JP2010111958A - Non-coated woven fabric for air bags - Google Patents

Non-coated woven fabric for air bags Download PDF

Info

Publication number
JP2010111958A
JP2010111958A JP2008284046A JP2008284046A JP2010111958A JP 2010111958 A JP2010111958 A JP 2010111958A JP 2008284046 A JP2008284046 A JP 2008284046A JP 2008284046 A JP2008284046 A JP 2008284046A JP 2010111958 A JP2010111958 A JP 2010111958A
Authority
JP
Japan
Prior art keywords
yarn
air permeability
fabric
dtex
multifilament yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008284046A
Other languages
Japanese (ja)
Other versions
JP5564780B2 (en
Inventor
Tomomichi Fujiyama
友道 藤山
Keiichi Tonomori
敬一 主森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008284046A priority Critical patent/JP5564780B2/en
Publication of JP2010111958A publication Critical patent/JP2010111958A/en
Application granted granted Critical
Publication of JP5564780B2 publication Critical patent/JP5564780B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-coated woven fabric for air bags, which can keep an excellent low gas permeability required for woven fabrics for the air bags, and the low gas permeability also after an environmental aging test. <P>SOLUTION: There is provided the non-coated woven fabric for air bags, includes synthetic filament yarns having a total fineness of 200 to 700 dtex and a single filament fineness of 1 to 2 dtex, wherein the initial gas permeability of the woven fabric is not more than 0.50 L/cm<SP>2</SP>/min, when measured at a test differential pressure of 19.6 kPa, and the gas permeability after the woven fabric is subjected to a thermal aging treatment for 400 hrs in an environment of 120°C is not more than 150% based on the initial gas permeability. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ノンコートエアバッグ用織物に関する。   The present invention relates to a non-coated airbag fabric.

近年、交通安全意識の向上に伴い、自動車の事故が発生した際に乗員の安全を確保するために、種々のエアバッグが開発されるに伴いその有効性が認識され、急速に実装化が進んでいる。   In recent years, with the improvement of traffic safety awareness, the effectiveness of various airbags has been recognized as a result of the development of various airbags in order to ensure the safety of passengers in the event of a car accident. It is out.

エアバッグは、車両が衝突してから極めて短時間に車内で膨張展開することで、衝突の反動で移動する乗員を受け止め、その衝撃を吸収して乗員を保護するものである。この作用上、エアバッグを構成する織物の通気量は小さいこと(低通気性)が求められている。また、エアバッグを構成する織物は自動車内で自動車が使用される長期の間、常に低通気性を維持することが求められており、日本の夏場などの高温雰囲気下で曝された後でも環境に左右されることなく、低通気性を維持する必要がある。   The airbag is inflated and deployed in the vehicle in a very short time after the vehicle has collided, thereby receiving the occupant moving by the reaction of the collision and absorbing the impact to protect the occupant. In view of this action, it is required that the air flow rate of the fabric constituting the airbag is small (low air permeability). In addition, the fabrics that make up airbags are required to maintain low air permeability at all times for a long period of time when they are used in automobiles. It is necessary to maintain a low air permeability without being influenced by.

従来、織物の通気量を小さくする手段として、織物に樹脂を塗布したり、フィルムを貼り付けた、コート布が提案されている。   Conventionally, as a means for reducing the air flow rate of a fabric, a coated fabric in which a resin is applied to the fabric or a film is attached has been proposed.

しかし、樹脂を塗布したり、フィルムを貼り付けたりすると、織物の厚みが増し、収納時のコンパクト性が悪化し、エアバッグ用織物としては不適当な点があった。また、このような樹脂塗布工程やフィルムの貼り付け工程が増えることによって、製造コストが上がるという問題があった。   However, when a resin is applied or a film is applied, the thickness of the woven fabric increases and the compactness at the time of storage deteriorates, which is inappropriate as a woven fabric for an airbag. Moreover, there is a problem that the manufacturing cost increases due to the increase in the resin coating process and the film attaching process.

そこで、このような問題を解決するために、近年、樹脂加工を施さず、ポリアミド繊維、ポリエステル繊維等の合成フィラメント糸を高密度に製織することで織物の通気量を小さくするノンコート布が提案されており、例えば、低通気性を実現したノンコート布として、乾燥仕上工程を多段階で行った低通気性に優れたノンコートエアバッグ用織物が開示されている(例えば特許文献1参照)。該文献では初期ならびに環境老化試験後において低通気度化が可能であると記載されているものの、実施例で記載されている織物のうち、最も低い通気度は試験差圧125Pa下で測定したときに0.10cc/cm2/secであり、これは試験差圧19.6kPa下で測定した値では約0.7L/cm2/minに相当し、決して低い通気度であるとは言えなかった。また、環境老化試験後の通気度は初期通気度に対して約180%高くなっており、環境老化試験後にも低通気性が得られているとは言い難かった。 Therefore, in order to solve such problems, in recent years, non-coated fabrics have been proposed that reduce the air flow rate of fabrics by weaving synthetic filament yarns such as polyamide fibers and polyester fibers at high density without applying resin processing. For example, as a non-coated fabric realizing low air permeability, a non-coated air bag fabric excellent in low air permeability in which a drying finishing process is performed in multiple stages is disclosed (for example, see Patent Document 1). Although the document describes that low air permeability is possible in the initial stage and after the environmental aging test, among the fabrics described in the examples, the lowest air permeability is measured under a test differential pressure of 125 Pa. 0.10 cc / cm 2 / sec, which corresponds to about 0.7 L / cm 2 / min when measured under a test differential pressure of 19.6 kPa, and could not be said to have a low air permeability. . Further, the air permeability after the environmental aging test was about 180% higher than the initial air permeability, and it was difficult to say that low air permeability was obtained even after the environmental aging test.

また、自動車内で長期間装備されるエアバッグ用基布に求められる耐熱老化性を解決する方法として、銅化合物を含有するポリカプラミド繊維からなるエアバッグ用基布が開示されている(例えば特許文献2参照)。しかしながら、該文献では最も低い通気度の織物として6cc/cm2/sec(=0.36L/cm2/min)があるものの、強制耐熱処理後の通気度は10cc/cm2/sec(=0.60L/cm2/min)であり、その変化率は167%と決して環境に左右されない低通気性を有しているとは言い難かった。 Further, as a method for solving the heat aging resistance required for an airbag base fabric that is equipped in an automobile for a long period of time, an airbag base fabric made of a polycapramide fiber containing a copper compound is disclosed (for example, Patent Documents). 2). However, although in the literature with the lowest 6cc / cm 2 /sec(=0.36L/cm 2 / min as air permeability of the fabric), the air permeability after forced heat treatment 10cc / cm 2 / sec (= 0 .60 L / cm 2 / min), and the rate of change was 167%, and it was difficult to say that it had low air permeability that was never influenced by the environment.

このように、従来技術では、初期および環境老化試験後も低通気性が得られるノンコートエアバッグ用織物は実現されていない。
特開2002−146646号公報(表1) 特開2006−183205号公報(表1)
Thus, the prior art has not realized a non-coated airbag fabric that can provide low air permeability even after the initial and environmental aging tests.
JP 2002-146646 A (Table 1) JP 2006-183205 A (Table 1)

本発明の目的は、上記従来技術の問題点を解消し、環境老化試験後も低通気性が維持できるノンコートエアバッグ用織物を提供することにある。   An object of the present invention is to provide a non-coated airbag fabric that can solve the above-described problems of the prior art and maintain low air permeability even after an environmental aging test.

すなわち本発明は、総繊度が200〜700dtex、単繊維繊度が1〜2dtexである合成繊維マルチフィラメント糸からなるエアバッグ用織物であって、該織物の初期通気度は試験差圧19.6kPaで測定した時に0.5L/cm2/min以下であり、かつ該織物を120℃の環境下で400時間熱老化処理を施した後の通気度が初期通気度に対して150%以下となることを特徴とするノンコートエアバッグ用織物である。 That is, the present invention is a fabric for an airbag comprising a synthetic fiber multifilament yarn having a total fineness of 200 to 700 dtex and a single fiber fineness of 1 to 2 dtex, and the initial air permeability of the fabric is a test differential pressure of 19.6 kPa. When measured, the air permeability is 0.5 L / cm 2 / min or less, and the air permeability after the fabric is subjected to heat aging treatment in an environment of 120 ° C. for 400 hours is 150% or less with respect to the initial air permeability. This is a non-coated airbag fabric.

本発明によれば、エアバッグが優れた低通気性を有し、かつ長期間自動車内に装備された後でも優れた低通気性を維持するノンコートエアバッグ用織物を得ることができる。   According to the present invention, it is possible to obtain a non-coated airbag fabric that has excellent low air permeability and maintains excellent low air permeability even after being installed in an automobile for a long time.

本発明のノンコートエアバック用織物は合成繊維マルチフィラメント糸からなる。マルチフィラメント糸を構成する合成繊維の素材としては例えば、ポリアミド系繊維、ポリエステル系繊維、アラミド系繊維、レーヨン系繊維、ポリサルホン系繊維、超高分子量ポリエチレン系繊維等を用いることができる。なかでも、大量生産性や経済性に優れたポリアミド系繊維やポリエステル系繊維が好ましく、耐熱性や毛羽品の観点から、ポリアミド系繊維がさらに好ましい。   The non-coated airbag fabric of the present invention is made of synthetic fiber multifilament yarn. For example, polyamide fibers, polyester fibers, aramid fibers, rayon fibers, polysulfone fibers, ultrahigh molecular weight polyethylene fibers, and the like can be used as the raw material for the synthetic fibers constituting the multifilament yarn. Of these, polyamide fibers and polyester fibers excellent in mass productivity and economy are preferable, and polyamide fibers are more preferable from the viewpoint of heat resistance and fluff.

ポリアミド系繊維としては例えば、ナイロン6、ナイロン66、ナイロン12、ナイロン46や、ナイロン6とナイロン66との共重合ポリアミド、ナイロン6にポリアルキレングリコール、ジカルボン酸、アミン等を共重合させた共重合ポリアミド等からなる繊維を挙げることができる。なかでも、ナイロン6繊維、ナイロン66繊維は耐衝撃性に特に優れており、好ましい。   Examples of polyamide fibers include nylon 6, nylon 66, nylon 12, nylon 46, copolymer polyamide of nylon 6 and nylon 66, and copolymer obtained by copolymerizing nylon 6 with polyalkylene glycol, dicarboxylic acid, amine, and the like. Mention may be made of fibers made of polyamide or the like. Among these, nylon 6 fiber and nylon 66 fiber are particularly excellent in impact resistance and are preferable.

また、ポリエステル系繊維としては例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート等からなる繊維を挙げることができる。ポリエチレンテレフタレートやポリブチレンテレフタレートに酸成分としてイソフタル酸、5−ナトリウムスルホイソフタル酸や、アジピン酸等の脂肪族ジカルボン酸を共重合させた共重合ポリエステルからなる繊維であってもよい。   Examples of the polyester fiber include fibers made of polyethylene terephthalate, polybutylene terephthalate, and the like. It may be a fiber made of a copolymerized polyester obtained by copolymerizing polyethylene terephthalate or polybutylene terephthalate with an aliphatic dicarboxylic acid such as isophthalic acid, 5-sodium sulfoisophthalic acid or adipic acid as an acid component.

また、合成繊維には、紡糸・延伸工程や加工工程での生産性、あるいは特性改善のために、熱安定剤、酸化防止剤、光安定剤、平滑剤、帯電防止剤、可塑剤、増粘剤、顔料、難燃剤等の添加剤を含んでいてもよい。   Synthetic fibers also have thermal stabilizers, antioxidants, light stabilizers, smoothing agents, antistatic agents, plasticizers, thickeners to improve productivity and properties in the spinning / drawing process and processing process. Additives such as additives, pigments, and flame retardants may be included.

また、合成繊維の単繊維の断面形状としては、特に限定されるものではなく、円形の他、Y型、V型、扁平型等の非円形、さらには中空部を有するものも用いることができる。   In addition, the cross-sectional shape of the single fiber of the synthetic fiber is not particularly limited, and other than a circular shape, a non-circular shape such as a Y shape, a V shape, a flat shape, and a hollow portion can also be used. .

本発明のノンコートエアバッグ用織物を構成する合成繊維マルチフィラメント糸の総繊度は200〜700dtexであることが必要である。総繊度が200dtex未満の場合、織物の強力面が低下するとともに、低通気性が得られにくくなる。また、高強度の繊維を安定して得ることが困難となるため、織物の品位も悪化し、原糸・織物ともに生産性が悪化する。一方、700dtexを越えると、単繊維繊度1〜2dtexの合成繊維で構成するには単繊維糸数が多くなりすぎ、一度に紡糸することが極めて困難であるため、2〜3本のマルチフィラメント糸を合糸して形成する必要が生じ、生産性を損なうことになるとともに、エアバッグをコンパクトに収納できにくくなる。好ましい総繊度の範囲は230〜500dtexであり、より好ましくは、280〜470dtexである。この範囲内の総繊度とすることで、基布の強力、低通気性、バッグ収納コンパクト性をバランスよく向上させることができる。   The total fineness of the synthetic fiber multifilament yarn constituting the non-coated airbag fabric of the present invention needs to be 200 to 700 dtex. When the total fineness is less than 200 dtex, the strength side of the fabric is lowered and low air permeability is hardly obtained. In addition, since it is difficult to stably obtain high-strength fibers, the quality of the fabric also deteriorates, and the productivity of both the raw yarn and the fabric deteriorates. On the other hand, if it exceeds 700 dtex, the number of single fiber yarns is too large to be composed of synthetic fibers having a single fiber fineness of 1 to 2 dtex, and it is extremely difficult to spin at a time. It becomes necessary to form them by combining yarns, which impairs productivity and makes it difficult to store the airbag in a compact manner. A preferable range of the total fineness is 230 to 500 dtex, and more preferably 280 to 470 dtex. By setting the total fineness within this range, the strength, low air permeability, and bag storage compactness of the base fabric can be improved in a balanced manner.

本発明に用いられる合成繊維マルチフィラメント糸の単繊維繊度は1〜2dtexであることが必要であり、1.2〜1.8dtexとすることが好ましい。単繊維繊度をこの範囲内にすることで、織物を構成するマルチフィラメント糸が細密充填構造をとり、初期の低通気性が得られるばかりでなく、耐環境老化試験後も細密充填構造が維持されることで、低通気性が維持できる。単繊維繊度が1dtex未満の場合、低通気性の面では好ましいが、紡糸性が極端に低下し、単繊維繊度1dtex未満の糸を安定して生産することが難しい。一方、単繊維繊度が2dtexより大きくなると、織物を構成するマルチフィラメント糸が細密充填構造をとりにくくなり、低通気性が得られにくくなるばかりでなく、耐環境老化試験を行うと、織物構造の変化により、通気度上昇が大きくなる。また、単繊維繊度をこの範囲にすることにより、マルチフィラメント糸の剛性を低下させる効果が得られるため、エアバッグの収納性も向上させることができる。   The single fiber fineness of the synthetic fiber multifilament yarn used in the present invention needs to be 1 to 2 dtex, and preferably 1.2 to 1.8 dtex. By setting the single fiber fineness within this range, the multifilament yarn constituting the fabric has a finely packed structure, and not only the initial low air permeability can be obtained, but also the densely packed structure is maintained after the environmental aging resistance test. Therefore, low air permeability can be maintained. When the single fiber fineness is less than 1 dtex, it is preferable in terms of low air permeability, but the spinnability is extremely lowered, and it is difficult to stably produce a yarn having a single fiber fineness of less than 1 dtex. On the other hand, when the single fiber fineness is larger than 2 dtex, the multifilament yarn constituting the fabric becomes difficult to take a finely packed structure, and it becomes difficult to obtain a low air permeability. The change increases the air permeability. Moreover, since the effect which reduces the rigidity of a multifilament yarn is acquired by making single fiber fineness into this range, the stowability of an airbag can also be improved.

エアバッグ用織物を構成するマルチフィラメント糸に関しては、総繊度、単繊維繊度をともに小さくすることが長年に渡り検討され続けてきたが、本発明のように総繊度200〜700dtexの範囲で2dtex未満の単繊維繊度を有するポリアミド繊維が実際に作製された例はなく、このようなポリアミド繊維を用いてエアバッグ用の布帛を構成した場合に具備される特性についても当然開示された例はない。これは、従来の検討では、基布の特性向上が3〜4dtex程度まで単繊維繊度を小さくすると飽和する傾向にあったことに加え、単繊維数が100本以上で2dtex以下の単繊維繊度を有する産業用のポリアミド繊維を直接紡糸延伸法にて安定して製造することが極めて困難であったことによる。本発明者らは、後述の方法にて単繊維数が100本以上で2dtex以下のポリアミド繊維を得る方法、および該ポリアミド繊維から構成されたエアバッグ用基布が有する特性について鋭意検討した。その結果、単繊維繊度のみ異なるポリアミド繊維を同じ方法によって基布とした場合、単繊維繊度を2dtex以下とすることで初期の低通気性、耐環境劣化試験後の低通気性、収納時のコンパクト性、滑脱抵抗力が全て向上することを究明したものである。特に1.8dtex以下の単繊維繊度とすることによる耐環境劣化試験後の低通気性維持については、従来の検討結果から推測される値を大きく上回ることを究明したものである。なお単繊維繊度が1dtex未満のエアバッグ用に適したポリアミド繊維は、本発明の方法を用いても得ることは困難である。   Regarding multifilament yarns constituting airbag fabrics, it has been studied for many years to reduce both the total fineness and the single fiber fineness, but less than 2 dtex within the range of the total fineness of 200 to 700 dtex as in the present invention. There is no example of actually producing a polyamide fiber having a single fiber fineness, and there is no example disclosed of the characteristics provided when a fabric for an airbag is constructed using such a polyamide fiber. This is because, in the conventional examination, the improvement in the characteristics of the base fabric tended to be saturated when the single fiber fineness was reduced to about 3 to 4 dtex, and the single fiber fineness of 100 or more single fibers and 2 dtex or less was obtained. This is because it was extremely difficult to stably produce industrial-use polyamide fibers by direct spinning and drawing methods. The present inventors diligently studied a method for obtaining a polyamide fiber having a single fiber number of 100 or more and 2 dtex or less by the method described later, and the characteristics of an airbag fabric composed of the polyamide fiber. As a result, when polyamide fibers differing only in single fiber fineness are used as a base fabric by the same method, the initial low air permeability, low air permeability after environmental degradation test, and compactness when stored by setting the single fiber fineness to 2 dtex or less It has been clarified that the sex and slip resistance are all improved. In particular, the low air permeability maintenance after the environmental degradation resistance test by setting the single fiber fineness to 1.8 dtex or less has been investigated to greatly exceed the value estimated from the conventional examination results. In addition, it is difficult to obtain a polyamide fiber suitable for an airbag having a single fiber fineness of less than 1 dtex even by using the method of the present invention.

本発明のノンコートエアバッグ用織物の初期通気度は、試験差圧19.6kPaで測定した時に0.50L/cm2/min以下を有することが必要であり、よし好ましくは0.40L/cm2/min以下である。通気量を上記範囲に調整することで、衝突時にインフレーターから発せられる膨張用ガスを漏れなく有効に使用することができ、エアバッグの展開性能が向上し、乗員を確実に受け止めることができる。該通気度が0.50L/cm2/minを超えると、乗員の衝突によりエアバッグの膨張状態を維持できず、乗員拘束性が劣る。なお、試験差圧19.6kPaで測定した時の初期通気度は、後述する実施例の欄の測定方法「(14)初期通気度」に記載された方法で測定した値をいう。 The initial air permeability of the non-coated airbag fabric of the present invention needs to have a value of 0.50 L / cm 2 / min or less when measured at a test differential pressure of 19.6 kPa, preferably 0.40 L / cm 2. / Min or less. By adjusting the air flow rate to the above range, the inflation gas emitted from the inflator at the time of a collision can be used effectively without leakage, the airbag deployment performance is improved, and the occupant can be reliably received. When the air permeability exceeds 0.50 L / cm 2 / min, the inflated state of the airbag cannot be maintained due to the collision of the occupant, and the occupant restraint property is inferior. The initial air permeability when measured at a test differential pressure of 19.6 kPa refers to a value measured by the method described in the measurement method “(14) Initial air permeability” in the column of Examples described later.

また、本発明のノンコートエアバッグ用織物の耐環境老化試験後の通気度は、初期通気度に対して150%より大きくならないことが重要である。エアバッグは自動車内に10〜20年といった長期間装備され、その間、夏季、冬季などの高温、低温、さらには高湿度、低湿度といったあらゆる環境下に曝される。本発明者らはどの環境下が織物の通気度にどのように影響するかを鋭意検討した結果、耐熱老化が最も通気度を悪化させ、耐熱老化試験後の通気度が初期通気度対比150%より大きくならないことが、あらゆる環境下で低通気性を維持できることを見出した。耐熱老化試験とは120℃の温度雰囲気下で400時間、織物を緊張させずに処理する試験方法であり、該試験後、織物を20℃、65%RH下で24時間放置した後、試験差圧19.6kPaで通気度を測定する。具体的には、後述する実施例の欄の測定方法「(15)耐熱老化試験後の通気度」に記載された方法で測定した値をいう。通常、エアバッグは初期通気度を基にバッグ展開性能を設定するために、該耐熱老化試験後の通気度が初期通気度対比で150%より大きくなると、自動車内に長期装備した後はエアバッグを構成する織物からのガス漏れが大きくなり、乗員を確実に受け止めることができなくなる。また、該耐熱老化試験度の通気度が初期通気度対比で150%より大きい場合、逆に長期装備後の大きくなる通気度を想定してエアバッグ展開性能を設定する(例えば、ベントホールを小さくする)必要が生じ、その場合、自動車の使用直後、つまり長期装備前ではエアバッグからのガス漏れが少なくなりすぎ、逆に乗員へのダメージが大きくなってしまう。従って、あらゆる環境下で通気度が変化しない織物が必要である。該耐熱老化試験度の通気度が初期通気度に対して140%以下であることが好ましく、130%以下であることがさらに好ましい。また、該耐熱老化試験後の通気度は0.50L/cm2/min以下であることが、乗員を受け止めた後しばらくの間エアバッグの膨張状態を維持する上で好ましい。 In addition, it is important that the air permeability after the environmental aging test of the non-coated airbag fabric of the present invention does not exceed 150% of the initial air permeability. Airbags are installed in automobiles for a long period of 10 to 20 years, and during that time, they are exposed to various environments such as high and low temperatures such as summer and winter, as well as high and low humidity. As a result of diligent examination of which environment affects the air permeability of the fabric, the present inventors have made the heat permeability most deteriorated, and the air permeability after the heat aging test is 150% of the initial air permeability. It has been found that not becoming larger can maintain low air permeability in all environments. The heat aging test is a test method in which a fabric is treated for 400 hours without being strained in a temperature atmosphere of 120 ° C. After the test, the fabric is left to stand at 20 ° C. and 65% RH for 24 hours. The air permeability is measured at a pressure of 19.6 kPa. Specifically, it means a value measured by the method described in the measurement method “(15) Air permeability after heat aging test” in the column of Examples described later. Usually, in order to set the bag deployment performance based on the initial air permeability, the air bag has a larger air permeability after the heat aging test than 150% in comparison with the initial air permeability. The gas leakage from the woven fabric constituting the vehicle increases, and the passenger cannot be reliably received. In addition, when the air permeability of the heat aging test degree is larger than 150% in comparison with the initial air permeability, conversely, the air bag deployment performance is set on the assumption that the air permeability increases after long-term equipment (for example, the vent hole is made smaller). In such a case, immediately after using the vehicle, that is, before long-term installation, gas leakage from the airbag becomes too small, and on the contrary, damage to the occupant increases. Therefore, there is a need for a fabric that does not change air permeability under any circumstances. The air permeability of the heat aging test degree is preferably 140% or less, more preferably 130% or less with respect to the initial air permeability. The air permeability after the heat aging test is preferably 0.50 L / cm 2 / min or less in order to maintain the airbag in an inflated state for a while after receiving the occupant.

本発明のエアバッグ用織物を構成するマルチフィラメント糸の引張強度としては、エアバッグ用織物として要求される機械的特性を満足するためと製糸操業面から、タテ糸およびヨコ糸ともに8.0〜9.0cN/dtexが好ましく、より好ましくは8.3〜8.7cN/dtexである。同時にマルチフィラメント糸の伸度が20〜25%であることが、エアバッグ用基布のタフネス性、破断仕事量を増大させるためと製糸性および製織性向上の面から好ましく、21〜24%であることがより好ましい。   As the tensile strength of the multifilament yarn constituting the airbag fabric of the present invention, both the warp yarn and the weft yarn are 8.0 to satisfy the mechanical properties required for the airbag fabric and from the viewpoint of the yarn production operation. 9.0 cN / dtex is preferable, and 8.3 to 8.7 cN / dtex is more preferable. At the same time, the elongation of the multifilament yarn is preferably 20 to 25%, in order to increase the toughness of the airbag fabric and the work of breaking, and from the viewpoint of improving the yarn-making property and weaving property. More preferably.

また、織物のカバーファクター(CF)は、1800〜2300とすることが好ましい。カバーファクターをこの範囲に調整することで、必要な織物のコンパクト収納性と低通気性を両立することができる。該カバーファクターを1800以上とすることで、通気度を小さくすることができる。また、該カバーファクターを2300以下とすることで、コンパクト収納性を向上させることができる。   The cover factor (CF) of the fabric is preferably 1800-2300. By adjusting the cover factor within this range, it is possible to achieve both a compact storability and low air permeability of the required fabric. By setting the cover factor to 1800 or more, the air permeability can be reduced. Moreover, compact storage property can be improved by making this cover factor 2300 or less.

ここで、織物のカバーファクター(CF)とは、タテ糸あるいはヨコ糸に用いられる糸の総繊度と織密度から計算される値であり、タテ糸総繊度をDw(dtex)、ヨコ糸総繊度をDf(dtex)、タテ糸の織密度をNw(本/2.54cm)、ヨコ糸の織密度をNf(本/2.54cm)としたとき次の式で表される。
CF1=(Dw×0.9)1/2×Nw+(Df×0.9)1/2×Nf
次に、本発明のエアバッグ用基布を構成する好ましい形態であるポリアミドマルチフィラメント糸の製造方法と、エアバッグ用基布を製造する方法について説明する。
Here, the cover factor (CF) of the woven fabric is a value calculated from the total fineness and woven density of the yarn used for the warp yarn or the weft yarn. The warp yarn total fineness is Dw (dtex), and the weft yarn total fineness. Is Df (dtex), the weft density of the warp yarn is Nw (lines / 2.54 cm), and the weave density of the weft yarn is Nf (lines / 2.54 cm).
CF1 = (Dw × 0.9) 1/2 × Nw + (Df × 0.9) 1/2 × Nf
Next, the manufacturing method of the polyamide multifilament yarn which is the preferable form which comprises the base fabric for airbags of this invention, and the method of manufacturing the base fabric for airbags are demonstrated.

ポリアミドマルチフィラメント糸は公知の溶融紡糸をベースに以下の方法で製造することが好ましい。   The polyamide multifilament yarn is preferably produced by the following method based on known melt spinning.

まず、前記したポリアミドチップをエクストルーダー型紡糸機へ供給し、計量ポンプにより紡糸口金へ配し、適切な温度(例えば、ナイロン66なら290〜300℃)で溶融紡糸する。この際、紡糸口金の孔スペックは、単繊維繊度のバラツキを小さくして製織中の毛羽の発生を抑制するために、適切な背面圧(例えば、ナイロン66なら少なくとも60kg/cm以上であり、好ましくは80〜120kg/cm)に設計することが好ましい。また、同心円上に吐出孔を配列させ、その列数は好ましくは2〜8列、より好ましくは3〜6列である。列数が少なすぎると単繊維間距離が小さくなりすぎ、紡糸中に単繊維同士が衝突し、悪い場合は融着するし、多すぎると冷却斑による単繊維間の物性斑が大きくなるため好ましくない。また、最外周に配列した各吐出孔を同心円として結んだときの直径は、加熱筒や環状冷却装置の内径より小さくするが、好ましくは8〜25mm、より好ましくは10〜20mm小さくすればよい。最外周の孔の位置が加熱筒や環状冷却装置に近すぎると、固化前のマルチフィラメント糸が装置と接触しやすくなり紡糸が不安定になるし、遠すぎる場合はマルチフィラメント糸の冷却が不十分になり、高強度・高伸度のポリアミドマルチフィラメント糸を得難くなる。 First, the above-mentioned polyamide chip is supplied to an extruder-type spinning machine, is distributed to a spinneret by a metering pump, and is melt-spun at an appropriate temperature (for example, 290 to 300 ° C. for nylon 66). At this time, the hole spec of the spinneret is an appropriate back pressure (for example, at least 60 kg / cm 2 for nylon 66 in order to reduce the variation in single fiber fineness and suppress the occurrence of fluff during weaving, It is preferable to design to 80-120 kg / cm < 2 >). Further, the discharge holes are arranged on concentric circles, and the number of rows is preferably 2 to 8 rows, more preferably 3 to 6 rows. If the number of rows is too small, the distance between single fibers will be too small, the single fibers will collide with each other during spinning, and if bad, they will be fused, and if too large, the physical properties between single fibers due to cooling spots will increase, which is preferable. Absent. Moreover, although the diameter when connecting each discharge hole arranged in the outermost periphery as a concentric circle is made smaller than the internal diameter of a heating cylinder or an annular cooling device, it is preferably 8 to 25 mm, more preferably 10 to 20 mm. If the position of the outermost hole is too close to the heating cylinder or the annular cooling device, the multifilament yarn before solidification tends to come into contact with the device and spinning becomes unstable, and if too far, cooling of the multifilament yarn is not possible. It becomes sufficient, and it becomes difficult to obtain a polyamide multifilament yarn having high strength and high elongation.

口金より吐出された紡出マルチフィラメント糸は、円筒状の加熱筒と円筒状の環状冷却装置を順次通過させることで冷却固化を完了させる。単繊維繊度が1.5dtex以上であれば加熱筒を使用してもしなくてもよいが、使用する場合は筒内径を環状冷却装置と同じにすることで筒内の加熱筒と冷却装置の接触箇所での空気流の乱れを防止することが好ましく、50〜100mmの長さで筒内の雰囲気温度が250〜350℃となるように加熱した後、環状冷却装置を用いて冷却することが好ましい。加熱筒長が長すぎるとポリアミドマルチフィラメント糸の長手方向の太さ斑が大きく悪化するので好ましくない。一方、単繊維繊度が1.5dtex未満の場合は、加熱筒を使用せずに環状冷却装置を設置して、紡出糸条をより早く冷却させ始めることで糸長手方向の太さ斑が極端に悪化するのを防ぐことが好ましいが、その際、口金面を冷やして口金面温度が低下すると、高強度・高伸度のポリアミドマルチフィラメント糸を得難くなるため、環状冷却装置の最上部から100mm以内の一定の長さで、100〜250℃の熱風を吹き出すようにすることが好ましい。環状冷却装置によるマルチフィラメント糸の冷却においては、ポリアミドをガラス転移点まで十分に冷却できるように10〜50℃の冷却風を用いることが好ましい。環状冷却装置の基本構成は公知のものを用いればよい。例えば、多数の毛細管状の孔を有する多孔質の部材から筒体を構成し、冷却筒内部に送られた冷却風が冷却風の吹出箇所からマルチフィラメント糸の長手方向へ整流されつつ吹き出されるようにすればよい。また、冷却風速を調節するために、例えば、冷却筒エレメントのエア導入部にパンチング状のプレートやメッシュなど多孔質部材を設置することが好ましい。本発明のエアバッグ用基布を構成する高強度・高伸度な単繊維細繊度のポリアミドマルチフィラメント糸、特にナイロン66マルチフィラメント糸を得るには、以下の特徴を有する構成とすることが好ましい。   The spun multifilament yarn discharged from the die is sequentially cooled and solidified by sequentially passing through a cylindrical heating tube and a cylindrical annular cooling device. If the single fiber fineness is 1.5 dtex or more, the heating cylinder may or may not be used, but when used, the inner diameter of the cylinder is made the same as that of the annular cooling device, so that the heating cylinder in the cylinder contacts the cooling device. It is preferable to prevent turbulence of the air flow at the location, and it is preferable to cool it using an annular cooling device after heating it so that the atmospheric temperature in the cylinder becomes 250 to 350 ° C. with a length of 50 to 100 mm. . If the heating cylinder length is too long, the thickness unevenness in the longitudinal direction of the polyamide multifilament yarn is greatly deteriorated, which is not preferable. On the other hand, when the single fiber fineness is less than 1.5 dtex, an annular cooling device is installed without using a heating cylinder, and cooling of the spun yarn is started more quickly so that the thickness unevenness in the longitudinal direction of the yarn is extreme. However, if the base surface temperature is lowered and the base surface temperature is lowered, it becomes difficult to obtain a polyamide multifilament yarn having high strength and high elongation. It is preferable to blow hot air of 100 to 250 ° C. at a constant length within 100 mm. In the cooling of the multifilament yarn by the annular cooling device, it is preferable to use a cooling air of 10 to 50 ° C. so that the polyamide can be sufficiently cooled to the glass transition point. A basic configuration of the annular cooling device may be used. For example, a cylindrical body is constituted by a porous member having a large number of capillary holes, and the cooling air sent into the cooling cylinder is blown out while being rectified in the longitudinal direction of the multifilament yarn from the cooling air blowing portion. What should I do? In order to adjust the cooling air speed, for example, it is preferable to install a porous member such as a punched plate or mesh in the air introduction portion of the cooling cylinder element. In order to obtain a high-strength and high-strength single-fiber fine-filament polyamide multifilament yarn, particularly nylon 66 multifilament yarn, which constitutes the airbag fabric of the present invention, it is preferable to have the following characteristics. .

冷却風は吐出孔群の外周側から中心側へ吹き出すようにする。この構成とすることで、ポリエステル系に比べ、冷却難度の高いポリアミドマルチフィラメント糸を充分に冷却するだけの冷却風を供給することができる。中心側から外周側へ吹き出す構成とした場合、本発明のポリアミドマルチフィラメント糸を得るには単繊維が必要以上に外側へ張り出すため、あるいは過度に長い冷却設備が必要となるため、設備の大型化を招くことになり好ましくない。   The cooling air is blown from the outer peripheral side of the discharge hole group to the center side. By adopting this configuration, it is possible to supply cooling air sufficient to sufficiently cool the polyamide multifilament yarn having a high degree of cooling difficulty as compared with the polyester type. When the structure is blown from the center side to the outer peripheral side, in order to obtain the polyamide multifilament yarn of the present invention, since the single fiber protrudes more than necessary, or an excessively long cooling facility is required, the size of the facility is large. This is not preferable because it leads to inconvenience.

冷却筒の長さは、従来提案されている環状冷却設備より相当に長く、冷却風の吹出し長さが600〜1200mmの範囲にすることが好ましく、より好ましくは800〜1000mmである。600mm以上であれば本発明のポリアミドマルチフィラメント糸を充分に冷却することができ、良好な機械的特性および毛羽品位等を得ることができる。1200mm以下であれば、設備自体が長くなりすぎず好ましい。   The length of the cooling cylinder is considerably longer than the conventionally proposed annular cooling equipment, and the blowout length of the cooling air is preferably in the range of 600 to 1200 mm, more preferably 800 to 1000 mm. If it is 600 mm or more, the polyamide multifilament yarn of the present invention can be sufficiently cooled, and good mechanical properties and fluff quality can be obtained. If it is 1200 mm or less, the equipment itself is not too long, which is preferable.

冷却筒内と大気圧との差圧は、好ましくは500〜1200Paであり、より好ましくは600〜1100Pa、さらに好ましくは800〜1000Paとなるように加圧して冷却風を送風することが好ましい。従来の横吹出し冷却装置を用いた場合、冷却風を弱めてマルチフィラメント糸の機械的特性が低下すると毛羽品位も悪化する傾向にあった。ところが環状冷却装置を用いた場合、該差圧が本発明のポリアミドマルチフィラメントの物性に与える影響は小さく、例えば200Pa程度でも延伸倍率の調整のみで機械的特性を調節することができるが、意外にも500Pa以上とすることで毛羽の発生が著しく抑えられることがわかった。また、1200Pa以下とすると、風速が大きくなりすぎず、糸同士の接触を防ぎやすくなるため好ましい。   The pressure difference between the inside of the cooling cylinder and the atmospheric pressure is preferably 500 to 1200 Pa, more preferably 600 to 1100 Pa, still more preferably 800 to 1000 Pa, and the cooling air is preferably blown. In the case of using a conventional horizontal blow cooling device, the fluff quality tends to deteriorate when the cooling air is weakened and the mechanical properties of the multifilament yarn are lowered. However, when an annular cooling device is used, the effect of the differential pressure on the physical properties of the polyamide multifilament of the present invention is small. For example, even if it is about 200 Pa, the mechanical properties can be adjusted only by adjusting the draw ratio. It was also found that the occurrence of fluff can be remarkably suppressed by setting the pressure to 500 Pa or more. Moreover, when it is set to 1200 Pa or less, the wind speed does not increase excessively and it is easy to prevent contact between yarns, which is preferable.

また、該装置長手方向に対する冷却風の風速は不均一で、上部側風速Vを10〜30m/分、下部側風速Vを40〜80m/分とし、VがVより小さく、V/Vが2〜3であることが好ましい。より好ましいVとVの範囲はそれぞれ15〜25m/分、50〜70m/分である。装置長手方向で少なくとも2段階の大きな風速比率変更を行い、前記風速範囲とすることで、マルチフィラメント糸長手方向の太さ斑が悪化することなく繊維物性を向上させることができる。特に上部側で徐冷効果を生み出すことによって、マルチフィラメント糸のタフネス性が向上し、同一強度とした場合の伸度が2〜5%程度変化する。このような風速比率の変更に関しては、冷却風吹出し部の最上部から全長の10〜50%程度の位置で変更させることが好ましく、より好ましくは15〜45%である。その手段としては、冷却筒の外筒と多孔質部材からなる整流筒の間で、比率を変更したい位置にドーナツ状の多孔質部材を設置することで、該位置を境界に筒中の上下間にさらに差圧を与え、上下の風速を変更する手段や、冷却装置自体を2段構成としてそれぞれの筒内と大気圧との差圧を調節する手段などが考えられるが、いずれの方法を用いても問題はない。
従来の横吹出し冷却設備を用いて総繊度200〜700dtex、単繊維繊度1〜2dtexのポリアミドマルチフィラメント糸を製造しようとした場合は、紡出部での糸揺れが激しくなりすぎ、単繊維同士の接触を抑えることができなかったのに対し、前記した方法では、マルチフィラメント糸固化前の冷却風の風速を小さくしても冷却風と紡出マルチフィラメント糸との距離が近いため、冷却不足とはならず、かつエアがぶつかりあって下降気流を形成し、冷却風の水平方向速度成分を大きく低下させることができるため、糸揺れを抑えながら製糸可能になるものと推察される。
Further, the wind speed of the cooling air to said device longitudinally uneven, the upper side air speed V U 10 to 30 m / min, to 40 to 80 m / min the lower side air speed V L, V U is less than V L, V it is preferable L / V U is 2-3. More preferable ranges of V U and V L are 15 to 25 m / min and 50 to 70 m / min, respectively. By changing the wind speed ratio in at least two stages in the longitudinal direction of the apparatus and setting the wind speed range, the fiber physical properties can be improved without deteriorating the thickness unevenness in the longitudinal direction of the multifilament yarn. In particular, by producing a slow cooling effect on the upper side, the toughness of the multifilament yarn is improved, and the elongation at the same strength changes by about 2 to 5%. With regard to such a change in the wind speed ratio, it is preferable to change the position at about 10 to 50% of the total length from the uppermost part of the cooling air blowing part, and more preferably 15 to 45%. As a means for this, by installing a donut-shaped porous member at a position where the ratio is to be changed between the outer cylinder of the cooling cylinder and the rectifying cylinder made of the porous member, the position is used as a boundary between the upper and lower parts of the cylinder. In addition, a means for changing the wind speed above and below by giving a differential pressure, and a means for adjusting the differential pressure between each cylinder and the atmospheric pressure with a two-stage cooling device itself can be considered. There is no problem.
When trying to produce a polyamide multifilament yarn having a total fineness of 200 to 700 dtex and a single fiber fineness of 1 to 2 dtex using a conventional horizontal blowing cooling facility, the yarn swinging at the spinning part becomes too intense, While the contact could not be suppressed, in the above-described method, the cooling air and the spun multifilament yarn are close to each other even if the cooling wind speed before solidification of the multifilament yarn is reduced. In addition, air collides with each other to form a descending air flow, and the horizontal velocity component of the cooling air can be greatly reduced. Therefore, it is presumed that the yarn can be produced while suppressing the yarn shaking.

その後、得られた冷却マルチフィラメント糸は公知の方法で油剤を付与し、引き取りロールで引き取り、延伸した後巻き取ることができる。油剤は公知の油剤を用いることができるが、引き取りロール上での単糸巻き付きを抑制するために、その付着量は0.3〜1.5重量%が好ましく、さらに好ましくは0.5〜1.0重量%である。   Thereafter, the obtained cooled multifilament yarn can be wound after being applied with an oil agent by a known method, taken up by a take-up roll, stretched, and then wound. As the oil agent, a known oil agent can be used. In order to suppress winding of the single yarn on the take-up roll, the adhesion amount is preferably 0.3 to 1.5% by weight, and more preferably 0.5 to 1%. 0.0% by weight.

また、引き取りロールの回転速度で定義される紡糸速度が500〜1000m/分であることが好ましく、より好ましくは700〜900m/分である。紡糸速度が500m/分以上であると、最終的な生産速度も充分となり、安価にポリアミドマルチフィラメント糸を製造できる。1000m/分以下とすると、糸切れや毛羽の多発を防ぐことができ好ましい。   The spinning speed defined by the rotation speed of the take-up roll is preferably 500 to 1000 m / min, more preferably 700 to 900 m / min. When the spinning speed is 500 m / min or more, the final production speed is sufficient, and a polyamide multifilament yarn can be produced at a low cost. When the speed is 1000 m / min or less, yarn breakage and frequent occurrence of fluff can be prevented, which is preferable.

これら前記した方法で得られた紡出マルチフィラメント糸は、公知の方法を用いて延伸や弛緩熱処理、および巻取り等を行うことができ、例えば、2〜3段で100〜250℃の多段延伸熱処理を施した後、1〜10%で50〜200℃の弛緩熱処理を施すこと等が可能である。   The spun multifilament yarn obtained by these methods can be stretched, relaxed and heat-treated and wound using a known method, for example, multistage stretching at 100 to 250 ° C. in 2 to 3 stages. After heat treatment, it is possible to perform relaxation heat treatment at 50 to 200 ° C. at 1 to 10%.

また、マルチフィラメント糸に付与する交絡は織機の種類や製織速度にあわせ適宜選択することができるが、本発明による方法であれば過度に交絡を施す必要はなく、15〜30個/mの交絡数が得られるように、交絡付与装置の種類や付与条件を変更すればよい。15個/mを大きく下回っても30個/mを上回っても、高次工程通過性は悪化する傾向となる。同様に交絡の強度も公知の範囲のものを用いればよい。   In addition, the entanglement to be applied to the multifilament yarn can be appropriately selected according to the type of loom and the weaving speed. However, if the method according to the present invention is used, it is not necessary to entangle excessively and entanglement of 15 to 30 pieces / m. What is necessary is just to change the kind and provision conditions of a confounding provision apparatus so that a number may be obtained. Even if it greatly falls below 15 pieces / m or exceeds 30 pieces / m, the high-order process passability tends to deteriorate. Similarly, the entanglement strength may be within a known range.

こうして、従来提案された方法では製糸できなかった総繊度200〜700dtexで単繊維繊度が1〜2dtexのエアバッグ用に適したポリアミドマルチフィラメント糸を、好ましくは強度8〜9cN/dtex、伸度20〜25%、沸騰水収縮率4〜10%で糸斑なく、安価にかつ優れた製糸性や毛羽品位で得ることが可能となる。すなわち、直接紡糸延伸法により、製糸速度3000m/分以上で、より好ましくは3500m/分以上で、かつ8糸条以上の多糸条同時延伸法を用いて効率良く生産することができる。     Thus, a polyamide multifilament yarn suitable for an air bag having a total fineness of 200 to 700 dtex and a single fiber fineness of 1 to 2 dtex, which could not be produced by a conventionally proposed method, preferably has a strength of 8 to 9 cN / dtex and an elongation of 20 It is possible to obtain -25%, boiling water shrinkage of 4 to 10%, free from yarn unevenness, inexpensively and with excellent yarn-making properties and fluff quality. That is, by the direct spinning drawing method, the yarn can be efficiently produced using a multi-yarn simultaneous drawing method of 8 yarns or more at a spinning speed of 3000 m / min or more, more preferably 3500 m / min or more.

本発明のエアバッグ用織物は、まず、前述した素材および繊度のタテ糸を整経して織機にかけ、同様にヨコ糸の準備をする。かかる織機としては例えば、ウォータージェットルーム、エアージェットルームおよびレピアルームなどが使用可能である。中でも生産性を高めるためには、高速製織が比較的容易なウォータージェットルームを用いるのが好ましい。   In the airbag fabric of the present invention, first, the warp yarn having the above-mentioned material and fineness is warped and applied to a loom, and the weft yarn is similarly prepared. As such a loom, for example, a water jet room, an air jet room, a rapier room, and the like can be used. In particular, in order to increase productivity, it is preferable to use a water jet loom which is relatively easy to weave at high speed.

次に、製織においてタテ糸張力を50〜200cN/本に調整して行うことが好ましく、より好ましくは80〜150cN/本である。該張力をこの範囲内にすることで、織物を構成するタテ糸のマルチフィラメント糸の糸束がヨコ糸のマルチフィラメント糸を押し付けマルチフィラメント糸の糸束が広がり、楕円状の糸束になるので、通気度を低減させるには効果的ではある。タテ糸張力が50cN/本よりも小さいと、織物を構成するマルチフィラメント糸の糸束中の単繊維間空隙を減少させることができず、通気度を低減させにくくなる。また、200cN/本よりも大きいと、製織時に毛羽などが発生し、生産性の面でよくない。   Next, in the weaving, the warp yarn tension is preferably adjusted to 50 to 200 cN / line, more preferably 80 to 150 cN / line. By setting the tension within this range, the multifilament yarn bundle of warp yarns constituting the fabric is pressed against the multifilament yarn of the weft yarn, and the multifilament yarn bundle spreads to become an elliptical yarn bundle. It is effective to reduce the air permeability. When the warp yarn tension is less than 50 cN / string, it is difficult to reduce the gap between single fibers in the bundle of multifilament yarns constituting the woven fabric, and it is difficult to reduce the air permeability. On the other hand, if it is larger than 200 cN / fiber, fluffing occurs during weaving, which is not good in terms of productivity.

該タテ糸張力を上記範囲内に調整する具体的方法としては、織機のタテ糸送り出し速度を調整する他、ヨコ糸の打ち込み速度を調整する方法が挙げられる。タテ糸張力が製織中に実際に上記範囲内となっているかどうかは、例えば織機稼動中に経糸ビームとバックローラーとの中間において、タテ糸一本当たりに加わる張力を張力測定器で測ることにより、確認することができる。   As a specific method of adjusting the warp yarn tension within the above range, there is a method of adjusting the weft yarn feeding speed in addition to adjusting the warp yarn feeding speed of the loom. Whether the warp yarn tension is actually within the above range during weaving can be determined, for example, by measuring the tension applied to one warp yarn with a tension measuring instrument between the warp beam and the back roller while the loom is running. Can be confirmed.

また、タテ糸開口における上糸の張力と下糸の張力とに10〜90%の差をつけることが好ましい。そうすることで、前述のタテ糸の曲がり構造が助長され、タテ糸とヨコ糸とが互いに強く押さえつけられてマルチフィラメント糸の糸束が広がり、楕円状の糸束になるので、通気度を低減させるには効果的ではある。   Further, it is preferable to make a difference of 10 to 90% between the tension of the upper thread and the tension of the lower thread in the warp thread opening. By doing so, the above-described warp yarn bending structure is promoted, the warp yarn and the weft yarn are pressed against each other strongly, the yarn bundle of the multifilament yarn spreads and becomes an elliptical yarn bundle, thereby reducing the air permeability. It is effective to make it.

タテ糸開口における上糸の張力と下糸の張力とに差をつける方法としては例えば、バックローラーを高めの位置に設置するなどして、上糸の走行線長と下糸の走行線長とに差をつける方法がある。例えば、バックローラーと綜絖との間にガイドロールを配し、このガイドロールにより開口支点をワープラインから上または下にずらすことで、開口時に片方の糸の走行線長が他方に比べ長くなる分、張力が上がり、上糸の張力と下糸の張力とに差をつけることが可能になる。ガイドロールの設置位置としては、バックローラーと綜絞との間隔に対しバックローラー側から20〜50%の位置に配置することが好ましい。また、開口支点の位置はワープラインから5cm以上離すことが好ましい。   As a method of making a difference between the tension of the upper thread and the tension of the lower thread at the warp thread opening, for example, by setting the back roller at a higher position, the upper thread traveling line length and the lower thread traveling line length There is a way to make a difference. For example, by placing a guide roll between the back roller and the reed and shifting the opening fulcrum upward or downward from the warp line with this guide roll, the running line length of one yarn is longer than the other when opening. As a result, the tension increases and it becomes possible to make a difference between the tension of the upper thread and the tension of the lower thread. As the installation position of the guide roll, it is preferable to arrange the guide roll at a position of 20 to 50% from the back roller side with respect to the interval between the back roller and the wrinkle drawing. The position of the opening fulcrum is preferably 5 cm or more away from the warp line.

また、上糸の張力と下糸の張力とに差をつける他の方法としては例えば、開口装置にカム駆動方式を採用し、上糸・下糸の片側のドエル角を他方よりも100度以上大きく取る方法もある。ドエル角を大きくした方の張力が高くなる。   In addition, as another method for making a difference between the tension of the upper thread and the tension of the lower thread, for example, a cam drive system is adopted for the opening device, and the dwell angle on one side of the upper thread / lower thread is 100 degrees or more than the other. There is also a way to take large. The tension increases when the dwell angle is increased.

織機のテンプルとしては、バーテンプルを用いることが好ましい。バーテンプルを用いると、織前全体を把持しながら筬打ちすることができるため、合成繊維フィラメント同士の空隙を小さくすることができ、その結果低通気性が向上するからである。   It is preferable to use a bar temple as the loom temple. This is because, when the bar temple is used, it is possible to beat the entire fabric before gripping, so that the gap between the synthetic fiber filaments can be reduced, and as a result, the low air permeability is improved.

次に製織工程が終わると、必要に応じて、精練、熱セット等の加工を施す。熱セット温度については120℃以上180℃以下とすることが好ましい。120℃未満であると耐熱老化試験時に織物が収縮し、織物構造が変化するため、タテ糸とヨコ糸が交錯する部分に隙間が発生し、耐熱老化試験後の通気度悪化を引き起こす。一方、180℃より大きいと、熱セット加工時に織物中の糸が収縮し、タテ糸とヨコ糸が交錯する部分に隙間が発生し、初期通気度自身の悪化を引き起こす。   Next, when the weaving process is finished, processing such as scouring and heat setting is performed as necessary. About heat setting temperature, it is preferable to set it as 120 to 180 degreeC. When the temperature is less than 120 ° C., the fabric shrinks during the heat aging test, and the fabric structure changes. Therefore, a gap is generated at a portion where the warp yarn and the weft yarn cross, and the air permeability deteriorates after the heat aging test. On the other hand, when the temperature is higher than 180 ° C., the yarn in the woven fabric contracts at the time of heat setting, and a gap is generated at a portion where the warp yarn and the weft yarn intersect, thereby causing deterioration of the initial air permeability itself.

本発明のエアバッグ用織物は、袋状に縫製し、インフレーターなどの付属機器を取り付けてエアバッグとし、運転席用、助手席用および後部座席用、側面用エアバッグなどに使用することができる。   The airbag fabric of the present invention is sewn into a bag shape and attached to an accessory such as an inflator to form an airbag, which can be used for a driver's seat, front passenger seat, rear seat, side airbag, etc. .

以下、実施例により本発明を詳細に説明する。本発明における各特性の定義および測定法は以下の通りである。
[測定方法]
(1)総繊度:JIS L1013(1999) 8.3.1 A法により、所定荷重0.045cN/dtexで正量繊度を測定して総繊度とした。
Hereinafter, the present invention will be described in detail by way of examples. The definition of each characteristic and the measuring method in the present invention are as follows.
[Measuring method]
(1) Total fineness: JIS L1013 (1999) 8.3.1 The positive fineness was measured at a predetermined load of 0.045 cN / dtex by the A method to obtain the total fineness.

(2)単繊維数(フィラメント数):JIS L1013(1999) 8.4の方法で算出した。   (2) Number of single fibers (number of filaments): Calculated by the method of JIS L1013 (1999) 8.4.

(3)単繊維繊度:総繊度を、上記(2)で求めた単繊維数で除することで算出した。   (3) Single fiber fineness: It was calculated by dividing the total fineness by the number of single fibers obtained in (2) above.

(4)強度及び伸度:JIS L1013 8.5.1標準時試験に示される定速伸長条件で測定した。試料をオリエンテック社製“テンシロン”(TENSILON)UCT−100を用い、掴み間隔は25cm、引張り速度は30cm/分で行った。なお、伸度はS−S曲線における最大強力を示した点の伸びから求めた。   (4) Strength and elongation: Measured under constant speed elongation conditions shown in JIS L1013 8.5.1 standard time test. The sample was “TENSILON” UCT-100 manufactured by Orientec Co., Ltd., and the gripping interval was 25 cm and the pulling speed was 30 cm / min. In addition, elongation was calculated | required from elongation of the point which showed the maximum strength in a SS curve.

(5)沸騰水収縮率:原糸をカセ状にサンプリングして、20℃、65%RHの温湿度調整室で24時間以上調整し、試料に0.045cN/dtex相当の荷重をかけて長さLを測定した。次に、この試料を無緊張状態で沸騰水中に30分間浸漬した後、上記温湿度調整室で4時間風乾し、再び試料に0.045cN/dtex相当の荷重をかけて長さLを測定した。それぞれの長さLおよびLから次式により沸騰水収縮率を求めた。
沸騰水収縮率=[(L−L)/L]×100(%)
(6)毛羽評価:得られた繊維パッケージを500m/分の速度で巻き返し、巻き返し中のマルチフィラメント糸から2mm離れた箇所にヘバーライン社製レーザー式毛羽検知機“フライテックV”を設置し、検知された毛羽総数を10万mあたりの個数に換算して表示した。
(5) Boiling water shrinkage ratio: Sampling the raw yarn in a crushed shape, adjusting the temperature in a temperature / humidity adjustment chamber at 20 ° C. and 65% RH for 24 hours or longer, and applying a load equivalent to 0.045 cN / dtex to the sample for a long time The thickness L 0 was measured. Next, after immersing the sample in boiling water for 30 minutes in an unstrained state, the sample was air-dried for 4 hours in the temperature / humidity adjusting chamber, and a length L 1 was measured by applying a load equivalent to 0.045 cN / dtex to the sample again. did. The boiling water shrinkage was calculated from the respective lengths L 0 and L 1 according to the following equation.
Boiling water shrinkage = [(L 0 −L 1 ) / L 0 ] × 100 (%)
(6) Fluff evaluation: The obtained fiber package was rewound at a speed of 500 m / min, and a laser type fluff detector “Flytec V” manufactured by Heberline was installed at a location 2 mm away from the multifilament yarn being rewound, and detected. The total number of fluffs converted was displayed in terms of the number per 100,000 m.

(7)風速:カノマックス(KANOMAX)社製アネモマスターを各測定点で冷却風吹出部に密着させ測定した。測定点は冷却風吹出部を構成する筒体の上端部より0、50、100mmの位置と100mm以上は100mm毎に筒体の下端部まで、それぞれ円周方向に90度ずつ角度を変え4点測定し、この4点の風速平均を冷却風吹出部上端部からの各距離での風速とした。次いで、上下風速を設備的対応で変更した場合は、該変更位置で上部側と下部側に線引きし、意図的な風速比率変更を行わない場合は、上端部より300mmの位置で上部側と下部側に線引きし、区間風速積分を各有効冷却長で除することによってVとVをそれぞれ求めた。 (7) Wind speed: An anemono master manufactured by KANOMAX was closely attached to the cooling air outlet at each measurement point. The measuring points are 0, 50, 100 mm from the upper end of the cylinder constituting the cooling air outlet, and every 100 mm up to the lower end of the cylinder every 100 mm, changing the angle by 90 degrees in the circumferential direction. The wind speed average of these four points was taken as the wind speed at each distance from the upper end of the cooling air blowing section. Next, when the vertical wind speed is changed due to equipment, the upper side and the lower side are drawn at the changed position, and when the intentional change of the wind speed ratio is not performed, the upper side and the lower side at a position 300 mm from the upper end. drawn to the side, it was determined respectively V U and V L by dividing the interval wind speed integrated by the effective cooling length.

例えば、筒体上端部よりa(mm)の位置の風速をVa(m/分)、冷却風吹出し長さをL(mm)とすると、350mmの位置で意図的に風速比率を変更させた場合の算出法は下記のとおりとなる。
=[50(V+2V50+V100)+100(V100+V200)+150(V200+V300)]/2/350
=[150(V400+V500)+100(V500+V600)+・・・]/2/(L−350)
なお、・・・は600mm以降で最大測定点まで同様に計算して足しあわせることを意味する。
For example, when the wind speed at the position a (mm) from the upper end of the cylinder is Va (m / min) and the cooling air blowing length is L (mm), the wind speed ratio is intentionally changed at a position of 350 mm. The calculation method of is as follows.
V U = [50 (V 0 + 2V 50 + V 100) +100 (V 100 + V 200) +150 (V 200 + V 300)] / 2/350
V L = [150 (V 400 + V 500 ) +100 (V 500 + V 600 ) +...] / 2 / (L−350)
Note that... Means that the maximum measurement point is similarly calculated and added after 600 mm.

(8)織物厚さ
JIS L 1096:1999 8.5に則り、試料の異なる5か所について厚さ測定機を用いて、23.5kPaの加圧下、厚さを落ち着かせるために10秒間待った後に厚さを測定し、平均値を算出した。
(8) Fabric thickness According to JIS L 1096: 1999 8.5, using a thickness measuring device at five different points of the sample, after waiting for 10 seconds under pressure of 23.5 kPa to settle the thickness The thickness was measured and the average value was calculated.

(9)タテ糸・ヨコ糸の織密度
JIS L 1096:1999 8.6.1に基づき測定した。
試料を平らな台上に置き、不自然なしわや張力を除いて、異なる5か所について2.54cmの区間のタテ糸およびヨコ糸の本数を数え、それぞれの平均値を算出した。
(9) Weft density of warp and weft yarns Measured based on JIS L 1096: 1999 8.6.1.
The sample was placed on a flat table, and the number of warp yarns and weft yarns in a 2.54 cm section was counted at five different locations, excluding unnatural wrinkles and tension, and the average value was calculated.

(10)織物目付け
JIS L 1096:1999 8.4.2に則り、20cm×20cmの試験片を3枚採取し、それぞれの質量(g)を量り、その平均値を1m当たりの質量(g/m)で表した。
(10) Fabric weighting In accordance with JIS L 1096: 1999 8.4.2, three test pieces of 20 cm × 20 cm were collected, each mass (g) was measured, and the average value was the mass per 1 m 2 (g / M 2 ).

(11)織物の引張強力
JIS K 6404−3 6.試験方法B(ストリップ法)に則り、タテ方向及びヨコ方向のそれぞれについて、試験片を5枚ずつ採取し、幅の両側から糸を取り除いて幅30mmとし、定速緊張型の試験機にて、つかみ間隔150mm、引張速度200mm/minで試験片が切断するまで引っ張り、切断に至るまでの最大荷重を測定し、タテ方向及びヨコ方向のそれぞれについて平均値を算出した。
(11) Tensile strength of woven fabric JIS K 6404-3 In accordance with test method B (strip method), for each of the vertical and horizontal directions, five test pieces were collected, the yarn was removed from both sides of the width to a width of 30 mm, and a constant speed tension type testing machine, The test piece was pulled at a grip interval of 150 mm and a tensile speed of 200 mm / min, and the maximum load until cutting was measured, and the average value was calculated for each of the vertical and horizontal directions.

(12)織物の破断伸度
JIS K 6404−3 6.試験方法B(ストリップ法)に則り、タテ方向及びヨコ方向のそれぞれについて、試験片を5枚ずつ採取し、幅の両側から糸を取り除いて幅30mmとし、これら試験片の中央部に100mm間隔の標線を付け、定速緊張型の試験機にて、つかみ間隔150mm、引張速度200mm/minで試験片が切断するまで引っ張り、切断に至るときの標線間の距離を読み取り、下記式によって、破断伸度を算出し、タテ方向及びヨコ方向のそれぞれについて平均値を算出した。
E=[(L−100)/100]×100
ここに、E:破断伸度(%)、
L:切断時の標線間の距離(mm)。
(12) Elongation at break of fabric JIS K 6404-3 In accordance with test method B (strip method), for each of the vertical direction and the horizontal direction, five test pieces are sampled, the thread is removed from both sides of the width to make a width of 30 mm, and 100 mm intervals are provided at the center of these test pieces. With a marked line, with a constant-speed tension type testing machine, pull until the specimen is cut at a grip interval of 150 mm and a pulling speed of 200 mm / min, read the distance between the marked lines when reaching the cutting, The breaking elongation was calculated, and the average value was calculated for each of the vertical and horizontal directions.
E = [(L-100) / 100] × 100
Where E: elongation at break (%),
L: Distance (mm) between marked lines at the time of cutting.

(13)引裂強力
JIS K 6404−4 6.試験方法B(シングルタング法)に準じ、長辺200mm、短辺76mmの試験片をタテ、ヨコ、両方にそれぞれ5個の試験片を採取し、試験片の短辺の中央に辺と直角に75mmの切込みを入れ、定速緊張型の試験機にてつかみ間隔75mm、引張速度200mm/minで試験片が引ききるまで引裂き、その時の引裂き荷重を測定した。得られた引裂き荷重のチャート記録線より、最初のピークを除いた極大点の中から大きい順に3点選び、その平均値をとった。最後にタテ方向及びヨコ方向のそれぞれについて、平均値を算出した。
(13) Tear strength JIS K 6404-4 According to test method B (single tongue method), test specimens with a long side of 200 mm and a short side of 76 mm were taken on the vertical and horizontal sides, respectively, and 5 specimens were collected respectively, and the test piece was perpendicular to the center of the short side. A 75 mm incision was made, and the specimen was torn with a constant speed tension type tester at a grip interval of 75 mm and a tensile speed of 200 mm / min until the specimen was pulled, and the tear load at that time was measured. From the obtained chart recording line of the tearing load, three points were selected from the maximum points excluding the first peak in descending order, and the average value was taken. Finally, an average value was calculated for each of the vertical and horizontal directions.

(14)初期通気度
JIS L 1096:1999 8.27.1 A法(フラジール形法)に準じて、試験差圧19.6kPaで試験したときの通気量を測定した。試料の異なる5か所から約20cm×20cmの試験片を採取し、口径100mmの円筒の一端に試験片を取り付け、取り付け箇所から空気の漏れが無いように固定し、レギュレーターを用いて試験差圧19.6kPaに調整し、そのときに試験片を通過する空気量を流量計で計測し、5枚の試験片についての平均値を算出した。
(14) Initial air permeability According to JIS L 1096: 1999 8.27.1 A method (Fragile type method), the air permeability when tested at a test differential pressure of 19.6 kPa was measured. Samples of about 20cm x 20cm are collected from 5 different locations of the sample, attached to one end of a cylinder with a diameter of 100mm, fixed so that there is no air leakage from the mounting location, and a test differential pressure using a regulator. It adjusted to 19.6 kPa, the air quantity which passes a test piece at that time was measured with the flowmeter, and the average value about five test pieces was computed.

(15)耐熱老化試験後の通気度
資料の異なる5か所から約20cm×20cmの試験片を採取し、120±2℃に温度調節した乾燥機中に、該試験片に張力がかからないようにして、400時間熱処理を施した。その後、該試験片を乾燥機から取り出し、20±2℃、65±5%RH雰囲気下で24時間放置後、初期通気度と同じ方法で通気度を測定し、5枚の試験片についての平均値を算出した。
(15) Air permeability after heat aging test Samples of about 20cm x 20cm are collected from 5 different locations and the tension is not applied to the test pieces in a dryer adjusted to 120 ± 2 ° C. Then, heat treatment was performed for 400 hours. Thereafter, the test piece was taken out from the dryer, and allowed to stand for 24 hours in an atmosphere of 20 ± 2 ° C. and 65 ± 5% RH. Then, the air permeability was measured by the same method as the initial air permeability, and the average of the five test pieces was measured. The value was calculated.

(16)タテ糸張力
金井工機(株)製チェックマスター(登録商標)(形式:CM−200FR)を用い、織機稼動中に経糸ビームとバックローラーの中央部分において、タテ糸一本当たりに加わる張力を測定した。
(16) Warp Thread Tension Using Check Master (registered trademark) (type: CM-200FR) manufactured by Kanai Koki Co., Ltd., the warp beam and the back roller are added per warp yarn at the center of the warp beam and back roller during operation. Tension was measured.

(17)タテ糸開口における上糸の張力・下糸の張力
タテ糸が開口した状態で織機を停止させ、バックローラーと綜絞との間(バックローラーと綜絖との間にガイドロールを配している場合には、ガイドロールと綜絞との間)において、上側にあるタテ糸一本あたりに加わる張力を上記(9)で用いたのと同様の張力測定機にて、上糸の張力として測定した。また同様にして、下側にあるタテ糸一本あたりに加わる張力を下糸の張力として測定した。
(17) Upper thread tension and lower thread tension at the warp yarn opening Stop the loom with the warp yarn open, and place a guide roll between the back roller and the squeezer (the back roller and the heel). If there is a tension between the guide roll and the wrinkle), the tension applied to the upper one warp thread is the same as the tension measuring machine used in (9) above. As measured. Similarly, the tension applied to one warp yarn on the lower side was measured as the tension of the lower yarn.

[実施例1]
(タテ糸・ヨコ糸)
液相重合で得られたナイロン66チップに酸化防止剤として酢酸銅の5重量%水溶液を添加して混合し、ポリマ重量に対し、銅として68ppm添加吸着させた。次に沃化カリウムの50重量%水溶液および臭化カリウムの20重量%水溶液をポリマチップ100重量部に対してそれぞれカリウムとして0.1重量部となるよう添加吸着させ、バッチ式固相重合装置を用いて固相重合させて硫酸相対粘度が3.8のナイロン66ペレットを得た。得られたナイロン66ペレットをエクストルーダへ供給し、計量ポンプにより総繊度が表1のマルチフィラメント糸を2本得るように吐出量を調節して紡糸口金に配し、295℃で溶融紡糸した。ここで、硫酸相対粘度は試料2.5gを96%濃硫酸25ccに溶解し、25℃恒温槽の一定温度下において、オストワルド粘度計を用いて測定した値である。各紡糸口金は、表1に示す単繊維数のマルチフィラメント糸を2糸条得ることのできる数、即ち表1に示す単繊維数の2倍の吐出孔が直径0.22mmで4つの同心円上に配置され、最外周の吐出孔群を同心円状に結んだときの直径は、加熱筒および冷却筒の内径より14mm小さいものを用いた。口金直下には300℃に加熱した100mmの加熱筒を設け、表1の冷却風吹出し長さを有する円筒状の環状冷却装置を用いて、20℃の冷却風を冷却筒内と大気圧との差圧が表1の値となるように加圧して送風し、紡出マルチフィラメント糸を冷却固化せしめた。冷却筒の冷却風吹出部を構成する筒体としては、厚さ4.6mmで濾過精度40μmの孔を有するフェノール樹脂含浸セルロースリボンを螺旋状に巻き付け筒状に成形した富士フィルター製“フジボン”を用いた。また、冷却筒の冷却風吹出部の上端から350mmの位置に、筒内上下での冷却風の速度を変更させるようにドーナツ状で開口率22.7%のパンチングプレートを配置した。冷却固化されたマルチフィラメント糸には、次に平滑剤等を有する非水系油剤を付与し、紡糸引き取りローラに捲回し、紡出マルチフィラメント糸を引き取った。引き続き、連続してマルチフィラメント糸を延伸・熱処理ゾーンに供給し、直接紡糸延伸法によりナイロン66マルチフィラメント糸を製造した。この際、最も回転速度の大きい延伸ローラの回転速度(以下、延伸速度)を3600m/分の一定速度とし、引取速度と延伸速度比で表される総合延伸倍率が表1に示される値となるように引き取りローラの回転速度を調節した。
[Example 1]
(Vertical / Horizontal)
A nylon 66 chip obtained by liquid phase polymerization was mixed with a 5 wt% aqueous solution of copper acetate as an antioxidant and adsorbed by 68 ppm as copper with respect to the polymer weight. Next, a 50 wt% aqueous solution of potassium iodide and a 20 wt% aqueous solution of potassium bromide were added and adsorbed to 100 parts by weight of the polymer chip to 0.1 parts by weight as potassium, respectively, and a batch type solid state polymerization apparatus was used. Thus, solid phase polymerization was performed to obtain nylon 66 pellets having a relative viscosity of sulfuric acid of 3.8. The obtained nylon 66 pellets were supplied to an extruder, and the amount of discharge was adjusted by a metering pump so that two multifilament yarns having a total fineness of Table 1 were obtained, which were arranged in a spinneret and melt-spun at 295 ° C. Here, the relative viscosity of sulfuric acid is a value obtained by dissolving 2.5 g of a sample in 25 cc of 96% concentrated sulfuric acid and using an Ostwald viscometer at a constant temperature in a thermostatic bath at 25 ° C. Each spinneret is capable of obtaining two multifilament yarns having the number of single fibers shown in Table 1, that is, four concentric circles having a diameter of 0.22 mm, which is twice the number of single fibers shown in Table 1. The diameter when the outermost discharge hole group was concentrically connected was 14 mm smaller than the inner diameter of the heating cylinder and the cooling cylinder. A 100 mm heating cylinder heated to 300 ° C. is provided immediately below the base, and using the cylindrical annular cooling device having the cooling air blowing length shown in Table 1, the cooling air at 20 ° C. is cooled between the inside of the cooling cylinder and the atmospheric pressure. The spun multifilament yarn was cooled and solidified by pressurizing and blowing so that the differential pressure was the value shown in Table 1. “Fujibon” manufactured by Fuji Filter, which was formed into a cylinder by spirally winding a phenolic resin-impregnated cellulose ribbon having a thickness of 4.6 mm and a filtration accuracy of 40 μm as the cylinder constituting the cooling air blowing part of the cooling cylinder. Using. Further, a punching plate having a donut shape and an aperture ratio of 22.7% was arranged at a position 350 mm from the upper end of the cooling air blowing portion of the cooling cylinder so as to change the speed of the cooling air in the upper and lower sides of the cylinder. Next, a non-aqueous oil agent having a smoothing agent or the like was applied to the cooled and solidified multifilament yarn, wound around a spinning take-up roller, and the spun multifilament yarn was taken up. Subsequently, the multifilament yarn was continuously supplied to the drawing / heat treatment zone, and a nylon 66 multifilament yarn was produced by a direct spinning drawing method. At this time, the rotation speed of the drawing roller having the highest rotation speed (hereinafter referred to as drawing speed) is set to a constant speed of 3600 m / min, and the overall drawing ratio expressed by the take-off speed and the drawing speed ratio is the value shown in Table 1. Thus, the rotation speed of the take-up roller was adjusted.

引き取られたマルチフィラメント糸は、引き取りローラと給糸ローラの間で5%のストレッチをかけ、次いで給糸ローラと第1延伸ローラの間で該ローラ間の回転速度比が2となるように1段目の延伸、第1延伸ローラと第2延伸ローラの間で2段目の延伸を行った。引き続き、第2延伸ローラと弛緩ローラとの間で6%の弛緩熱処理を施し、交絡付与装置にてマルチフィラメント糸を交絡処理した後、巻き取り機にて巻き取った。各ローラの表面温度は、引き取りローラが常温、給糸ローラが40℃、第1延伸ローラが140℃、第2延伸ローラは230℃、弛緩ローラが150℃となるように設定した。また、原糸付着油分量が1.0重量%となるように非水系油剤の付与量を調整した。交絡処理は、交絡付与装置内で走行マルチフィラメント糸に直角方向から高圧空気を噴射することにより行った。交絡付与装置の前後には走行マルチフィラメント糸を規制するガイドを設け、噴射する空気の圧力は0.35MPaで一定とした。
冷却筒内の上部側および下部側平均風速測定値を含む繊維製造条件と得られたナイロン66マルチフィラメント糸の特性を表1に示す。
The taken-up multifilament yarn is stretched by 5% between the take-up roller and the yarn feeding roller, and then 1 so that the rotational speed ratio between the rollers becomes 2 between the yarn feeding roller and the first drawing roller. Second-stage stretching was performed between the first stretching roller and the second stretching roller. Subsequently, a relaxation heat treatment of 6% was performed between the second drawing roller and the relaxation roller, the multifilament yarn was entangled with the entanglement imparting device, and then wound with a winder. The surface temperature of each roller was set so that the take-up roller was normal temperature, the yarn feeding roller was 40 ° C., the first stretching roller was 140 ° C., the second stretching roller was 230 ° C., and the relaxation roller was 150 ° C. Further, the application amount of the non-aqueous oil agent was adjusted so that the amount of oil adhering to the yarn became 1.0% by weight. The entanglement process was performed by injecting high-pressure air from the direction perpendicular to the traveling multifilament yarn in the entanglement imparting device. A guide for regulating the traveling multifilament yarn was provided before and after the entanglement imparting device, and the pressure of the jetted air was constant at 0.35 MPa.
Table 1 shows the fiber production conditions including the upper and lower average wind speed measurements in the cooling cylinder and the properties of the resulting nylon 66 multifilament yarn.

上記方法を用いて製糸したナイロン66マルチフィラメント糸の内50kgを500m/分の速度で巻き返し、レーザー式毛羽検知器を用いて繊維パッケージ内に存在する毛羽を調べた結果も同様に表1に示す。   Table 1 also shows the results obtained by winding 50 kg of nylon 66 multifilament yarn produced using the above method at a speed of 500 m / min and examining the fluff present in the fiber package using a laser type fluff detector. .

得られたナイロン66マルチフィラメント糸は、十分な機械的特性を有し、毛羽の少ないポリアミドマルチフィラメント糸を得ることができた。   The obtained nylon 66 multifilament yarn had sufficient mechanical properties, and a polyamide multifilament yarn with less fluff could be obtained.

Figure 2010111958
Figure 2010111958

得られたナイロン66からなり、円形の断面形状を有し、単繊維繊度1.8dtex、フィラメント数192、総繊度350dtex、無撚りで、強度8.5cN/dtex、伸度23.5%の合成繊維マルチフィラメント糸をタテ糸およびヨコ糸として用いた。   Composed of the obtained nylon 66, having a circular cross-sectional shape, a single fiber fineness of 1.8 dtex, a filament number of 192, a total fineness of 350 dtex, no twist, a strength of 8.5 cN / dtex, and an elongation of 23.5% Fiber multifilament yarn was used as warp and weft.

(製織工程)
上記タテ糸・ヨコ糸を用い、タテ糸の織密度が56本/2.54cm、ヨコ糸の織密度が63本/2.54cmの織物を製織した。
(Weaving process)
Using the warp yarn and the weft yarn, a woven fabric having a warp yarn weaving density of 56 yarns / 2.54 cm and a weft yarn weaving density of 63 yarns / 2.54 cm was woven.

織機としてはウォータージェットルームを用い、筬打ち部とフリクションローラーとの間にはバーテンプルを設置して織物を把持し、バックローラーと綜絞との間に、バックローラから40cmの位置で、ワープラインから7cmタテ糸を持ち上げるようにガイドロールを取り付けた構成とした。   A water jet loom is used as a loom, a bar temple is installed between the hammering portion and the friction roller to grip the fabric, and the warp is positioned at a position 40 cm from the back roller to the back roller. A guide roll was attached so as to lift the 7 cm warp yarn from the line.

製織条件としては、製織時のタテ糸張力を147cN/本、織機停止時の上糸の張力を118cN/本、下糸の張力を167cN/本となるように調整し、織機回転数は500rpmとした。   The weaving conditions were adjusted so that the warp yarn tension during weaving was 147 cN / main, the upper yarn tension when the loom was stopped was 118 cN / main, the lower yarn tension was 167 cN / main, and the loom rotation speed was 500 rpm. did.

(熱セット工程)
次いでこの織物に、引き続きピンテンター乾燥機を用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で160℃にて1分間の熱セット加工を施した。
(Heat setting process)
Subsequently, this fabric was subjected to a heat setting process at 160 ° C. for 1 minute using a pin tenter dryer under the dimensional regulation with a width insertion rate of 0% and an overfeed rate of 0%.

得られたエアバッグ用織物の特性を表2に示した。得られたエアバッグ用織物は初期の低通気性に優れ、かつ耐熱老化試験後の通気度変化も少ないものであった。   The characteristics of the obtained airbag fabric are shown in Table 2. The obtained air bag fabric was excellent in the initial low air permeability and had little change in air permeability after the heat aging test.

Figure 2010111958
Figure 2010111958

[比較例1]
(タテ糸・ヨコ糸)
1500mmの長さを有する横吹出し冷却装置から30m/分の冷却風を均一に吹き出させることによって、総繊度350dtexで単繊維数が136本のマルチフィラメント糸を延伸速度が3200m/分で2糸条得ることができるようにした。紡糸口金は、吐出孔間隔の最小値が7.5mmとなるように配列したものを用いて、表1の条件でナイロン66マルチフィラメント糸の製造をした以外は実施例1と同様にして行った。
[Comparative Example 1]
(Vertical / Horizontal)
By uniformly blowing a cooling air of 30 m / min from a horizontal blow cooling device having a length of 1500 mm, a multifilament yarn having a total fineness of 350 dtex and a single filament number of 136 is drawn at a drawing speed of 3200 m / min. To be able to get. A spinneret was prepared in the same manner as in Example 1 except that nylon 66 multifilament yarn was manufactured under the conditions shown in Table 1 using an array in which the minimum value of the discharge hole interval was 7.5 mm. .

得られたナイロン66からなり、円形の断面形状を有し、単繊維繊度2.6dtex、フィラメント数136、総繊度350dtex、無撚りで、強度8.5cN/dtex、伸度23.5%の合成繊維マルチフィラメント糸をタテ糸およびヨコ糸として用いた。   Composed of the obtained nylon 66, having a circular cross-sectional shape, a single fiber fineness of 2.6 dtex, a filament number of 136, a total fineness of 350 dtex, no twist, a strength of 8.5 cN / dtex, and an elongation of 23.5% Fiber multifilament yarn was used as warp and weft.

(製織工程および熱セット工程)
実施例1と同様の製織および熱セット加工を施した。
(Weaving process and heat setting process)
The same weaving and heat setting processing as in Example 1 was performed.

得られたエアバッグ用織物の特性を表2に示した。得られたエアバッグ用織物は、初期通気度が高く、かつ耐熱老化試験後の通気度変化も大きいものであった。   The characteristics of the obtained airbag fabric are shown in Table 2. The obtained airbag fabric had a high initial air permeability and a large change in air permeability after the heat aging test.

[比較例2]
(タテ糸・ヨコ糸)
実施例1で用いたのと同様のものをタテ糸・ヨコ糸とした。
[Comparative Example 2]
(Vertical / Horizontal)
The same yarns as those used in Example 1 were used as warp yarns and weft yarns.

(製織工程)
上記タテ糸・ヨコ糸を用い、実施例1と同様の製織条件で、タテ糸の織密度が56本/2.54cm、ヨコ糸の織密度が63本/2.54cmの織物を製織した。
(Weaving process)
Using the above warp yarn and weft yarn, under the same weaving conditions as in Example 1, a woven fabric having a warp yarn weaving density of 56 yarns / 2.54 cm and a weft yarn weaving density of 63 yarns / 2.54 cm was woven.

(熱セット工程)
次いでこの織物に、引き続きピンテンター乾燥機を用いて幅入れ率0%、オーバーフィード率0%の寸法規制の下で100℃にて1分間の熱セット加工を施した。
(Heat setting process)
Subsequently, this fabric was subjected to a heat setting process at 100 ° C. for 1 minute using a pin tenter dryer under the dimensional regulation of a width insertion rate of 0% and an overfeed rate of 0%.

得られたエアバッグ用織物の特性を表2に示した。得られたエアバッグ用織物は、初期通気度は問題ないが、耐熱老化試験後の通気度変化が大きいものであった。   The characteristics of the obtained airbag fabric are shown in Table 2. The obtained air bag fabric had no problem in the initial air permeability, but had a large change in air permeability after the heat aging test.

本発明によるエアバッグ用織物は、エアバッグ用織物に求められる優れた低通気性を有し、かつ長期間自動車内に装備された後でも優れた低通気性を維持する。そのため、本発明のエアバッグ用織物は、特に運転席用、助手席用、側面衝突用サイドエアバッグなどに好適に用いることができるが、その適用範囲がこれらに限られるものではない。   The airbag fabric according to the present invention has excellent low breathability required for airbag fabric, and maintains excellent low breathability even after being installed in an automobile for a long period of time. Therefore, the airbag fabric of the present invention can be suitably used particularly for a driver seat, a passenger seat, a side airbag for side collision, and the like, but the application range is not limited thereto.

Claims (2)

総繊度が200〜700dtex、単繊維繊度が1〜2dtexである合成繊維マルチフィラメント糸からなるエアバッグ用織物であって、該織物の初期通気度は試験差圧19.6kPaで測定した時に0.50L/cm2/min以下であり、かつ該織物を120℃の環境下で400時間熱老化処理を施した後の通気度が該初期通気度に対して150%以下であることを特徴とするノンコートエアバッグ用織物。 The airbag fabric is made of synthetic fiber multifilament yarn having a total fineness of 200 to 700 dtex and a single fiber fineness of 1 to 2 dtex, and the initial air permeability of the fabric is 0.00 when measured at a test differential pressure of 19.6 kPa. 50 L / cm 2 / min or less, and the air permeability after the fabric is subjected to heat aging treatment in an environment of 120 ° C. for 400 hours is 150% or less with respect to the initial air permeability. Non-coated airbag fabric. 前記熱老化処理を施した後の通気度が0.50L/cm2/min以下であることを特徴とする請求項1記載のノンコートエアバッグ用織物。 The non-coated airbag fabric according to claim 1, wherein the air permeability after the heat aging treatment is 0.50 L / cm 2 / min or less.
JP2008284046A 2008-11-05 2008-11-05 Non-coated airbag fabric Active JP5564780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008284046A JP5564780B2 (en) 2008-11-05 2008-11-05 Non-coated airbag fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008284046A JP5564780B2 (en) 2008-11-05 2008-11-05 Non-coated airbag fabric

Publications (2)

Publication Number Publication Date
JP2010111958A true JP2010111958A (en) 2010-05-20
JP5564780B2 JP5564780B2 (en) 2014-08-06

Family

ID=42300733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008284046A Active JP5564780B2 (en) 2008-11-05 2008-11-05 Non-coated airbag fabric

Country Status (1)

Country Link
JP (1) JP5564780B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984165A (en) * 2010-09-28 2011-03-09 杭州宏峰纺织集团有限公司 Uncoated automobile airbag fabric and preparation process thereof
WO2014098083A1 (en) * 2012-12-17 2014-06-26 旭化成せんい株式会社 Fabric for air bag
WO2014098082A1 (en) * 2012-12-17 2014-06-26 旭化成せんい株式会社 Woven fabric for air bag
WO2024009713A1 (en) * 2022-07-04 2024-01-11 東レ株式会社 Non-coated base fabric for airbag, method for manufacturing non-coated base fabric for airbag, and airbag

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119030A (en) * 1993-10-19 1995-05-09 Teijin Ltd Polyester calender-woven fabric for air bag and its production
JPH08199449A (en) * 1995-01-12 1996-08-06 Toray Ind Inc Fabric base for non-coated air bag and air bag
JP2000110049A (en) * 1998-07-27 2000-04-18 Toyobo Co Ltd Woven fabric for noncoated air bag, its production and apparatus for producing woven fabric for noncoated air bag
JP2002146646A (en) * 1998-07-27 2002-05-22 Toyobo Co Ltd Woven fabric for non-coated air bag and method for producing the same
JP2006183205A (en) * 2004-12-28 2006-07-13 Toray Ind Inc Base fabric for air bag
JP2007224486A (en) * 2006-01-30 2007-09-06 Toray Ind Inc Woven fabric for air bag, air bag and method for producing the woven fabric for air bag

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07119030A (en) * 1993-10-19 1995-05-09 Teijin Ltd Polyester calender-woven fabric for air bag and its production
JPH08199449A (en) * 1995-01-12 1996-08-06 Toray Ind Inc Fabric base for non-coated air bag and air bag
JP2000110049A (en) * 1998-07-27 2000-04-18 Toyobo Co Ltd Woven fabric for noncoated air bag, its production and apparatus for producing woven fabric for noncoated air bag
JP2002146646A (en) * 1998-07-27 2002-05-22 Toyobo Co Ltd Woven fabric for non-coated air bag and method for producing the same
JP2006183205A (en) * 2004-12-28 2006-07-13 Toray Ind Inc Base fabric for air bag
JP2007224486A (en) * 2006-01-30 2007-09-06 Toray Ind Inc Woven fabric for air bag, air bag and method for producing the woven fabric for air bag

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101984165A (en) * 2010-09-28 2011-03-09 杭州宏峰纺织集团有限公司 Uncoated automobile airbag fabric and preparation process thereof
WO2014098083A1 (en) * 2012-12-17 2014-06-26 旭化成せんい株式会社 Fabric for air bag
WO2014098082A1 (en) * 2012-12-17 2014-06-26 旭化成せんい株式会社 Woven fabric for air bag
KR20150070297A (en) 2012-12-17 2015-06-24 아사히 가세이 셍이 가부시키가이샤 Fabric for air bag
DE112013006024B4 (en) * 2012-12-17 2017-10-19 Asahi Kasei Kabushiki Kaisha Fabric for airbag
US9822471B2 (en) 2012-12-17 2017-11-21 Asahi Kasei Kabushiki Kaisha Woven fabric for airbags having superior suppression of air permeability, high tear strength, and excellent reliability
US9868413B2 (en) 2012-12-17 2018-01-16 Asahi Kasei Kabushiki Kaisha Fabric for an air bag that maintains air permeability during high-pressure deployment at high speed
US10259421B2 (en) 2012-12-17 2019-04-16 Asahi Kasei Kabushiki Kaisha Method of producing fabric for airbag
WO2024009713A1 (en) * 2022-07-04 2024-01-11 東レ株式会社 Non-coated base fabric for airbag, method for manufacturing non-coated base fabric for airbag, and airbag

Also Published As

Publication number Publication date
JP5564780B2 (en) 2014-08-06

Similar Documents

Publication Publication Date Title
JP4618391B2 (en) Air bag base fabric, air bag yarn and method of manufacturing the same
JP5365272B2 (en) Fabric for airbag and method for producing fabric for airbag
JP5359714B2 (en) Airbag base fabric
EP1316633B1 (en) Base fabric for non-coated air-bags
EP2789715B1 (en) Polyamide fiber and airbag fabric
WO2010027228A2 (en) Fabric for airbag and method of preparing the same
JP5916701B2 (en) Polyester raw yarn and method for producing the same
JP2010174390A (en) Woven fabric for airbag, and method for producing the same
JP4685904B2 (en) Method for producing and using polyamide system having a substantially square cross section
JP5564780B2 (en) Non-coated airbag fabric
EP3279378B1 (en) Airbag-use woven fabric and airbag
JP2011168919A (en) Polyamide fiber and woven fabric for airbag
JP2003055861A (en) Base cloth for non-coat airbag and fiber for airbag
JP2011058132A (en) Base cloth for air bag and method for producing the same
JP5741639B2 (en) Air bag yarn and method for producing air bag yarn
JP2006183205A (en) Base fabric for air bag
JP2011042898A (en) Coated woven fabric for airbags
WO2022039033A1 (en) Polyamide multifilament, and method for manufacturing same
JP2017222939A (en) Polyamide multifilament, method for producing the same, base cloth for airbag, and airbag
KR20050068592A (en) Polyamide fabrics for noncoated airbag

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140520

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140602

R151 Written notification of patent or utility model registration

Ref document number: 5564780

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151