (4), the sum of these U RCH (k), U NL (k), and U ADP (k) is calculated and defined as the FB injection amount G UREA_FB (k).
  • the reaching law input U RCH (k) is an input for placing the deviation state quantity on the switching straight line.
  • the switching function ⁇ (k) has a predetermined reaching law control gain K RCH. It is calculated by multiplying.
  • the nonlinear input U NL (k) is an input for suppressing the nonlinear modeling error and placing the deviation state quantity on the switching straight line.
  • sign ( ⁇ (k)) It is calculated by multiplying by a predetermined nonlinear input gain KNL .
  • sign ( ⁇ (k)) is a sign function, and is “1” when ⁇ (k) is a positive value and “ ⁇ 1” when ⁇ (k) is a negative value.
  • the adaptive law input U ADP (k) is an input for suppressing the influence of modeling error and disturbance and placing the deviation state quantity on the switching line. As shown in the following equation (7), the switching function ⁇ (k ) Multiplied by a predetermined adaptive law gain K ADP and the sum of the adaptive law input U ADP (k ⁇ 1) at the previous control.
  • the reaching law input U RCH (k), the non-linear input U NL (k), and the adaptive law input U ADP (k) are respectively calculated as deviation state quantities under the control policy detailed with reference to FIG. Is set to an optimum value on the basis of experiments so that is stably placed on the switching straight line.
  • FIG. 10 is a diagram showing a change in the NOx reduction rate when urea injection control is executed using the sliding mode controller of the present embodiment as described above.
  • the upper part shows the time change of the detected ammonia amount NH3 CONS
  • the middle part shows the time change of the urea injection amount GUREA
  • the lower part shows the time change of the NOx reduction rate.
  • the solid line indicates the control result of the present embodiment
  • the broken line indicates the control result when urea injection control is performed so that the detected ammonia amount NH3 CONS converges strictly to the target ammonia amount NH3 CONS_TRGT. Indicates.
  • the urea injection amount G UREA is calculated so that the detected ammonia amount NH 3 CONS drifts within the target ammonia slip range RNH 3 CONS_TRGT .
  • variation of the urea injection amount GUREA can be made small.
  • the urea injection amount is greatly reduced to suppress this ammonia slip.
  • the NOx reduction rate may be significantly reduced.
  • the detected ammonia amount NH3 CONS is, the convergence rate when within the target ammonia slip range RNH3 CONS - TRGT, so slower than the convergence rate in a case that is outside the target ammonia slip range RNH3 CONS - TRGT Set.
  • the detected ammonia amount NH3 CONS is outside the target ammonia slip range RNH3 CONS_TRGT , the occurrence of excessive ammonia slip and the decrease in the NOx reduction rate are promptly suppressed.
  • the detected ammonia amount NH3 CONS is within the target ammonia slip range RNH3 CONS_TRGT , it is possible to prevent a large change in the urea injection amount GUREA and to prevent the NOx reduction rate from being significantly reduced.
  • FIG. 11 shows engine load, NOx amount upstream of the selective reduction catalyst, detected ammonia amount NH3 when urea injection control is executed only by the sliding mode controller described above. It is a figure which shows the relationship between CONS , urea injection amount GUREA , and NOx reduction rate.
  • the feedforward controller calculates the FF injection amount GUREA_FF corresponding to the operating state of the engine.
  • the FF injection amount GUREA_FF is determined by map search, for example, based on the engine speed NE and the load parameter TRQ indicating the engine load as the engine operating state.
  • FIG. 12 is a diagram illustrating an example of a control map for determining the FF injection amount GUREA_FF .
  • the FF injection amount GUREA_FF is determined to be a larger value as the engine speed NE or the load parameter TRQ increases. This is because the larger the engine load parameter TRQ, the higher the combustion temperature of the air-fuel mixture and the higher the NOx emission amount. The higher the engine speed NE, the higher the NOx emission amount per unit time. Because.
  • FIG. 13 shows the engine load, the NOx amount upstream of the selective reduction catalyst, the detected ammonia amount NH3 CONS , and the urea injection amount G UREA when urea injection control is executed using the feedforward controller of the present embodiment as described above. It is a figure which shows the relationship between NOx reduction rate.
  • the solid line indicates the control result of this embodiment, and the broken line indicates the control result when urea injection control is performed only by the sliding mode controller.
  • the feedforward controller calculates the FF injection amount G UREA_FF appropriately set in accordance with the increase in NOx, thereby making the urea injection amount G UREA ideal without any delay. Can be maintained at a reasonable injection amount. Thereby, the NOx reduction rate can be maintained at the highest value. In addition, by maintaining the NOx reduction rate high in this way, it is possible to prevent large fluctuations in the urea injection amount G UREA and to prevent the occurrence of ammonia slip and the reduction in the NOx reduction ratio due to this fluctuation. .
  • FIG. 14 shows a state in which ammonia stored in the selective reduction catalyst is unsaturated, that is, a state in which the storage amount in the selective reduction catalyst is less than its storage capacity. It is a figure which shows the relationship between the NOx reduction
  • the urea injection amount GUREA is increased until the storage amount of ammonia reaches the storage capacity, thereby shortening the period during which the NOx reduction rate is reduced. Also, (5) and in order to solve the problems of (6), after increasing the amount of urea injection amount G UREA As described above, the urea injection amount G UREA before ammonia saturated ammonia slip occurs Reduce.
  • the storage correction input calculation unit estimates the first storage amount of the first selective reduction catalyst based on an ammonia storage model described later.
  • first storage amount ST uREA - FB that this estimate is a predetermined target storage amount ST uREA - TRGT, quickly and to converge without overshoot, it calculates the correction injection amount G uREA - ST in the urea injection amount G uREA.
  • the target storage amount ST UREA_TRGT is set to the same value as the first storage capacity ST UREA_MAX1 of the first selective reduction catalyst by a setting unit (not shown), but is not limited thereto.
  • the target storage amount ST UREA_TRGT may be set in the vicinity of the first storage capacity ST UREA_MAX1 and smaller than this ST UREA_MAX1 .
  • FIG. 15 is a schematic diagram illustrating a concept of an ammonia storage model in the storage correction input calculation unit.
  • This ammonia storage model is a model for estimating a change in the storage amount of ammonia in the selective reduction catalyst according to the urea injection amount with respect to the NOx amount of the exhaust gas flowing into the selective reduction catalyst.
  • the state of change of the storage amount in the selective reduction catalyst includes a state in which the urea injection amount is appropriate with respect to a predetermined NOx amount (see FIG. 15A), and a state in which the urea injection amount is excessive ( The state is classified into three states, that is, a state in which the urea injection amount is insufficient (see FIG. 15C).
  • FIG. 16 is a block diagram showing the configuration of the first form of the storage correction input calculation unit.
  • the storage correction input calculation unit includes a control object 61 configured based on the ammonia storage model as described above and a controller 62 of the control object 61.
  • the control target 61 uses a surplus urea injection amount D UREA that indicates the amount of urea water that is surplus when reducing NOx in the exhaust as a control input, and a first storage amount ST UREA_FB of the first selective reduction catalyst as a control output. To do. Specifically, the control target 61 sequentially adds the stored ammonia amount or sequentially subtracts the consumed ammonia amount based on the surplus urea injection amount DUREA , so that the first selective catalytic reduction catalyst The integrator 611 estimates the first storage amount ST UREA_FB .
  • the surplus urea injection amount D UREA (k) is obtained from the urea injection amount G UREA (k) by the adder 63 from the urea injection amount G UREA (k) as NOx of exhaust flowing into the first selective reduction catalyst. It is calculated by subtracting the ideal urea injection amount G UREA_IDEAL (k), which is the urea injection amount necessary for reduction.
  • the urea injection amount G UREA (k) is added to the corrected injection amount G UREA_ST (k) calculated by the controller 62 by the adder 64 and the FB injection amount G UREA_FB (k) and the FF injection amount G UREA_FF (k). It is calculated by adding.
  • the ideal urea injection amount G UREA_IDEAL (k) reduces the NOx amount NOx CONS of the exhaust gas flowing into the first selective reduction catalyst detected by the NOx sensor and NOx as shown in the following equation (9). Therefore , it is calculated by multiplying by a conversion coefficient K CONV_NOX_UREA for conversion to an injection amount necessary for this.
  • the FF injection amount G UREA_FF (k) may be set as the ideal urea injection amount G UREA_IDEAL (k).
  • the integrator 611 integrates the surplus urea injection amount D UREA (k) with respect to time k as shown in the following equation (10) based on the surplus urea injection amount D UREA (k) increasing or decreasing the first storage amount.
  • the first storage amount ST UREA_FB (k) is estimated by combining the calculation and the limit processing for the first storage amount as shown in the following equation (11).
  • Equation (11) a lower limit process for the first storage amount ST UREA_FB (k), that is, a process in which ST UREA_FB (k) becomes “0” at the minimum is performed. That is, in Expression (11), the upper limit process for the first storage amount ST UREA_FB (k), that is, the process that makes ST UREA_FB (k) the maximum storage capacity ST UREA_MAX1 is not performed. This is because the problem shown in (5) above may not be solved. That is, when the target first storage amount ST UREA_TRGT is set to the same value as the first storage capacity ST UREA_MAX1 as described above, if the upper limit process is performed, the first storage amount is reduced without reducing the urea injection amount G UREA. This is because the amount ST UREA_FB is limited to the first storage capacity ST UREA_MAX1 , and it becomes difficult to perform control to suppress ammonia slip.
  • the controller 62 calculates the corrected injection amount G UREA_ST (k) in the urea injection amount G UREA by PI control so that the estimated first storage amount ST UREA_FB (k) converges to the target first storage amount ST UREA_TRGT. To do.
  • the adder 621 subtracts the target first storage amount ST UREA_TRGT (k) from the estimated first storage amount ST UREA_FB (k), It is defined as a storage amount deviation E ST (k).
  • the multiplier 622 multiplies the first storage amount deviation E ST (k) by the proportional gain KP ST to calculate the proportional term G UREA_ST_P (k).
  • the integral term G UREA_ST_I is obtained by multiplying the time integral value of the first storage amount deviation E ST (k) by the integral gain KI ST by the integrator 623 and the multiplier 624. (K) is calculated.
  • the adder 625 calculates the sum of the proportional term G UREA_ST_P (k) and the integral term G UREA_ST_I (k), and uses this as the corrected injection amount G UREA_ST (k). Define.
  • FIG. 17 is a diagram showing a temporal change of the first storage amount ST UREA_FB estimated by the first form of the storage correction input calculation unit as described above.
  • the first storage amount ST UREA_FB exhibits a vibration behavior with respect to the target first storage amount ST UREA_TRGT , and ammonia slip occurs periodically.
  • the control object 61 as the storage model described above has a structure including the integrator 611. That is, in this case, the proportional term G UREA_ST_P of the controller 62 becomes an integral term, and the integral term G UREA_ST_I becomes an integral term with respect to the integral value.
  • the integral term G UREA_ST_I shows an oscillatory behavior. Therefore, hereinafter, a second mode and a third mode of the storage correction input calculation unit that solve such a problem will be described.
  • FIG. 18 is a block diagram showing the configuration of the second form of the storage correction input calculation unit.
  • the storage correction input calculation unit of the second form is different from the first form shown in FIG. 16 described above in the configuration of the controller 62A.
  • the controller 62A is a controller that uses an expanded system PI control in which the integrator 611 of the control target 61 is regarded as a part of the controller.
  • the adder 621 subtracts the target first storage amount ST UREA_TRGT (k) from the estimated first storage amount ST UREA_FB (k), It is defined as a storage amount deviation E ST (k).
  • the integrator 611 of the control target 61 is regarded as a part of the controller, and the proportional term G UREA_ST_P ( k) and the integral term G UREA_ST_I (k) are each calculated in consideration of later integration.
  • a differential value E ST (k) ⁇ E ST (k ⁇ 1) of the first storage amount deviation is calculated by the delay calculator 626 and the adder 627, and a proportional gain is calculated by the multiplier 622.
  • a product obtained by multiplying KP ST is defined as a proportional term G UREA_ST_P (k) as shown in the following equation (17).
  • the product of the first storage amount deviation E ST (k) multiplied by the integral gain KI ST by the multiplier 624 is defined as an integral term G UREA_ST_I (k) as shown in the following equation (18).
  • the adder 625 calculates the sum of the proportional term G UREA_ST_P (k) and the integral term G UREA_ST_I (k), and uses this as the corrected injection amount G UREA_ST (k). Define.
  • FIG. 19 is a block diagram showing the configuration of the third form of the storage correction input calculation unit.
  • the storage correction input calculation unit of the third form is different from the second form shown in FIG. 18 described above in the configuration of the controller 62B.
  • the controller 62B recognizes the integrator 611 of the controlled object 61 as a part of the controller in the same manner as the controller 62A described above, and gives an expanded system IP that gives the first storage amount deviation E ST (k) only to the integral term. It is a controller using control.
  • the adder 621 subtracts the target first storage amount ST UREA_TRGT (k) from the estimated first storage amount ST UREA_FB (k), It is defined as a storage amount deviation E ST (k).
  • the differential value ST UREA_FB (k) ⁇ ST UREA_FB (k ⁇ 1) of the first storage amount is calculated by the delay computing unit 268 and the adder 629, and this differential value is multiplied by the proportional gain KP ST by the multiplier 622.
  • This is defined as a proportional term G UREA_ST_P (k) as shown in the following formula (22).
  • the adder 625 calculates the sum of the proportional term G UREA_ST_P (k) and the integral term G UREA_ST_I (k), and uses this as the corrected injection amount G UREA_ST (k). Define.
  • FIG. 20 shows the relationship between the NOx reduction rate, the urea injection amount GUREA , the detected ammonia amount NH3 CONS, and the ammonia storage amount when urea injection control is executed using the storage correction input calculation unit as described above.
  • the solid line indicates the control result of the present embodiment, and the broken line indicates the control result when urea injection control is performed without estimating the first storage amount.
  • the time to reach the storage capacity can be shortened. Thereby, the time until the ammonia is saturated in the first selective reduction catalyst can be shortened, and the NOx reduction rate can be quickly increased.
  • the estimating the first storage amount ST UREA - FB by feedback control so the first storage amount ST UREA - FB converges to the target first storage amount ST UREA - TRGT, actually ammonia in the first selective reduction catalyst saturation
  • the reduction of the urea injection amount GUREA can be started. That is, the delay in reducing the urea injection amount can be eliminated. Thereby, generation
  • FIG. 21 is a diagram showing a temporal change in the first storage amount ST UREA_FB estimated by the storage correction input calculation unit as described above.
  • FIG. 21A shows a control result according to the first form using PI control
  • FIG. 21B shows a control result according to the second form using expanded PI control
  • FIG. (C) shows a control result according to the third mode using the expanded system IP control.
  • the periodic vibration of the first storage amount ST UREA_FB is further increased as compared with the case where the above-described expanded system PI control is used.
  • the occurrence of ammonia slip can be further suppressed.
  • the proportional term G UREA - ST - P the first storage amount deviation E instead ST, because calculated based on the first storage amount ST UREA - FB.
  • the proportional term G UREA - ST - P rather than acting as the first storage amount deviation E ST becomes "0”, act to ST UREA - FB becomes "0", thereby, over the ST UREA - FB Shooting is suppressed.
  • the overshoot as described above is suppressed when the enlarged system IP control is used.
  • the time until the first storage amount ST UREA - FB reaches the target first storage amount ST UREA - TRGT becomes long.
  • the target ammonia amount setting unit sets the target ammonia concentration NH3 CONS_TRGT based on the detection value T SCR of the catalyst temperature sensor.
  • FIG. 22 is a diagram illustrating an example of a search map for the target ammonia amount NH3 CONS_TRGT .
  • the horizontal axis represents the detected value T SCR of the catalyst temperature sensor
  • the vertical axis indicates the target amount of ammonia NH3 CONS - TRGT.
  • the storage capacity of the selective reduction catalyst has a characteristic that it decreases as the catalyst temperature increases. Therefore, the target ammonia amount NH3 CONS_TRGT is set to a smaller value as the catalyst temperature T SCR increases so that the amount of ammonia flowing into the second selective reduction catalyst decreases as the catalyst temperature increases and the storage capacity decreases.
  • the conventional exhaust gas purification apparatus uses an ammonia sensor that detects the ammonia concentration, and controls the detected value of the ammonia concentration to coincide with a predetermined target ammonia concentration. Shows the case.
  • the conventional exhaust purification device uses a sensor that detects the ammonia concentration between the first selective reduction catalyst and the second selective reduction catalyst, and this ammonia concentration. That is, urea injection control is performed so that the detected value coincides with a predetermined target value.
  • FIG. 23 is a diagram showing a change in the amount of ammonia between the first selective reduction catalyst and the second selective reduction catalyst in the conventional exhaust purification device.
  • FIG. 24 is a diagram showing a change in the amount of ammonia between the first selective reduction catalyst and the second selective reduction catalyst in the exhaust gas purification apparatus of the present embodiment. 23 and 24, in order from the upper stage to the lower stage, the engine load, the exhaust flow rate, the ammonia concentration between the first selective reduction catalyst and the second selective reduction catalyst, and the first selective reduction catalyst, The relationship with the amount of ammonia between 2nd selective reduction catalysts is shown.
  • the urea injection amount is set so that the detected value of the ammonia concentration matches the target value. Incremental control is performed. Accordingly, as shown in FIG. 23, the ammonia concentration between the first selective reduction catalyst and the second selective reduction catalyst coincides with the target value, but the ammonia amount deviates from an appropriate amount and increases. For this reason, an amount of ammonia exceeding the storage capacity flows into the second selective reduction catalyst, and as a result, ammonia slip may occur.
  • the exhaust purification apparatus of the present embodiment performs control based on the ammonia amount, the urea injection amount does not increase with an increase in the exhaust gas flow rate. For this reason, as shown in FIG. 24, the ammonia concentration between the first selective reduction catalyst and the second selective reduction catalyst decreases as the exhaust flow rate increases. Further, at this time, if the engine load is increased, the catalyst temperature also rises as the exhaust temperature rises, so that the storage capacity of the second selective reduction catalyst decreases. As described above, in the exhaust purification system of this embodiment, the target ammonia amount NH3 CONS_TRGT is determined according to the catalyst temperature. For this reason, as shown in FIG.
  • the target ammonia amount NH3 CONS_TRGT is set so as to decrease as the storage capacity of the second selective reduction catalyst decreases. Therefore, ammonia slip can be introduced into the second selective reduction catalyst according to the state, and ammonia slip can be suppressed.
  • FIG. 25 is a flowchart showing a procedure of urea injection control processing executed by the ECU.
  • This urea injection control process is to calculate the urea injection amount G UREA by the above-described method, and is executed at predetermined control cycles.
  • step S1 it is determined whether the urea failure flag F UREANG is “1”.
  • the urea failure flag F UREANG is set to “1” when it is determined in the determination process (not shown) that the urea injection device has failed, and is set to “0” otherwise. If this determination is YES, the process moves to step S9, and after setting the urea injection amount G UREA to “0”, this process ends. If this determination is NO, the process proceeds to step S2.
  • step S2 it is determined whether or not the catalyst deterioration flag F SCRNG is “1”.
  • the catalyst deterioration flag F SCRNG is set to “1” when it is determined in the determination process (not shown) that either the first selective reduction catalyst or the second selective reduction catalyst has failed, and “0” otherwise. Set to If this determination is YES, the process moves to step S9, and after setting the urea injection amount G UREA to “0”, this process ends. If this determination is NO, the process proceeds to step S3.
  • step S3 it is determined whether the urea remaining amount Q UREA is less than a predetermined value Q REF .
  • This urea remaining amount Q UREA indicates the remaining amount of urea water in the urea tank, and is calculated based on the output of the urea level sensor. If this determination is YES, the process proceeds to step S4, and if NO, the process proceeds to step S5.
  • step S4 the urea remaining amount warning lamp is turned on, the process proceeds to step S9, the urea injection amount GUREA is set to “0”, and then this process ends.
  • step S5 it is determined whether the catalyst warm-up timer value T MAST is greater than a predetermined value T MLMT .
  • This catalyst warm-up timer value T MAST measures the warm-up time of the urea selective reduction catalyst after engine startup. If this determination is YES, the process proceeds to step S6. When this determination is NO, the process proceeds to step S9, and after setting the urea injection amount GUREA to “0”, this process is ended.
  • step S6 it is determined whether or not the sensor failure flag F SENNG is “0”.
  • This sensor failure flag F SENNG is set to “1” when it is determined that the ammonia sensor or the catalyst temperature sensor has failed in a determination process (not shown), and is set to “0” otherwise. If this determination is YES, the process proceeds to step S7. When this determination is NO, the process proceeds to step S9, and after setting the urea injection amount GUREA to “0”, this process is ended.
  • step S7 it is determined whether or not the ammonia sensor activation flag F NH3ACT is 1.
  • the ammonia sensor activation flag F NH3ACT is set to “1” when it is determined that the ammonia sensor has reached an active state in a determination process (not shown), and is set to “0” otherwise. If this determination is YES, the process proceeds to step S8. When this determination is NO, the process proceeds to step S9, and after setting the urea injection amount GUREA to “0”, this process is ended.
  • step S8 it is determined whether or not the temperature T SCR of the first selective reduction catalyst is higher than a predetermined value T SCR_ACT . If this determination is YES, it is determined that the first selective reduction catalyst has been activated, and the routine goes to Step S10. If this determination is NO, it is determined that the first selective reduction catalyst has not yet been activated and urea injection should be stopped, and the routine proceeds to step S9, where the urea injection amount GUREA is set to “0”. This processing is terminated.
  • step S10 the target ammonia amount setting unit described above, calculates the target amount of ammonia NH3 CONS - TRGT based on the catalyst temperature T SCR, it proceeds to step S11.
  • step S11 the FF injection amount GUREA_FF is calculated by the above-described feedforward controller, and the process proceeds to step S12.
  • step S12 the storage correction input calculation unit described above calculates the corrected injection amount G UREA_ST based on the equations (8) to (23), and the process proceeds to step S13.
  • step S13 the above-described sliding mode controller calculates the FB injection amount G UREA_FB based on the equations (2) to (7), and the process proceeds to step S14.
  • step S14 the urea injection amount GUREA is calculated based on the equation (1) by the above-described adder, and this process is terminated.
  • the ammonia sensor 26 constitutes an ammonia detection means
  • the ECU 3 controls the first control input calculation means, the second control input calculation means, the third control input calculation means, the reducing agent supply amount determination means, and the target ammonia.
  • a quantity setting means is configured.
  • the feedback controller 4 and the sliding mode controller 42 of the ECU 3 constitute a first control input calculation means
  • the feed forward controller 5 of the ECU 3 constitutes a second control input calculation means
  • a storage correction input calculation unit of the ECU 3 6 constitutes the third control input calculating means
  • the adder 7 of the ECU 3 constitutes the reducing agent supply amount determining means
  • the feedback controller 4 and the target ammonia amount setting unit 41 of the ECU 3 constitutes the target ammonia amount setting means.
  • the present invention is not limited to the embodiment described above, and various modifications can be made.
  • target ammonia amount NH3 CONS - TRGT based on the detected value T SCR of the catalyst temperature sensor for detecting the temperature of the first selective reduction catalyst has been calculated target ammonia amount NH3 CONS - TRGT, not limited to this.
  • the target ammonia amount may be calculated based on a detection value of an exhaust temperature sensor that detects the temperature of the exhaust.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

An exhaust gas purification device for an internal combustion engine, provided with a selective reduction catalyst, the exhaust gas purification device being capable of maintaining a high rate of NOx reduction and minimizing the discharge of ammonia to the downstream side of the selective reduction catalyst. An exhaust gas purification device (2) wherein a urea-based selective catalytic reduction catalyst (23) comprises a first selective catalytic reduction catalyst (231) and a second selective catalytic reduction catalyst (232) which is provided in the exhaust path (11) at a position downstream of the first selective catalytic reduction catalyst (231). Also, the exhaust gas purification device (2) is provided with a urea injection device (25) which supplies a reduction agent to the exhaust path (11) to a position upstream of the urea-based selective catalytic reduction catalyst (23), and also with an ammonia sensor (26) which detects the amount of ammonia in the exhaust path (11) at a position between the first selective catalytic reduction catalyst (231) and the second selective catalytic reduction catalyst (232). The amount (GUREA) of injection of urea by the urea injection device (25) is determined so that the value of the amount (NH3CONS) of ammonia detected by the ammonia sensor (26) is greater than "0".

Description

内燃機関の排気浄化装置Exhaust gas purification device for internal combustion engine
 本発明は、内燃機関の排気浄化装置に関し、特に、還元剤の存在下において排気中のNOxを還元する選択還元触媒を備える内燃機関の排気浄化装置に関する。 The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to an exhaust gas purification apparatus for an internal combustion engine that includes a selective reduction catalyst that reduces NOx in exhaust gas in the presence of a reducing agent.
 従来、排気中のNOxを浄化する排気浄化装置の1つとして、還元剤を添加することで排気中のNOxを選択的に還元する選択還元触媒を排気通路に設けたものが提案されている。例えば、還元剤として尿素水を用いる尿素添加式の選択還元触媒では、添加された尿素からアンモニアを生成し、このアンモニアにより排気中のNOxを選択的に還元する。 Conventionally, as one of exhaust purification devices for purifying NOx in exhaust gas, a device in which a selective reduction catalyst for selectively reducing NOx in exhaust gas by adding a reducing agent is provided in an exhaust passage has been proposed. For example, in a urea addition type selective reduction catalyst using urea water as a reducing agent, ammonia is generated from the added urea, and NOx in the exhaust gas is selectively reduced by this ammonia.
 このような選択還元触媒では、還元剤の噴射量が最適な量よりも少ない場合には、NOxの還元に消費されるアンモニアが不足することでNOx還元率が低下し、この最適な量よりも多い場合には、NOxの還元に余剰となったアンモニアが排出する。このため、選択還元触媒を備える排気浄化装置では、還元剤の噴射量を適切に制御することが重要となっている。そこで、特許文献1や特許文献2には、選択還元触媒におけるNOx還元率を推定し、この推定に基づいて還元剤の噴射量を制御するものが示されている。 In such a selective reduction catalyst, when the injection amount of the reducing agent is smaller than the optimum amount, the NOx reduction rate is lowered due to a shortage of ammonia consumed for the reduction of NOx. When there is a large amount, ammonia surplus in the reduction of NOx is discharged. For this reason, it is important to appropriately control the injection amount of the reducing agent in the exhaust emission control device including the selective reduction catalyst. In view of this, Patent Document 1 and Patent Document 2 describe a method of estimating the NOx reduction rate in the selective reduction catalyst and controlling the injection amount of the reducing agent based on this estimation.
 特許文献1の排気浄化装置では、選択還元触媒の下流側のNOx濃度を検出し、この検出したNOx濃度と、内燃機関の運転状態から、選択還元触媒に流入する排気の組成、より具体的にはNOとNOの比を推定する。さらにこの排気の組成に基づいて選択還元触媒のNOx還元率を推定し、還元剤の噴射量を制御する。
 また特許文献2の排気浄化装置では、選択還元触媒におけるNOx還元率に関する量として触媒の温度を検出し、この温度に基づいて還元剤の噴射量を制御する。
In the exhaust emission control device of Patent Document 1, the NOx concentration downstream of the selective reduction catalyst is detected, and the detected NOx concentration and the composition of the exhaust gas flowing into the selective reduction catalyst from the operating state of the internal combustion engine, more specifically, Estimates the ratio of NO to NO 2 . Further, the NOx reduction rate of the selective reduction catalyst is estimated based on the composition of the exhaust, and the injection amount of the reducing agent is controlled.
Further, in the exhaust purification device of Patent Document 2, the temperature of the catalyst is detected as an amount related to the NOx reduction rate in the selective reduction catalyst, and the amount of reducing agent injected is controlled based on this temperature.
 しかしながら、選択還元触媒におけるNOx還元率は、上述のような排気の組成や選択還元触媒の温度だけではなく、選択還元触媒の劣化状態によっても変化する。また、浄化性能には個体間でばらつきがある。これに加えて、選択還元触媒にアンモニアが貯蔵された場合には、還元剤の最適な量が異なるため、選択還元触媒におけるNOx還元率は見かけ上変化する。したがって、特許文献1,2に示すような排気浄化装置では、還元剤の噴射量を常に最適に制御するのは困難である。 However, the NOx reduction rate in the selective reduction catalyst varies depending not only on the exhaust composition and the temperature of the selective reduction catalyst as described above, but also on the deterioration state of the selective reduction catalyst. Moreover, the purification performance varies among individuals. In addition to this, when ammonia is stored in the selective reduction catalyst, the optimum amount of the reducing agent is different, so that the NOx reduction rate in the selective reduction catalyst apparently changes. Therefore, it is difficult to always optimally control the injection amount of the reducing agent in the exhaust purification devices as shown in Patent Documents 1 and 2.
 そこで以下では、選択還元触媒におけるNOx還元率をより直接的に検出し、これに基づいて還元剤の噴射量を制御する技術について検討する。 Therefore, in the following, a technique for more directly detecting the NOx reduction rate in the selective reduction catalyst and controlling the injection amount of the reducing agent based on this will be examined.
 図26は、従来の排気浄化装置80の構成を示す模式図である。
 図26に示すように、エンジン81の排気通路82には、上流側から下流側へ向かって順に、酸化触媒83と、ユリアタンク84に貯留された還元剤としての尿素水を排気通路82内に噴射するユリア噴射弁85と、尿素水の存在下で排気中のNOxを還元する選択還元触媒86とが設けられる。また、選択還元触媒の浄化性能を監視するものとして、選択還元触媒86の温度を検出する温度センサ87と、選択還元触媒86の下流側のNOx濃度を検出するNOxセンサ88とが設けられる。
FIG. 26 is a schematic diagram showing a configuration of a conventional exhaust purification device 80.
As shown in FIG. 26, in the exhaust passage 82 of the engine 81, the oxidation catalyst 83 and urea water as a reducing agent stored in the urea tank 84 are placed in the exhaust passage 82 in order from the upstream side to the downstream side. A urea injection valve 85 that injects and a selective reduction catalyst 86 that reduces NOx in the exhaust in the presence of urea water are provided. Further, a temperature sensor 87 for detecting the temperature of the selective reduction catalyst 86 and a NOx sensor 88 for detecting the NOx concentration downstream of the selective reduction catalyst 86 are provided for monitoring the purification performance of the selective reduction catalyst.
 この排気浄化装置80では、例えば、予め設定されたマップによりエンジン81から排出される排気のNOx濃度を推定し、このNOx濃度と、温度センサ87により検出された触媒温度とに基づいて、ユリア噴射弁85による尿素水の噴射量を決定する。特にここで、選択還元触媒86の劣化状態は、NOxセンサ88により検出されたNOx濃度と、推定した排気のNOx濃度との差に基づいて推定することができる。この排気浄化装置では、以上のようにして推定した選択還元触媒86の劣化状態に応じて、尿素水の噴射量を補正することが可能となっている。 In this exhaust purification device 80, for example, the NOx concentration of exhaust exhausted from the engine 81 is estimated from a preset map, and urea injection is performed based on this NOx concentration and the catalyst temperature detected by the temperature sensor 87. The amount of urea water injected by the valve 85 is determined. In particular, here, the deterioration state of the selective reduction catalyst 86 can be estimated based on the difference between the NOx concentration detected by the NOx sensor 88 and the estimated NOx concentration of the exhaust gas. In this exhaust purification device, it is possible to correct the injection amount of urea water in accordance with the deterioration state of the selective reduction catalyst 86 estimated as described above.
特開2006-274986号公報JP 2006-274986 A 特開2004-100700号公報JP 2004-100700 A
 図27は、上述の従来の排気浄化装置における、選択還元触媒下流の排気のNOx濃度及びアンモニア濃度と、NOxセンサの出力値との関係を示す図である。具体的には、図27は、上段から順に、選択還元触媒下流の排気のNOx濃度、選択還元触媒下流の排気のアンモニア濃度、及びNOxセンサの出力値と、尿素水噴射量との関係を示す。 FIG. 27 is a diagram showing the relationship between the NOx concentration and ammonia concentration of the exhaust downstream of the selective reduction catalyst and the output value of the NOx sensor in the above-described conventional exhaust purification device. Specifically, FIG. 27 shows, in order from the top, the relationship between the NOx concentration in the exhaust downstream of the selective reduction catalyst, the ammonia concentration in the exhaust downstream of the selective reduction catalyst, the output value of the NOx sensor, and the urea water injection amount. .
 尿素水の噴射量を増加すると、選択還元触媒において生成されるアンモニアも増加するため、選択還元触媒におけるNOx還元率が上昇する。このため、図27に示すように、尿素水の噴射量を増加するに従い、選択還元触媒の下流のNOx濃度は減少する。また、星印に示す尿素水噴射量を超えると、NOx濃度は尿素水噴射量にかかわらず略一定となる。すなわち、星印を超える量の尿素水は、生成されたNOxを還元することに対しては余剰であることを示す。 When the injection amount of urea water is increased, ammonia generated in the selective reduction catalyst is also increased, so that the NOx reduction rate in the selective reduction catalyst is increased. For this reason, as shown in FIG. 27, the NOx concentration downstream of the selective reduction catalyst decreases as the urea water injection amount increases. When the urea water injection amount indicated by the star is exceeded, the NOx concentration becomes substantially constant regardless of the urea water injection amount. That is, the urea water in an amount exceeding the asterisk is surplus for reducing the produced NOx.
 また、ここで余剰となった尿素水から生成されたアンモニアは、NOxの還元には消費されず、選択還元触媒に貯蔵されるか又は選択還元触媒の下流に排出される。したがって、図27に示すように、選択還元触媒の下流の排気のアンモニア濃度は、星印に示す尿素水の噴射量を超えると増加する。なお、このように生成されたアンモニアが選択還元触媒に貯蔵されず、その下流へ排出することを、以下では「アンモニアスリップ」という。 Also, the ammonia generated from the urea water surplus here is not consumed for the reduction of NOx, but is stored in the selective reduction catalyst or discharged downstream of the selective reduction catalyst. Therefore, as shown in FIG. 27, the ammonia concentration in the exhaust downstream of the selective reduction catalyst increases when it exceeds the injection amount of urea water indicated by an asterisk. Note that the ammonia generated in this way is not stored in the selective reduction catalyst but is discharged downstream thereof, hereinafter referred to as “ammonia slip”.
 以上のように、図27において星印で示す尿素水噴射量は、NOx濃度及びアンモニア濃度を共に最小にできるので、この排気浄化装置における最適な噴射量となっている。 As described above, the urea water injection amount indicated by an asterisk in FIG. 27 is the optimal injection amount in the exhaust gas purification apparatus because both the NOx concentration and the ammonia concentration can be minimized.
 しかしながら、図27に示すように、NOxセンサの出力値は、この最適な噴射量における出力値を最小点とした、下に凸の特性を示す。これは、現存するNOxセンサは、その検出原理上、NOxに対してだけでなくアンモニアに対しても感応するためである。
 したがって、NOxセンサからの出力値のみでは、尿素水の噴射量が最適な噴射量に対して不足した状態であるか又は過剰な状態であるかを判別できない。このため、最適な量の尿素水を供給し続けて、選択還元触媒におけるNOx還元率を高く維持しながら、かつ、アンモニアの排出を抑制することは困難である。
However, as shown in FIG. 27, the output value of the NOx sensor shows a downwardly convex characteristic with the output value at the optimum injection amount as the minimum point. This is because the existing NOx sensor is sensitive not only to NOx but also to ammonia due to its detection principle.
Therefore, it is not possible to determine whether the urea water injection amount is insufficient or excessive with respect to the optimal injection amount only by the output value from the NOx sensor. For this reason, it is difficult to suppress the discharge of ammonia while continuing to supply an optimal amount of urea water to maintain a high NOx reduction rate in the selective reduction catalyst.
 本発明は上述した点を考慮してなされたものであり、選択還元触媒を備える内燃機関の排気浄化装置において、高いNOx還元率を維持しながら、選択還元触媒の下流へアンモニアが排出するのを抑制できる内燃機関の排気浄化装置を提供することを目的とする。 The present invention has been made in consideration of the above-described points. In an exhaust gas purification apparatus for an internal combustion engine equipped with a selective reduction catalyst, ammonia is discharged downstream of the selective reduction catalyst while maintaining a high NOx reduction rate. An object of the present invention is to provide an exhaust purification device for an internal combustion engine that can be suppressed.
 上記目的を達成するため本発明は、内燃機関(1)の排気通路(11)に設けられ、還元剤の存在下でアンモニアを生成し、このアンモニアで前記排気通路を流通するNOxを還元する選択還元触媒(23)を備える内燃機関の排気浄化装置(2)を提供する。前記選択還元触媒は、第1選択還元触媒(231)と、前記排気通路のうち前記第1選択還元触媒よりも下流側に設けられた第2選択還元触媒(232)とを含んで構成され、前記排気浄化装置は、前記排気通路のうち前記選択還元触媒の上流側に還元剤を供給する還元剤供給手段(25)と、前記排気通路のうち前記第1選択還元触媒と前記第2選択還元触媒との間のアンモニア量を検出するアンモニア検出手段(26)と、当該アンモニア検出手段により検出されるアンモニア量(NH3CONS)の値が、「0」より大きな値になるように制御するための制御入力を算出する第1制御入力算出手段(3,4,42)と、前記還元剤供給手段による還元剤の供給量(GUREA)を、前記第1制御入力算出手段により算出された制御入力(GUREA_FB)を含めて決定する還元剤供給量決定手段(3,7)と、を備える。 In order to achieve the above object, the present invention is provided in the exhaust passage (11) of the internal combustion engine (1), generates ammonia in the presence of a reducing agent, and selects the NOx flowing through the exhaust passage with this ammonia. An exhaust gas purification device (2) for an internal combustion engine comprising a reduction catalyst (23) is provided. The selective reduction catalyst includes a first selective reduction catalyst (231) and a second selective reduction catalyst (232) provided downstream of the first selective reduction catalyst in the exhaust passage, The exhaust purification device includes a reducing agent supply means (25) for supplying a reducing agent to the upstream side of the selective reduction catalyst in the exhaust passage, and the first selective reduction catalyst and the second selective reduction in the exhaust passage. Ammonia detection means (26) for detecting the amount of ammonia between the catalyst and the amount of ammonia (NH3 CONS ) detected by the ammonia detection means is controlled to be a value greater than “0”. The first control input calculating means (3, 4, 42) for calculating the control input, and the reducing agent supply amount (G UREA ) by the reducing agent supplying means are the control inputs calculated by the first control input calculating means. Reducing agent supply amount determining means (3, 7) for determining including force (G UREA_FB ).
 この発明によれば、排気通路に、下流側へ向かって順に第1選択還元触媒と第2選択還元触媒を設け、さらに、第1選択還元触媒及び第2選択還元触媒の上流側から還元剤を供給する還元剤供給手段と、第1選択還元触媒と第2選択還元触媒との間のアンモニア量を検出するアンモニア検出手段と、を設けた。そこで、アンモニア検出手段により検出されるアンモニア量が「0」より大きな値になるように制御するための制御入力を算出し、還元剤供給手段による還元剤の供給量を、このような制御入力を含めて決定した。
 これにより、第1選択還元触媒からアンモニアが流出した状態、すなわち、第1選択還元触媒にアンモニアが十分に貯蔵された状態を保ち、高いNOx還元率を維持することができる。特に、内燃機関の運転状態が急変することで一時的に大量のNOxが生成され、このNOxを還元するためのアンモニアの生成が間に合わなくなるような場合であっても、第1選択還元触媒において貯蔵したアンモニアにより、アンモニアの生成が完了するまでの過渡時におけるNOx還元率を高く維持することができる。
 また、この場合、第1選択還元触媒においてアンモニアスリップが発生するものの、排出されたアンモニアは、第2選択還元触媒に貯蔵されるか、又は、第2選択還元触媒においてNOxの還元に消費される。これにより、高いNOx還元率を維持しつつ、選択還元触媒の最下流へアンモニアが排出するのを抑制できる。
According to this invention, the first selective reduction catalyst and the second selective reduction catalyst are provided in the exhaust passage in order toward the downstream side, and the reducing agent is further introduced from the upstream side of the first selective reduction catalyst and the second selective reduction catalyst. A reducing agent supplying means for supplying and an ammonia detecting means for detecting the amount of ammonia between the first selective reduction catalyst and the second selective reduction catalyst were provided. Therefore, a control input for controlling the ammonia amount detected by the ammonia detection means to be a value larger than “0” is calculated, and the supply amount of the reducing agent by the reducing agent supply means is set to such a control input. Decided to include.
Thereby, the state in which ammonia has flowed out from the first selective reduction catalyst, that is, the state in which ammonia is sufficiently stored in the first selective reduction catalyst, can be maintained, and a high NOx reduction rate can be maintained. In particular, even in the case where a large amount of NOx is temporarily generated due to a sudden change in the operating state of the internal combustion engine, and the generation of ammonia for reducing this NOx is not in time, it is stored in the first selective reduction catalyst. Due to the ammonia, the NOx reduction rate during the transition until the generation of ammonia is completed can be maintained high.
Further, in this case, although ammonia slip occurs in the first selective reduction catalyst, the discharged ammonia is stored in the second selective reduction catalyst or consumed for NOx reduction in the second selective reduction catalyst. . Thereby, it can suppress that ammonia discharge | emits to the most downstream of a selective reduction catalyst, maintaining a high NOx reduction rate.
 ところで、内燃機関の運転状態が変化すると、排気流量も変化する。このとき、例えば、還元剤供給手段により一定の量の還元剤を供給している場合であっても、排気流量が変化すると、第1選択還元触媒と第2選択還元触媒との間の排気のアンモニア濃度も変化する。つまり、アンモニア濃度は、排気流量に応じて変化する。このため、例えば、第1選択還元触媒と第2選択還元触媒との間のアンモニア濃度を検出する検出手段を用い、この検出手段により検出されたアンモニア濃度が「0」より大きな所定値になるように制御入力を決定した場合、内燃機関の運転状態に応じて、第2選択還元触媒に流入するアンモニア量が適切な量から外れてしまい、結果として最下流にアンモニアがスリップするおそれがある。
 これに対してこの発明によれば、アンモニア検出手段により第1選択還元触媒と第2選択還元触媒との間のアンモニア量を検出し、この検出したアンモニア量が「0」より大きな所定値になるように、制御入力を算出する。これにより、内燃機関の運転状態によらず、適切な還元剤の供給量を決定することができるので、最下流へアンモニアがスリップするのを抑制することができる。
By the way, when the operating state of the internal combustion engine changes, the exhaust flow rate also changes. At this time, for example, even when a constant amount of reducing agent is supplied by the reducing agent supply means, if the exhaust gas flow rate changes, the exhaust gas between the first selective reduction catalyst and the second selective reduction catalyst is changed. The ammonia concentration also changes. That is, the ammonia concentration changes according to the exhaust gas flow rate. For this reason, for example, detection means for detecting the ammonia concentration between the first selective reduction catalyst and the second selective reduction catalyst is used so that the ammonia concentration detected by the detection means becomes a predetermined value larger than “0”. When the control input is determined, the amount of ammonia flowing into the second selective reduction catalyst deviates from an appropriate amount depending on the operating state of the internal combustion engine, and as a result, ammonia may slip to the most downstream side.
On the other hand, according to the present invention, the ammonia detection means detects the amount of ammonia between the first selective reduction catalyst and the second selective reduction catalyst, and the detected ammonia amount becomes a predetermined value greater than “0”. Thus, the control input is calculated. As a result, an appropriate supply amount of the reducing agent can be determined regardless of the operating state of the internal combustion engine, so that ammonia can be prevented from slipping to the most downstream side.
 この場合、前記第1選択還元触媒において貯蔵できるアンモニア量を第1ストレージ容量とし、前記第2選択還元触媒において貯蔵できるアンモニア量を第2ストレージ容量とし、前記第2ストレージ容量は、前記第1ストレージ容量の最大時と最小時との差よりも大きいことが好ましい。 In this case, the amount of ammonia that can be stored in the first selective reduction catalyst is a first storage capacity, the amount of ammonia that can be stored in the second selective reduction catalyst is a second storage capacity, and the second storage capacity is the first storage capacity. It is preferably larger than the difference between the maximum and minimum capacity.
 ところで、選択還元触媒のストレージ容量は、この選択還元触媒の温度によって変化する。具体的には、ストレージ容量は、選択還元触媒の温度が高くなるに従い小さくなる。したがって、上述のように第1選択還元触媒にアンモニアが十分に貯蔵された状態で、その温度が急激に上昇すると、第1ストレージ容量が急激に小さくなってしまい、貯蔵していたアンモニアが第2選択還元触媒へ放出される。
 この発明によれば、第2選択還元触媒の第2ストレージ容量を、第1選択還元触媒の第1ストレージ容量の最大時と最小時との差よりも大きくした。これにより、例えば、内燃機関の運転状態が低負荷運転状態から高負荷運転状態に移行することで、第1選択還元触媒の温度が急激に上昇し、第1選択還元触媒からその下流側へアンモニアが放出した場合であっても、このアンモニアを第2選択還元触媒で貯蔵することができる。これにより、選択還元触媒の最下流へアンモニアが排出するのをさらに抑制できる。
Incidentally, the storage capacity of the selective reduction catalyst varies depending on the temperature of the selective reduction catalyst. Specifically, the storage capacity decreases as the temperature of the selective reduction catalyst increases. Accordingly, when the temperature is rapidly increased in a state where ammonia is sufficiently stored in the first selective reduction catalyst as described above, the first storage capacity is rapidly decreased, and the stored ammonia is reduced to the second level. Released to the selective reduction catalyst.
According to the present invention, the second storage capacity of the second selective reduction catalyst is made larger than the difference between the maximum time and the minimum time of the first storage capacity of the first selective reduction catalyst. Thereby, for example, when the operating state of the internal combustion engine shifts from the low load operating state to the high load operating state, the temperature of the first selective reduction catalyst suddenly rises, and ammonia flows from the first selective reduction catalyst to the downstream side thereof. Even when is released, this ammonia can be stored in the second selective reduction catalyst. Thereby, it can further suppress that ammonia discharges to the most downstream side of the selective reduction catalyst.
 この場合、前記排気浄化装置は、前記アンモニア検出手段により検出されるアンモニア量(NH3CONS)の目標値を、「0」より大きな値に設定する目標アンモニア量設定手段(3,41)をさらに備え、前記第1制御入力算出手段は、前記アンモニア検出手段により検出されるアンモニア量が、前記目標値(NH3CONS_TRGT)を含む所定の範囲内に収まるように前記制御入力を算出することが好ましい。 In this case, the exhaust emission control device further includes target ammonia amount setting means (3, 41) for setting the target value of the ammonia amount (NH3 CONS ) detected by the ammonia detection means to a value larger than “0”. The first control input calculating means preferably calculates the control input so that the ammonia amount detected by the ammonia detecting means falls within a predetermined range including the target value (NH3 CONS_TRGT ).
 ところで、選択還元触媒におけるNOx還元率は、この選択還元触媒におけるアンモニアスリップよりも、還元剤の供給量に対する応答遅れが小さく、また感度が大きい。すなわち、例えばアンモニアスリップを抑制するために還元剤の供給量を低減すると、選択還元触媒におけるNOx還元率が著しく低下するという課題がある。
 この発明によれば、アンモニア検出手段により検出されるアンモニア量の目標値を「0」より大きな値に設定するとともに、さらに、検出されるアンモニア量がこの目標値を含む所定の範囲内に収まるように制御入力を算出し、この制御入力を含めて還元剤の供給量を算出した。
 すなわち、第1選択還元触媒と第2選択還元触媒の間におけるアンモニア量を、目標値を含む所定の範囲内に収めるように還元剤の供給量を制御することで、還元剤の供給量の変動を小さくできる。これにより、NOx還元触媒におけるNOx還元率を高く維持することができる。第1選択還元触媒におけるアンモニアスリップの発生を前提とする以上のような制御は、第1選択還元触媒の下流側に第2選択還元触媒を設けることを特徴とする本発明では、特に効果的である。
By the way, the NOx reduction rate in the selective reduction catalyst has a smaller response delay with respect to the supply amount of the reducing agent and higher sensitivity than the ammonia slip in the selective reduction catalyst. That is, for example, when the supply amount of the reducing agent is reduced to suppress ammonia slip, there is a problem that the NOx reduction rate in the selective reduction catalyst is remarkably lowered.
According to the present invention, the target value of the ammonia amount detected by the ammonia detection means is set to a value larger than “0”, and further, the detected ammonia amount falls within a predetermined range including this target value. The control input was calculated, and the supply amount of the reducing agent was calculated including this control input.
That is, by controlling the supply amount of the reducing agent so that the ammonia amount between the first selective reduction catalyst and the second selective reduction catalyst falls within a predetermined range including the target value, the fluctuation of the supply amount of the reducing agent is changed. Can be reduced. Thereby, the NOx reduction rate in the NOx reduction catalyst can be maintained high. The above control based on the premise that ammonia slip occurs in the first selective reduction catalyst is particularly effective in the present invention in which the second selective reduction catalyst is provided downstream of the first selective reduction catalyst. is there.
 この場合、前記第1制御入力算出手段は、前記アンモニア検出手段により検出されるアンモニア量(NH3CONS)の前記目標値への収束速度を設定できる応答指定型制御を実行可能に構成され、前記アンモニア検出手段により検出されたアンモニア量が前記所定の範囲(RNH3CONS_TRGT,NH3CONS_LMTL~NH3CONS_LMTH)内に含まれる場合における収束速度を、前記アンモニア検出手段により検出されたアンモニア量が前記所定の範囲(RNH3CONS_TRGT,NH3CONS_LMTL~NH3CONS_LMTH)外に含まれる場合における収束速度よりも遅く設定することが好ましい。 In this case, the first control input calculation means is configured to be able to execute response designation type control capable of setting a convergence speed of the ammonia amount (NH3 CONS ) detected by the ammonia detection means to the target value, The convergence rate when the ammonia amount detected by the detection means is included in the predetermined range (RNH3 CONS_TRGT , NH3 CONS_LMTL to NH3 CONS_LMTH ) is the convergence rate when the ammonia amount detected by the ammonia detection means is within the predetermined range (RNH3 CONS_TRGT , NH3 CONS_LMTL to NH3 CONS_LMTH ) is preferably set slower than the convergence speed.
 この発明によれば、アンモニア検出手段により検出されるアンモニア量が、目標値を含む所定の範囲内に収まるように制御するための制御入力を、目標値への収束速度を指定できる応答指定型制御により算出する。またここで、検出されたアンモニア量が上記範囲内に含まれる場合における収束速度を、上記範囲外に含まれる場合における収束速度よりも遅くなるように設定した。
 これにより、検出したアンモニア量が上記範囲外に含まれる場合には、過大なアンモニアスリップの発生やNOx還元率の低下を速やかに抑制し、検出したアンモニア量が上記範囲内に含まれる場合には、還元剤の供給量の大きな変化を防止し、NOx還元率が著しく低下するのを防止できる。
According to the present invention, the response designation type control that can designate the convergence speed to the target value as the control input for controlling the ammonia amount detected by the ammonia detecting means to be within a predetermined range including the target value. Calculated by Here, the convergence speed when the detected ammonia amount falls within the above range is set to be slower than the convergence speed when it falls outside the above range.
As a result, when the detected ammonia amount falls outside the above range, the occurrence of excessive ammonia slip and the decrease in the NOx reduction rate are quickly suppressed, and when the detected ammonia amount falls within the above range. Thus, it is possible to prevent a large change in the supply amount of the reducing agent and to prevent the NOx reduction rate from being significantly reduced.
 この場合、前記目標アンモニア量設定手段は、前記内燃機関の排気の温度又は前記選択還元触媒の温度が高いほど、前記目標値を小さな値に設定することが好ましい。 In this case, it is preferable that the target ammonia amount setting means sets the target value to a smaller value as the temperature of the exhaust gas of the internal combustion engine or the temperature of the selective reduction catalyst is higher.
 一般的な選択還元触媒は、温度が高くなるに従い、貯蔵できるアンモニアの量も少なくなるという特性を有する。この発明によれば、内燃機関の排気の温度又は選択還元触媒の温度が高いほど、アンモニア量の目標値を小さく設定する。これにより、選択還元触媒におけるアンモニアの貯蔵可能な量に応じて第2選択還元触媒に流入するアンモニアの量を適切に制御することができるので、最下流へアンモニアがスリップしてしまうのをさらに防止できる。 A general selective reduction catalyst has a characteristic that the amount of ammonia that can be stored decreases as the temperature increases. According to the present invention, the target value of the ammonia amount is set smaller as the temperature of the exhaust gas of the internal combustion engine or the temperature of the selective reduction catalyst is higher. As a result, the amount of ammonia flowing into the second selective reduction catalyst can be appropriately controlled in accordance with the storable amount of ammonia in the selective reduction catalyst, thus further preventing ammonia from slipping to the most downstream side. it can.
 この場合、前記内燃機関の回転数(NE)、及び前記内燃機関の負荷を表す負荷パラメータ(TRQ)に基づいて制御入力を算出する第2制御入力算出手段(5)をさらに備え、前記還元剤供給量決定手段は、前記還元剤供給手段による還元剤の供給量(GUREA)を、前記第2制御入力算出手段により算出された制御入力(GUREA_FF)をさらに含めて決定することが好ましい。 In this case, the reducing agent further comprises second control input calculating means (5) for calculating a control input based on the rotational speed (NE) of the internal combustion engine and a load parameter (TRQ) representing a load of the internal combustion engine. The supply amount determining means preferably determines the supply amount (G UREA ) of the reducing agent supplied by the reducing agent supply means further including the control input (G UREA_FF ) calculated by the second control input calculating means.
 この発明によれば、内燃機関の回転数、及び内燃機関の負荷を表す負荷パラメータに基づいて制御入力を算出し、さらにこの制御入力を含めて還元剤の供給量を決定した。排気中のNOx量は、内燃機関の回転数や負荷等の運転状態に応じて変化するので、このような制御入力を含めて還元剤の供給量を決定することにより、選択還元触媒に流入する排気のNOx量に応じた適切な量の還元剤を供給できる。これにより、選択還元触媒におけるNOx還元率を高く維持することができる。
 また同時に、NOx還元率を高く維持することにより、還元剤の供給量の大きな変動を防止するとともに、この変動に伴うアンモニアスリップの発生やNOx還元率の低下をも未然に防ぐことができる。
According to this invention, the control input is calculated based on the rotational speed of the internal combustion engine and the load parameter indicating the load of the internal combustion engine, and the supply amount of the reducing agent is determined including this control input. Since the amount of NOx in the exhaust gas changes in accordance with the operating state such as the rotational speed and load of the internal combustion engine, the amount of NOx in the exhaust flows into the selective reduction catalyst by determining the supply amount of the reducing agent including such control input. An appropriate amount of reducing agent according to the amount of NOx in the exhaust can be supplied. Thereby, the NOx reduction rate in the selective reduction catalyst can be maintained high.
At the same time, by keeping the NOx reduction rate high, it is possible to prevent a large fluctuation in the supply amount of the reducing agent, and to prevent the occurrence of ammonia slip and the reduction in the NOx reduction ratio due to this fluctuation.
 この場合、前記第1選択還元触媒に貯蔵されたアンモニア量を第1ストレージ量とし、当該第1ストレージ量を推定するとともに、この推定した第1ストレージ量(STUREA_FB)が、所定の目標ストレージ量(STUREA_TRGT)に収束するように制御するための制御入力(GUREA_ST)を算出する第3制御入力算出手段(6)をさらに備え、前記還元剤供給量決定手段は、前記還元剤供給手段による還元剤の供給量(GUREA)を、前記第3制御入力算出手段により算出された制御入力(GUREA_ST)をさらに含めて決定することが好ましい。 In this case, the amount of ammonia stored in the first selective reduction catalyst is used as a first storage amount, and the first storage amount is estimated. The estimated first storage amount (ST UREA_FB ) is a predetermined target storage amount. Third control input calculating means (6) for calculating a control input (G UREA_ST ) for controlling to converge to (ST UREA_TRGT ) is further provided, and the reducing agent supply amount determining means is controlled by the reducing agent supply means. It is preferable to determine the supply amount (G UREA ) of the reducing agent further including the control input (G UREA_ST ) calculated by the third control input calculating means.
 ところで、第1選択還元触媒の第1ストレージ量が第1ストレージ容量よりも少ない状態から還元剤の供給を開始した場合、第1ストレージ量が第1ストレージ容量に達するまで、すなわち、第1選択還元触媒におけるアンモニアが飽和するまでは、NOx還元率は低下する。また、アンモニアが飽和した後は第1選択還元触媒においてアンモニアスリップが発生する。ここで、アンモニアスリップが発生した場合、これを抑制するために還元剤の供給量が低減され、これにより再びNOx還元率が低下するおそれがある。
 この発明によれば、第1選択還元触媒の第1ストレージ量を推定し、この推定した第1ストレージ量が所定の目標ストレージ量に収束するように制御するための制御入力を算出し、さらにこのような制御入力を含めて還元剤の供給量を決定する。
 これにより、第1ストレージ量が第1ストレージ容量よりも少ない場合には、例えば、還元剤の供給量を増量することで、第1ストレージ容量に達するまでの時間を短縮し、速やかにNOx還元率を高めることができる。
 また、第1ストレージ量が第1ストレージ容量に達する直前には、例えば、還元剤の供給量を減量することで第1選択還元触媒におけるアンモニアスリップの発生を防止することができる。これにより、上述のような、アンモニアスリップが発生した際に、これを抑制することを目的として還元剤の供給量を低減した場合に発生するNOx還元率の低下をも防止することができる。
By the way, when the supply of the reducing agent is started from a state where the first storage amount of the first selective reduction catalyst is smaller than the first storage capacity, the first selective reduction is performed until the first storage amount reaches the first storage capacity. Until the ammonia in the catalyst is saturated, the NOx reduction rate decreases. Further, after the ammonia is saturated, ammonia slip occurs in the first selective reduction catalyst. Here, when ammonia slip occurs, the supply amount of the reducing agent is reduced in order to suppress this, and there is a possibility that the NOx reduction rate is lowered again.
According to the present invention, the first storage amount of the first selective reduction catalyst is estimated, a control input for controlling the estimated first storage amount so as to converge to the predetermined target storage amount is calculated, The supply amount of the reducing agent is determined including such control input.
Thereby, when the first storage amount is smaller than the first storage capacity, for example, by increasing the supply amount of the reducing agent, the time to reach the first storage capacity is shortened, and the NOx reduction rate is promptly increased. Can be increased.
Further, immediately before the first storage amount reaches the first storage capacity, for example, by reducing the supply amount of the reducing agent, it is possible to prevent the occurrence of ammonia slip in the first selective reduction catalyst. As a result, when ammonia slip occurs as described above, it is possible to prevent a reduction in the NOx reduction rate that occurs when the supply amount of the reducing agent is reduced for the purpose of suppressing this.
 この場合、前記第3制御入力算出手段は、前記推定した第1ストレージ量(STUREA_FB)と前記目標ストレージ量(STUREA_TRGT)との偏差(EST)に加えて、当該偏差の微分、又は、前記第1ストレージ量の微分に基づいて制御入力(GUREA_ST)を算出することが好ましい。 In this case, in addition to the deviation (E ST ) between the estimated first storage amount (ST UREA_FB ) and the target storage amount (ST UREA_TRGT ), the third control input calculation means, It is preferable to calculate a control input (G UREA_ST ) based on the differentiation of the first storage amount.
 この発明によれば、推定した第1ストレージ量が所定の目標ストレージ量に収束するように制御するための制御入力を算出する際には、推定した第1ストレージ量と目標ストレージ量の偏差に加えて、この偏差の微分か、又は、推定した第1ストレージ量の微分に基づいて制御入力を算出する。
 特にここで、第1ストレージ量は、第1選択還元触媒に貯蔵されるアンモニア量を逐次積分することで算出されるため、その動特性は積分要素的な挙動を示す。このような第1ストレージ量と、所定の目標ストレージ量との偏差のみにより制御入力を算出すると、この制御入力が振動してしまい、結果として周期的なアンモニアスリップが発生するおそれがある。この発明によれば、推定された第1ストレージ量と目標ストレージ量との偏差に加えて、この偏差の微分、又は、第1ストレージ量の微分に基づいて制御入力を算出することで、制御入力の振動的な挙動を防止できる。
According to the present invention, when calculating the control input for controlling the estimated first storage amount to converge to the predetermined target storage amount, in addition to the deviation between the estimated first storage amount and the target storage amount, Thus, the control input is calculated based on the differential of the deviation or the estimated differential of the first storage amount.
In particular, here, the first storage amount is calculated by sequentially integrating the amount of ammonia stored in the first selective reduction catalyst, so that the dynamic characteristic exhibits an integral elemental behavior. If the control input is calculated based only on the deviation between the first storage amount and the predetermined target storage amount, the control input may vibrate, and as a result, a periodic ammonia slip may occur. According to this invention, in addition to the deviation between the estimated first storage amount and the target storage amount, the control input is calculated based on the derivative of this deviation or the differentiation of the first storage amount. Can be prevented from vibrating.
 上記目的を達成するため本発明は、内燃機関(1)の排気通路(11)に設けられ、還元剤の存在下でアンモニアを生成し、このアンモニアで前記排気通路を流通するNOxを還元する選択還元触媒(23)と、前記排気通路のうち前記選択還元触媒の上流側に還元剤を供給する還元剤供給手段(25)と、を備え、前記選択還元触媒は、第1選択還元触媒(231)と、前記排気通路のうち前記第1選択還元触媒よりも下流側に設けられた第2選択還元触媒(232)とを含んで構成された排気浄化装置について、当該排気浄化装置の制御方法を提供する。前記制御方法は、前記第1選択還元触媒と前記第2選択還元触媒との間のアンモニア量を検出するアンモニア検出ステップと、前記アンモニア検出ステップで検出されるアンモニア量(NH3CONS)の値が、「0」より大きな値になるように制御するための制御入力を算出する第1制御入力算出ステップと、前記還元剤供給手段による還元剤の供給量(GUREA)を、前記第1制御入力算出ステップで算出された制御入力(GUREA_FB)を含めて決定する還元剤供給量決定ステップと、を備える。 In order to achieve the above object, the present invention is provided in the exhaust passage (11) of the internal combustion engine (1), generates ammonia in the presence of a reducing agent, and selects the NOx flowing through the exhaust passage with this ammonia. A reduction catalyst (23); and a reducing agent supply means (25) for supplying a reducing agent to the upstream side of the selective reduction catalyst in the exhaust passage, wherein the selective reduction catalyst is a first selective reduction catalyst (231). ) And a second selective reduction catalyst (232) provided on the downstream side of the first selective reduction catalyst in the exhaust passage, a control method for the exhaust purification device is provided. provide. In the control method, the ammonia detection step for detecting the ammonia amount between the first selective reduction catalyst and the second selective reduction catalyst, and the value of the ammonia amount (NH3 CONS ) detected in the ammonia detection step are: A first control input calculation step for calculating a control input for controlling to be a value larger than “0”, and a reducing agent supply amount (G UREA ) by the reducing agent supply means are calculated in the first control input. And a reducing agent supply amount determination step that includes the control input (G UREA_FB ) calculated in the step.
 この場合、前記第1選択還元触媒において貯蔵できるアンモニア量を第1ストレージ容量とし、前記第2選択還元触媒において貯蔵できるアンモニア量を第2ストレージ容量とし、前記第2ストレージ容量は、前記第1ストレージ容量の最大時と最小時との差よりも大きいことが好ましい。
 この場合、前記制御方法は、第1選択還元触媒と前記第2選択還元触媒とのアンモニア量(NH3CONS)の目標値を、「0」より大きな値に設定する目標値設定ステップをさらに備え、前記第1制御入力算出ステップでは、前記アンモニア検出ステップで検出されるアンモニア量が、前記目標値(NH3CONS_TRGT)を含む所定の範囲内に収まるように前記制御入力を算出することが好ましい。
 この場合、前記第1制御入力算出ステップでは、前記アンモニア検出ステップで検出されるアンモニア量(NH3CONS)の前記目標値への収束速度を設定できる応答指定型制御に基づいて前記制御入力を算出するとともに、前記アンモニア検出ステップで検出されるアンモニア量が前記所定の範囲(RNH3CONS_TRGT,NH3CONS_LMTL~NH3CONS_LMTH)内に含まれる場合における収束速度を、前記アンモニア検出ステップで検出されるアンモニア量が前記所定の範囲(RNH3CONS_TRGT,NH3CONS_LMTL~NH3CONS_LMTH)外に含まれる場合における収束速度よりも遅く設定することが好ましい。
In this case, the amount of ammonia that can be stored in the first selective reduction catalyst is a first storage capacity, the amount of ammonia that can be stored in the second selective reduction catalyst is a second storage capacity, and the second storage capacity is the first storage capacity. It is preferably larger than the difference between the maximum and minimum capacity.
In this case, the control method further includes a target value setting step of setting a target value of the ammonia amount (NH3 CONS ) of the first selective reduction catalyst and the second selective reduction catalyst to a value larger than “0”, In the first control input calculation step, it is preferable to calculate the control input so that the ammonia amount detected in the ammonia detection step falls within a predetermined range including the target value (NH3 CONS_TRGT ).
In this case, in the first control input calculation step, the control input is calculated based on response designation type control that can set a convergence speed of the ammonia amount (NH3 CONS ) detected in the ammonia detection step to the target value. In addition, the convergence rate in the case where the ammonia amount detected in the ammonia detection step is included in the predetermined range (RNH3 CONS_TRGT , NH3 CONS_LMTL to NH3 CONS_LMTH ), the ammonia amount detected in the ammonia detection step is the predetermined amount. It is preferable to set it slower than the convergence speed when it is included outside the range (RNH3 CONS_TRGT , NH3 CONS_LMTL to NH3 CONS_LMTH ).
 この場合、前記目標値設定ステップでは、前記内燃機関の排気の温度又は選択還元触媒の温度が高いほど、前記目標値を小さな値に設定することが好ましい。
 この場合、前記制御方法は、前記内燃機関の回転数(NE)、及び前記内燃機関の負荷を表す負荷パラメータ(TRQ)に基づいて制御入力を算出する第2制御入力算出ステップをさらに備え、前記還元剤量決定ステップでは、前記還元剤供給手段による還元剤の供給量(GUREA)を、前記第2制御入力算出ステップで算出された制御入力(GUREA_FF)をさらに含めて決定することが好ましい。
 この場合、前記第1選択還元触媒に貯蔵されたアンモニア量を第1ストレージ量とし、当該第1ストレージ量を推定するとともに、この推定した第1ストレージ量(STUREA_FB)が、所定の目標ストレージ量(STUREA_TRGT)に収束するように制御するための制御入力を算出する第3制御入力算出ステップ、をさらに備え、前記還元剤供給量決定ステップでは、前記還元剤供給手段による還元剤の供給量(GUREA)を、前記第3制御入力算出ステップで算出された制御入力(GUREA_ST)をさらに含めて決定することが好ましい。
 この場合、前記第3制御入力算出ステップでは、前記推定した第1ストレージ量(STUREA_FB)と前記目標ストレージ量(STUREA_TRGT)との偏差(EST)に加えて、当該偏差の微分、又は、前記第1ストレージ量の微分に基づいて制御入力(GUREA_ST)を算出することが好ましい。
In this case, in the target value setting step, the target value is preferably set to a smaller value as the temperature of the exhaust gas of the internal combustion engine or the temperature of the selective reduction catalyst is higher.
In this case, the control method further includes a second control input calculation step of calculating a control input based on a rotational speed (NE) of the internal combustion engine and a load parameter (TRQ) representing a load of the internal combustion engine, In the reducing agent amount determining step, it is preferable to determine the reducing agent supply amount (G UREA ) by the reducing agent supply means further including the control input (G UREA_FF ) calculated in the second control input calculating step. .
In this case, the amount of ammonia stored in the first selective reduction catalyst is used as a first storage amount, and the first storage amount is estimated. The estimated first storage amount (S TUREA_FB ) is a predetermined target storage amount. A third control input calculating step for calculating a control input for controlling to converge to (ST UREA_TRGT ), and in the reducing agent supply amount determining step, a reducing agent supply amount by the reducing agent supply means ( G UREA ) is preferably determined by further including the control input (G UREA_ST ) calculated in the third control input calculation step.
In this case, in the third control input calculation step, in addition to the deviation (E ST ) between the estimated first storage amount (ST UREA_FB ) and the target storage amount (ST UREA_TRGT ), It is preferable to calculate a control input (G UREA_ST ) based on the differentiation of the first storage amount.
 以上の制御方法の発明によれば、上述の内燃機関の排気浄化装置と同じ効果を奏する。 According to the above control method invention, the same effect as the above-described exhaust gas purification apparatus for an internal combustion engine can be obtained.
本発明の一実施形態に係る内燃機関及びその排気浄化装置の構成を示す模式図である。1 is a schematic diagram illustrating a configuration of an internal combustion engine and an exhaust purification device thereof according to an embodiment of the present invention. 上記実施形態に係る選択還元触媒におけるNOx量と、アンモニア量と、アンモニアのストレージ量との関係を示す図である。It is a figure which shows the relationship between the amount of NOx in the selective reduction catalyst which concerns on the said embodiment, the amount of ammonia, and the storage amount of ammonia. 上記実施形態に係る選択還元触媒のストレージ容量と温度との関係を示す図である。It is a figure which shows the relationship between the storage capacity and temperature of the selective reduction catalyst which concerns on the said embodiment. 上記実施形態に係るユリア噴射弁によるユリア噴射量を算出するモジュールの構成を示すブロック図である。It is a block diagram which shows the structure of the module which calculates the urea injection quantity by the urea injection valve which concerns on the said embodiment. アンモニアセンサの出力値が目標アンモニア量に厳密に収束するようにユリア噴射量を制御した場合におけるNOx還元率の変化を示す図である。It is a figure which shows the change of a NOx reduction rate when the urea injection amount is controlled so that the output value of the ammonia sensor strictly converges to the target ammonia amount. 上記実施形態に係るスライディングモードコントローラにおける制御の概念を説明するための図である。It is a figure for demonstrating the concept of the control in the sliding mode controller which concerns on the said embodiment. 前回制御時のスリップ量偏差と今回制御時のスリップ量偏差の位相平面を示す図である。It is a figure which shows the phase plane of the slip amount deviation at the time of last control, and the slip amount deviation at the time of this control. 上記実施形態に係る切換関数設定パラメータと、スリップ量偏差の収束時間との関係を示す図である。It is a figure which shows the relationship between the switching function setting parameter which concerns on the said embodiment, and the convergence time of slip amount deviation. 上記実施形態に係るVPOLE設定テーブルの構成を示す図である。It is a figure which shows the structure of the VPOLE setting table which concerns on the said embodiment. 上記実施形態に係るスライディングモードコントローラを用いてユリア噴射制御を実行した場合における、NOx還元率の変化を示す図である。It is a figure which shows the change of NOx reduction rate when urea injection control is performed using the sliding mode controller which concerns on the said embodiment. 上記実施形態に係るスライディングモードコントローラのみによりユリア噴射制御を実行した場合におけるエンジンの負荷、選択還元触媒上流のNOx量、検出アンモニア量、ユリア噴射量、及びNOx還元率の関係を示す図である。It is a figure which shows the relationship of the engine load at the time of performing urea injection control only by the sliding mode controller which concerns on the said embodiment, NOx amount upstream of a selective reduction catalyst, detected ammonia amount, urea injection amount, and NOx reduction rate. 上記実施形態に係るFF噴射量を決定するための制御マップの一例を示す図である。It is a figure which shows an example of the control map for determining FF injection quantity which concerns on the said embodiment. 上記実施形態に係るフィードフォワードコントローラを用いてユリア噴射制御を実行した場合における、エンジンの負荷、選択還元触媒上流のNOx量、検出アンモニア量、ユリア噴射量、及びNOx還元率の関係を示す図である。The figure which shows the relationship of the engine load, the NOx amount upstream of the selective reduction catalyst, the detected ammonia amount, the urea injection amount, and the NOx reduction rate when urea injection control is executed using the feedforward controller according to the embodiment. is there. 選択還元触媒に貯蔵されたアンモニアが未飽和である状態からユリア噴射制御を開始した場合におけるNOx還元率と、ユリア噴射量と、検出アンモニア量と、アンモニアストレージ量との関係を示す図である。It is a figure which shows the relationship between the NOx reduction | restoration rate in the case where urea injection control is started from the state where the ammonia stored in the selective reduction catalyst is unsaturated, the urea injection amount, the detected ammonia amount, and the ammonia storage amount. 上記実施形態に係るストレージ補正入力算出部におけるアンモニアストレージモデルの概念を示す模式図である。It is a schematic diagram which shows the concept of the ammonia storage model in the storage correction input calculation part which concerns on the said embodiment. 上記実施形態に係るストレージ補正入力算出部の第1の形態の構成を示すブロック図である。It is a block diagram which shows the structure of the 1st form of the storage correction input calculation part which concerns on the said embodiment. 上記実施形態に係るストレージ補正入力算出部の第1の形態により推定された第1ストレージ量の時間変化を示す図である。It is a figure which shows the time change of the 1st storage amount estimated by the 1st form of the storage correction input calculation part which concerns on the said embodiment. 上記実施形態に係るストレージ補正入力算出部の第2の形態の構成を示すブロック図である。It is a block diagram which shows the structure of the 2nd form of the storage correction input calculation part which concerns on the said embodiment. 上記実施形態に係るストレージ補正入力算出部の第3の形態の構成を示すブロック図である。It is a block diagram which shows the structure of the 3rd form of the storage correction input calculation part which concerns on the said embodiment. 上記実施形態に係るストレージ補正入力算出部を用いてユリア噴射制御を実行した場合における、NOx還元率と、ユリア噴射量と、検出アンモニア量と、アンモニアストレージ量との関係を示す図である。It is a figure which shows the relationship between NOx reduction rate, urea injection amount, detected ammonia amount, and ammonia storage amount at the time of performing urea injection control using the storage correction input calculation part which concerns on the said embodiment. 上記実施形態に係るストレージ補正入力算出部により推定された第1ストレージ量の時間変化を示す図である。It is a figure which shows the time change of the 1st storage amount estimated by the storage correction input calculation part which concerns on the said embodiment. 上記実施形態に係る目標アンモニア量の検索マップの一例を示す図である。It is a figure which shows an example of the search map of the target ammonia amount which concerns on the said embodiment. 従来の排気浄化装置における第1選択還元触媒と第2選択還元触媒との間のアンモニア量の変化を示す図である。It is a figure which shows the change of the ammonia amount between the 1st selective reduction catalyst and the 2nd selective reduction catalyst in the conventional exhaust gas purification apparatus. 上記実施形態に係る排気浄化装置における第1選択還元触媒と第2選択還元触媒との間のアンモニア量の変化を示す図である。It is a figure which shows the change of the ammonia amount between the 1st selective reduction catalyst and the 2nd selective reduction catalyst in the exhaust gas purification apparatus which concerns on the said embodiment. 上記実施形態に係るECUにより実行されるユリア噴射制御処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the urea injection control process performed by ECU which concerns on the said embodiment. 従来の排気浄化装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the conventional exhaust gas purification apparatus. 上記従来の排気浄化装置における、選択還元触媒下流のNOx排出量及びアンモニア排出量と、NOxセンサの出力との関係を示す図である。It is a figure which shows the relationship between the NOx discharge | emission amount and ammonia discharge | emission amount downstream of a selective reduction catalyst, and the output of a NOx sensor in the said conventional exhaust purification apparatus.
 以下、本発明の一実施形態を、図面を参照して説明する。
 図1は、本発明の一実施形態に係る内燃機関(以下「エンジン」という)1及びその排気浄化装置2の構成を示す模式図である。エンジン1は、リーンバーン運転方式のガソリンエンジン又はディーゼルエンジンであり、図示しない車両に搭載されている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing the configuration of an internal combustion engine (hereinafter referred to as “engine”) 1 and its exhaust purification device 2 according to an embodiment of the present invention. The engine 1 is a lean burn operation type gasoline engine or diesel engine, and is mounted on a vehicle (not shown).
 排気浄化装置2は、エンジン1の排気通路11に設けられた酸化触媒21と、排気通路11に設けられ、この排気通路11を流通する排気中の窒素酸化物(以下、「NOx」という)を還元剤の存在下で浄化するユリア選択還元触媒23と、排気通路11のうちユリア選択還元触媒23の上流側に還元剤としての尿素水を供給するユリア噴射装置25と、電子制御ユニット(以下、「ECU」という)3とを含んで構成される。 The exhaust purification device 2 is provided with an oxidation catalyst 21 provided in the exhaust passage 11 of the engine 1 and nitrogen oxide (hereinafter referred to as “NOx”) in the exhaust gas provided in the exhaust passage 11 and flowing through the exhaust passage 11. A urea selective reduction catalyst 23 that purifies in the presence of a reducing agent, a urea injection device 25 that supplies urea water as a reducing agent to the upstream side of the urea selective reduction catalyst 23 in the exhaust passage 11, and an electronic control unit (hereinafter referred to as an electronic control unit). 3) (referred to as “ECU”).
 ユリア噴射装置25は、ユリアタンク251と、ユリア噴射弁253とを備える。
 ユリアタンク251は、尿素水を貯蔵するものであり、ユリア供給路254及び図示しないユリアポンプを介して、ユリア噴射弁253に接続されている。このユリアタンク251には、ユリアレベルセンサ255が設けられている。このユリアレベルセンサ255は、ユリアタンク251内の尿素水の水位を検出し、この水位に略比例する検出信号をECU3に出力する。
 ユリア噴射弁253は、ECU3に接続されており、ECU3からの制御信号により動作し、この制御信号に応じて尿素水を排気通路11内に噴射する。すなわち、ユリア噴射制御が実行される。
The urea injection device 25 includes a urea tank 251 and a urea injection valve 253.
The urea tank 251 stores urea water, and is connected to the urea injection valve 253 via a urea supply path 254 and a urea pump (not shown). This urea tank 251 is provided with a urea level sensor 255. The urea level sensor 255 detects the water level of the urea water in the urea tank 251 and outputs a detection signal substantially proportional to the water level to the ECU 3.
The urea injection valve 253 is connected to the ECU 3, operates in accordance with a control signal from the ECU 3, and injects urea water into the exhaust passage 11 in accordance with this control signal. That is, urea injection control is executed.
 酸化触媒21は、排気通路11のうちユリア選択還元触媒23及びユリア噴射弁253よりも上流側に設けられ、排気中のNOをNOに変換し、これにより、ユリア選択還元触媒23におけるNOxの還元を促進する。 The oxidation catalyst 21 is provided on the upstream side of the urea selective reduction catalyst 23 and the urea injection valve 253 in the exhaust passage 11 and converts NO in the exhaust gas into NO 2 , thereby the NOx in the urea selective reduction catalyst 23 is converted. Promote reduction.
 ユリア選択還元触媒23は、第1選択還元触媒231と、排気通路11のうち第1選択還元触媒231よりも下流側に設けられた第2選択還元触媒232とを含んで構成される。これら第1選択還元触媒231及び第2選択還元触媒232は、それぞれ、尿素水が存在する雰囲気下で、排気中のNOxを選択的に還元する。具体的には、ユリア噴射装置25により尿素水を噴射すると、これら第1選択還元触媒231及び第2選択還元触媒232では尿素からアンモニアが生成され、このアンモニアにより排気中のNOxが選択的に還元される。
 このユリア選択還元触媒23の詳細な構成は、後に図2及び図3を参照して詳述する。
The urea selective reduction catalyst 23 includes a first selective reduction catalyst 231 and a second selective reduction catalyst 232 provided downstream of the first selective reduction catalyst 231 in the exhaust passage 11. Each of the first selective reduction catalyst 231 and the second selective reduction catalyst 232 selectively reduces NOx in the exhaust in an atmosphere in which urea water exists. Specifically, when urea water is injected by the urea injection device 25, ammonia is generated from urea in the first selective reduction catalyst 231 and the second selective reduction catalyst 232, and NOx in the exhaust is selectively reduced by this ammonia. Is done.
The detailed configuration of the urea selective reduction catalyst 23 will be described in detail later with reference to FIGS.
 ECU3には、アンモニアセンサ26、触媒温度センサ27、及びNOxセンサ28の他、クランク角度位置センサ14、アクセル開度センサ15、及びユリア残量警告灯16が接続されている。 The ECU 3 is connected to the crank angle position sensor 14, the accelerator opening sensor 15, and the urea remaining amount warning light 16, in addition to the ammonia sensor 26, the catalyst temperature sensor 27, and the NOx sensor 28.
 アンモニアセンサ26は、排気通路11のうち第1選択還元触媒231と第2選択還元触媒232との間における排気のアンモニアの量(以下、「アンモニア量」という)NH3CONSを検出し、検出したアンモニア量NH3CONSに略比例した検出信号をECU3に供給する。 The ammonia sensor 26 detects the amount of ammonia (hereinafter referred to as “ammonia amount”) NH3 CONS in the exhaust passage 11 between the first selective reduction catalyst 231 and the second selective reduction catalyst 232, and detects the detected ammonia. A detection signal substantially proportional to the amount NH3 CONS is supplied to the ECU 3.
 触媒温度センサ27は、第1選択還元触媒231の温度(以下、「触媒温度」という)TSCRを検出し、検出した触媒温度TSCRに略比例した検出信号をECU3に供給する。 The catalyst temperature sensor 27 detects the temperature (hereinafter referred to as “catalyst temperature”) T SCR of the first selective reduction catalyst 231, and supplies a detection signal substantially proportional to the detected catalyst temperature T SCR to the ECU 3.
 NOxセンサ28は、第1選択還元触媒231に流入する排気のNOxの量(以下、「NOx量」という)NOXCONSを検出し、検出したNOx量NOXCONSに略比例した検出信号をECU3に供給する。 The NOx sensor 28 detects the amount of NOx in the exhaust gas flowing into the first selective reduction catalyst 231 (hereinafter referred to as “NOx amount”) NOX CONS , and supplies the ECU 3 with a detection signal substantially proportional to the detected NOx amount NOX CONS. To do.
 クランク角度位置センサ14は、エンジン1のクランク軸の回転角度を検出するとともに、クランク角1度毎にパルスを発生し、そのパルス信号をECU3に供給する。ECU3では、このパルス信号に基づいて、エンジン1の回転数NEを算出する。クランク角度位置センサ14は、さらに特定気筒の所定クランク角度位置で気筒識別パルスを生成して、ECU3に供給する。 The crank angle position sensor 14 detects the rotation angle of the crankshaft of the engine 1, generates a pulse every crank angle, and supplies the pulse signal to the ECU 3. The ECU 3 calculates the rotational speed NE of the engine 1 based on this pulse signal. The crank angle position sensor 14 further generates a cylinder identification pulse at a predetermined crank angle position of the specific cylinder and supplies it to the ECU 3.
 アクセル開度センサ15は、車両の図示しないアクセルペダルの踏み込み量(以下、「アクセル開度」という)APを検出し、検出したアクセル開度APに略比例した検出信号をECU3に供給する。ECU3では、このアクセル開度AP及び回転数NEに応じて、エンジン1の要求トルクTRQが算出される。以下では、この要求トルクTRQを、エンジン1の負荷を表す負荷パラメータとする。 The accelerator opening sensor 15 detects a depression amount (hereinafter referred to as “accelerator opening”) AP of an accelerator pedal (not shown) of the vehicle, and supplies a detection signal substantially proportional to the detected accelerator opening AP to the ECU 3. In the ECU 3, the required torque TRQ of the engine 1 is calculated according to the accelerator opening AP and the rotational speed NE. Hereinafter, the required torque TRQ is a load parameter that represents the load of the engine 1.
 ユリア残量警告灯16は、例えば、車両のメータパネルに設けられ、ユリアタンク251内の尿素水の残量が所定の残量より少なくなったことに応じて点灯する。これにより、ユリアタンク251内の尿素水の残量が少なくなったことを運転者に警告する。 The urea remaining amount warning lamp 16 is provided, for example, on the meter panel of the vehicle, and lights up when the remaining amount of urea water in the urea tank 251 is less than a predetermined remaining amount. As a result, the driver is warned that the remaining amount of urea water in the urea tank 251 has decreased.
 [ユリア選択還元触媒の詳細な構成]
 ところで、上述のユリア選択還元触媒23において、第1選択還元触媒231及び第2選択還元触媒232は、それぞれ、尿素から生成したアンモニアで排気中のNOxを還元する機能を有するとともに、生成したアンモニアを所定の量だけ貯蔵する機能も有する。
 以下では、第1選択還元触媒231において貯蔵されたアンモニア量を第1ストレージ量とし、第1選択還元触媒231において貯蔵できるアンモニア量を第1ストレージ容量とする。また、第2選択還元触媒232において貯蔵されたアンモニア量を第2ストレージ量とし、第2選択還元触媒232において貯蔵できるアンモニア量を第2ストレージ容量とする。
[Detailed configuration of urea selective reduction catalyst]
By the way, in the urea selective reduction catalyst 23 described above, the first selective reduction catalyst 231 and the second selective reduction catalyst 232 each have a function of reducing NOx in the exhaust gas with ammonia generated from urea, and the generated ammonia is reduced. It also has a function of storing a predetermined amount.
Hereinafter, the amount of ammonia stored in the first selective reduction catalyst 231 is referred to as a first storage amount, and the amount of ammonia that can be stored in the first selective reduction catalyst 231 is referred to as a first storage capacity. Further, the ammonia amount stored in the second selective reduction catalyst 232 is defined as a second storage amount, and the ammonia amount that can be stored in the second selective reduction catalyst 232 is defined as a second storage capacity.
 このようにして貯蔵されたアンモニアは、排気中のNOxの還元にも適宜消費される。このため、第1、第2ストレージ量が大きくなるに従い、選択還元触媒231,232におけるNOx還元率は高くなる。また、発生したNOxの量に対し尿素水の供給量が少ない場合等には、貯蔵されたアンモニアが、この尿素水の不足分を補うようにしてNOxの還元に消費される。 The ammonia stored in this way is also consumed as appropriate for the reduction of NOx in the exhaust. For this reason, as the first and second storage amounts increase, the NOx reduction rate in the selective reduction catalysts 231 and 232 increases. Further, when the supply amount of urea water is small with respect to the generated NOx amount, the stored ammonia is consumed for the reduction of NOx so as to make up for the shortage of urea water.
 ここで、各選択還元触媒231,232において、ストレージ容量を超えてアンモニアが生成された場合、生成されたアンモニアは、各選択還元触媒231,232の下流側へ排出される。このようにしてアンモニアが各選択還元触媒231,232に貯蔵されず、各々の下流側へ排出されることを、以下では「アンモニアスリップ」という。 Here, when ammonia is generated exceeding the storage capacity in each selective reduction catalyst 231, 232, the generated ammonia is discharged to the downstream side of each selective reduction catalyst 231, 232. In this way, ammonia that is not stored in the selective reduction catalysts 231 and 232 but is discharged downstream is referred to as “ammonia slip”.
 このような選択還元触媒231,232において、NOx還元率を高く維持し続けるためには、これら選択還元触媒231,232には、各々のストレージ容量に近い量のアンモニアが貯蔵された状態を維持し続けることが好ましい。
 しかしながら、このようにストレージ容量に近い量のアンモニアが貯蔵された状態では、アンモニアスリップが発生しやすく、車両外へアンモニアが排出される虞がある。特に、第2選択還元触媒232におけるアンモニアスリップは、極力防止することが好ましい。
In such selective reduction catalysts 231 and 232, in order to keep the NOx reduction rate high, these selective reduction catalysts 231 and 232 maintain a state in which an amount of ammonia close to the respective storage capacity is stored. It is preferable to continue.
However, in such a state where an amount of ammonia close to the storage capacity is stored, ammonia slip is likely to occur, and ammonia may be discharged outside the vehicle. In particular, it is preferable to prevent ammonia slip in the second selective reduction catalyst 232 as much as possible.
 これらの点に鑑みて、高いNOx還元率を維持しつつ車両外へアンモニアが排出するのを防止するための、第1選択還元触媒231と第2選択還元触媒232の最適な形態について、図2及び図3を参照して説明する。 In view of these points, optimum forms of the first selective reduction catalyst 231 and the second selective reduction catalyst 232 for preventing ammonia from being discharged outside the vehicle while maintaining a high NOx reduction rate are shown in FIG. A description will be given with reference to FIG.
 図2は、選択還元触媒におけるNOx量と、アンモニア量と、アンモニアのストレージ量との関係を示す図である。具体的には、図2の(a)は、1つの選択還元触媒の下流側にNOxセンサを設けた比較例(1BED+NOxセンサレイアウト)における上記関係を示し、図2の(b)は、1つの選択還元触媒の下流側にアンモニアセンサを設けた比較例(1BED+NHセンサレイアウト)における上記関係を示し、図2の(c)は、2つの選択還元触媒(第1選択還元触媒及び第2選択還元触媒)の間にアンモニアセンサを設けた本実施形態(2BED+MID-NHセンサレイアウト)における上記関係を示す。 FIG. 2 is a diagram illustrating the relationship among the NOx amount, the ammonia amount, and the ammonia storage amount in the selective reduction catalyst. Specifically, FIG. 2A shows the above relationship in a comparative example (1BED + NOx sensor layout) in which a NOx sensor is provided on the downstream side of one selective reduction catalyst, and FIG. shows the relationship in a comparative example in which the ammonia sensor provided downstream of the selective reduction catalyst (1BED + NH 3 sensor layout) of FIG. 2 (c), two selective reduction catalyst (first selective reduction catalyst and the second selective reduction representing the relationship in the present embodiment in which a ammonia sensor (2BED + MID-NH 3 sensor layout) between the catalyst).
 図3は、選択還元触媒のストレージ容量と温度との関係を示す図である。図3において、実線3aは、劣化前の触媒におけるストレージ容量と触媒温度との関係を示し、破線3bは、劣化後の触媒におけるストレージ容量と触媒温度との関係を示す。 FIG. 3 is a diagram showing the relationship between the storage capacity of the selective reduction catalyst and the temperature. In FIG. 3, the solid line 3a shows the relationship between the storage capacity and the catalyst temperature in the catalyst before deterioration, and the broken line 3b shows the relationship between the storage capacity and the catalyst temperature in the catalyst after deterioration.
 図2の(a)に示すレイアウトにおいては、例えば、NOxセンサからの出力に基づいて尿素水の供給量を制御することで、選択還元触媒におけるNOx還元率を高く維持することができる。このような制御を行った場合、エンジンから排出されたNOxの量と、このNOxの還元に必要な尿素水の供給量とは概ねバランスの取れた状態にあるため、尿素水から生成されたアンモニアはNOxの還元に消費され、選択還元触媒に貯蔵されるアンモニア及び選択還元触媒におけるアンモニアスリップは、ともに少ない。このため、選択還元触媒におけるアンモニアのストレージ量は、変化が少なく、またそのストレージ容量に対して少ない傾向がある。 In the layout shown in FIG. 2A, for example, by controlling the supply amount of urea water based on the output from the NOx sensor, the NOx reduction rate in the selective reduction catalyst can be kept high. When such control is performed, the amount of NOx discharged from the engine and the supply amount of urea water necessary for the reduction of this NOx are in a generally balanced state, so ammonia generated from urea water Is consumed in the reduction of NOx, and ammonia stored in the selective reduction catalyst and ammonia slip in the selective reduction catalyst are both small. For this reason, the storage amount of ammonia in the selective reduction catalyst has little change and tends to be small with respect to the storage capacity.
 つまり、上述のような尿素水の供給量の制御を適切に行った場合、選択還元触媒におけるストレージ量はほぼ一定に保たれることとなる。しかしながら、例えば、エンジンの運転状態が急変した場合、選択還元触媒が経年劣化した場合、及び温度が急激に変化した場合等には、尿素水の供給量が適切な量からずれてしまい、ストレージ量が「0」になりNOx還元率が低下したり、又は、ストレージ量が飽和して過大なアンモニアスリップが発生したりする虞がある。 That is, when the supply amount of urea water as described above is appropriately controlled, the storage amount in the selective reduction catalyst is kept substantially constant. However, for example, when the operating state of the engine suddenly changes, when the selective reduction catalyst deteriorates over time, or when the temperature changes suddenly, the supply amount of urea water deviates from an appropriate amount, and the storage amount May become “0” and the NOx reduction rate may decrease, or the storage amount may be saturated and excessive ammonia slip may occur.
 したがって、図2の(a)に示すレイアウトでは、アンモニアのストレージ量の制御が難しく、NOxの還元率の向上とアンモニアスリップの防止とを両立し続けることは困難である。 Therefore, in the layout shown in FIG. 2A, it is difficult to control the storage amount of ammonia, and it is difficult to keep both the improvement of the NOx reduction rate and the prevention of ammonia slip.
 図2の(b)に示すレイアウトにおいて、アンモニアセンサからの出力に基づいてNOx還元率を高く維持するように尿素水の供給量の制御を行う場合、アンモニアセンサからの出力を得るためには、微小なアンモニアスリップが発生した状態を維持する必要がある。このため、選択還元触媒におけるアンモニアのストレージ量は、図2の(b)に示すように、常に飽和した状態となる。
 このようにストレージ量が飽和した状態を維持した場合、例えば、車両を急加速することで一時的に大量のNOxが生成され、このNOxを還元するためのアンモニアの生成が間に合わなくなるような状態であっても、貯蔵したアンモニアにより、アンモニアの生成が完了するまでの過渡時におけるNOx還元率を高く維持し続けることができる。
In the layout shown in FIG. 2B, when controlling the supply amount of urea water so as to maintain the NOx reduction rate high based on the output from the ammonia sensor, in order to obtain the output from the ammonia sensor, It is necessary to maintain a state in which minute ammonia slip has occurred. For this reason, the storage amount of ammonia in the selective reduction catalyst is always saturated as shown in FIG.
When the storage amount is maintained in a saturated state in this way, for example, in a state where a large amount of NOx is temporarily generated by suddenly accelerating the vehicle, and generation of ammonia for reducing this NOx is not in time. Even if it exists, the NOx reduction rate in the transition time until the production | generation of ammonia is completed can be kept high with the stored ammonia.
 ところで、図3に示すように、選択還元触媒のストレージ容量は、触媒温度に応じて変化する。具体的には、触媒温度が高くなるに従い、ストレージ容量は小さくなる。
 したがって、上述の図2の(b)に示されたレイアウトでは、ストレージ量が飽和した状態を維持しているため、例えば、車両が低負荷運転状態から高負荷運転状態へ移行し、触媒温度が低温(例えば、200℃)状態から高温(例えば、500℃)状態へ移行した場合、この温度差に応じて過大なアンモニアスリップが発生する虞がある。
By the way, as shown in FIG. 3, the storage capacity of the selective reduction catalyst changes according to the catalyst temperature. Specifically, the storage capacity decreases as the catalyst temperature increases.
Therefore, in the layout shown in FIG. 2B described above, since the storage amount is maintained saturated, for example, the vehicle shifts from the low load operation state to the high load operation state, and the catalyst temperature is When shifting from a low temperature (for example, 200 ° C.) state to a high temperature (for example, 500 ° C.) state, there is a possibility that an excessive ammonia slip occurs according to this temperature difference.
 図2に戻って、図2の(c)に示す本実施形態のレイアウトでは、第1選択還元触媒231と第2選択還元触媒232の間にアンモニアセンサ26を設ける。
 このレイアウトでは、アンモニアセンサ26により検出されるアンモニア量の値が「0」より大きな値になるように、尿素水の供給量の制御を行うことで、上述の図2の(b)に示すレイアウトと同様に、第1選択還元触媒231からアンモニアが飽和した状態を維持できる。これにより、第1選択還元触媒231における高いNOx還元率を維持することができる。
Returning to FIG. 2, in the layout of this embodiment shown in FIG. 2C, the ammonia sensor 26 is provided between the first selective reduction catalyst 231 and the second selective reduction catalyst 232.
In this layout, the supply amount of urea water is controlled so that the value of the ammonia amount detected by the ammonia sensor 26 is larger than “0”, whereby the layout shown in FIG. Similarly to the above, the state in which ammonia is saturated from the first selective reduction catalyst 231 can be maintained. Thereby, a high NOx reduction rate in the first selective reduction catalyst 231 can be maintained.
 また、第1選択還元触媒231におけるNOxの還元が不十分であっても、この残留したNOxと第2選択還元触媒232へスリップしたアンモニアとを第2選択還元触媒232において反応させることで、図2の(a)に示すレイアウトと同様に、第1選択還元触媒231及び第2選択還元触媒232全体として、NOx還元率を高く維持することができる。
 また、第1選択還元触媒231においてアンモニアが飽和した状態にすることで、図2の(b)に示すレイアウトと同様に、上述のような車両の急加速した際等の、アンモニアの生成が完了するまでの過渡時におけるNOx還元率を高く維持し続けることができる。
 また、このように第1選択還元触媒231ではアンモニアスリップが発生するものの、この第1選択還元触媒231から排出されたアンモニアは、第2選択還元触媒232に貯蔵されるか、又は、第2選択還元触媒232においてNOxの還元に消費される。これにより、第1選択還元触媒231及び第2選択還元触媒232全体として高いNOx還元率を維持しつつ、第2選択還元触媒232の下流へアンモニアが排出するのを抑制できる。
Further, even if the reduction of NOx in the first selective reduction catalyst 231 is insufficient, the remaining NOx and the ammonia slipped to the second selective reduction catalyst 232 are reacted in the second selective reduction catalyst 232, so that FIG. 2A, the NOx reduction rate can be maintained high for the first selective reduction catalyst 231 and the second selective reduction catalyst 232 as a whole.
In addition, by making the first selective reduction catalyst 231 saturated with ammonia, the generation of ammonia is completed when the vehicle suddenly accelerates as described above, as in the layout shown in FIG. It is possible to keep the NOx reduction rate at the time of transition until high.
In addition, although ammonia slip occurs in the first selective reduction catalyst 231 as described above, the ammonia discharged from the first selective reduction catalyst 231 is stored in the second selective reduction catalyst 232 or is selected by the second selection. The reduction catalyst 232 consumes NOx reduction. As a result, it is possible to suppress the discharge of ammonia downstream of the second selective reduction catalyst 232 while maintaining a high NOx reduction rate for the first selective reduction catalyst 231 and the second selective reduction catalyst 232 as a whole.
 また、低負荷運転状態から高負荷運転状態へ移行し、触媒温度が低温から高温度へ移行した場合における過大なアンモニアスリップの発生を防止するためには、第2ストレージ容量は、第1ストレージ容量の最大時と最小時との差よりも大きく設計することが好ましい。このように設計することで、第1選択還元触媒231から放出されたアンモニアを、第2選択還元触媒232に貯蔵することができる。これにより、第2選択還元触媒232の下流へアンモニアが排出するのをさらに抑制できる。 In order to prevent excessive ammonia slip from occurring when the low load operation state is shifted to the high load operation state and the catalyst temperature is shifted from the low temperature to the high temperature, the second storage capacity is the first storage capacity. It is preferable to design larger than the difference between the maximum and minimum times. By designing in this way, the ammonia released from the first selective reduction catalyst 231 can be stored in the second selective reduction catalyst 232. Thereby, it is possible to further suppress the discharge of ammonia downstream of the second selective reduction catalyst 232.
 また図3に示すように、触媒の劣化に伴いストレージ容量は小さくなる。このため、運転状態及び触媒温度の急激な変化に応じて放出されるアンモニアの量は、劣化後よりも劣化前の方が大きい。したがって、第2ストレージ容量は、劣化前の第1選択還元触媒の第1ストレージ容量の最大時と最小時との差(最大容量差)よりも大きく設計することが特に好ましい。これにより、より確実に第2選択還元触媒におけるアンモニアスリップを防止することができる。 As shown in FIG. 3, the storage capacity decreases as the catalyst deteriorates. For this reason, the amount of ammonia released in response to a sudden change in the operating state and the catalyst temperature is larger before the deterioration than after the deterioration. Therefore, the second storage capacity is particularly preferably designed to be larger than the difference (maximum capacity difference) between the maximum time and the minimum time of the first storage capacity of the first selective reduction catalyst before deterioration. As a result, ammonia slip in the second selective reduction catalyst can be prevented more reliably.
 図1に戻って、ECU3は、各種センサからの入力信号波形を整形し、電圧レベルを所定のレベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路と、中央演算処理ユニット(以下「CPU」という)とを備える。この他、ECU3は、CPUで実行される各種演算プログラム及び演算結果等を記憶する記憶回路と、エンジン1やユリア噴射弁253等に制御信号を出力する出力回路と、を備える。 Returning to FIG. 1, the ECU 3 reshapes input signal waveforms from various sensors, corrects the voltage level to a predetermined level, converts an analog signal value into a digital signal value, and the like. And an arithmetic processing unit (hereinafter referred to as “CPU”). In addition, the ECU 3 includes a storage circuit that stores various calculation programs executed by the CPU, calculation results, and the like, and an output circuit that outputs a control signal to the engine 1, the urea injection valve 253, and the like.
 図4は、ユリア噴射弁によるユリア噴射量GUREA(尿素水の供給量)を算出するモジュールの構成を示すブロック図である。このモジュールの機能は、ECU3で実行される処理により実現される。 FIG. 4 is a block diagram showing a configuration of a module for calculating a urea injection amount G UREA (amount of urea water supplied) by the urea injection valve. The function of this module is realized by processing executed by the ECU 3.
 図4に示すモジュールは、フィードバックコントローラ4と、フィードフォワードコントローラ5と、ストレージ補正入力算出部6と、加算器7とを含んで構成される。 4 includes a feedback controller 4, a feedforward controller 5, a storage correction input calculation unit 6, and an adder 7.
 フィードバックコントローラ4は、目標アンモニア量設定部41と、スライディングモードコントローラ42とを備える。 The feedback controller 4 includes a target ammonia amount setting unit 41 and a sliding mode controller 42.
 目標アンモニア量設定部41は、後に図22~図24を参照して詳述するように、アンモニアセンサにより検出されるアンモニア量(以下、「検出アンモニア量」という)NH3CONSの目標値(以下、「目標アンモニア量」という)NH3CONS_TRGTを設定する。なお、後に詳述するように、この目標アンモニア量NH3CONS_TRGTは、「0」より大きな値に設定される。 The target ammonia amount setting unit 41, as will be described in detail later with reference to FIGS. 22 to 24, is a target value (hereinafter referred to as “ammonia amount”) detected by an ammonia sensor (hereinafter referred to as “detected ammonia amount”) NH3 CONS . NH3 CONS_TRGT (referred to as “target ammonia amount”) is set. As will be described in detail later, the target ammonia amount NH3 CONS_TRGT is set to a value larger than “0”.
 スライディングモードコントローラ42は、後に図5~図10を参照して詳述するように、検出アンモニア量NH3CONSが、設定された目標アンモニア量NH3CONS_TRGTに収束するように制御するための制御入力として、ユリア噴射量GUREAに対するフィードバック噴射量(以下、「FB噴射量」という)GUREA_FBを算出する。 As will be described in detail later with reference to FIGS. 5 to 10, the sliding mode controller 42 controls the detected ammonia amount NH3 CONS so as to converge to the set target ammonia amount NH3 CONS_TRGT . feedback injection amount for the urea injection amount G uREA (hereinafter, referred to as "FB injection amount") is calculated G uREA - FB.
 フィードフォワードコントローラ5は、後に図11~図13を参照して詳述するように、エンジンの運転状態により変化する排気中のNOxの量に応じて、選択還元触媒におけるNOx還元率が最大値を維持するように制御するための制御入力として、ユリア噴射量GUREAに対するフィードフォワード噴射量(以下、「FF噴射量」という)GUREA_FFを算出する。 As will be described in detail later with reference to FIGS. 11 to 13, the feedforward controller 5 sets the maximum NOx reduction rate in the selective reduction catalyst in accordance with the amount of NOx in the exhaust gas that changes depending on the operating state of the engine. as a control input for controlling to maintain, a feedforward injection amount for the urea injection amount G uREA (hereinafter, referred to as "FF injection amount") is calculated G uREA - FF.
 ストレージ補正入力算出部6は、後に図14~図21を参照して詳述するように、第1選択還元触媒の第1ストレージ量を推定し、この推定した第1ストレージ量が所定の目標ストレージ量STUREA_TRGTに収束するように制御するための制御入力として、ユリア噴射量GUREAに対する補正噴射量GUREA_STを算出する。 As will be described in detail later with reference to FIGS. 14 to 21, the storage correction input calculation unit 6 estimates the first storage amount of the first selective reduction catalyst, and the estimated first storage amount is a predetermined target storage. as a control input for controlling so as to converge to the amount ST uREA - TRGT, it calculates the correction injection amount G uREA - ST for the urea injection amount G uREA.
 加算器7は、下記式(1)に示すように、フィードバックコントローラ4により算出されたFB噴射量GUREA_FBと、フィードフォワードコントローラ5により算出されたFF噴射量GUREA_FFと、ストレージ補正入力算出部6により算出された補正噴射量GUREA_STとを加算することにより、ユリア噴射量GUREAを決定する。
Figure JPOXMLDOC01-appb-M000001
As shown in the following equation (1), the adder 7 includes an FB injection amount G UREA_FB calculated by the feedback controller 4, an FF injection amount G UREA_FF calculated by the feedforward controller 5, and a storage correction input calculation unit 6. The urea injection amount GUREA is determined by adding the corrected injection amount GUREA_ST calculated by the above.
Figure JPOXMLDOC01-appb-M000001
 ここで、記号(k)は、離散化した時間を示す記号であり、所定の制御周期毎に検出又は算出されたデータであることを示す。すなわち、記号(k)が今回の制御タイミングにおいて検出又は算出されたデータであるとした場合、記号(k-1)は前回の制御タイミングにおいて検出又は算出されたデータであることを示す。なお、以下の説明においては、記号(k)を適宜、省略する。 Here, the symbol (k) is a symbol indicating the discretized time, and indicates that the data is detected or calculated every predetermined control cycle. That is, when the symbol (k) is data detected or calculated at the current control timing, the symbol (k−1) indicates that the data is detected or calculated at the previous control timing. In the following description, the symbol (k) is omitted as appropriate.
 [スライディングモードコントローラの構成]
 図5~図10を参照して、スライディングモードコントローラの詳細な構成について説明する。
 上述のように、スライディングモードコントローラでは、検出アンモニア量NH3CONSが、目標アンモニア量設定部により設定された目標アンモニア量NH3CONS_TRGTに収束するように、FB噴射量GUREA_FBを算出する。このようなアンモニアセンサの出力値NH3CONSに基づくフィードバック制御を行うにあたり、本願発明者が着眼した2つの課題について説明する。
[Configuration of sliding mode controller]
The detailed configuration of the sliding mode controller will be described with reference to FIGS.
As described above, the sliding mode controller calculates the FB injection amount G UREA_FB so that the detected ammonia amount NH 3 CONS converges to the target ammonia amount NH 3 CONS_TRGT set by the target ammonia amount setting unit. Two problems that the present inventor has focused on when performing feedback control based on the output value NH3 CONS of the ammonia sensor will be described.
 (1)アンモニアセンサの検出分解能
 上述のように、現存するNOxセンサは、その検出原理上、NOxに対してだけでなくアンモニアに対しても感応する。一方、NOxに対しては感応せずに、アンモニアのみに対して感応するアンモニアセンサは、開発可能であることが知られている。しかしながら、このようなアンモニアセンサには検出分解能に限界があり、また、この検出分解能にも個体差があったり、経年劣化によって変化したりする。このため、アンモニアセンサからの出力値NH3CONSを目標アンモニア量NH3CONS_TRGTに厳密に制御するのは困難である。
(1) Detection Resolution of Ammonia Sensor As described above, existing NOx sensors are sensitive not only to NOx but also to ammonia due to its detection principle. On the other hand, it is known that an ammonia sensor that is sensitive to only ammonia without being sensitive to NOx can be developed. However, such an ammonia sensor has a limit in detection resolution, and the detection resolution varies depending on the individual or changes due to aging. For this reason, it is difficult to strictly control the output value NH3 CONS from the ammonia sensor to the target ammonia amount NH3 CONS_TRGT .
 (2)NOx還元率とアンモニアスリップの応答性の不一致
 上述のようなアンモニアセンサの分解検出能に関する課題を解決できたとしても、選択還元触媒におけるNOx還元率とアンモニアスリップのユリア噴射量GUREAに対する応答性の不一致の課題がある。具体的には、選択還元触媒におけるNOx還元率は、この選択還元触媒におけるアンモニアスリップよりも、ユリア噴射量GUREAに対する応答遅れが小さく、また感度が大きい。
(2) Disagreement between NOx reduction rate and ammonia slip responsiveness Even if the above-described problem relating to the decomposition detection ability of the ammonia sensor can be solved, the NOx reduction rate and ammonia slip urea injection amount GUREA in the selective reduction catalyst There is a problem of responsiveness mismatch. Specifically, the NOx reduction rate in the selective reduction catalyst has a smaller response delay with respect to the urea injection amount GUREA and higher sensitivity than the ammonia slip in this selective reduction catalyst.
 図5は、アンモニアセンサの出力値NH3CONSが目標アンモニア量NH3CONS_TRGTに厳密に収束するようにユリア噴射量GUREAを制御した場合におけるNOx還元率の変化を示す図である。
 図5に示すように、アンモニアセンサの出力値NH3CONSが急増し、アンモニアスリップの発生を検出したことに応じて、このアンモニアスリップを抑制するためにユリア噴射量GUREAを減少すると、アンモニアスリップが抑制される前に、NOx還元率が著しく低下してしまう。この際、検出アンモニア量NH3CONSが目標アンモニア量NH3CONS_TRGTに厳密に収束するように、ユリア噴射量GUREAを減少させ続けると、NOx還元率がさらに低下してしまう。
FIG. 5 is a graph showing a change in the NOx reduction rate when the urea injection amount GUREA is controlled so that the output value NH3 CONS of the ammonia sensor strictly converges to the target ammonia amount NH3 CONS_TRGT .
As shown in FIG. 5, when the output value NH3 CONS of the ammonia sensor rapidly increases and the occurrence of ammonia slip is detected, if the urea injection amount GUREA is decreased to suppress this ammonia slip, the ammonia slip is reduced. Before being suppressed, the NOx reduction rate is significantly reduced. At this time, if the urea injection amount GUREA is continuously reduced so that the detected ammonia amount NH3 CONS strictly converges to the target ammonia amount NH3 CONS_TRGT , the NOx reduction rate further decreases.
 以上のような2つの課題に鑑みて、本実施形態では、以下に示すような概念に基づく制御を実行する。
 図6は、スライディングモードコントローラにおける制御の概念を説明するための図である。図6において、横軸は時間を示し、縦軸は検出アンモニア量NH3CONSを示す。
In view of the two problems as described above, in the present embodiment, control based on the concept as described below is executed.
FIG. 6 is a diagram for explaining the concept of control in the sliding mode controller. In FIG. 6, the horizontal axis indicates time, and the vertical axis indicates the detected ammonia amount NH 3 CONS .
 本実施形態では、目標アンモニア量設定部により設定された目標アンモニア量NH3CONS_TRGT(>0)に対して、この目標アンモニア量NH3CONS_TRGTよりも小さな下限NH3CONS_LMTLと大きな上限NH3CONS_LMTHとで規定される目標アンモニアスリップ範囲RNH3CONS_TRGTを設定し、検出アンモニア量NH3CONS_TRGTがこの目標アンモニアスリップ範囲RNH3CONS_TRGTに収まるようにFB噴射量GUREA_FBを算出する。ここで、目標アンモニアスリップ範囲RNH3CONS_TRGTは、アンモニアセンサの検出分解能を考慮して設定することが好ましい。 In the present embodiment, the target ammonia amount set by the target ammonia amount setting unit NH3 CONS_TRGT (> 0), the target defined by than the target ammonia amount NH3 CONS - TRGT small lower NH3 CONS - LMTL a large upper NH3 CONS - LMTH The ammonia slip range RNH3 CONS_TRGT is set, and the FB injection amount G UREA_FB is calculated so that the detected ammonia amount NH3 CONS_TRGT falls within the target ammonia slip range RNH3 CONS_TRGT . Here, the target ammonia slip range RNH3 CONS_TRGT is preferably set in consideration of the detection resolution of the ammonia sensor.
 またさらに、以上のようにして目標アンモニアスリップ範囲RNH3CONS_TRGTを設定した上で、検出アンモニア量NH3CONSが、値Aにある場合(NH3CONS_LMTH≦NH3CONSである場合)、値Bにある場合(NH3CONS<NH3CONS_LMTLである場合)、値Cにある場合(NH3CONS_LMTL≦NH3CONS<NH3CONS_LMTHである場合)に対して、以下のような挙動を示すようにFB噴射量GUREA_FBを算出する。 Furthermore, after setting the target ammonia slip range RNH3 CONS_TRGT as described above, when the detected ammonia amount NH3 CONS is at the value A (when NH3 CONS_LMTH ≦ NH3 CONS ), when it is at the value B (NH3 When CONS <NH3 CONS_LMTL ), and when the value is C (NH3 CONS_LMTL ≦ NH3 CONS <NH3 CONS_LMTH ), the FB injection amount G UREA_FB is calculated so as to exhibit the following behavior.
 NH3CONSが値Aである場合には、目標アンモニア量NH3CONS_TRGTに対し過剰のアンモニアスリップが発生した状態であるので、検出アンモニア量NH3CONSが、迅速、かつ、オーバシュートなく目標アンモニア量NH3CONS_TRGTに収束するようにFB噴射量GUREA_FBを算出する。
 NH3CONSが値Bである場合には、目標アンモニア量NH3CONS_TRGTに対し過少のアンモニアスリップが発生した状態であるので、検出アンモニア量NH3CONSが、迅速、かつ、オーバシュートなく目標アンモニア量NH3CONS_TRGTに収束するようにFB噴射量GUREA_FBを算出する。
When NH3 CONS is a value A, an excessive ammonia slip has occurred with respect to the target ammonia amount NH3 CONS_TRGT. Therefore, the detected ammonia amount NH3 CONS is quickly and without overshooting the target ammonia amount NH3 CONS_TRGT . The FB injection amount GUREA_FB is calculated so as to converge.
When NH3 CONS is a value B, since the ammonia slip is insufficient with respect to the target ammonia amount NH3 CONS_TRGT , the detected ammonia amount NH3 CONS is quickly and without overshoot to the target ammonia amount NH3 CONS_TRGT . The FB injection amount GUREA_FB is calculated so as to converge.
 NH3CONSが値Cである場合には、目標アンモニア量NH3CONS_TRGTに対し過不足ないアンモニアスリップが発生した状態であるので、検出アンモニア量NH3CONSが、緩やかに目標アンモニア量NH3CONS_TRGTに収束するようにFB噴射量GUREA_FBを算出する。すなわち、検出アンモニア量NH3CONSを目標アンモニアスリップ範囲RNH3CONS_TRGT内に拘束するようにFB噴射量GUREA_FBを算出する。 When NH3 CONS is a value C, an ammonia slip that is not excessive or insufficient with respect to the target ammonia amount NH3 CONS_TRGT has occurred, so that the detected ammonia amount NH3 CONS gradually converges to the target ammonia amount NH3 CONS_TRGT. The FB injection amount G UREA_FB is calculated. That is, the FB injection amount G UREA_FB is calculated so as to constrain the detected ammonia amount NH 3 CONS within the target ammonia slip range RNH 3 CONS_TRGT .
 ここで特に、NH3CONSが値A又は値Bにある場合と、値Cにある場合とを比較すると、値Cにある場合における検出アンモニア量NH3CONSの目標アンモニア量NH3CONS_TRGTに対する収束速度を、値A又は値Bにある場合における収束速度よりも遅く設定する。 Here, in particular, when NH3 CONS is at value A or B and when it is at value C, the convergence speed of detected ammonia amount NH3 CONS with respect to target ammonia amount NH3 CONS_TRGT when value C is Set slower than the convergence speed in the case of A or value B.
 本実施形態では、検出アンモニア量NH3CONSの目標アンモニア量NH3CONS_TRGTへの収束速度を設定できる応答指定型制御により、上述のような検出アンモニア量NH3CONSの挙動を実現する。この応答指定型制御とは、偏差の収束挙動を規定した関数に基づいて、偏差の収束速度と収束挙動の両方を指定できる制御のことをいう。
 以下では、この応答指定型制御が実行可能に構成されたスライディングモードコントローラの動作について説明する。
In the present embodiment, the behavior of the detected ammonia amount NH3 CONS as described above is realized by response designation control that can set the convergence speed of the detected ammonia amount NH3 CONS to the target ammonia amount NH3 CONS_TRGT . This response designation type control refers to control that can designate both the convergence speed and convergence behavior of a deviation based on a function that defines the convergence behavior of the deviation.
Hereinafter, the operation of the sliding mode controller configured to be able to execute this response designation control will be described.
 先ず、下記式(2)に示すように、アンモニアセンサにより検出されたアンモニア量NH3CONS(k)と目標NH3CONS_TRGT(k)との偏差を算出し、これをスリップ量偏差ENH3(k)として定義する。
Figure JPOXMLDOC01-appb-M000002
First, as shown in the following formula (2), a deviation between the ammonia amount NH3 CONS (k) detected by the ammonia sensor and the target NH3 CONS_TRGT (k) is calculated, and this is set as a slip amount deviation E NH3 (k). Define.
Figure JPOXMLDOC01-appb-M000002
 次に、後述の図9に示すような所定のVPOLE設定テーブルに基づいて、検出アンモニア量NH3CONS(k)に応じた切換関数設定パラメータVPOLE(k)を算出する。さらに、下記式(3)に示すように、このVPOLE(k)と前回制御時のスリップ量偏差ENH3(k-1)との積と、ENH3(k)との和を算出し、これを切換関数σ(k)として定義する。
Figure JPOXMLDOC01-appb-M000003
Next, a switching function setting parameter VPOLE (k) corresponding to the detected ammonia amount NH3 CONS (k) is calculated based on a predetermined VPOLE setting table as shown in FIG. Further, as shown in the following equation (3), the product of this VPOLE (k) and the slip amount deviation E NH3 (k−1) at the previous control and E NH3 (k) is calculated, Is defined as a switching function σ (k).
Figure JPOXMLDOC01-appb-M000003
 ここで、切換関数設定パラメータVPOLE(k)と、スリップ量偏差ENH3(k)の収束速度との関係について説明する。
 図7は、横軸を前回制御時のスリップ量偏差ENH3(k-1)とし、縦軸を今回制御時のスリップ量偏差ENH3(k)と定義した位相平面を示す図である。
 この位相平面において、σ(k)=0を満たすスリップ量偏差ENH3(k)及びENH3(k-1)の組み合わせは、図7に示すように、傾きが-VPOLE(k)の直線となる。特にこの直線は、切換直線と呼ばれる。また、図7に示すように、-VPOLEが「1」より小さく「0」より大きい値に設定することにより、ENH3(k-1)>ENH3(k)となるので、スリップ量偏差ENH3(k)は、「0」に収束することとなる。スライディングモード制御は、この切換直線上における偏差ENH3(k)の振る舞いに着目した制御となっている。
Here, the relationship between the switching function setting parameter VPOLE (k) and the convergence speed of the slip amount deviation E NH3 (k) will be described.
FIG. 7 is a diagram showing a phase plane in which the horizontal axis is the slip amount deviation E NH3 (k−1) at the previous control and the vertical axis is the slip amount deviation E NH3 (k) at the current control.
In this phase plane, the combination of slip amount deviations E NH3 (k) and E NH3 (k−1) satisfying σ (k) = 0 is a straight line having a slope of −VPOLE (k) as shown in FIG. Become. In particular, this straight line is called a switching straight line. Further, as shown in FIG. 7, by setting −VPOLE to a value smaller than “1” and larger than “0”, E NH3 (k−1)> E NH3 (k) is satisfied, so that the slip amount deviation E NH 3 (k) will converge to “0”. The sliding mode control is control that focuses on the behavior of the deviation E NH3 (k) on the switching line.
 すなわち、今回制御時のスリップ量偏差ENH3(k)と前回制御時のスリップ量偏差ENH3(k-1)との組み合わせ(以下、「偏差状態量」という)が、この切換直線上に載るように制御を行うことで、外乱やモデル化誤差に対してロバストな制御を実現し、検出アンモニア量NH3CONSを、その目標アンモニア量NH3CONS_TRGTに対してオーバシュートすること無く収束させることができる。 That is, a combination of the slip amount deviation E NH3 (k) in the current control and the slip amount deviation E NH3 (k−1) in the previous control (hereinafter referred to as “deviation state quantity”) is placed on this switching line. By performing the control in this manner, it is possible to realize a control that is robust against disturbances and modeling errors, and to converge the detected ammonia amount NH3 CONS without overshooting the target ammonia amount NH3 CONS_TRGT .
 図8は、切換関数設定パラメータVPOLEと、スリップ量偏差ENH3の収束時間との関係を示す図である。ここで、横軸はスリップ量偏差ENH3の収束時間を示し、縦軸はスリップ量偏差ENH3を示す。また、この図8には、VPOLEが「-1」、「-0.95」、「-0.7」、「-0.4」の場合をそれぞれ示す。
 図8に示すように、VPOLEを「0」に近づけると、スリップ量偏差ENH3は、「0」に対して指数関数的な減衰挙動を示し、その収束速度が速くなる。また、VPOLEを「-1」に近づけると、指数関数的な減衰挙動を維持しながら、その収束速度は遅くなる。特に、VPOLEを「-1」にした場合は、ENH3は、制御開始時における初期偏差ENH3(k=0)に維持される。
FIG. 8 is a diagram showing the relationship between the switching function setting parameter VPOLE and the convergence time of the slip amount deviation E NH3 . Here, the horizontal axis represents the convergence time of the slip amount deviation E NH3, the vertical axis represents the slip amount deviation E NH3. FIG. 8 shows cases where VPOLE is “−1”, “−0.95”, “−0.7”, and “−0.4”, respectively.
As shown in FIG. 8, when VPOLE is brought close to “0”, the slip amount deviation E NH3 exhibits an exponential decay behavior with respect to “0”, and the convergence speed thereof is increased. Further, when VPOLE is brought close to “−1”, the convergence speed decreases while maintaining an exponential decay behavior. In particular, when VPOLE is set to “−1”, E NH3 is maintained at the initial deviation E NH3 (k = 0) at the start of control.
 図9は、VPOLE設定テーブルの構成を示す図である。ここで、横軸は検出アンモニア量NH3CONS(k)を示し、縦軸は切換関数設定パラメータVPOLE(k)を示す。この図9に示すVPOLE設定テーブルは、上述の図6を参照して説明した挙動制御を実現するために設定されたものであり、具体例として、線9a,9b,9c,9dで示す4つのVPOLE設定テーブルを示す。 FIG. 9 is a diagram showing the configuration of the VPOLE setting table. Here, the horizontal axis represents the detected ammonia amount NH3 CONS (k), and the vertical axis represents the switching function setting parameter VPOLE (k). The VPOLE setting table shown in FIG. 9 is set to realize the behavior control described with reference to FIG. 6 described above. As a specific example, four VPOLE setting tables shown in FIG. 9 include four lines 9a, 9b, 9c, and 9d. A VPOLE setting table is shown.
 上述のように、検出アンモニア量NH3CONSがNH3CONS_LMTL以上でありかつNH3CONS_LMTHより小さい場合(NH3CONS_LMTL≦NH3CONS<NH3CONS_LMTHである場合)における収束速度を、検出アンモニア量NH3CONSがNH3CONS_LMTH以上である場合(NH3CONS_LMTH≦NH3CONSである場合)、及び、検出アンモニア量NH3CONSがNH3CONS_LMTLより小さい場合(NH3CONS<NH3CONS_LMTHである場合)における収束速度よりも遅く設定する。 As described above, when the detected ammonia amount NH3 CONS is equal to or larger than NH3 CONS_LMTL and smaller than NH3 CONS_LMTH (when NH3 CONS_LMTL ≦ NH3 CONS <NH3 CONS_LMTH ), the detected ammonia amount NH3 CONS is equal to or higher than MT3 CONS_ It is set slower than the convergence speed in some cases (when NH3 CONS_LMTH ≦ NH3 CONS ) and when the detected ammonia amount NH3 CONS is smaller than NH3 CONS_LMTL (when NH3 CONS <NH3 CONS_LMTH ).
 そこで、図9に示すように、NH3CONS_LMTL≦NH3CONS<NH3CONS_LMTHである場合には、VPOLEを「-1」近傍(具体的にはVPOLE≒-0.95)に設定し、NH3CONS_LMTH≦NH3CONSである場合及びNH3CONS<NH3CONS_LMTHである場合には、VPOLEを「0」近傍(具体的にはVPOLE≒-0.4)に設定する。 Therefore, as shown in FIG. 9, when NH3 CONS_LMTL ≦ NH3 CONS <NH3 CONS_LMTH , VPOLE is set in the vicinity of “−1” (specifically, VPOLE≈−0.95), and NH3 CONS_LMTH ≦ NH3 In the case of CONS and NH3 CONS <NH3 CONS_LMTH , VPOLE is set in the vicinity of “0” (specifically, VPOLE≈−0.4).
 以上のように算出された切換関数σ(k)に基づいて、到達則入力URCH(k)、非線形入力UNL(k)、及び適応則入力UADP(k)を算出し、さらに下記式(4)に示すように、これらURCH(k)、UNL(k)、及びUADP(k)の和を算出し、これをFB噴射量GUREA_FB(k)として定義する。
Figure JPOXMLDOC01-appb-M000004
Based on the switching function σ (k) calculated as described above, the reaching law input U RCH (k), the nonlinear input U NL (k), and the adaptive law input U ADP (k) are calculated. As shown in (4), the sum of these U RCH (k), U NL (k), and U ADP (k) is calculated and defined as the FB injection amount G UREA_FB (k).
Figure JPOXMLDOC01-appb-M000004
 到達則入力URCH(k)は、偏差状態量を切換直線上に載せるための入力であり、下記式(5)に示すように、切換関数σ(k)に所定の到達則制御ゲインKRCHを乗算することで算出される。
Figure JPOXMLDOC01-appb-M000005
The reaching law input U RCH (k) is an input for placing the deviation state quantity on the switching straight line. As shown in the following equation (5), the switching function σ (k) has a predetermined reaching law control gain K RCH. It is calculated by multiplying.
Figure JPOXMLDOC01-appb-M000005
 非線形入力UNL(k)は、非線形モデル化誤差を抑制し、偏差状態量を切換直線上に載せるための入力であり、下記式(6)に示すように、sign(σ(k))に所定の非線形入力ゲインKNLを乗算することで算出される。ここで、sign(σ(k))は、符号関数であり、σ(k)が正の値のとき「1」となり、σ(k)が負の値のとき「-1」となる。
Figure JPOXMLDOC01-appb-M000006
The nonlinear input U NL (k) is an input for suppressing the nonlinear modeling error and placing the deviation state quantity on the switching straight line. As shown in the following equation (6), sign (σ (k)) It is calculated by multiplying by a predetermined nonlinear input gain KNL . Here, sign (σ (k)) is a sign function, and is “1” when σ (k) is a positive value and “−1” when σ (k) is a negative value.
Figure JPOXMLDOC01-appb-M000006
 適応則入力UADP(k)は、モデル化誤差や外乱の影響を抑制し、偏差状態量を切換直線に載せるための入力であり、下記式(7)に示すように、切換関数σ(k)と所定の適応則ゲインKADPを乗算したものと、前回制御時の適応則入力UADP(k-1)との和により算出される。
Figure JPOXMLDOC01-appb-M000007
The adaptive law input U ADP (k) is an input for suppressing the influence of modeling error and disturbance and placing the deviation state quantity on the switching line. As shown in the following equation (7), the switching function σ (k ) Multiplied by a predetermined adaptive law gain K ADP and the sum of the adaptive law input U ADP (k−1) at the previous control.
Figure JPOXMLDOC01-appb-M000007
 なお、これら到達則入力URCH(k)、非線形入力UNL(k)、及び適応則入力UADP(k)は、それぞれ、図6を参照して詳述した制御方針の下、偏差状態量が安定して切換直線上に載るように、実験に基づいて最適な値に設定される。 The reaching law input U RCH (k), the non-linear input U NL (k), and the adaptive law input U ADP (k) are respectively calculated as deviation state quantities under the control policy detailed with reference to FIG. Is set to an optimum value on the basis of experiments so that is stably placed on the switching straight line.
 図10は、以上のような本実施形態のスライディングモードコントローラを用いてユリア噴射制御を実行した場合における、NOx還元率の変化を示す図である。具体的には、図10において、上段は検出アンモニア量NH3CONSの時間変化を示し、中段はユリア噴射量GUREAの時間変化を示し、下段はNOx還元率の時間変化を示す。
 なお、この図10において、実線は、本実施形態の制御結果を示し、破線は、検出アンモニア量NH3CONSが目標アンモニア量NH3CONS_TRGTに厳密に収束するようにユリア噴射制御を行った場合の制御結果を示す。
FIG. 10 is a diagram showing a change in the NOx reduction rate when urea injection control is executed using the sliding mode controller of the present embodiment as described above. Specifically, in FIG. 10, the upper part shows the time change of the detected ammonia amount NH3 CONS , the middle part shows the time change of the urea injection amount GUREA , and the lower part shows the time change of the NOx reduction rate.
In FIG. 10, the solid line indicates the control result of the present embodiment, and the broken line indicates the control result when urea injection control is performed so that the detected ammonia amount NH3 CONS converges strictly to the target ammonia amount NH3 CONS_TRGT. Indicates.
 本実施形態によれば、検出アンモニア量NH3CONSが、目標アンモニアスリップ範囲RNH3CONS_TRGT内を漂うようにユリア噴射量GUREAを算出する。これにより、ユリア噴射量GUREAの変動を小さくできる。
 特に、破線に示すように検出アンモニア量が目標アンモニア量に厳密に収束するような制御を行った場合、過大なアンモニアスリップが発生すると、このアンモニアスリップを抑制するためにユリア噴射量を大幅に減少し、これによりNOx還元率が大幅に低下する場合があった。本実施形態によれば、このような過大なアンモニアスリップの発生時における、ユリア噴射量GUREAの減少量を低減し、これによりNOx還元率を高く維持することができる。
According to the present embodiment, the urea injection amount G UREA is calculated so that the detected ammonia amount NH 3 CONS drifts within the target ammonia slip range RNH 3 CONS_TRGT . Thereby, the fluctuation | variation of the urea injection amount GUREA can be made small.
In particular, when control is performed so that the detected ammonia amount strictly converges to the target ammonia amount as shown by the broken line, if an excessive ammonia slip occurs, the urea injection amount is greatly reduced to suppress this ammonia slip. As a result, the NOx reduction rate may be significantly reduced. According to the present embodiment, it is possible to reduce the amount of decrease in the urea injection amount G UREA when such an excessive ammonia slip occurs, thereby maintaining a high NOx reduction rate.
 また、本実施形態によれば、検出アンモニア量NH3CONSが、目標アンモニアスリップ範囲RNH3CONS_TRGT内にある場合における収束速度を、目標アンモニアスリップ範囲RNH3CONS_TRGT外にある場合における収束速度よりも遅くなるように設定した。
 これにより、検出アンモニア量NH3CONSが、目標アンモニアスリップ範囲RNH3CONS_TRGT外にある場合には、過大なアンモニアスリップの発生やNOx還元率の低下を速やかに抑制する。また、検出アンモニア量NH3CONSが、目標アンモニアスリップ範囲RNH3CONS_TRGT内にある場合には、ユリア噴射量GUREAの大きな変化を防止し、NOx還元率が著しく低下するのを防止できる。
Further, according to this embodiment, the detected ammonia amount NH3 CONS is, the convergence rate when within the target ammonia slip range RNH3 CONS - TRGT, so slower than the convergence rate in a case that is outside the target ammonia slip range RNH3 CONS - TRGT Set.
As a result, when the detected ammonia amount NH3 CONS is outside the target ammonia slip range RNH3 CONS_TRGT , the occurrence of excessive ammonia slip and the decrease in the NOx reduction rate are promptly suppressed. Further, when the detected ammonia amount NH3 CONS is within the target ammonia slip range RNH3 CONS_TRGT , it is possible to prevent a large change in the urea injection amount GUREA and to prevent the NOx reduction rate from being significantly reduced.
 [フィードフォワードコントローラの構成]
 次に、フィードフォワードコントローラの詳細な構成について、図11~図13を参照して説明する。
 上述の(2)の課題で示したように、選択還元触媒におけるNOx還元率とアンモニアスリップのユリア噴射量GUREAに対する応答性は異なる。具体的には、選択還元触媒におけるアンモニアスリップは、この選択還元触媒におけるNOx還元率よも、ユリア噴射量GUREAに対する応答遅れが大きい。このような選択還元触媒に対してユリア噴射制御を行うにあたり、本願発明者が着眼した課題について説明する。
[Configuration of feedforward controller]
Next, a detailed configuration of the feedforward controller will be described with reference to FIGS.
As shown in the above problem (2), the NOx reduction rate in the selective reduction catalyst and the response to the urea injection amount GUREA of the ammonia slip are different. Specifically, the ammonia slip in the selective reduction catalyst has a larger response delay with respect to the urea injection amount GUREA than the NOx reduction rate in the selective reduction catalyst. The subject which this inventor focused on when performing urea injection control with respect to such a selective reduction catalyst is demonstrated.
 (3)エンジンの運転状態の変化によるNOx還元率の低下
 図11は、上述のスライディングモードコントローラのみによりユリア噴射制御を実行した場合におけるエンジンの負荷、選択還元触媒上流のNOx量、検出アンモニア量NH3CONS、ユリア噴射量GUREA、及びNOx還元率の関係を示す図である。
(3) Decrease in NOx reduction rate due to change in engine operating state FIG. 11 shows engine load, NOx amount upstream of the selective reduction catalyst, detected ammonia amount NH3 when urea injection control is executed only by the sliding mode controller described above. It is a figure which shows the relationship between CONS , urea injection amount GUREA , and NOx reduction rate.
 図11に示すように、時刻tからtにかけてエンジンの負荷が上昇すると、この負荷の上昇に伴い、選択還元触媒の上流側のNOx量が上昇する。この場合、NOx還元率が低下するのを防止するために、NOx量の上昇に合わせてユリア噴射量GUREAを増量する必要がある。しかしながら、上述のスライディングモードコントローラでは、NOx還元率よりも応答遅れの大きいアンモニアセンサの出力値NH3CONSに基づいたフィードバック制御を行うため、ユリア噴射量GUREAの増量が、理想的な場合よりも遅れてしまう。このため、NOx還元率が低下する場合がある。
 また、このような応答遅れの大きいアンモニアセンサの出力値NH3CONSに基づいたフィードバック制御を行うと、センサの出力値NH3CONSにオーバシュートやアンダーシュート等の振動的な挙動が発生しやすい。このため、ユリア噴射量GUREAも振動してしまい、図11に示すようなアンダーシュートによるNOx還元率の低下も発生しやすい。
As shown in FIG. 11, when the engine load increases from time t 1 to time t 2 , the NOx amount on the upstream side of the selective reduction catalyst increases as the load increases. In this case, in order to prevent the NOx reduction rate from decreasing, it is necessary to increase the urea injection amount GUREA as the NOx amount increases. However, in the above-described sliding mode controller, feedback control based on the output value NH3 CONS of the ammonia sensor having a response delay larger than the NOx reduction rate is performed, so that the increase in the urea injection amount GUREA is delayed from the ideal case. End up. For this reason, the NOx reduction rate may decrease.
Further, when feedback control based on the output value NH3 CONS of the ammonia sensor having a large response delay is performed, vibrational behavior such as overshoot or undershoot is likely to occur in the sensor output value NH3 CONS . For this reason, the urea injection amount G UREA also vibrates, and a reduction in the NOx reduction rate due to undershoot as shown in FIG. 11 is likely to occur.
 以上のような課題に鑑みて、本実施形態では、フィードフォワードコントローラにより、エンジンの運転状態に応じたFF噴射量GUREA_FFを算出する。具体的には、このフィードフォワードコントローラでは、エンジンの運転状態として、エンジンの回転数NE、及びエンジンの負荷を表す負荷パラメータTRQに基づいて、例えばマップ検索によりFF噴射量GUREA_FFを決定する。 In view of the above problems, in this embodiment, the feedforward controller calculates the FF injection amount GUREA_FF corresponding to the operating state of the engine. Specifically, in this feedforward controller, the FF injection amount GUREA_FF is determined by map search, for example, based on the engine speed NE and the load parameter TRQ indicating the engine load as the engine operating state.
 図12は、FF噴射量GUREA_FFを決定するための制御マップの一例を示す図である。
 図12に示すように、この制御マップでは、エンジンの回転数NE、又は、負荷パラメータTRQが大きくなるに従い、FF噴射量GUREA_FFはより大きな値に決定される。
 これは、エンジンの負荷パラメータTRQが大きいほど、混合気の燃焼温度が上昇することでNOx排出量が増大し、また、エンジンの回転数NEが大きいほど、単位時間当たりのNOx排出量が増大するためである。
FIG. 12 is a diagram illustrating an example of a control map for determining the FF injection amount GUREA_FF .
As shown in FIG. 12, in this control map, the FF injection amount GUREA_FF is determined to be a larger value as the engine speed NE or the load parameter TRQ increases.
This is because the larger the engine load parameter TRQ, the higher the combustion temperature of the air-fuel mixture and the higher the NOx emission amount. The higher the engine speed NE, the higher the NOx emission amount per unit time. Because.
 図13は、以上のような本実施形態のフィードフォワードコントローラを用いてユリア噴射制御を実行した場合における、エンジンの負荷、選択還元触媒上流のNOx量、検出アンモニア量NH3CONS、ユリア噴射量GUREA、及びNOx還元率の関係を示す図である。
 なお、この図13において、実線は、本実施形態の制御結果を示し、破線は、スライディングモードコントローラのみによりユリア噴射制御を行った場合の制御結果を示す。
FIG. 13 shows the engine load, the NOx amount upstream of the selective reduction catalyst, the detected ammonia amount NH3 CONS , and the urea injection amount G UREA when urea injection control is executed using the feedforward controller of the present embodiment as described above. It is a figure which shows the relationship between NOx reduction rate.
In FIG. 13, the solid line indicates the control result of this embodiment, and the broken line indicates the control result when urea injection control is performed only by the sliding mode controller.
 図13に示すように、時刻tからtにかけてエンジンの負荷が上昇すると、この負荷の上昇に伴い、選択還元触媒の上流側のNOx量が上昇する。ここで、エンジンの負荷が上昇すると、フィードフォワードコントローラにより、NOxの増加に合わせて適切に設定されたFF噴射量GUREA_FFが算出され、これによりユリア噴射量GUREAを、遅れが生じることなく理想的な噴射量に維持できる。これにより、NOx還元率を最高の値で維持できる。
 また、このようにNOx還元率を高く維持することで、ユリア噴射量GUREAの大きな変動を防止するとともに、この変動に伴うアンモニアスリップの発生やNOx還元率の低下をも未然に防ぐことができる。
As shown in FIG. 13, when the engine load increases from time t 1 to time t 2 , the NOx amount on the upstream side of the selective reduction catalyst increases as the load increases. Here, when the engine load increases, the feedforward controller calculates the FF injection amount G UREA_FF appropriately set in accordance with the increase in NOx, thereby making the urea injection amount G UREA ideal without any delay. Can be maintained at a reasonable injection amount. Thereby, the NOx reduction rate can be maintained at the highest value.
In addition, by maintaining the NOx reduction rate high in this way, it is possible to prevent large fluctuations in the urea injection amount G UREA and to prevent the occurrence of ammonia slip and the reduction in the NOx reduction ratio due to this fluctuation. .
 [ストレージ補正入力算出部の構成]
 次に、ストレージ補正入力算出部の詳細な構成について、図14~図21を参照して説明する。
 上述のように第1選択還元触媒及び第2選択還元触媒は、アンモニアを貯蔵する機能を有する。このような選択還元触媒に対してユリア噴射制御を実行するにあたり、本願発明者が着眼した3つの課題について説明する。
[Configuration of storage correction input calculation unit]
Next, a detailed configuration of the storage correction input calculation unit will be described with reference to FIGS.
As described above, the first selective reduction catalyst and the second selective reduction catalyst have a function of storing ammonia. In executing urea injection control for such a selective reduction catalyst, three problems that the present inventors have focused on will be described.
 (4)ストレージ量の未飽和時におけるNOx還元率の低下
 図14は、選択還元触媒に貯蔵されたアンモニアが未飽和である状態、すなわち、選択還元触媒におけるストレージ量がそのストレージ容量よりも少ない状態からユリア噴射制御を開始した場合におけるNOx還元率と、ユリア噴射量GUREAと、検出アンモニア量NH3CONSと、アンモニアストレージ量との関係を示す図である。この図14に示す例では、時刻t=0において、アンモニアのストレージ量が「0」の状態からユリア噴射制御を開始し、時刻t=tにおいて、ストレージ量がストレージ容量に達した場合を示す。
 この図14に示すように、時刻t=0~tの間では、アンモニアのストレージ量がストレージ容量以下であるため、選択還元触媒におけるNOx還元率が、飽和時におけるNOx還元率よりも低下してしまう。
(4) Reduction in NOx reduction rate when storage amount is not saturated FIG. 14 shows a state in which ammonia stored in the selective reduction catalyst is unsaturated, that is, a state in which the storage amount in the selective reduction catalyst is less than its storage capacity. It is a figure which shows the relationship between the NOx reduction | restoration rate at the time of starting urea injection control from, the urea injection amount GUREA , the detected ammonia amount NH3 CONS, and the ammonia storage amount. In the example shown in FIG. 14, urea injection control is started from the state where the storage amount of ammonia is “0” at time t = 0, and the storage amount reaches the storage capacity at time t = t 1 . .
As shown in FIG. 14, between the time t = 0 ~ t 1, since the storage amount of ammonia is less than the storage capacity, the NOx reduction rate of the selective reduction catalyst, and reduction of the NOx reduction rate at saturation End up.
 (5)ユリア噴射量の低減遅れによる過大なアンモニアスリップの発生
 図14に示すように、時刻t=0~tの間では、アンモニアのストレージ量がストレージ容量以下であるため、アンモニアスリップは発生しない。このため、時刻t=0~tの間では、アンモニアセンサの出力値NH3CONSは「0」である。また、この間、アンモニアセンサの出力値NH3CONSが「0」であることに応じて、上述のようなNOx還元率が低下した期間を可能な限り短縮するために、ユリア噴射量GUREAを最大値に設定する。
(5) As shown in generation 14 of excessive ammonia slip by reducing the delay of the urea injection amount, between the time t = 0 ~ t 1, since the storage amount of ammonia is less than the storage capacity, the ammonia slip occurs do not do. Thus, between time t = 0 ~ t 1, the output value NH3 CONS of the ammonia sensor is "0". During this time, the urea injection amount G UREA is set to the maximum value in order to shorten the period during which the NOx reduction rate is reduced as much as possible in response to the output value NH3 CONS of the ammonia sensor being “0”. Set to.
 この場合、時刻t=tにおいてストレージ量がストレージ容量に達したことに応じて、ユリア噴射量GUREAを低減する制御を実行するものの、アンモニアセンサの検出遅れや、ユリア噴射量を最大値から低減することを起因とした遅れにより、実際にユリア噴射量を低減するまでに時間がかかってしまう。このため、検出アンモニア量NH3CONSが、その目標アンモニア量NH3CONS_TRGTから大きくオーバシュートしてしまい、過大なアンモニアスリップが発生してしまう。 In this case, although the control for reducing the urea injection amount G UREA is executed in response to the storage amount reaching the storage capacity at the time t = t 1 , the detection delay of the ammonia sensor and the urea injection amount are increased from the maximum values. Due to the delay caused by the reduction, it takes time to actually reduce the urea injection amount. For this reason, the detected ammonia amount NH3 CONS greatly overshoots from the target ammonia amount NH3 CONS_TRGT , and an excessive ammonia slip occurs.
 (6)過大なアンモニアスリップの発生によるNOx還元率の低下
 また、上述のように過大なアンモニアスリップが発生すると、このアンモニアスリップを抑制するために、ユリア噴射量GUREAをさらに低減する必要がある。しかしながら、この場合、NOx還元率が再び低下してしまう。
(6) Reduction of NOx reduction rate due to generation of excessive ammonia slip When excessive ammonia slip occurs as described above, it is necessary to further reduce the urea injection amount GUREA in order to suppress this ammonia slip. . However, in this case, the NOx reduction rate decreases again.
 これら3つの課題を解決するには、以下に示すような方針に沿ってユリア噴射制御を実行する必要がある。
 すなわち、上述の(4)の課題を解決するためには、アンモニアのストレージ量がストレージ容量に達するまでユリア噴射量GUREAを増量することで、NOx還元率が低下した期間を短縮する。また、(5)及び(6)の課題を解決するためには、上述のようにユリア噴射量GUREAを増量した上で、アンモニアが飽和してアンモニアスリップが発生する前にユリア噴射量GUREAを低減する。
In order to solve these three problems, it is necessary to execute urea injection control according to the following policy.
That is, in order to solve the problem (4), the urea injection amount GUREA is increased until the storage amount of ammonia reaches the storage capacity, thereby shortening the period during which the NOx reduction rate is reduced. Also, (5) and in order to solve the problems of (6), after increasing the amount of urea injection amount G UREA As described above, the urea injection amount G UREA before ammonia saturated ammonia slip occurs Reduce.
 このような方針に沿ったユリア噴射制御を実現するために、本実施形態では、ストレージ補正入力算出部により、第1選択還元触媒の第1ストレージ量を、後述のアンモニアストレージモデルに基づいて推定し、この推定した第1ストレージ量STUREA_FBが、所定の目標ストレージ量STUREA_TRGTに、速やか且つオーバシュートすることなく収束するように、ユリア噴射量GUREAにおける補正噴射量GUREA_STを算出する。 In order to realize urea injection control according to such a policy, in this embodiment, the storage correction input calculation unit estimates the first storage amount of the first selective reduction catalyst based on an ammonia storage model described later. first storage amount ST uREA - FB that this estimate is a predetermined target storage amount ST uREA - TRGT, quickly and to converge without overshoot, it calculates the correction injection amount G uREA - ST in the urea injection amount G uREA.
 またここで、目標ストレージ量STUREA_TRGTは、図示しない設定部により、第1選択還元触媒の第1ストレージ容量STUREA_MAX1と同じ値に設定されるが、これに限らない。例えば、過大なアンモニアスリップの発生を抑制するために、目標ストレージ量STUREA_TRGTを、第1ストレージ容量STUREA_MAX1の近傍であり、かつ、このSTUREA_MAX1よりも小さな値に設定してもよい。 Here, the target storage amount ST UREA_TRGT is set to the same value as the first storage capacity ST UREA_MAX1 of the first selective reduction catalyst by a setting unit (not shown), but is not limited thereto. For example, in order to suppress the occurrence of an excessive ammonia slip, the target storage amount ST UREA_TRGT may be set in the vicinity of the first storage capacity ST UREA_MAX1 and smaller than this ST UREA_MAX1 .
 図15は、ストレージ補正入力算出部におけるアンモニアストレージモデルの概念を示す模式図である。
 このアンモニアストレージモデルは、選択還元触媒に流入する排気のNOx量に対するユリア噴射量に応じて、選択還元触媒におけるアンモニアのストレージ量の変化を推定するモデルである。具体的には、選択還元触媒におけるストレージ量の変化の状態を、所定のNOx量に対してユリア噴射量が適切な状態(図15の(a)参照)と、ユリア噴射量が過剰な状態(図15の(b)参照)と、ユリア噴射量が不足した状態(図15の(c)参照)との、3つの状態に分類する。
FIG. 15 is a schematic diagram illustrating a concept of an ammonia storage model in the storage correction input calculation unit.
This ammonia storage model is a model for estimating a change in the storage amount of ammonia in the selective reduction catalyst according to the urea injection amount with respect to the NOx amount of the exhaust gas flowing into the selective reduction catalyst. Specifically, the state of change of the storage amount in the selective reduction catalyst includes a state in which the urea injection amount is appropriate with respect to a predetermined NOx amount (see FIG. 15A), and a state in which the urea injection amount is excessive ( The state is classified into three states, that is, a state in which the urea injection amount is insufficient (see FIG. 15C).
 図15の(a)に示すように、選択還元触媒に流入するNOxに対して、ユリア噴射量が適切な状態である場合、すなわち、排気中のNOxを最も効率良く還元できるアンモニアの量と、供給した尿素水から生成されるアンモニアの量とが略一致した場合には、ストレージ量の変化はない。 As shown in FIG. 15A, when the urea injection amount is in an appropriate state with respect to NOx flowing into the selective reduction catalyst, that is, the amount of ammonia that can most effectively reduce NOx in the exhaust, When the amount of ammonia generated from the supplied urea water substantially matches, there is no change in the storage amount.
 図15の(b)に示すように、選択還元触媒に流入するNOxに対して、ユリア噴射量が過剰な状態である場合、すなわち、供給した尿素水から生成されたアンモニアの量が、排気中のNOxを最も効率良く還元できる量より多い場合には、この余剰分のアンモニアが選択還元触媒に貯蔵される。したがって、このような供給過剰(Over-dosing)状態では、ストレージ量は増加する。 As shown in FIG. 15B, when the urea injection amount is excessive with respect to NOx flowing into the selective reduction catalyst, that is, the amount of ammonia generated from the supplied urea water is reduced in the exhaust gas. When the amount of NOx is larger than the amount that can be most efficiently reduced, this excess ammonia is stored in the selective reduction catalyst. Therefore, in such an over-dosing state, the storage amount increases.
 図15の(c)に示すように、選択還元触媒に流入するNOxに対して、ユリア噴射量が不足した状態である場合、すなわち、供給した尿素水から生成されたアンモニアの量が、排気中のNOxを最も効率良く還元できる量より少ない場合には、この不足分は貯蔵されたアンモニアから補われる。したがって、このような供給不足(Under-dosing)状態では、ストレージ量は減少する。 As shown in FIG. 15C, when the urea injection amount is insufficient with respect to NOx flowing into the selective reduction catalyst, that is, the amount of ammonia generated from the supplied urea water is reduced in the exhaust gas. If the amount of NOx is less than the amount that can be reduced most efficiently, this deficiency is compensated by the stored ammonia. Therefore, in such an under-supply state, the storage amount decreases.
 次に、以上のようなストレージモデルに基づいて上述の補正噴射量GUREA_STを算出するストレージ補正入力算出部の構成について、図16~図19を参照して説明する。また、このようなストレージ補正入力算出部の具体的な構成として、以下では3つの形態を説明する。 Next, the configuration of the storage correction input calculation unit that calculates the above-described correction injection amount G UREA_ST based on the above storage model will be described with reference to FIGS. In addition, as a specific configuration of such a storage correction input calculation unit, three modes will be described below.
 図16は、ストレージ補正入力算出部の第1の形態の構成を示すブロック図である。
 このストレージ補正入力算出部は、上述のようなアンモニアストレージモデルに基づいて構成された制御対象61と、この制御対象61のコントローラ62とを含んで構成される。
FIG. 16 is a block diagram showing the configuration of the first form of the storage correction input calculation unit.
The storage correction input calculation unit includes a control object 61 configured based on the ammonia storage model as described above and a controller 62 of the control object 61.
 制御対象61は、排気中のNOxを還元する際に余剰となる尿素水の量を示す余剰ユリア噴射量DUREAを制御入力とし、第1選択還元触媒の第1ストレージ量STUREA_FBを制御出力とする。具体的には、この制御対象61は、余剰ユリア噴射量DUREAに基づいて、貯蔵されるアンモニア量を逐次加算、又は、消費されるアンモニア量を逐次減算することで、第1選択還元触媒の第1ストレージ量STUREA_FBを推定する積分器611で構成される。 The control target 61 uses a surplus urea injection amount D UREA that indicates the amount of urea water that is surplus when reducing NOx in the exhaust as a control input, and a first storage amount ST UREA_FB of the first selective reduction catalyst as a control output. To do. Specifically, the control target 61 sequentially adds the stored ammonia amount or sequentially subtracts the consumed ammonia amount based on the surplus urea injection amount DUREA , so that the first selective catalytic reduction catalyst The integrator 611 estimates the first storage amount ST UREA_FB .
 先ず、余剰ユリア噴射量DUREA(k)は、加算器63により、下記式(8)に示すように、ユリア噴射量GUREA(k)から、第1選択還元触媒に流入する排気のNOxを還元するために必要なユリア噴射量である理想ユリア噴射量GUREA_IDEAL(k)を減算することにより算出される。なお、このユリア噴射量GUREA(k)は、加算器64により、コントローラ62で算出された補正噴射量GUREA_ST(k)にFB噴射量GUREA_FB(k)及びFF噴射量GUREA_FF(k)を加算することで算出される。
Figure JPOXMLDOC01-appb-M000008
First, the surplus urea injection amount D UREA (k) is obtained from the urea injection amount G UREA (k) by the adder 63 from the urea injection amount G UREA (k) as NOx of exhaust flowing into the first selective reduction catalyst. It is calculated by subtracting the ideal urea injection amount G UREA_IDEAL (k), which is the urea injection amount necessary for reduction. The urea injection amount G UREA (k) is added to the corrected injection amount G UREA_ST (k) calculated by the controller 62 by the adder 64 and the FB injection amount G UREA_FB (k) and the FF injection amount G UREA_FF (k). It is calculated by adding.
Figure JPOXMLDOC01-appb-M000008
 ここで、理想ユリア噴射量GUREA_IDEAL(k)は、下記式(9)に示すように、NOxセンサにより検出された第1選択還元触媒に流入する排気のNOx量NOXCONSと、NOxを還元するために必要な噴射量に変換する変換係数KCONV_NOX_UREAとを乗算することにより算出される。
Figure JPOXMLDOC01-appb-M000009
Here, the ideal urea injection amount G UREA_IDEAL (k) reduces the NOx amount NOx CONS of the exhaust gas flowing into the first selective reduction catalyst detected by the NOx sensor and NOx as shown in the following equation (9). Therefore , it is calculated by multiplying by a conversion coefficient K CONV_NOX_UREA for conversion to an injection amount necessary for this.
Figure JPOXMLDOC01-appb-M000009
 またここで、第1選択還元触媒に流入する排気のNOx量を検出するNOxセンサが無い場合には、FF噴射量GUREA_FF(k)を、理想ユリア噴射量GUREA_IDEAL(k)としてもよい。 Here, when there is no NOx sensor for detecting the NOx amount of the exhaust gas flowing into the first selective reduction catalyst, the FF injection amount G UREA_FF (k) may be set as the ideal urea injection amount G UREA_IDEAL (k).
 積分器611では、余剰ユリア噴射量DUREA(k)が第1ストレージ量を増減することに基づいて、下記式(10)に示すような余剰ユリア噴射量DUREA(k)の時間kに関する積分演算と、下記式(11)に示すような第1ストレージ量に対するリミット処理とを組み合わせることで、第1ストレージ量STUREA_FB(k)を推定する。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
The integrator 611 integrates the surplus urea injection amount D UREA (k) with respect to time k as shown in the following equation (10) based on the surplus urea injection amount D UREA (k) increasing or decreasing the first storage amount. The first storage amount ST UREA_FB (k) is estimated by combining the calculation and the limit processing for the first storage amount as shown in the following equation (11).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 特にここで、式(11)では、第1ストレージ量STUREA_FB(k)に対する下限のリミット処理、すなわち、STUREA_FB(k)が最小で「0」となるような処理を施している。つまり、式(11)では、第1ストレージ量STUREA_FB(k)に対する上限のリミット処理、すなわち、STUREA_FB(k)が最大で第1ストレージ容量STUREA_MAX1となるような処理を施していない。
 これは、上述の(5)に示す課題を解決できなくなる虞があるからである。つまり、上述のように目標第1ストレージ量STUREA_TRGTを第1ストレージ容量STUREA_MAX1と同じ値に設定した場合、上限のリミット処理を行うと、ユリア噴射量GUREAを低減することなく、第1ストレージ量STUREA_FBが第1ストレージ容量STUREA_MAX1に制限されてしまい、アンモニアスリップを抑制する制御を行いにくくなるからである。
In particular, in Equation (11), a lower limit process for the first storage amount ST UREA_FB (k), that is, a process in which ST UREA_FB (k) becomes “0” at the minimum is performed. That is, in Expression (11), the upper limit process for the first storage amount ST UREA_FB (k), that is, the process that makes ST UREA_FB (k) the maximum storage capacity ST UREA_MAX1 is not performed.
This is because the problem shown in (5) above may not be solved. That is, when the target first storage amount ST UREA_TRGT is set to the same value as the first storage capacity ST UREA_MAX1 as described above, if the upper limit process is performed, the first storage amount is reduced without reducing the urea injection amount G UREA. This is because the amount ST UREA_FB is limited to the first storage capacity ST UREA_MAX1 , and it becomes difficult to perform control to suppress ammonia slip.
 コントローラ62は、推定した第1ストレージ量STUREA_FB(k)が、目標第1ストレージ量STUREA_TRGTに収束するように、ユリア噴射量GUREAにおける補正噴射量GUREA_ST(k)を、PI制御により算出する。 The controller 62 calculates the corrected injection amount G UREA_ST (k) in the urea injection amount G UREA by PI control so that the estimated first storage amount ST UREA_FB (k) converges to the target first storage amount ST UREA_TRGT. To do.
 コントローラ62では、下記式(12)に示すように、加算器621により、推定された第1ストレージ量STUREA_FB(k)から目標第1ストレージ量STUREA_TRGT(k)を減算し、これを第1ストレージ量偏差EST(k)として定義する。
Figure JPOXMLDOC01-appb-M000012
In the controller 62, as shown in the following equation (12), the adder 621 subtracts the target first storage amount ST UREA_TRGT (k) from the estimated first storage amount ST UREA_FB (k), It is defined as a storage amount deviation E ST (k).
Figure JPOXMLDOC01-appb-M000012
 次に、下記式(13)に示すように、乗算器622により、第1ストレージ量偏差EST(k)に比例ゲインKPSTを乗算することで、比例項GUREA_ST_P(k)を算出する。
Figure JPOXMLDOC01-appb-M000013
Next, as shown in the following equation (13), the multiplier 622 multiplies the first storage amount deviation E ST (k) by the proportional gain KP ST to calculate the proportional term G UREA_ST_P (k).
Figure JPOXMLDOC01-appb-M000013
 また、下記式(14)に示すように、積分器623及び乗算器624により、第1ストレージ量偏差EST(k)の時間積分値に積分ゲインKISTを乗算することで、積分項GUREA_ST_I(k)を算出する。
Figure JPOXMLDOC01-appb-M000014
Further, as shown in the following equation (14), the integral term G UREA_ST_I is obtained by multiplying the time integral value of the first storage amount deviation E ST (k) by the integral gain KI ST by the integrator 623 and the multiplier 624. (K) is calculated.
Figure JPOXMLDOC01-appb-M000014
 次に、下記式(15)に示すように、加算器625により、比例項GUREA_ST_P(k)と積分項GUREA_ST_I(k)の和を算出し、これを補正噴射量GUREA_ST(k)として定義する。
Figure JPOXMLDOC01-appb-M000015
Next, as shown in the following formula (15), the adder 625 calculates the sum of the proportional term G UREA_ST_P (k) and the integral term G UREA_ST_I (k), and uses this as the corrected injection amount G UREA_ST (k). Define.
Figure JPOXMLDOC01-appb-M000015
 図17は、以上のようなストレージ補正入力算出部の第1の形態により推定された第1ストレージ量STUREA_FBの時間変化を示す図である。
 図17に示すように、第1ストレージ量STUREA_FBは、目標第1ストレージ量STUREA_TRGTに対して振動的な挙動を示し、周期的にアンモニアスリップが発生する。
 これは、上述のストレージモデルとしての制御対象61が、積分器611を備えた構造となっているためである。つまり、この場合、コントローラ62の比例項GUREA_ST_Pは積分項となり、また、積分項GUREA_ST_Iは積分値に対する積分項となってしまい、特に積分項GUREA_ST_Iが振動的な挙動を示すためである。
 そこで以下では、このような課題を解決するストレージ補正入力算出部の第2の形態及び第3の形態について説明する。
FIG. 17 is a diagram showing a temporal change of the first storage amount ST UREA_FB estimated by the first form of the storage correction input calculation unit as described above.
As shown in FIG. 17, the first storage amount ST UREA_FB exhibits a vibration behavior with respect to the target first storage amount ST UREA_TRGT , and ammonia slip occurs periodically.
This is because the control object 61 as the storage model described above has a structure including the integrator 611. That is, in this case, the proportional term G UREA_ST_P of the controller 62 becomes an integral term, and the integral term G UREA_ST_I becomes an integral term with respect to the integral value. In particular, the integral term G UREA_ST_I shows an oscillatory behavior.
Therefore, hereinafter, a second mode and a third mode of the storage correction input calculation unit that solve such a problem will be described.
 図18は、ストレージ補正入力算出部の第2の形態の構成を示すブロック図である。この第2の形態のストレージ補正入力算出部は、上述の図16に示す第1の形態と、コントローラ62Aの構成が異なる。
 このコントローラ62Aは、後に詳述するように、制御対象61の積分器611をコントローラの一部として捉えた拡大系PI制御を用いたコントローラである。
FIG. 18 is a block diagram showing the configuration of the second form of the storage correction input calculation unit. The storage correction input calculation unit of the second form is different from the first form shown in FIG. 16 described above in the configuration of the controller 62A.
As will be described in detail later, the controller 62A is a controller that uses an expanded system PI control in which the integrator 611 of the control target 61 is regarded as a part of the controller.
 コントローラ62Aでは、下記式(16)に示すように、加算器621により、推定された第1ストレージ量STUREA_FB(k)から目標第1ストレージ量STUREA_TRGT(k)を減算し、これを第1ストレージ量偏差EST(k)として定義する。
Figure JPOXMLDOC01-appb-M000016
In the controller 62A, as shown in the following equation (16), the adder 621 subtracts the target first storage amount ST UREA_TRGT (k) from the estimated first storage amount ST UREA_FB (k), It is defined as a storage amount deviation E ST (k).
Figure JPOXMLDOC01-appb-M000016
 また、このコントローラ62Aでは、上述の課題を解決するために、制御対象61の積分器611をコントローラの一部として捉え、下記式(17)及び(18)に示すように、比例項GUREA_ST_P(k)及び積分項GUREA_ST_I(k)は、それぞれ後に積分されることを考慮して算出される。 Further, in this controller 62A, in order to solve the above-described problem, the integrator 611 of the control target 61 is regarded as a part of the controller, and the proportional term G UREA_ST_P ( k) and the integral term G UREA_ST_I (k) are each calculated in consideration of later integration.
 具体的には、遅延演算器626及び加算器627により、第1ストレージ量偏差の微分値EST(k)-EST(k-1)を算出し、この微分値に乗算器622により比例ゲインKPSTを乗算したものを、下記式(17)に示すように、比例項GUREA_ST_P(k)として定義する。
 また、第1ストレージ量偏差EST(k)に乗算器624により積分ゲインKISTを乗算したものを、下記式(18)に示すように、積分項GUREA_ST_I(k)として定義する。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Specifically, a differential value E ST (k) −E ST (k−1) of the first storage amount deviation is calculated by the delay calculator 626 and the adder 627, and a proportional gain is calculated by the multiplier 622. A product obtained by multiplying KP ST is defined as a proportional term G UREA_ST_P (k) as shown in the following equation (17).
Also, the product of the first storage amount deviation E ST (k) multiplied by the integral gain KI ST by the multiplier 624 is defined as an integral term G UREA_ST_I (k) as shown in the following equation (18).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 次に、下記式(15)に示すように、加算器625により、比例項GUREA_ST_P(k)と積分項GUREA_ST_I(k)の和を算出し、これを補正噴射量GUREA_ST(k)として定義する。
Figure JPOXMLDOC01-appb-M000019
Next, as shown in the following formula (15), the adder 625 calculates the sum of the proportional term G UREA_ST_P (k) and the integral term G UREA_ST_I (k), and uses this as the corrected injection amount G UREA_ST (k). Define.
Figure JPOXMLDOC01-appb-M000019
 図19は、ストレージ補正入力算出部の第3の形態の構成を示すブロック図である。この第3の形態のストレージ補正入力算出部は、上述の図18に示す第2の形態と、コントローラ62Bの構成が異なる。
 このコントローラ62Bは、上述のコントローラ62Aと同様にして制御対象61の積分器611をコントローラの一部として捉えるとともに、積分項のみに第1ストレージ量偏差EST(k)を与える拡大系I-P制御を用いたコントローラである。
FIG. 19 is a block diagram showing the configuration of the third form of the storage correction input calculation unit. The storage correction input calculation unit of the third form is different from the second form shown in FIG. 18 described above in the configuration of the controller 62B.
The controller 62B recognizes the integrator 611 of the controlled object 61 as a part of the controller in the same manner as the controller 62A described above, and gives an expanded system IP that gives the first storage amount deviation E ST (k) only to the integral term. It is a controller using control.
 コントローラ62Bでは、下記式(20)に示すように、加算器621により、推定された第1ストレージ量STUREA_FB(k)から目標第1ストレージ量STUREA_TRGT(k)を減算し、これを第1ストレージ量偏差EST(k)として定義する。
Figure JPOXMLDOC01-appb-M000020
In the controller 62B, as shown in the following equation (20), the adder 621 subtracts the target first storage amount ST UREA_TRGT (k) from the estimated first storage amount ST UREA_FB (k), It is defined as a storage amount deviation E ST (k).
Figure JPOXMLDOC01-appb-M000020
 次に、第1ストレージ量偏差EST(k)に乗算器624により積分ゲインKISTを乗算したものを、下記式(21)に示すように、積分項GUREA_ST_I(k)として定義する。
Figure JPOXMLDOC01-appb-M000021
Next, the product of the first storage amount deviation E ST (k) multiplied by the integral gain KI ST by the multiplier 624 is defined as an integral term G UREA_ST_I (k) as shown in the following equation (21).
Figure JPOXMLDOC01-appb-M000021
 一方、遅延演算器268及び加算器629により、第1ストレージ量の微分値STUREA_FB(k)-STUREA_FB(k-1)を算出し、この微分値に乗算器622により比例ゲインKPSTを乗算したものを、下記式(22)に示すように、比例項GUREA_ST_P(k)として定義する。
Figure JPOXMLDOC01-appb-M000022
On the other hand, the differential value ST UREA_FB (k) −ST UREA_FB (k−1) of the first storage amount is calculated by the delay computing unit 268 and the adder 629, and this differential value is multiplied by the proportional gain KP ST by the multiplier 622. This is defined as a proportional term G UREA_ST_P (k) as shown in the following formula (22).
Figure JPOXMLDOC01-appb-M000022
 次に、下記式(23)に示すように、加算器625により、比例項GUREA_ST_P(k)と積分項GUREA_ST_I(k)の和を算出し、これを補正噴射量GUREA_ST(k)として定義する。
Figure JPOXMLDOC01-appb-M000023
Next, as shown in the following equation (23), the adder 625 calculates the sum of the proportional term G UREA_ST_P (k) and the integral term G UREA_ST_I (k), and uses this as the corrected injection amount G UREA_ST (k). Define.
Figure JPOXMLDOC01-appb-M000023
 図20は、以上のようなストレージ補正入力算出部を用いてユリア噴射制御を実行した場合における、NOx還元率と、ユリア噴射量GUREAと、検出アンモニア量NH3CONSと、アンモニアストレージ量との関係を示す図である。この図20に示す例では、時刻t=0において、アンモニアのストレージ量が「0」の状態からユリア噴射制御を開始し、時刻t=tにおいて、ストレージ量がストレージ容量に達した場合を示す。
 なお、この図20において、実線は、本実施形態の制御結果を示し、破線は、第1ストレージ量を推定せずにユリア噴射制御を行った場合の制御結果を示す。
FIG. 20 shows the relationship between the NOx reduction rate, the urea injection amount GUREA , the detected ammonia amount NH3 CONS, and the ammonia storage amount when urea injection control is executed using the storage correction input calculation unit as described above. FIG. In the example shown in FIG. 20, urea injection control is started from the state where the storage amount of ammonia is “0” at time t = 0, and the storage amount reaches the storage capacity at time t = t 1 . .
In FIG. 20, the solid line indicates the control result of the present embodiment, and the broken line indicates the control result when urea injection control is performed without estimating the first storage amount.
 本実施形態によれば、第1ストレージ量STUREA_FBを推定し、この第1ストレージ量STUREA_FBが目標第1ストレージ量STUREA_TRGTに収束するようにフィードバック制御することにより、第1ストレージ量が第1ストレージ容量に達するまでの時間を短縮することができる。これにより、第1選択還元触媒においてアンモニアが飽和するまでの時間を短縮し、速やかにNOx還元率を高めることができる。 According to this embodiment, the first storage amount ST UREA - FB estimated, by feedback control so the first storage amount ST UREA - FB converges to the target first storage amount ST UREA - TRGT, first storage amount first The time to reach the storage capacity can be shortened. Thereby, the time until the ammonia is saturated in the first selective reduction catalyst can be shortened, and the NOx reduction rate can be quickly increased.
 また、第1ストレージ量STUREA_FBを推定するとともに、この第1ストレージ量STUREA_FBが目標第1ストレージ量STUREA_TRGTに収束するようにフィードバック制御することにより、実際に第1選択還元触媒においてアンモニアが飽和する前にユリア噴射量GUREAの低減を開始することができる。すなわち、ユリア噴射量の低減の遅れを解消できる。これにより、過大なアンモニアスリップの発生を防止することができる。
 また、このような過大なアンモニアスリップの発生を防止することで、このアンモニアスリップを抑制することを目的としたユリア噴射量の低減量を少なくできる。これにより、NOx還元率の低下を防止できる。
Further, the estimating the first storage amount ST UREA - FB, by feedback control so the first storage amount ST UREA - FB converges to the target first storage amount ST UREA - TRGT, actually ammonia in the first selective reduction catalyst saturation Before starting , the reduction of the urea injection amount GUREA can be started. That is, the delay in reducing the urea injection amount can be eliminated. Thereby, generation | occurrence | production of an excessive ammonia slip can be prevented.
Further, by preventing the occurrence of such an excessive ammonia slip, the amount of reduction in the urea injection amount for the purpose of suppressing the ammonia slip can be reduced. Thereby, the fall of a NOx reduction rate can be prevented.
 図21は、以上のようなストレージ補正入力算出部により推定された第1ストレージ量STUREA_FBの時間変化を示す図である。図21の(a)は、PI制御を用いた第1の形態による制御結果を示し、図21の(b)は、拡大系PI制御を用いた第2の形態による制御結果を示し、図21の(c)は、拡大系I-P制御を用いた第3の形態による制御結果を示す。 FIG. 21 is a diagram showing a temporal change in the first storage amount ST UREA_FB estimated by the storage correction input calculation unit as described above. FIG. 21A shows a control result according to the first form using PI control, FIG. 21B shows a control result according to the second form using expanded PI control, and FIG. (C) shows a control result according to the third mode using the expanded system IP control.
 図21の(b)に示すように、拡大系PI制御を用いた場合、PI制御を用いた場合に発生した第1ストレージ量STUREA_FBの周期的な振動が解消されるとともに、目標第1ストレージ量STUREA_TRGTに速やかに収束する。また、これにより周期的なアンモニアスリップの発生も抑制される。 As shown in FIG. 21B, when the expanded PI control is used, the periodic vibration of the first storage amount ST UREA_FB generated when the PI control is used is eliminated, and the target first storage It quickly converges to the quantity ST UREA_TRGT . This also suppresses the occurrence of periodic ammonia slip.
 図21の(c)に示すように、拡大系I-P制御を用いた場合、上述の拡大系PI制御を用いた場合と比較して、第1ストレージ量STUREA_FBの周期的な振動がさらに解消され、これによりアンモニアスリップの発生もさらに抑制できる。
 これは、上記式(22)に示すように、比例項GUREA_ST_Pを、第1ストレージ量偏差ESTではなく、第1ストレージ量STUREA_FBに基づいて算出したためである。この場合、比例項GUREA_ST_Pは、第1ストレージ量偏差ESTが「0」となるように作用するのではなく、STUREA_FBが「0」となるように作用し、これにより、STUREA_FBのオーバシュートが抑制される。
As shown in FIG. 21C, when the expanded system IP control is used, the periodic vibration of the first storage amount ST UREA_FB is further increased as compared with the case where the above-described expanded system PI control is used. As a result, the occurrence of ammonia slip can be further suppressed.
This is because, as shown in the equation (22), the proportional term G UREA - ST - P, the first storage amount deviation E instead ST, because calculated based on the first storage amount ST UREA - FB. In this case, the proportional term G UREA - ST - P, rather than acting as the first storage amount deviation E ST becomes "0", act to ST UREA - FB becomes "0", thereby, over the ST UREA - FB Shooting is suppressed.
 しかしながら、拡大系I-P制御を用いた場合と、拡大系PI制御を用いた場合とを比較すると、拡大系I-P制御を用いた場合には、上述のようなオーバシュートが抑制されるものの、第1ストレージ量STUREA_FBが目標第1ストレージ量STUREA_TRGTに到達するまでの時間が長くなってしまう。このため、拡大系I-P制御を用いるか、或いは、拡大系PI制御を用いるかは、排気浄化装置の構成に応じて使い分けることが好ましい。 However, comparing the case where the enlarged system IP control is used with the case where the enlarged system PI control is used, the overshoot as described above is suppressed when the enlarged system IP control is used. although, the time until the first storage amount ST UREA - FB reaches the target first storage amount ST UREA - TRGT becomes long. For this reason, it is preferable to use the expanded system IP control or the expanded system PI control depending on the configuration of the exhaust purification device.
 [目標アンモニア量設定部の構成]
 次に、図22~図24を参照して、目標アンモニア量設定部の詳細な構成について説明する。
 第1、第2選択還元触媒のストレージ容量は、その状態に応じて変化する。ストレージ容量が急激に減少すると、これら選択還元触媒で保持しきれなくなったアンモニアは下流側へスリップしてしまう。このため、最下流へアンモニアがスリップするのを抑制するには、第2選択還元触媒に流入するアンモニア量の目標値に相当する目標アンモニア量NH3CONS_TRGTを、これら選択還元触媒の状態に応じて適切に設定する必要がある。これに対し本実施形態の目標アンモニア量設定部では、触媒温度センサの検出値TSCRに基づいて目標アンモニア濃度NH3CONS_TRGTを設定する。
[Configuration of target ammonia amount setting unit]
Next, a detailed configuration of the target ammonia amount setting unit will be described with reference to FIGS.
The storage capacity of the first and second selective reduction catalysts varies depending on the state. When the storage capacity decreases rapidly, ammonia that cannot be held by these selective reduction catalysts slips downstream. Therefore, in order to suppress the slipping of ammonia to the most downstream side, the target ammonia amount NH3 CONS_TRGT corresponding to the target value of the ammonia amount flowing into the second selective reduction catalyst is appropriately set according to the state of these selective reduction catalysts. Must be set to On the other hand, the target ammonia amount setting unit of the present embodiment sets the target ammonia concentration NH3 CONS_TRGT based on the detection value T SCR of the catalyst temperature sensor.
 図22は、目標アンモニア量NH3CONS_TRGTの検索マップの一例を示す図である。図22において、横軸は触媒温度センサの検出値TSCRを示し、縦軸は目標アンモニア量NH3CONS_TRGTを示す。
 図3を参照して詳述したように、選択還元触媒におけるストレージ容量は、触媒温度が高くなるほど小さくなる特性がある。そこで、触媒温度が高くなり、そのストレージ容量が小さくなるほど第2選択還元触媒に流入するアンモニア量が少なくなるように、触媒温度TSCRが高くなるほど目標アンモニア量NH3CONS_TRGTを小さな値に設定する。
FIG. 22 is a diagram illustrating an example of a search map for the target ammonia amount NH3 CONS_TRGT . In Figure 22, the horizontal axis represents the detected value T SCR of the catalyst temperature sensor, the vertical axis indicates the target amount of ammonia NH3 CONS - TRGT.
As described in detail with reference to FIG. 3, the storage capacity of the selective reduction catalyst has a characteristic that it decreases as the catalyst temperature increases. Therefore, the target ammonia amount NH3 CONS_TRGT is set to a smaller value as the catalyst temperature T SCR increases so that the amount of ammonia flowing into the second selective reduction catalyst decreases as the catalyst temperature increases and the storage capacity decreases.
 次に、第1選択還元触媒と第2選択還元触媒との間のアンモニア量、すなわち第2選択還元触媒に流入するアンモニア量の変化について、図23に示す従来の排気浄化装置による制御例と、図24に示す本実施形態の排気浄化装置による制御例とで比較する。ここで、従来の排気浄化装置とは、本実施形態の排気浄化装置とは異なり、アンモニア濃度を検出するアンモニアセンサを用い、このアンモニア濃度の検出値が所定の目標アンモニア濃度に一致するように制御した場合を示す。
 ここで、従来の排気浄化装置とは、本実施形態の排気浄化装置とは異なり、第1選択還元触媒と第2選択還元触媒との間のアンモニア濃度を検出するセンサを用いるとともに、このアンモニア濃度の検出値が所定の目標値に一致するようにユリア噴射制御を行うものを示す。
Next, a control example by the conventional exhaust purification device shown in FIG. 23 regarding the change in the amount of ammonia between the first selective reduction catalyst and the second selective reduction catalyst, that is, the amount of ammonia flowing into the second selective reduction catalyst, Comparison is made with an example of control by the exhaust purification system of this embodiment shown in FIG. Here, unlike the exhaust gas purification apparatus of the present embodiment, the conventional exhaust gas purification apparatus uses an ammonia sensor that detects the ammonia concentration, and controls the detected value of the ammonia concentration to coincide with a predetermined target ammonia concentration. Shows the case.
Here, unlike the exhaust purification device of the present embodiment, the conventional exhaust purification device uses a sensor that detects the ammonia concentration between the first selective reduction catalyst and the second selective reduction catalyst, and this ammonia concentration. That is, urea injection control is performed so that the detected value coincides with a predetermined target value.
 図23は、従来の排気浄化装置における第1選択還元触媒と第2選択還元触媒との間のアンモニア量の変化を示す図である。
 図24は、本実施形態の排気浄化装置における第1選択還元触媒と第2選択還元触媒との間のアンモニア量の変化を示す図である。これら図23及び図24には、上段から下段に向って順に、エンジン負荷と、排気流量と、第1選択還元触媒と第2選択還元触媒との間のアンモニア濃度と、第1選択還元触媒と第2選択還元触媒との間のアンモニア量との関係を示す。
FIG. 23 is a diagram showing a change in the amount of ammonia between the first selective reduction catalyst and the second selective reduction catalyst in the conventional exhaust purification device.
FIG. 24 is a diagram showing a change in the amount of ammonia between the first selective reduction catalyst and the second selective reduction catalyst in the exhaust gas purification apparatus of the present embodiment. 23 and 24, in order from the upper stage to the lower stage, the engine load, the exhaust flow rate, the ammonia concentration between the first selective reduction catalyst and the second selective reduction catalyst, and the first selective reduction catalyst, The relationship with the amount of ammonia between 2nd selective reduction catalysts is shown.
 図23に示すように、エンジンの負荷が急激に増加すると、これに伴い排気流量や排気温度が急激に増加する。このとき、排気流量が増加すると相対的に排気中のアンモニア濃度は低下するが、アンモニア濃度に基づく従来の排気浄化装置では、アンモニア濃度の検出値が目標値に一致するように、ユリア噴射量を増加する制御が行われる。これにより、図23に示すように、第1選択還元触媒と第2選択還元触媒との間のアンモニア濃度は目標値に一致するものの、アンモニア量が適切な量から外れて増加してしまう。このため、第2選択還元触媒にそのストレージ容量以上の量のアンモニアが流入してしまい、結果としてアンモニアスリップが発生するおそれがある。 As shown in FIG. 23, when the engine load increases rapidly, the exhaust flow rate and the exhaust temperature increase rapidly. At this time, the ammonia concentration in the exhaust gas relatively decreases as the exhaust gas flow rate increases. However, in the conventional exhaust gas purification device based on the ammonia concentration, the urea injection amount is set so that the detected value of the ammonia concentration matches the target value. Incremental control is performed. Accordingly, as shown in FIG. 23, the ammonia concentration between the first selective reduction catalyst and the second selective reduction catalyst coincides with the target value, but the ammonia amount deviates from an appropriate amount and increases. For this reason, an amount of ammonia exceeding the storage capacity flows into the second selective reduction catalyst, and as a result, ammonia slip may occur.
 一方、本実施形態の排気浄化装置ではアンモニア量に基づいた制御を行うので、排気流量の増加に伴ってユリア噴射量を増加することもない。このため、図24に示すように、第1選択還元触媒と第2選択還元触媒との間のアンモニア濃度は、排気流量の増加に応じて低くなる。
 また、このとき、エンジン負荷を増加すると排気温度の上昇に合わせて触媒温度も上昇するので、第2選択還元触媒のストレージ容量が低下する。上述のように、本実施形態の排気浄化装置では、触媒温度に応じて目標アンモニア量NH3CONS_TRGTを決定する。このため、図24に示すように、第2選択還元触媒のストレージ容量の低下に伴い、目標アンモニア量NH3CONS_TRGTも小さくなるように設定される。したがって、第2選択還元触媒には、その状態に応じた量のアンモニアを流入させることができるので、アンモニアスリップを抑制することができる。
On the other hand, since the exhaust purification apparatus of the present embodiment performs control based on the ammonia amount, the urea injection amount does not increase with an increase in the exhaust gas flow rate. For this reason, as shown in FIG. 24, the ammonia concentration between the first selective reduction catalyst and the second selective reduction catalyst decreases as the exhaust flow rate increases.
Further, at this time, if the engine load is increased, the catalyst temperature also rises as the exhaust temperature rises, so that the storage capacity of the second selective reduction catalyst decreases. As described above, in the exhaust purification system of this embodiment, the target ammonia amount NH3 CONS_TRGT is determined according to the catalyst temperature. For this reason, as shown in FIG. 24, the target ammonia amount NH3 CONS_TRGT is set so as to decrease as the storage capacity of the second selective reduction catalyst decreases. Therefore, ammonia slip can be introduced into the second selective reduction catalyst according to the state, and ammonia slip can be suppressed.
 次に、図25を参照して、ECUにより実行されるユリア噴射制御処理について説明する。
 図25は、ECUにより実行されるユリア噴射制御処理の手順を示すフローチャートである。
 このユリア噴射制御処理は、上述の手法により、ユリア噴射量GUREAを算出するものであり、所定の制御周期毎に実行される。
Next, urea injection control processing executed by the ECU will be described with reference to FIG.
FIG. 25 is a flowchart showing a procedure of urea injection control processing executed by the ECU.
This urea injection control process is to calculate the urea injection amount G UREA by the above-described method, and is executed at predetermined control cycles.
 ステップS1では、ユリア故障フラグFUREANGが「1」であるか否かを判別する。このユリア故障フラグFUREANGは、図示しない判定処理においてユリア噴射装置が故障したと判定されたときに「1」に設定され、それ以外のときには「0」に設定される。この判別がYESの場合には、ステップS9に移り、ユリア噴射量GUREAを「0」に設定した後に、この処理を終了する。この判別がNOの場合には、ステップS2に移る。 In step S1, it is determined whether the urea failure flag F UREANG is “1”. The urea failure flag F UREANG is set to “1” when it is determined in the determination process (not shown) that the urea injection device has failed, and is set to “0” otherwise. If this determination is YES, the process moves to step S9, and after setting the urea injection amount G UREA to “0”, this process ends. If this determination is NO, the process proceeds to step S2.
 ステップS2では、触媒劣化フラグFSCRNGが「1」であるか否かを判別する。この触媒劣化フラグFSCRNGは、図示しない判定処理において第1選択還元触媒及び第2選択還元触媒の何れかが故障したと判定されたときに「1」に設定され、それ以外のときには「0」に設定される。この判別がYESの場合には、ステップS9に移り、ユリア噴射量GUREAを「0」に設定した後に、この処理を終了する。この判別がNOの場合には、ステップS3に移る。 In step S2, it is determined whether or not the catalyst deterioration flag F SCRNG is “1”. The catalyst deterioration flag F SCRNG is set to “1” when it is determined in the determination process (not shown) that either the first selective reduction catalyst or the second selective reduction catalyst has failed, and “0” otherwise. Set to If this determination is YES, the process moves to step S9, and after setting the urea injection amount G UREA to “0”, this process ends. If this determination is NO, the process proceeds to step S3.
 ステップS3では、ユリア残量QUREAが所定値QREF未満であるか否かを判別する。このユリア残量QUREAは、ユリアタンク内の尿素水の残量を示し、ユリアレベルセンサの出力に基づいて算出される。この判別がYESの場合には、ステップS4に移り、NOの場合には、ステップS5に移る。
 ステップS4では、ユリア残量警告灯を点灯し、ステップS9に移り、ユリア噴射量GUREAを「0」に設定した後に、この処理を終了する。
In step S3, it is determined whether the urea remaining amount Q UREA is less than a predetermined value Q REF . This urea remaining amount Q UREA indicates the remaining amount of urea water in the urea tank, and is calculated based on the output of the urea level sensor. If this determination is YES, the process proceeds to step S4, and if NO, the process proceeds to step S5.
In step S4, the urea remaining amount warning lamp is turned on, the process proceeds to step S9, the urea injection amount GUREA is set to “0”, and then this process ends.
 ステップS5では、触媒暖機タイマ値TMASTが所定値TMLMTより大きいか否かを判別する。この触媒暖機タイマ値TMASTは、エンジン始動後のユリア選択還元触媒の暖機時間を計時するものである。この判別がYESの場合には、ステップS6に移る。この判別がNOの場合には、ステップS9に移り、ユリア噴射量GUREAを「0」に設定した後に、この処理を終了する。 In step S5, it is determined whether the catalyst warm-up timer value T MAST is greater than a predetermined value T MLMT . This catalyst warm-up timer value T MAST measures the warm-up time of the urea selective reduction catalyst after engine startup. If this determination is YES, the process proceeds to step S6. When this determination is NO, the process proceeds to step S9, and after setting the urea injection amount GUREA to “0”, this process is ended.
 ステップS6では、センサ故障フラグFSENNGが「0」であるか否かを判別する。このセンサ故障フラグFSENNGは、図示しない判定処理においてアンモニアセンサ、又は、触媒温度センサが故障したと判定されたときに「1」に設定され、それ以外のときには「0」に設定される。この判別がYESの場合には、ステップS7に移る。この判別がNOの場合には、ステップS9に移り、ユリア噴射量GUREAを「0」に設定した後に、この処理を終了する。 In step S6, it is determined whether or not the sensor failure flag F SENNG is “0”. This sensor failure flag F SENNG is set to “1” when it is determined that the ammonia sensor or the catalyst temperature sensor has failed in a determination process (not shown), and is set to “0” otherwise. If this determination is YES, the process proceeds to step S7. When this determination is NO, the process proceeds to step S9, and after setting the urea injection amount GUREA to “0”, this process is ended.
 ステップS7では、アンモニアセンサ活性フラグFNH3ACTが1であるか否かを判別する。このアンモニアセンサ活性フラグFNH3ACTは、図示しない判定処理においてアンモニアセンサが活性状態に達したと判定されたときに「1」に設定され、それ以外のときには「0」に設定される。この判別がYESの場合には、ステップS8に移る。この判別がNOの場合には、ステップS9に移り、ユリア噴射量GUREAを「0」に設定した後に、この処理を終了する。 In step S7, it is determined whether or not the ammonia sensor activation flag F NH3ACT is 1. The ammonia sensor activation flag F NH3ACT is set to “1” when it is determined that the ammonia sensor has reached an active state in a determination process (not shown), and is set to “0” otherwise. If this determination is YES, the process proceeds to step S8. When this determination is NO, the process proceeds to step S9, and after setting the urea injection amount GUREA to “0”, this process is ended.
 ステップS8では、第1選択還元触媒の温度TSCRが所定値TSCR_ACTより大きいか否かを判別する。この判別がYESである場合には、第1選択還元触媒が活性化されたと判断して、ステップS10に移る。この判別がNOである場合には、第1選択還元触媒がまだ活性化されておらず、ユリア噴射を停止すべきであると判定して、ステップS9に移り、ユリア噴射量GUREAを「0」に設定した後に、この処理を終了する。 In step S8, it is determined whether or not the temperature T SCR of the first selective reduction catalyst is higher than a predetermined value T SCR_ACT . If this determination is YES, it is determined that the first selective reduction catalyst has been activated, and the routine goes to Step S10. If this determination is NO, it is determined that the first selective reduction catalyst has not yet been activated and urea injection should be stopped, and the routine proceeds to step S9, where the urea injection amount GUREA is set to “0”. This processing is terminated.
 ステップS10では、上述の目標アンモニア量設定部により、触媒温度TSCRに基づいて目標アンモニア量NH3CONS_TRGTを算出し、ステップS11に移る。
 ステップS11では、上述のフィードフォワードコントローラにより、FF噴射量GUREA_FFを算出し、ステップS12に移る。
In step S10, the target ammonia amount setting unit described above, calculates the target amount of ammonia NH3 CONS - TRGT based on the catalyst temperature T SCR, it proceeds to step S11.
In step S11, the FF injection amount GUREA_FF is calculated by the above-described feedforward controller, and the process proceeds to step S12.
 ステップS12では、上述のストレージ補正入力算出部により、式(8)~(23)に基づいて補正噴射量GUREA_STを算出し、ステップS13に移る。
 ステップS13では、上述のスライディングモードコントローラにより、式(2)~(7)に基づいてFB噴射量GUREA_FBを算出し、ステップS14に移る。
 ステップS14では、上述の加算器により、式(1)に基づいてユリア噴射量GUREAを算出し、この処理を終了する。
In step S12, the storage correction input calculation unit described above calculates the corrected injection amount G UREA_ST based on the equations (8) to (23), and the process proceeds to step S13.
In step S13, the above-described sliding mode controller calculates the FB injection amount G UREA_FB based on the equations (2) to (7), and the process proceeds to step S14.
In step S14, the urea injection amount GUREA is calculated based on the equation (1) by the above-described adder, and this process is terminated.
 本実施形態では、アンモニアセンサ26によりアンモニア検出手段が構成され、ECU3により、第1制御入力算出手段、第2制御入力算出手段、第3制御入力算出手段、還元剤供給量決定手段、及び目標アンモニア量設定手段が構成される。具体的には、ECU3のフィードバックコントローラ4及びスライディングモードコントローラ42により第1制御入力算出手段が構成され、ECU3のフィードフォワードコントローラ5により第2制御入力算出手段が構成され、ECU3のストレージ補正入力算出部6により第3制御入力算出手段が構成され、ECU3の加算器7により還元剤供給量決定手段が構成され、ECU3のフィードバックコントローラ4及び目標アンモニア量設定部41により目標アンモニア量設定手段が構成される。 In the present embodiment, the ammonia sensor 26 constitutes an ammonia detection means, and the ECU 3 controls the first control input calculation means, the second control input calculation means, the third control input calculation means, the reducing agent supply amount determination means, and the target ammonia. A quantity setting means is configured. Specifically, the feedback controller 4 and the sliding mode controller 42 of the ECU 3 constitute a first control input calculation means, the feed forward controller 5 of the ECU 3 constitutes a second control input calculation means, and a storage correction input calculation unit of the ECU 3 6 constitutes the third control input calculating means, the adder 7 of the ECU 3 constitutes the reducing agent supply amount determining means, and the feedback controller 4 and the target ammonia amount setting unit 41 of the ECU 3 constitutes the target ammonia amount setting means. .
 なお本発明は上述した実施形態に限るものではなく、種々の変形が可能である。
 上記実施形態では、第1選択還元触媒の温度を検出する触媒温度センサの検出値TSCRに基づいて、目標アンモニア量NH3CONS_TRGTを算出したが、これに限らない。例えば、排気の温度を検出する排気温度センサの検出値に基づいて、目標アンモニア量を算出してもよい。
The present invention is not limited to the embodiment described above, and various modifications can be made.
In the above embodiment, based on the detected value T SCR of the catalyst temperature sensor for detecting the temperature of the first selective reduction catalyst has been calculated target ammonia amount NH3 CONS - TRGT, not limited to this. For example, the target ammonia amount may be calculated based on a detection value of an exhaust temperature sensor that detects the temperature of the exhaust.
 1…エンジン(内燃機関)
 11…排気通路(排気通路)
 2…排気浄化装置
 23…ユリア選択還元触媒(選択還元触媒)
 231…第1選択還元触媒
 232…第2選択還元触媒
 25…ユリア噴射装置(還元剤供給手段)
 26…アンモニアセンサ(アンモニア検出手段)
 28…NOxセンサ
 3…電子制御ユニット(第1制御入力算出手段、第2制御入力算出手段、第3制御入力算出手段、還元剤供給量決定手段、目標アンモニア量設定手段)
 4…フィードバックコントローラ(第1制御入力算出手段、目標アンモニア量設定手段)
 41…目標アンモニア量設定部(目標アンモニア量設定手段)
 42…スライディングモードコントローラ(第1制御入力算出手段)
 5…フィードフォワードコントローラ(第2制御入力算出手段)
 6…ストレージ補正入力算出部(第3制御入力算出手段)
 7…加算器(還元剤供給量決定手段)
1. Engine (internal combustion engine)
11 ... Exhaust passage (exhaust passage)
2 ... Exhaust purification device 23 ... Urea selective reduction catalyst (selective reduction catalyst)
231 ... 1st selective reduction catalyst 232 ... 2nd selective reduction catalyst 25 ... Urea injection device (reducing agent supply means)
26. Ammonia sensor (ammonia detection means)
28 ... NOx sensor 3 ... Electronic control unit (first control input calculating means, second control input calculating means, third control input calculating means, reducing agent supply amount determining means, target ammonia amount setting means)
4 ... Feedback controller (first control input calculating means, target ammonia amount setting means)
41 ... Target ammonia amount setting section (target ammonia amount setting means)
42... Sliding mode controller (first control input calculating means)
5 ... Feed forward controller (second control input calculating means)
6 ... Storage correction input calculation unit (third control input calculation means)
7. Adder (reducing agent supply amount determining means)

Claims (16)

  1.  内燃機関の排気通路に設けられ、還元剤の存在下でアンモニアを生成し、このアンモニアで前記排気通路を流通するNOxを還元する選択還元触媒を備える内燃機関の排気浄化装置において、
     前記選択還元触媒は、第1選択還元触媒と、前記排気通路のうち前記第1選択還元触媒よりも下流側に設けられた第2選択還元触媒とを含んで構成され、
     前記排気通路のうち前記選択還元触媒の上流側に還元剤を供給する還元剤供給手段と、
     前記排気通路のうち前記第1選択還元触媒と前記第2選択還元触媒との間のアンモニア量を検出するアンモニア検出手段と、
     当該アンモニア検出手段により検出されるアンモニア量の値が、「0」より大きな値になるように制御するための制御入力を算出する第1制御入力算出手段と、
     前記還元剤供給手段による還元剤の供給量を、前記第1制御入力算出手段により算出された制御入力を含めて決定する還元剤供給量決定手段と、を備えることを特徴とする内燃機関の排気浄化装置。
    In an exhaust gas purification apparatus for an internal combustion engine provided with a selective reduction catalyst that is provided in an exhaust passage of the internal combustion engine, generates ammonia in the presence of a reducing agent, and reduces NOx flowing through the exhaust passage with this ammonia.
    The selective reduction catalyst includes a first selective reduction catalyst and a second selective reduction catalyst provided on the downstream side of the first selective reduction catalyst in the exhaust passage,
    Reducing agent supply means for supplying a reducing agent to the upstream side of the selective reduction catalyst in the exhaust passage;
    Ammonia detection means for detecting an ammonia amount between the first selective reduction catalyst and the second selective reduction catalyst in the exhaust passage;
    First control input calculating means for calculating a control input for controlling the ammonia amount detected by the ammonia detecting means to be a value greater than “0”;
    Exhaust gas from an internal combustion engine, comprising: a reducing agent supply amount determining means for determining a supply amount of the reducing agent by the reducing agent supply means including a control input calculated by the first control input calculating means. Purification equipment.
  2.  前記第1選択還元触媒において貯蔵できるアンモニア量を第1ストレージ容量とし、
     前記第2選択還元触媒において貯蔵できるアンモニア量を第2ストレージ容量とし、
     前記第2ストレージ容量は、前記第1ストレージ容量の最大時と最小時との差よりも大きいことを特徴とする請求項1に記載の内燃機関の排気浄化装置。
    The amount of ammonia that can be stored in the first selective reduction catalyst is defined as a first storage capacity,
    The amount of ammonia that can be stored in the second selective reduction catalyst is defined as a second storage capacity,
    2. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the second storage capacity is larger than a difference between a maximum time and a minimum time of the first storage capacity.
  3.  前記アンモニア検出手段により検出されるアンモニア量の目標値を、「0」より大きな値に設定する目標アンモニア量設定手段をさらに備え、
     前記第1制御入力算出手段は、
     前記アンモニア検出手段により検出されるアンモニア量が、前記目標値を含む所定の範囲内に収まるように前記制御入力を算出することを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。
    A target ammonia amount setting means for setting a target value of the ammonia amount detected by the ammonia detection means to a value larger than “0”;
    The first control input calculating means includes
    The exhaust purification device for an internal combustion engine according to claim 1 or 2, wherein the control input is calculated so that an ammonia amount detected by the ammonia detection means falls within a predetermined range including the target value. .
  4.  前記第1制御入力算出手段は、
     前記アンモニア検出手段により検出されるアンモニア量の前記目標値への収束速度を設定できる応答指定型制御を実行可能に構成され、
     前記アンモニア検出手段により検出されたアンモニア量が前記所定の範囲内に含まれる場合における収束速度を、前記アンモニア検出手段により検出されたアンモニア量が前記所定の範囲外に含まれる場合における収束速度よりも遅く設定することを特徴とする請求項3に記載の内燃機関の排気浄化装置。
    The first control input calculating means includes
    It is configured to be able to execute response designation control capable of setting a convergence speed of the ammonia amount detected by the ammonia detection means to the target value,
    The convergence speed when the ammonia amount detected by the ammonia detection means falls within the predetermined range is greater than the convergence speed when the ammonia amount detected by the ammonia detection means falls outside the predetermined range. 4. The exhaust gas purification apparatus for an internal combustion engine according to claim 3, wherein the exhaust gas purification apparatus is set late.
  5.  前記目標アンモニア量設定手段は、前記内燃機関の排気の温度又は選択還元触媒の温度が高いほど、前記目標値を小さな値に設定することを特徴とする請求項3又は4に記載の内燃機関の排気浄化装置。 5. The internal combustion engine according to claim 3, wherein the target ammonia amount setting means sets the target value to a smaller value as the temperature of the exhaust gas of the internal combustion engine or the temperature of the selective reduction catalyst is higher. Exhaust purification device.
  6.  前記内燃機関の回転数、及び前記内燃機関の負荷を表す負荷パラメータに基づいて制御入力を算出する第2制御入力算出手段をさらに備え、
     前記還元剤供給量決定手段は、前記還元剤供給手段による還元剤の供給量を、前記第2制御入力算出手段により算出された制御入力をさらに含めて決定することを特徴とする請求項3から5の何れかに記載の内燃機関の排気浄化装置。
    A second control input calculating means for calculating a control input based on a rotation parameter of the internal combustion engine and a load parameter representing a load of the internal combustion engine;
    The said reducing agent supply amount determination means determines the supply amount of the reducing agent by the said reducing agent supply means further including the control input calculated by the said 2nd control input calculation means from Claim 3 characterized by the above-mentioned. 6. An exhaust emission control device for an internal combustion engine according to any one of 5 above.
  7.  前記第1選択還元触媒に貯蔵されたアンモニア量を第1ストレージ量とし、
     当該第1ストレージ量を推定するとともに、この推定した第1ストレージ量が、所定の目標ストレージ量に収束するように制御するための制御入力を算出する第3制御入力算出手段をさらに備え、
     前記還元剤供給量決定手段は、前記還元剤供給手段による還元剤の供給量を、前記第3制御入力算出手段により算出された制御入力をさらに含めて決定することを特徴とする請求項3から6の何れかに記載の内燃機関の排気浄化装置。
    The amount of ammonia stored in the first selective reduction catalyst is defined as a first storage amount,
    And a third control input calculating means for calculating a control input for controlling the estimated first storage amount so that the estimated first storage amount converges to a predetermined target storage amount,
    The said reducing agent supply amount determination means determines the supply amount of the reducing agent by the said reducing agent supply means further including the control input calculated by the said 3rd control input calculation means from Claim 3 characterized by the above-mentioned. The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 6 to 10.
  8.  前記第3制御入力算出手段は、
     前記推定した第1ストレージ量と前記目標ストレージ量との偏差に加えて、
     当該偏差の微分、又は、前記第1ストレージ量の微分に基づいて制御入力を算出することを特徴とする請求項7に記載の内燃機関の排気浄化装置。
    The third control input calculating means includes
    In addition to the deviation between the estimated first storage amount and the target storage amount,
    8. The exhaust gas purification apparatus for an internal combustion engine according to claim 7, wherein the control input is calculated based on the differential of the deviation or the differential of the first storage amount.
  9.  内燃機関の排気通路に設けられ、還元剤の存在下でアンモニアを生成し、このアンモニアで前記排気通路を流通するNOxを還元する選択還元触媒と、
     前記排気通路のうち前記選択還元触媒の上流側に還元剤を供給する還元剤供給手段と、を備え、
     前記選択還元触媒は、第1選択還元触媒と、前記排気通路のうち前記第1選択還元触媒よりも下流側に設けられた第2選択還元触媒とを含んで構成された排気浄化装置について、当該排気浄化装置の制御方法であって、
     前記第1選択還元触媒と前記第2選択還元触媒との間のアンモニア量を検出するアンモニア検出ステップと、
     前記アンモニア検出ステップで検出されるアンモニア量の値が、「0」より大きな値になるように制御するための制御入力を算出する第1制御入力算出ステップと、
     前記還元剤供給手段による還元剤の供給量を、前記第1制御入力算出ステップで算出された制御入力を含めて決定する還元剤供給量決定ステップと、を備えることを特徴とする排気浄化装置の制御方法。
    A selective reduction catalyst that is provided in an exhaust passage of the internal combustion engine, generates ammonia in the presence of a reducing agent, and reduces NOx flowing through the exhaust passage with the ammonia;
    Reductant supply means for supplying a reductant to the upstream side of the selective reduction catalyst in the exhaust passage,
    The selective reduction catalyst includes an exhaust purification device configured to include a first selective reduction catalyst and a second selective reduction catalyst provided downstream of the first selective reduction catalyst in the exhaust passage. A control method for an exhaust purification device,
    An ammonia detection step of detecting an ammonia amount between the first selective reduction catalyst and the second selective reduction catalyst;
    A first control input calculating step for calculating a control input for controlling the ammonia amount detected in the ammonia detecting step to be a value greater than “0”;
    An exhaust purification device comprising: a reducing agent supply amount determining step for determining a reducing agent supply amount by the reducing agent supply means including a control input calculated in the first control input calculating step. Control method.
  10.  前記第1選択還元触媒において貯蔵できるアンモニア量を第1ストレージ容量とし、
     前記第2選択還元触媒において貯蔵できるアンモニア量を第2ストレージ容量とし、
     前記第2ストレージ容量は、前記第1ストレージ容量の最大時と最小時との差よりも大きいことを特徴とする請求項9に記載の排気浄化装置の制御方法。
    The amount of ammonia that can be stored in the first selective reduction catalyst is defined as a first storage capacity,
    The amount of ammonia that can be stored in the second selective reduction catalyst is defined as a second storage capacity,
    The method for controlling an exhaust emission control device according to claim 9, wherein the second storage capacity is larger than a difference between a maximum time and a minimum time of the first storage capacity.
  11.  第1選択還元触媒と前記第2選択還元触媒とのアンモニア量の目標値を、「0」より大きな値に設定する目標値設定ステップをさらに備え、
     前記第1制御入力算出ステップでは、前記アンモニア検出ステップで検出されるアンモニア量が、前記目標値を含む所定の範囲内に収まるように前記制御入力を算出することを特徴とする請求項9又は10に記載の排気浄化装置の制御方法。
    A target value setting step of setting a target value of the ammonia amount of the first selective reduction catalyst and the second selective reduction catalyst to a value larger than “0”;
    11. The control input is calculated in the first control input calculation step so that the ammonia amount detected in the ammonia detection step falls within a predetermined range including the target value. A control method for the exhaust emission control device according to claim 1.
  12.  前記第1制御入力算出ステップでは、
     前記アンモニア検出ステップで検出されるアンモニア量の前記目標値への収束速度を設定できる応答指定型制御に基づいて前記制御入力を算出するとともに、前記アンモニア検出ステップで検出されるアンモニア量が前記所定の範囲内に含まれる場合における収束速度を、前記アンモニア検出ステップで検出されるアンモニア量が前記所定の範囲外に含まれる場合における収束速度よりも遅く設定することを特徴とする請求項11に記載の排気浄化装置の制御方法。
    In the first control input calculation step,
    The control input is calculated based on response designation control capable of setting a convergence speed of the ammonia amount detected in the ammonia detection step to the target value, and the ammonia amount detected in the ammonia detection step is the predetermined amount. 12. The convergence speed when it is included in the range is set slower than the convergence speed when the ammonia amount detected in the ammonia detection step is outside the predetermined range. Control method of exhaust emission control device.
  13.  前記目標値設定ステップでは、前記内燃機関の排気の温度又は選択還元触媒の温度が高いほど、前記目標値を小さな値に設定することを特徴とする請求項11又は12に記載の排気浄化装置の制御方法。 The exhaust gas purification apparatus according to claim 11 or 12, wherein, in the target value setting step, the target value is set to a smaller value as the temperature of the exhaust gas of the internal combustion engine or the temperature of the selective reduction catalyst is higher. Control method.
  14.  前記内燃機関の回転数、及び前記内燃機関の負荷を表す負荷パラメータに基づいて制御入力を算出する第2制御入力算出ステップをさらに備え、
     前記還元剤量決定ステップでは、前記還元剤供給手段による還元剤の供給量を、前記第2制御入力算出ステップで算出された制御入力をさらに含めて決定することを特徴とする請求項11から13の何れかに記載の排気浄化装置の制御方法。
    A second control input calculating step of calculating a control input based on a rotation parameter of the internal combustion engine and a load parameter representing a load of the internal combustion engine;
    14. The reducing agent amount determining step includes determining the amount of reducing agent supplied by the reducing agent supply means further including the control input calculated in the second control input calculating step. A method for controlling an exhaust emission control device according to any one of the above.
  15.  前記第1選択還元触媒に貯蔵されたアンモニア量を第1ストレージ量とし、
     当該第1ストレージ量を推定するとともに、この推定した第1ストレージ量が、所定の目標ストレージ量に収束するように制御するための制御入力を算出する第3制御入力算出ステップ、をさらに備え、
     前記還元剤供給量決定ステップでは、前記還元剤供給手段による還元剤の供給量を、前記第3制御入力算出ステップで算出された制御入力をさらに含めて決定することを特徴とする請求項11から14の何れかに記載の排気浄化装置の制御方法。
    The amount of ammonia stored in the first selective reduction catalyst is defined as a first storage amount,
    A third control input calculating step for estimating the first storage amount and calculating a control input for controlling the estimated first storage amount so as to converge to a predetermined target storage amount;
    12. The reducing agent supply amount determination step determines the supply amount of the reducing agent by the reducing agent supply means further including the control input calculated in the third control input calculation step. The control method of the exhaust gas purification apparatus in any one of 14.
  16.  前記第3制御入力算出ステップでは、
     前記推定した第1ストレージ量と前記目標ストレージ量との偏差に加えて、
     当該偏差の微分、又は、前記第1ストレージ量の微分に基づいて制御入力を算出することを特徴とする請求項15に記載の排気浄化装置の制御方法。
    In the third control input calculating step,
    In addition to the deviation between the estimated first storage amount and the target storage amount,
    The control method of the exhaust emission control device according to claim 15, wherein the control input is calculated based on the differential of the deviation or the differential of the first storage amount.
PCT/JP2010/064080 2009-08-28 2010-08-20 Exhaust gas purification device for internal combustion engine WO2011024721A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112010003455T DE112010003455T5 (en) 2009-08-28 2010-08-20 Emission control device for an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-198785 2009-08-28
JP2009198785 2009-08-28

Publications (1)

Publication Number Publication Date
WO2011024721A1 true WO2011024721A1 (en) 2011-03-03

Family

ID=43627827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064080 WO2011024721A1 (en) 2009-08-28 2010-08-20 Exhaust gas purification device for internal combustion engine

Country Status (2)

Country Link
DE (1) DE112010003455T5 (en)
WO (1) WO2011024721A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114961933A (en) * 2022-05-11 2022-08-30 潍柴动力股份有限公司 Ammonia injection amount control method and system of SCR system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343877A (en) * 1993-03-26 1994-12-20 Siemens Ag Catalyst for decreasing nitrogen oxide in exhaust gas of internal combustion engine
JP2001050035A (en) * 1999-08-03 2001-02-23 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2004517249A (en) * 2001-01-08 2004-06-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for controlling an exhaust gas aftertreatment system
US20070044457A1 (en) * 2005-09-01 2007-03-01 Devesh Upadhyay Exhaust gas aftertreatment systems
US20080022659A1 (en) * 2006-07-25 2008-01-31 Gm Global Technology Operations, Inc. Method and Apparatus for Urea Injection in an Exhaust Aftertreatment System
JP2009036055A (en) * 2007-07-31 2009-02-19 Hino Motors Ltd Control device of exhaust gas treatment device
JP2009517210A (en) * 2005-11-30 2009-04-30 キャタピラー インコーポレイテッド Multi-stage system for selective catalytic reduction
JP2010174815A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Exhaust emission control device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7134273B2 (en) 2002-09-04 2006-11-14 Ford Global Technologies, Llc Exhaust emission control and diagnostics
JP2006274986A (en) 2005-03-30 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Exhaust gas aftertreatment device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343877A (en) * 1993-03-26 1994-12-20 Siemens Ag Catalyst for decreasing nitrogen oxide in exhaust gas of internal combustion engine
JP2001050035A (en) * 1999-08-03 2001-02-23 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2004517249A (en) * 2001-01-08 2004-06-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method and apparatus for controlling an exhaust gas aftertreatment system
US20070044457A1 (en) * 2005-09-01 2007-03-01 Devesh Upadhyay Exhaust gas aftertreatment systems
JP2009517210A (en) * 2005-11-30 2009-04-30 キャタピラー インコーポレイテッド Multi-stage system for selective catalytic reduction
US20080022659A1 (en) * 2006-07-25 2008-01-31 Gm Global Technology Operations, Inc. Method and Apparatus for Urea Injection in an Exhaust Aftertreatment System
JP2009036055A (en) * 2007-07-31 2009-02-19 Hino Motors Ltd Control device of exhaust gas treatment device
JP2010174815A (en) * 2009-01-30 2010-08-12 Mitsubishi Heavy Ind Ltd Exhaust emission control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114961933A (en) * 2022-05-11 2022-08-30 潍柴动力股份有限公司 Ammonia injection amount control method and system of SCR system
CN114961933B (en) * 2022-05-11 2023-11-17 潍柴动力股份有限公司 Ammonia injection quantity control method and system of SCR system

Also Published As

Publication number Publication date
DE112010003455T5 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP5221647B2 (en) Exhaust gas purification device for internal combustion engine
JP5193355B2 (en) Exhaust gas purification system for internal combustion engine
US8738269B2 (en) Controller
JP4767218B2 (en) Exhaust gas purification device for internal combustion engine
US8671660B2 (en) Catalyst degradation determination device for exhaust purification system
JP5037587B2 (en) Exhaust gas purification system for internal combustion engine
EP2479397B1 (en) Exhaust purification system for internal combustion engine
JP5250589B2 (en) Exhaust gas purification device for internal combustion engine
JP5553631B2 (en) Exhaust gas purification device for internal combustion engine
JP5837319B2 (en) Exhaust gas purification system for internal combustion engine
JP5918096B2 (en) Exhaust gas purification system for internal combustion engine
JP5837312B2 (en) Exhaust gas purification system for internal combustion engine
WO2011024721A1 (en) Exhaust gas purification device for internal combustion engine
JP2012036799A (en) Exhaust emission control system of internal combustion engine
JP2011163195A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120100034559

Country of ref document: DE

Ref document number: 112010003455

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10811771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP