JP2010112657A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2010112657A
JP2010112657A JP2008287108A JP2008287108A JP2010112657A JP 2010112657 A JP2010112657 A JP 2010112657A JP 2008287108 A JP2008287108 A JP 2008287108A JP 2008287108 A JP2008287108 A JP 2008287108A JP 2010112657 A JP2010112657 A JP 2010112657A
Authority
JP
Japan
Prior art keywords
refrigerant
dryer
heat exchanger
bypass
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008287108A
Other languages
Japanese (ja)
Inventor
Manabu Yoshimi
学 吉見
Ryusuke Fujiyoshi
竜介 藤吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008287108A priority Critical patent/JP2010112657A/en
Publication of JP2010112657A publication Critical patent/JP2010112657A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner that does not use a complicated bridge circuit, uses a dryer of a one-way flow specification, and in which a liquid coolant is supplied to the dryer during both cooling and heating operations. <P>SOLUTION: This air conditioner 1 performs cooling operation or heating operation by circulating a CO2 coolant, and includes a bypass 60 for communicating a high pressure side coolant pipe to a low pressure side coolant pipe via the dryer 62. Even when the cooling operation and the heating operation are switched, the passing direction of the coolant through the dryer 62 is not changed. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、CO2冷媒を用い、蒸気圧縮式冷凍サイクル運転によって室内の冷暖房を行なう空気調和装置に関する。   The present invention relates to an air conditioner that uses a CO 2 refrigerant and performs indoor air conditioning by vapor compression refrigeration cycle operation.

現地配管工事が必要な空気調和装置では、据付時に、配管内へ水分が過剰に混入することがあり、飽和水分濃度が低い冷媒(例えば、CO2冷媒)を使用している場合、その水分が凍結して配管を閉塞させることがある。このため、冷媒回路にドライヤを接続して水分を吸着させる方法が提案されている(特許文献1参照)。特許文献1に係る発明では、冷房運転時および暖房運転時ともにドライヤに液冷媒が供給されるように、毎日所定時間に冷媒をドライヤが接続されたバイパスに流して、所定期間経過後に冷媒を冷媒回路に戻している。   In an air conditioner that requires local piping work, moisture may be excessively mixed into the piping during installation, and if a refrigerant with a low saturated moisture concentration (for example, CO2 refrigerant) is used, the moisture freezes. The piping may be blocked. For this reason, a method for adsorbing moisture by connecting a dryer to the refrigerant circuit has been proposed (see Patent Document 1). In the invention according to Patent Document 1, the refrigerant is allowed to flow through a bypass connected to the dryer every predetermined time every day so that the liquid refrigerant is supplied to the dryer during both the cooling operation and the heating operation. Returning to the circuit.

仮に、双方向流れ仕様のドライヤが採用されれば、特許文献1に係る発明のような複雑な制御をする必要はないが、CO2冷媒に適した高耐圧の双方向流れ仕様のドライヤとなるのでコスト増となる。また、一方向流れ仕様のドライヤとブリッジ回路を組み合わせることによって、冷房運転時および暖房運転時ともにドライヤへ液冷媒が供給されるようになるが、冷媒回路が複雑になりさらにコスト増となる。
特開平2001−141341号公報
If a dryer with a bidirectional flow specification is adopted, it is not necessary to perform complicated control as in the invention according to Patent Document 1, but it becomes a high-pressure bidirectional flow specification dryer suitable for CO2 refrigerant. Cost increases. Also, by combining a dryer with a one-way flow specification and a bridge circuit, liquid refrigerant is supplied to the dryer during both cooling operation and heating operation, but the refrigerant circuit becomes complicated and the cost increases.
Japanese Patent Laid-Open No. 2001-141341

本発明の課題は、複雑なブリッジ回路を使用することなく、一方向流れ仕様のドライヤを用いて、冷房運転時および暖房運転時ともにドライヤへ液冷媒が供給される空気調和装置を提供することにある。   An object of the present invention is to provide an air conditioner in which liquid refrigerant is supplied to a dryer during cooling operation and heating operation using a one-way flow specification dryer without using a complicated bridge circuit. is there.

第1発明に係る空気調和装置は、圧縮機、凝縮器、減圧器、及び蒸発器の順にCO2冷媒を循環させて冷房運転、又は暖房運転を行う空気調和装置であって、高圧側冷媒配管と低圧側冷媒配管とをドライヤを介して連絡するバイパスを備えている。高圧側冷媒配管は、凝縮器と減圧器とを連絡している。低圧側冷媒配管は、圧縮機と蒸発器とを連絡している。   An air conditioner according to a first aspect of the present invention is an air conditioner that performs a cooling operation or a heating operation by circulating a CO2 refrigerant in the order of a compressor, a condenser, a decompressor, and an evaporator. A bypass is provided that communicates with the low-pressure refrigerant piping through a dryer. The high-pressure side refrigerant pipe communicates the condenser and the decompressor. The low-pressure side refrigerant pipe communicates the compressor and the evaporator.

この空気調和装置では、冷房運転と暖房運転とが切り替わっても、冷媒がドライヤを通過する方向は変化しない。その結果、ドライヤとして、一方向流れ仕様のドライヤが採用され、コスト低減になる。   In this air conditioner, even if the cooling operation and the heating operation are switched, the direction in which the refrigerant passes through the dryer does not change. As a result, a dryer with a one-way flow specification is adopted as the dryer, which reduces costs.

第2発明に係る空気調和装置は、第1発明に係る空気調和装置であって、凝縮器と減圧器との間に接続される過冷却熱交換器をさらに備えている。バイパスは、冷房運転時に過冷却熱交換器の下流側となる位置から分岐している。   An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect of the present invention, further comprising a supercooling heat exchanger connected between the condenser and the decompressor. The bypass branches off from a position on the downstream side of the supercooling heat exchanger during the cooling operation.

この空気調和装置では、冷房運転時、CO2冷媒は、過冷却熱交換器で過冷却され、その一部がドライヤに入る。ドライヤを通過するCO2冷媒は液になっているで、2相流の冷媒流入によるドライヤのコアの破粋が防止される。さらに、過冷却熱交換器で温度低下したCO2冷媒がドライヤを通過するので、ドライヤの温度が低下し、ドライヤの水分吸着力が向上する。   In this air conditioner, during the cooling operation, the CO2 refrigerant is supercooled by the supercooling heat exchanger, and a part thereof enters the dryer. Since the CO2 refrigerant passing through the dryer is in liquid form, the core of the dryer due to the two-phase refrigerant inflow is prevented. Furthermore, since the CO2 refrigerant whose temperature has been lowered by the supercooling heat exchanger passes through the dryer, the temperature of the dryer is lowered and the moisture adsorption power of the dryer is improved.

第3発明に係る空気調和装置は、第2発明に係る空気調和装置であって、バイパスが、ドライヤの下流側に、減圧機構として機能するバイパス減圧弁を有している。過冷却熱交換器は、凝縮器から減圧器に向う高圧のCO2冷媒と、バイパス減圧弁で減圧された低圧のCO2冷媒との間で熱交換を行わせる。   An air conditioner according to a third aspect of the present invention is the air conditioner according to the second aspect of the present invention, wherein the bypass has a bypass pressure reducing valve that functions as a pressure reducing mechanism on the downstream side of the dryer. The supercooling heat exchanger exchanges heat between the high-pressure CO2 refrigerant that travels from the condenser to the decompressor and the low-pressure CO2 refrigerant that is decompressed by the bypass decompression valve.

仮に、ドライヤがバイパス減圧弁の下流側にあった場合、過冷却熱交換器で液になったCO2冷媒が2相流となってドライヤを通過するので、ドライヤのコアを破粋させてしまう。しかし、この空気調和装置では、ドライヤはバイパス減圧弁の上流側にあり、CO2冷媒は液のままドライヤを通過するので、2相流の冷媒流入によるドライヤのコアの破粋が防止される。   If the dryer is on the downstream side of the bypass pressure reducing valve, the CO2 refrigerant liquefied by the supercooling heat exchanger becomes a two-phase flow and passes through the dryer, thus causing the core of the dryer to be excreted. However, in this air conditioner, the dryer is on the upstream side of the bypass pressure reducing valve, and the CO2 refrigerant passes through the dryer in a liquid state, so that the core of the dryer due to the two-phase refrigerant inflow is prevented.

第4発明に係る空気調和装置は、第1発明に係る空気調和装置であって、レシーバをさらに備えている。レシーバは、パイパスの分岐点と、少なくとも暖房運転時に機能する減圧器との間に接続される。冷房運転時、減圧器は、凝縮器からレシーバへ向うCO2冷媒を減圧する。   An air conditioner according to a fourth aspect is the air conditioner according to the first aspect, further comprising a receiver. The receiver is connected between a bypass point of the bypass and a decompressor that functions at least during heating operation. During the cooling operation, the decompressor depressurizes the CO2 refrigerant from the condenser to the receiver.

この空気調和装置では、冷房運転時にCO2冷媒の凝縮圧力が臨界圧力を越えていた場合、凝縮器を出たCO2冷媒は室外膨張弁35で減圧され、且つガス成分はレシーバで分離されるので、ドライヤを通過するCO2冷媒は液になって密度が大きくなり、ドライヤによる乾燥効率が向上する。また、CO2冷媒は減圧器で減圧されるので、ドライヤに作用する圧力が低下し、ドライヤの耐久性が向上する。   In this air conditioner, if the condensation pressure of the CO2 refrigerant exceeds the critical pressure during the cooling operation, the CO2 refrigerant that has exited the condenser is decompressed by the outdoor expansion valve 35, and the gas component is separated by the receiver. The CO2 refrigerant passing through the dryer becomes liquid and increases in density, and the drying efficiency by the dryer is improved. Further, since the CO2 refrigerant is decompressed by the decompressor, the pressure acting on the dryer is reduced, and the durability of the dryer is improved.

第1発明に係る空気調和装置では、一方向流れ仕様のドライヤが採用されるので、コスト低減になる。   In the air conditioner according to the first aspect of the present invention, a one-way flow specification dryer is adopted, which reduces costs.

第2発明に係る空気調和装置では、ドライヤを通過するCO2冷媒は液になっているで、2相流の冷媒流入によるドライヤのコアの破粋が防止される。さらに、ドライヤの温度が低下し、ドライヤの水分吸着力が向上する。   In the air conditioner according to the second aspect of the present invention, the CO2 refrigerant passing through the dryer is in liquid form, so that the core of the dryer due to the two-phase refrigerant inflow is prevented. Further, the temperature of the dryer is lowered, and the moisture adsorption power of the dryer is improved.

第3発明に係る空気調和装置では、CO2冷媒は液のままドライヤを通過するので、2相流の冷媒流入によるドライヤのコアの破粋が防止される。   In the air conditioner according to the third aspect of the invention, the CO2 refrigerant passes through the dryer as a liquid, so that the core of the dryer due to inflow of the two-phase refrigerant is prevented.

第4発明に係る空気調和装置では、ドライヤを通過するCO2冷媒は液になって密度が大きくなり、ドライヤによる乾燥効率が向上する。また、CO2冷媒は室外膨張弁で減圧されるので、ドライヤに作用する圧力が低下し、ドライヤの耐久性が向上する。   In the air conditioner according to the fourth aspect of the invention, the CO2 refrigerant passing through the dryer becomes liquid and increases in density, and drying efficiency by the dryer is improved. Further, since the CO2 refrigerant is depressurized by the outdoor expansion valve, the pressure acting on the dryer is reduced, and the durability of the dryer is improved.

以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. The following embodiments are specific examples of the present invention and do not limit the technical scope of the present invention.

<空気調和装置の構成>
図1は、本発明の一実施形態に係る空気調和装置の概略構成図である。図1において、空気調和装置1は、主として、熱源ユニットとしての室外ユニット2と、それに並列に接続される利用ユニットとしての室内ユニット4と、室外ユニット2及び室内ユニット4を制御する制御部6とを備えている。冷媒回路10は、室外ユニット2と、室内ユニット4と、冷媒連絡配管とが接続されることによって構成される。冷媒回路10を循環する冷媒はCO2冷媒であり、蒸気圧縮式の冷凍サイクル運転によって、ビル等の室内の冷暖房を行なう。
<Configuration of air conditioner>
FIG. 1 is a schematic configuration diagram of an air-conditioning apparatus according to an embodiment of the present invention. In FIG. 1, an air conditioner 1 mainly includes an outdoor unit 2 as a heat source unit, an indoor unit 4 as a utilization unit connected in parallel thereto, and a control unit 6 that controls the outdoor unit 2 and the indoor unit 4. It has. The refrigerant circuit 10 is configured by connecting the outdoor unit 2, the indoor unit 4, and a refrigerant communication pipe. The refrigerant circulating through the refrigerant circuit 10 is a CO2 refrigerant, and air-conditioning of a room such as a building is performed by vapor compression refrigeration cycle operation.

<室内ユニット>
室内ユニット4は、ビル等の室内の天井に埋め込みや吊り下げによって、又は、室内の壁面に壁掛けによって設置されており、室内膨張弁41と室内熱交換器42とを有している。室内膨張弁41は、電動膨張弁であり、室内熱交換器42の液側に接続される。室内熱交換器42は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷房運転時には冷媒の蒸発器となって室内空気を冷却し、暖房運転時には冷媒の凝縮器となって室内空気を加熱する。
<Indoor unit>
The indoor unit 4 is installed by being embedded or suspended in a ceiling of a room such as a building or by hanging on a wall surface of the room, and has an indoor expansion valve 41 and an indoor heat exchanger 42. The indoor expansion valve 41 is an electric expansion valve and is connected to the liquid side of the indoor heat exchanger 42. The indoor heat exchanger 42 is a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins, and serves as a refrigerant evaporator during cooling operation to cool indoor air. During the heating operation, it becomes a refrigerant condenser and heats indoor air.

<室外ユニット>
室外ユニット2は、ビル等の室外に設置されており、圧縮機21、四路切換弁22、室外熱交換器23、室外膨張弁35、過冷却熱交換器36、レシーバ38及びバイパス60を有している。圧縮機21は、回転数制御によって容量を変更できるインバータ圧縮機である。
<Outdoor unit>
The outdoor unit 2 is installed outside a building or the like, and has a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an outdoor expansion valve 35, a supercooling heat exchanger 36, a receiver 38, and a bypass 60. is doing. The compressor 21 is an inverter compressor whose capacity can be changed by rotational speed control.

四路切換弁22は、冷媒の流れの方向を切り換える弁である。冷房運転時には、圧縮機21の吐出側と室外熱交換器23のガス側とを連絡し、室内熱交換器42のガス側と圧縮機21の吸入側とを連絡する(図1の四路切換弁22の実線を参照)。また、暖房運転時には、圧縮機21の吐出側と室内熱交換器42のガス側とを連絡し、圧縮機21の吸入側と室外熱交換器23のガス側とを連絡する(図1の四路切換弁22の破線を参照)。   The four-way switching valve 22 is a valve that switches the direction of refrigerant flow. During the cooling operation, the discharge side of the compressor 21 and the gas side of the outdoor heat exchanger 23 are connected, and the gas side of the indoor heat exchanger 42 and the suction side of the compressor 21 are connected (four-way switching in FIG. 1). (See solid line for valve 22). Further, during the heating operation, the discharge side of the compressor 21 and the gas side of the indoor heat exchanger 42 are connected, and the suction side of the compressor 21 and the gas side of the outdoor heat exchanger 23 are connected (four in FIG. 1). (Refer to the broken line of the path switching valve 22).

室外熱交換器23は、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器であり、冷房運転時には冷媒の凝縮器となり、暖房運転時には冷媒の蒸発器となる。   The outdoor heat exchanger 23 is a cross fin type fin-and-tube heat exchanger composed of heat transfer tubes and a large number of fins. The outdoor heat exchanger 23 serves as a refrigerant condenser during the cooling operation, and serves as a refrigerant evaporator during the heating operation. It becomes.

室外膨張弁35は、電動膨張弁であり、室外側の冷媒回路10内を流れる冷媒の圧力や流量等の調節を行うために、室外熱交換器23と室内膨張弁41との間に接続される。過冷却熱交換器36は、室外熱交換器23と室内膨張弁41との間を流れる冷媒を冷却するために設けられている。   The outdoor expansion valve 35 is an electric expansion valve, and is connected between the outdoor heat exchanger 23 and the indoor expansion valve 41 in order to adjust the pressure, flow rate, and the like of the refrigerant flowing in the refrigerant circuit 10 on the outdoor side. The The supercooling heat exchanger 36 is provided to cool the refrigerant flowing between the outdoor heat exchanger 23 and the indoor expansion valve 41.

レシーバ38は、室外膨張弁35と過冷却熱交換器36との間に接続されており、液冷媒を一時的に貯え、室外熱交換器23(又は室内熱交換器42)内の冷媒量の変化を吸収する。   The receiver 38 is connected between the outdoor expansion valve 35 and the supercooling heat exchanger 36, temporarily stores liquid refrigerant, and controls the amount of refrigerant in the outdoor heat exchanger 23 (or the indoor heat exchanger 42). Absorb changes.

バイパス60は、過冷却熱交換器36の冷却源として設けられている。バイパス60は、過冷却熱交換器36と室内膨張弁41との間を流れる冷媒の一部を分岐し圧縮機21の吸入側に戻す。バイパス60には、冷媒を減圧するためのバイパス膨張弁61が設けられている。その結果、室外熱交換器23と室内膨張弁41との間を流れる冷媒は、過冷却熱交換器36において、バイパス膨張弁61で減圧された冷媒によって冷却される。また、バイパス膨張弁61の上流側には、ドライヤ62が設けられている。ドライヤ62は、バイパス60に流入する冷媒から水分を吸着する。   The bypass 60 is provided as a cooling source for the supercooling heat exchanger 36. The bypass 60 branches a part of the refrigerant flowing between the supercooling heat exchanger 36 and the indoor expansion valve 41 and returns it to the suction side of the compressor 21. The bypass 60 is provided with a bypass expansion valve 61 for decompressing the refrigerant. As a result, the refrigerant flowing between the outdoor heat exchanger 23 and the indoor expansion valve 41 is cooled by the refrigerant decompressed by the bypass expansion valve 61 in the supercooling heat exchanger 36. A dryer 62 is provided on the upstream side of the bypass expansion valve 61. The dryer 62 adsorbs moisture from the refrigerant flowing into the bypass 60.

<空気調和装置の動作>
冷房運転時は、四路切換弁22が図1の実線で示される状態となり、圧縮機21の吐出側が室外熱交換器23のガス側に連絡され、かつ、圧縮機21の吸入側が室内熱交換器42のガス側に連絡された状態となる。室外膨張弁35は、冷媒を中間圧にまで減圧できるように開度調節される。中間圧とは、冷媒回路10における高圧側圧力と低圧側圧力との中間値をいう。
<Operation of air conditioner>
During the cooling operation, the four-way switching valve 22 is in the state shown by the solid line in FIG. 1, the discharge side of the compressor 21 is connected to the gas side of the outdoor heat exchanger 23, and the suction side of the compressor 21 is indoor heat exchange. The gas is connected to the gas side of the vessel 42. The degree of opening of the outdoor expansion valve 35 is adjusted so that the refrigerant can be reduced to an intermediate pressure. The intermediate pressure refers to an intermediate value between the high pressure side pressure and the low pressure side pressure in the refrigerant circuit 10.

圧縮機21が起動されると、圧縮機21から吐出された高温・高圧の冷媒が室外熱交換器23に導入され、室外熱交換器23で室外空気と熱交換する。冷媒は、室外熱交換器23を出て室外膨張弁35で中間圧に減圧される。   When the compressor 21 is started, the high-temperature and high-pressure refrigerant discharged from the compressor 21 is introduced into the outdoor heat exchanger 23 and exchanges heat with outdoor air in the outdoor heat exchanger 23. The refrigerant leaves the outdoor heat exchanger 23 and is reduced to an intermediate pressure by the outdoor expansion valve 35.

中間圧にまで減圧された冷媒は気液混合状態となってレシーバ38に入る。レシーバ38では液冷媒とガス冷媒とが分離され、液冷媒のみが過冷却熱交換器36に入り冷却されて中高温で中間圧の液冷媒となる。過冷却熱交換器36を出た液冷媒は、室内膨張弁41に向う途中で一部がバイパス60に分岐し、その他は室内膨張弁41に入る。   The refrigerant depressurized to the intermediate pressure enters the receiver 38 in a gas-liquid mixed state. In the receiver 38, the liquid refrigerant and the gas refrigerant are separated, and only the liquid refrigerant enters the supercooling heat exchanger 36 and is cooled to become a medium-high temperature intermediate pressure liquid refrigerant. Part of the liquid refrigerant exiting the supercooling heat exchanger 36 branches to the bypass 60 on the way to the indoor expansion valve 41, and the other enters the indoor expansion valve 41.

バイパス60に分岐した液冷媒は、ドライヤ62に入り吸着触媒と接触し水分除去される。この液冷媒は、バイパス膨張弁61で減圧され、過冷却熱交換器36に入る。液冷媒は、過冷却熱交換器36でレシーバ38から出てきた冷媒と熱交換して蒸発しガス冷媒となって圧縮機21に吸入される。   The liquid refrigerant branched into the bypass 60 enters the dryer 62 and comes into contact with the adsorption catalyst to remove moisture. This liquid refrigerant is depressurized by the bypass expansion valve 61 and enters the supercooling heat exchanger 36. The liquid refrigerant exchanges heat with the refrigerant coming out of the receiver 38 in the supercooling heat exchanger 36 and evaporates to become a gas refrigerant and is sucked into the compressor 21.

他方、室内膨張弁41に到達した液冷媒は、室内膨張弁41で減圧され、低温・低圧となって室内熱交換器42に入る。この冷媒は、室内熱交換器42で室内空気と熱交換しガス冷媒となり、再び圧縮機21に吸入される。   On the other hand, the liquid refrigerant that has reached the indoor expansion valve 41 is depressurized by the indoor expansion valve 41 and enters the indoor heat exchanger 42 at a low temperature and a low pressure. This refrigerant exchanges heat with indoor air in the indoor heat exchanger 42 to become a gas refrigerant, and is sucked into the compressor 21 again.

暖房運転時は、四路切換弁22が図1の破線で示される状態となり、圧縮機21の吐出側が室内熱交換器42のガス側に連絡され、圧縮機21の吸入側が室外熱交換器23のガス側に連絡される。室外膨張弁35は、所定の蒸発圧力まで減圧するように開度調節される。また、室内膨張弁41は開状態にされる。   During the heating operation, the four-way switching valve 22 is in the state indicated by the broken line in FIG. 1, the discharge side of the compressor 21 is connected to the gas side of the indoor heat exchanger 42, and the suction side of the compressor 21 is the outdoor heat exchanger 23. The gas side is contacted. The degree of opening of the outdoor expansion valve 35 is adjusted so as to reduce the pressure to a predetermined evaporation pressure. Further, the indoor expansion valve 41 is opened.

圧縮機21が起動されると、圧縮機21より吐出された高温・高圧の冷媒が室内熱交換器42に導入され、室内空気と熱交換する。冷媒は室内熱交換器42を出て一部はバイパス60へ分岐し、その他は過冷却熱交換器36へ入る。   When the compressor 21 is started, the high-temperature and high-pressure refrigerant discharged from the compressor 21 is introduced into the indoor heat exchanger 42 and exchanges heat with indoor air. The refrigerant leaves the indoor heat exchanger 42 and partly branches to the bypass 60, and the other enters the supercooling heat exchanger 36.

バイパス60へ分岐した冷媒は、ドライヤ62に入り吸着触媒と接触し水分除去される。この冷媒は、バイパス膨張弁61で減圧され、過冷却熱交換器36に入る。そして、この冷媒は、過冷却熱交換器36でバイパス60へ分岐しなかった冷媒と熱交換して蒸発しガス冷媒となって圧縮機21に吸入される。   The refrigerant branched to the bypass 60 enters the dryer 62 and comes into contact with the adsorption catalyst to remove moisture. This refrigerant is decompressed by the bypass expansion valve 61 and enters the supercooling heat exchanger 36. Then, this refrigerant exchanges heat with the refrigerant that has not been branched to the bypass 60 by the supercooling heat exchanger 36 and evaporates to become a gas refrigerant and is sucked into the compressor 21.

他方、バイパス60に分岐しなかった冷媒は、過冷却熱交換器36で冷却され気液混合状態となり、レシーバ38で液冷媒とガス冷媒とが分離され、液冷媒のみが室外膨張弁35に向う。室外膨張弁35に到達した液冷媒は、室外膨張弁35で減圧され、低温・低圧となって、室外熱交換器23に入る。この冷媒は、室外熱交換器23で室外空気と熱交換しガス冷媒となり、再び圧縮機21に吸入される。   On the other hand, the refrigerant that has not branched to the bypass 60 is cooled by the supercooling heat exchanger 36 to be in a gas-liquid mixed state, the liquid refrigerant and the gas refrigerant are separated by the receiver 38, and only the liquid refrigerant goes to the outdoor expansion valve 35. . The liquid refrigerant that has reached the outdoor expansion valve 35 is depressurized by the outdoor expansion valve 35, becomes low temperature / low pressure, and enters the outdoor heat exchanger 23. This refrigerant exchanges heat with outdoor air in the outdoor heat exchanger 23 to become a gas refrigerant, and is sucked into the compressor 21 again.

<特徴>
(1)
空気調和装置1は、高圧側冷媒配管と低圧側冷媒配管とをドライヤ62を介して連絡するバイパス60を備えており、冷房運転と暖房運転とが切り替わっても、冷媒がドライヤ62を通過する方向は変化しないので、ドライヤ62として、一方向流れ仕様が採用され、コスト低減になる。
<Features>
(1)
The air conditioner 1 includes a bypass 60 that connects the high-pressure side refrigerant pipe and the low-pressure side refrigerant pipe via the dryer 62, and the refrigerant passes through the dryer 62 even when the cooling operation and the heating operation are switched. Therefore, the one-way flow specification is adopted as the dryer 62, and the cost is reduced.

(2)
空気調和装置1は、室外熱交換器23と室外膨張弁35との間に接続される過冷却熱交換器36をさらに備えており、バイパス60は、冷房運転時に過冷却熱交換器36の下流側となる位置から分岐している。冷房運転時、CO2冷媒は、過冷却熱交換器36で過冷却され、その一部がドライヤ62に入る。また、ドライヤ62の下流側にはバイパス膨張弁61が設けられている。ドライヤ62を通過するCO2冷媒は液になっているで、2相流の冷媒流入によるドライヤ62のコアの破粋が防止される。さらに、過冷却熱交換器36で温度低下したCO2冷媒がドライヤ62を通過するので、ドライヤ62の温度が低下し、ドライヤ62の水分吸着力が向上する。
(2)
The air conditioner 1 further includes a supercooling heat exchanger 36 connected between the outdoor heat exchanger 23 and the outdoor expansion valve 35, and the bypass 60 is downstream of the supercooling heat exchanger 36 during cooling operation. Branches from the side position. During the cooling operation, the CO 2 refrigerant is supercooled by the supercooling heat exchanger 36, and a part thereof enters the dryer 62. A bypass expansion valve 61 is provided on the downstream side of the dryer 62. Since the CO2 refrigerant passing through the dryer 62 is in a liquid state, the core of the dryer 62 is prevented from being broken due to the two-phase refrigerant inflow. Furthermore, since the CO2 refrigerant whose temperature has been lowered by the supercooling heat exchanger 36 passes through the dryer 62, the temperature of the dryer 62 is lowered, and the moisture adsorbing power of the dryer 62 is improved.

(3)
空気調和装置1では、レシーバ38が、パイパス60の分岐点と少なくとも暖房運転時に機能する室外膨張弁35との間に接続されている。冷房運転時、室外膨張弁35は、室外熱交換器23からレシーバ38へ向うCO2冷媒を減圧する。CO2冷媒の高圧側圧力が臨界圧力を越えていた場合、室外熱交換器23を出たCO2冷媒は室外膨張弁35で減圧され、且つガス成分はレシーバ38で分離されるので、ドライヤ62を通過するCO2冷媒の密度が大きくなり、ドライヤ62による乾燥効率が向上する。また、ドライヤ62に作用する圧力が低下し、ドライヤの耐久性が向上する。
(3)
In the air conditioner 1, the receiver 38 is connected between the branch point of the bypass 60 and the outdoor expansion valve 35 that functions at least during heating operation. During the cooling operation, the outdoor expansion valve 35 depressurizes the CO 2 refrigerant from the outdoor heat exchanger 23 toward the receiver 38. When the high pressure side pressure of the CO2 refrigerant exceeds the critical pressure, the CO2 refrigerant that has exited the outdoor heat exchanger 23 is depressurized by the outdoor expansion valve 35, and the gas component is separated by the receiver 38, so that it passes through the dryer 62. The density of the CO2 refrigerant to be increased increases, and the drying efficiency by the dryer 62 is improved. Moreover, the pressure which acts on the dryer 62 falls and durability of a dryer improves.

また、超臨界状態のCO2冷媒は溶解作用の高い溶媒と成り得るので、超臨界状態のCO2冷媒がドライヤ62を頻繁に通過する場合、ドライヤ62の吸着材および吸着材を支える支持部材に悪影響を及ぼす可能性がある。しかし、本実施形態に係る空気調和装置1では、CO2冷媒がドライヤ62を通過するときは超臨界状態ではないので、ドライヤ62の吸着材および吸着材を支える支持部材に悪影響を及ぼすという懸念が解消される。   Also, since the CO2 refrigerant in the supercritical state can be a solvent having a high dissolving action, when the CO2 refrigerant in the supercritical state frequently passes through the dryer 62, the adsorbent of the dryer 62 and the support member that supports the adsorbent are adversely affected. There is a possibility of effect. However, in the air conditioning apparatus 1 according to the present embodiment, when the CO2 refrigerant passes through the dryer 62, it is not in a supercritical state, and thus the concern that it adversely affects the adsorbent of the dryer 62 and the support member that supports the adsorbent is eliminated. Is done.

以上のように、本発明によれば、据付時に配管内へ水分が過剰に混入する可能性のある空気調和装置に有用である。   As described above, according to the present invention, it is useful for an air conditioner in which moisture may be excessively mixed into a pipe during installation.

本発明の一実施形態に係る空気調和装置の概略構成図。The schematic block diagram of the air conditioning apparatus which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

1 空気調和装置
21 圧縮機
23 室外熱交換器
35 室外膨張弁(減圧器)
36 過冷却器
38 レシーバ
41 室内膨張弁(減圧器)
42 室内熱交換器
60 バイパス
61 バイパス膨張弁(バイパス減圧器)
62 ドライヤ
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 21 Compressor 23 Outdoor heat exchanger 35 Outdoor expansion valve (decompressor)
36 Supercooler 38 Receiver 41 Indoor expansion valve (pressure reducer)
42 Indoor heat exchanger 60 Bypass 61 Bypass expansion valve (bypass pressure reducer)
62 Dryer

Claims (4)

圧縮機(21)、凝縮器(23,42)、減圧器(41,35)、及び蒸発器(42,23)の順にCO2冷媒を循環させて冷房運転、又は暖房運転を行う空気調和装置であって、
前記凝縮器(23,42)と前記減圧器(41,35)とを連絡する高圧側冷媒配管と、前記圧縮機(21)と前記蒸発器(42,23)とを連絡する低圧側冷媒配管とを、ドライヤ(62)を介して連絡するバイパス(60)を備えた、
空気調和装置(1)。
An air conditioner that performs cooling operation or heating operation by circulating CO2 refrigerant in the order of the compressor (21), the condenser (23, 42), the decompressor (41, 35), and the evaporator (42, 23). There,
A high-pressure side refrigerant pipe connecting the condenser (23, 42) and the decompressor (41, 35), and a low-pressure side refrigerant pipe connecting the compressor (21) and the evaporator (42, 23). With a bypass (60) communicating through a dryer (62),
Air conditioner (1).
前記凝縮器(23,42)と前記減圧器(41,35)との間に接続される過冷却熱交換器(36)をさらに備え、
前記バイパス(60)は、前記冷房運転時に前記過冷却熱交換器(36)の下流側となる位置から分岐している、
請求項1に記載の空気調和装置(1)。
A supercooling heat exchanger (36) connected between the condenser (23, 42) and the decompressor (41, 35);
The bypass (60) branches off from a position on the downstream side of the supercooling heat exchanger (36) during the cooling operation.
The air conditioner (1) according to claim 1.
前記バイパス(60)は、前記ドライヤ(62)の下流側に減圧機構として機能するバイパス減圧弁(61)を有し、
前記過冷却熱交換器(36)は、前記凝縮器(23,42)から前記減圧器(41,35)に向う高圧の前記CO2冷媒と、前記バイパス減圧弁(61)で減圧された低圧の前記CO2冷媒との間で熱交換を行わせる、
請求項2に記載の空気調和装置(1)。
The bypass (60) has a bypass pressure reducing valve (61) functioning as a pressure reducing mechanism on the downstream side of the dryer (62),
The supercooling heat exchanger (36) includes the high-pressure CO2 refrigerant from the condenser (23, 42) to the decompressor (41, 35) and the low-pressure decompressed by the bypass decompression valve (61). Heat exchange with the CO2 refrigerant;
The air conditioner (1) according to claim 2.
前記パイパス(60)の分岐点と少なくとも前記暖房運転時に機能する前記減圧器(35)との間に接続されるレシーバ(38)をさらに備え、
前記冷房運転時、前記減圧器(35)は、前記凝縮器(23)から前記レシーバ(38)へ向う前記CO2冷媒を減圧する、
請求項1に記載の空気調和装置(1)。
A receiver (38) connected between a branch point of the bypass (60) and the pressure reducer (35) that functions at least during the heating operation;
During the cooling operation, the decompressor (35) decompresses the CO2 refrigerant from the condenser (23) toward the receiver (38).
The air conditioner (1) according to claim 1.
JP2008287108A 2008-11-07 2008-11-07 Air conditioner Pending JP2010112657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008287108A JP2010112657A (en) 2008-11-07 2008-11-07 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008287108A JP2010112657A (en) 2008-11-07 2008-11-07 Air conditioner

Publications (1)

Publication Number Publication Date
JP2010112657A true JP2010112657A (en) 2010-05-20

Family

ID=42301345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008287108A Pending JP2010112657A (en) 2008-11-07 2008-11-07 Air conditioner

Country Status (1)

Country Link
JP (1) JP2010112657A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130091871A1 (en) * 2011-10-12 2013-04-18 International Business Machines Corporation Contaminant cold trap for a vapor-compression refrigeration apparatus
US11473816B2 (en) 2018-12-21 2022-10-18 Samsung Electronics Co., Ltd. Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300157A (en) * 2005-07-08 2005-10-27 Mitsubishi Electric Corp Air conditioner
JP2007139347A (en) * 2005-11-21 2007-06-07 Daikin Ind Ltd Refrigerating unit and its construction method
JP2008096093A (en) * 2006-09-11 2008-04-24 Daikin Ind Ltd Refrigerating device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005300157A (en) * 2005-07-08 2005-10-27 Mitsubishi Electric Corp Air conditioner
JP2007139347A (en) * 2005-11-21 2007-06-07 Daikin Ind Ltd Refrigerating unit and its construction method
JP2008096093A (en) * 2006-09-11 2008-04-24 Daikin Ind Ltd Refrigerating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130091871A1 (en) * 2011-10-12 2013-04-18 International Business Machines Corporation Contaminant cold trap for a vapor-compression refrigeration apparatus
US11473816B2 (en) 2018-12-21 2022-10-18 Samsung Electronics Co., Ltd. Air conditioner

Similar Documents

Publication Publication Date Title
JP4835688B2 (en) Air conditioner, air conditioning system
JP5263522B2 (en) Refrigeration equipment
KR20060131879A (en) Air conditioning system
JPWO2014167660A1 (en) Dehumidifier
JP2007240025A (en) Refrigerating device
JP2011112233A (en) Air conditioning device
JP4553761B2 (en) Air conditioner
JP2007271094A (en) Air conditioner
JP2010088971A (en) Refrigeration air dryer
JP4948513B2 (en) Air conditioner, its operating method and air conditioning system
JP2006349258A (en) Air conditioner
JP2010048506A (en) Multi-air conditioner
JP2008039233A (en) Refrigerating device
JP2006023073A (en) Air conditioner
JP2008275249A (en) Refrigerating cycle
JP2019158308A (en) Refrigeration cycle device
JP3969381B2 (en) Multi-room air conditioner
JP2007032857A (en) Refrigerating device
JP4269306B2 (en) Multi-room air conditioner
JP2001296068A (en) Regenerative refrigerating device
JP2010112657A (en) Air conditioner
JP2010281544A (en) Air conditioner
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
JP2008180435A (en) Air conditioner
JP2004085047A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Effective date: 20121204

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402