JP2010105888A - Device for feeding molten glass and apparatus for producing glass molding - Google Patents

Device for feeding molten glass and apparatus for producing glass molding Download PDF

Info

Publication number
JP2010105888A
JP2010105888A JP2008281831A JP2008281831A JP2010105888A JP 2010105888 A JP2010105888 A JP 2010105888A JP 2008281831 A JP2008281831 A JP 2008281831A JP 2008281831 A JP2008281831 A JP 2008281831A JP 2010105888 A JP2010105888 A JP 2010105888A
Authority
JP
Japan
Prior art keywords
molten glass
tip
outflow pipe
covering portion
glass supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008281831A
Other languages
Japanese (ja)
Inventor
Moriji Nozaki
守二 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2008281831A priority Critical patent/JP2010105888A/en
Publication of JP2010105888A publication Critical patent/JP2010105888A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device and a method for feeding molten glass where temperature falling at the edge of an outflow pipe is suppressed and to provide an apparatus and a method for producing a glass molded body. <P>SOLUTION: The device 10 for feeding the molten glass is equipped with the outflow pipe 20 to flow the molten glass out and a heating part 30 to heat the edge 23 of the outflow pipe 20. The edge 23 is covered with a cover 40 placed outside with a gap. The heating part 30 has coils 31 wound at the outer periphery of the cover 40 and a high frequency power source 33 to supply a high frequency current to the coils 31 and the edge 23 is induction-heated. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、溶融ガラスを供給する技術に関する。   The present invention relates to a technique for supplying molten glass.

溶融槽に収容された溶融ガラスを流出管を通して流出し、ガラス成形体を成形する方法が広く知られている。ここで、ガラス成形体の失透を抑制するためには、流出管の開口が形成された先端部の温度低下を抑制する必要がある。   A method is widely known in which molten glass accommodated in a melting tank flows out through an outflow pipe to form a glass molded body. Here, in order to suppress the devitrification of the glass molded body, it is necessary to suppress the temperature drop at the tip portion where the opening of the outflow pipe is formed.

そこで従来、流出管の先端部を加熱する機構が開発されてきた。例えば特許文献1には、流出管の先端部の外周にコイルを巻回し、このコイルに高周波電流を供給することで、先端部を誘導加熱する機構が開示されている。
特開2006−143563号公報
Therefore, conventionally, a mechanism for heating the tip of the outflow pipe has been developed. For example, Patent Document 1 discloses a mechanism in which a coil is wound around the outer periphery of a distal end portion of an outflow pipe, and a high frequency current is supplied to the coil to inductively heat the distal end portion.
JP 2006-143563 A

しかし、前述した従来の機構では、流出管の先端部の温度低下の抑制が充分ではなく、ガラス成形体の失透を確実に防止するのが困難である場合もあった。   However, in the conventional mechanism described above, the temperature drop at the tip of the outflow pipe is not sufficiently suppressed, and it may be difficult to reliably prevent devitrification of the glass molded body.

本発明は、以上の実情に鑑みてなされたものであり、流出管の先端部の温度低下をより抑制できる溶融ガラス供給装置及び方法、並びにガラス成形体製造装置及び方法を提供することを目的とする。   This invention is made in view of the above situation, and it aims at providing the molten glass supply apparatus and method which can suppress the temperature fall of the front-end | tip part of an outflow pipe more, and a glass molded object manufacturing apparatus and method. To do.

本発明者らは、流出管の外周が間隔をあけて被覆された状態下、先端部を誘導加熱することで、先端部の温度低下が大幅に抑制されることを見出し、本発明を完成するに至った。具体的に、本発明は以下のようなものを提供する。   The inventors of the present invention have found that the temperature drop of the tip is significantly suppressed by induction heating of the tip under the condition that the outer periphery of the outflow pipe is covered with an interval, and the present invention is completed. It came to. Specifically, the present invention provides the following.

(1) 溶融ガラスを流出する流出管と、前記流出管の先端部を加熱する加熱手段と、を備える溶融ガラス供給装置であって、
前記先端部は、外方に間隔をあけて配置された被覆部で被覆され、
前記加熱手段は、前記被覆部の外周に巻回されたコイルと、このコイルに高周波電流を供給する高周波電流供給手段と、を有し、前記先端部を誘導加熱する溶融ガラス供給装置。
(1) A molten glass supply device comprising an outflow pipe for flowing out molten glass, and a heating means for heating the tip of the outflow pipe,
The tip portion is covered with a covering portion that is spaced outwardly;
The said heating means has a coil wound around the outer periphery of the said coating | coated part, and the high frequency current supply means which supplies a high frequency current to this coil, The molten glass supply apparatus which induction-heats the said front-end | tip part.

(2) 前記被覆部は、前記流出管の先端より基部側へ所定距離の位置で、前記先端部に接続されている(1)記載の溶融ガラス供給装置。   (2) The molten glass supply apparatus according to (1), wherein the covering portion is connected to the tip portion at a predetermined distance from the tip of the outflow pipe to the base side.

(3) 前記被覆部は、前記流出管の先端より下方へ延出する(1)又は(2)記載の溶融ガラス供給装置。   (3) The molten glass supply apparatus according to (1) or (2), wherein the covering portion extends downward from a tip of the outflow pipe.

(4) 前記被覆部は、前記流出管の先端に接続され、前記流出管の基部側に向けて拡径する形状を有する(1)記載の溶融ガラス供給装置。   (4) The molten glass supply device according to (1), wherein the covering portion is connected to a distal end of the outflow pipe and has a shape that expands toward the base side of the outflow pipe.

(5) 前記先端部と前記被覆部との間に配置されて前記先端部の温度を検出する検出手段を更に備える(1)から(4)いずれか記載の溶融ガラス供給装置。   (5) The molten glass supply apparatus according to any one of (1) to (4), further including detection means that is disposed between the tip portion and the covering portion and detects the temperature of the tip portion.

(6) 前記検出手段の検出値に基づいて、前記高周波電流供給手段を制御する制御手段を更に備える(5)記載の溶融ガラス供給装置。   (6) The molten glass supply apparatus according to (5), further comprising control means for controlling the high-frequency current supply means based on a detection value of the detection means.

(7) 前記加熱手段は、前記先端部及び前記被覆部に配置された一対の電極と、これら電極間に電流を流す電気流通手段と、を更に有し、前記先端部を通電加熱する(1)から(6)いずれか記載の溶融ガラス供給装置。   (7) The heating means further includes a pair of electrodes disposed on the tip portion and the covering portion, and an electric flow means for passing a current between the electrodes, and the tip portion is energized and heated (1 ) To (6) The molten glass supply device according to any one of the above.

(8) (1)から(7)いずれか記載の溶融ガラス供給装置と、この溶融ガラス供給装置から供給される溶融ガラスを成形する成形手段と、を備えるガラス成形体製造装置。   (8) A glass molded body manufacturing apparatus comprising: the molten glass supply device according to any one of (1) to (7); and a forming unit that forms the molten glass supplied from the molten glass supply device.

(9) 流出管から溶融ガラスを流出する流出工程と、前記流出管の先端部を加熱する加熱工程と、を有する溶融ガラス供給方法であって、
前記先端部を、外方に間隔をあけて配置された被覆部で被覆し、
前記加熱工程では、前記被覆部の外周に巻回されたコイルに高周波電流を供給することで、前記先端部を誘導加熱する溶融ガラス供給方法。
(9) A molten glass supply method comprising: an outflow step of flowing out the molten glass from the outflow tube; and a heating step of heating the tip of the outflow tube,
The tip is covered with a covering portion that is spaced outwardly,
In the heating step, a molten glass supply method in which the tip portion is induction-heated by supplying a high-frequency current to a coil wound around the outer periphery of the covering portion.

(10) 前記被覆部を、前記流出管の先端より基部側へ所定距離の位置で、前記先端部に接続する(9)記載の溶融ガラス供給方法。   (10) The molten glass supply method according to (9), wherein the covering portion is connected to the tip portion at a predetermined distance from the tip of the outflow pipe to the base side.

(11) 前記被覆部を、前記流出管の先端より下方へ延出させる(9)又は(10)記載の溶融ガラス供給方法。   (11) The molten glass supply method according to (9) or (10), wherein the covering portion extends downward from the tip of the outflow pipe.

(12) 前記被覆部を、前記流出管の先端に接続し、前記流出管の基部側に向けて拡径させる(9)記載の溶融ガラス供給方法。   (12) The molten glass supply method according to (9), wherein the covering portion is connected to a distal end of the outflow pipe and is increased in diameter toward the base side of the outflow pipe.

(13) 前記先端部と前記被覆部との間に検出手段を配置し、この検出手段で前記先端部の温度を検出する工程を更に有する(9)から(12)いずれか記載の溶融ガラス供給方法。   (13) The molten glass supply according to any one of (9) to (12), further including a step of disposing a detection means between the tip portion and the covering portion, and detecting the temperature of the tip portion by the detection means. Method.

(14) 前記検出手段の検出値に基づいて、高周波電流の供給条件を制御する制御工程を更に有する(13)記載の溶融ガラス供給方法。   (14) The molten glass supply method according to (13), further comprising a control step of controlling a supply condition of the high-frequency current based on the detection value of the detection means.

(15) 前記加熱工程は、前記先端部及び前記被覆部に配置された一対の電極間に電流を流すことで、前記先端部を通電加熱する工程を更に有する(9)から(14)いずれか記載の溶融ガラス供給方法。   (15) Any one of (9) to (14), wherein the heating step further includes a step of energizing and heating the tip portion by passing a current between a pair of electrodes arranged in the tip portion and the covering portion. The molten glass supply method of description.

(16) (9)から(15)いずれか記載の溶融ガラス供給方法で供給した溶融ガラスを成形する工程を有するガラス成形体製造方法。   (16) A glass molded body manufacturing method including a step of molding the molten glass supplied by the molten glass supply method according to any one of (9) to (15).

本発明によれば、先端部を被覆する被覆部の外周に巻回されたコイルに高周波電流が供給されるので、先端部が誘導加熱される。これにより、先端部は、それ自身が加熱されるのに加え、被覆部によって外気への放熱が抑制されるので、流出管の先端部の温度低下をより抑制できる。   According to the present invention, since the high frequency current is supplied to the coil wound around the outer periphery of the covering portion that covers the tip portion, the tip portion is induction heated. Thereby, in addition to heating the tip part itself, the heat release to the outside air is suppressed by the covering part, so that the temperature drop of the tip part of the outflow pipe can be further suppressed.

以下、本発明の実施形態について、図面を参照しながら説明する。なお、第1実施形態以外の各実施形態の説明において、第1実施形態と共通するものについては、同一符号を付し、その説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in description of each embodiment other than 1st Embodiment, the same code | symbol is attached | subjected about what is common in 1st Embodiment, and the description is abbreviate | omitted.

図1は、本発明の第1実施形態に係る溶融ガラス供給装置10の概略構成図である。図2は図1の溶融ガラス供給装置10の要部拡大図である。   FIG. 1 is a schematic configuration diagram of a molten glass supply apparatus 10 according to the first embodiment of the present invention. FIG. 2 is an enlarged view of a main part of the molten glass supply apparatus 10 of FIG.

<溶融ガラス供給装置>
溶融ガラス供給装置10は、溶融ガラスを流出する流出管20と、この流出管20を加熱する加熱手段としての加熱部30と、を備える。各構成要素について、詳細に説明する。
<Molten glass supply device>
The molten glass supply apparatus 10 includes an outflow pipe 20 through which molten glass flows out, and a heating unit 30 as heating means for heating the outflow pipe 20. Each component will be described in detail.

[流出管]
流出管20は基部21を有し、この基部21は溶融ガラスを収容する溶融槽29の内部に挿通されている。これにより、溶融槽29内の溶融ガラスは基部21へと導入され、基部21及び先端部23を通り、やがて、先端25に形成された開口から外部へと導出(流出)されることになる。
[Outflow pipe]
The outflow pipe 20 has a base portion 21, and the base portion 21 is inserted into a melting tank 29 that contains molten glass. As a result, the molten glass in the melting tank 29 is introduced into the base portion 21, passes through the base portion 21 and the distal end portion 23, and is eventually led out (outflowed) from the opening formed in the distal end 25.

開口から流出した溶融ガラスは、外気によって急激に冷却されやすく、その結果、製造されるガラス成形体に失透が生じやすい。失透を充分に抑制するためには、流出管20の先端部23の温度低下を充分に抑制することが望まれる。本発明は、後述のように先端部23を誘導加熱する構成を採用しているので、流出管20のうち少なくとも先端部23は、誘導加熱可能な素材、好ましくは白金又は白金合金等の金属で形成されていることが好ましい。   The molten glass that has flowed out of the opening is easily cooled rapidly by the outside air, and as a result, devitrification is likely to occur in the manufactured glass molded body. In order to sufficiently suppress devitrification, it is desired to sufficiently suppress the temperature drop of the distal end portion 23 of the outflow pipe 20. Since the present invention employs a configuration in which the tip portion 23 is induction-heated as will be described later, at least the tip portion 23 of the outflow pipe 20 is made of a material capable of induction heating, preferably a metal such as platinum or a platinum alloy. Preferably it is formed.

また、後述のように、基部21を通電加熱する場合には、基部21は、電気伝導性を有する素材、好ましくは白金又は白金合金等の金属で形成されていることが好ましい。なお、基部21及び先端部23は同一又は異なる素材で形成されていてよい。   As will be described later, when the base 21 is heated by energization, the base 21 is preferably formed of a material having electrical conductivity, preferably a metal such as platinum or a platinum alloy. In addition, the base 21 and the front-end | tip part 23 may be formed with the same or different raw material.

[被覆部]
流出管20の先端部23は、外方に間隔をあけて配置された被覆部40で被覆されている。これにより、先端部23は、それ自身の誘導加熱に加え、先端部23から外気への放熱が抑制されるため、温度低下が充分に抑制されることになる。ここで、被覆部40を誘導加熱可能な素材、好ましくは白金又は白金合金等で形成すれば、先端部23は、誘導加熱された被覆部40からの輻射熱による加熱もなされるため、更に温度低下が抑制される。また、被覆部40を断熱性素材で形成すれば、外気による被覆部40の温度低下が抑制されて、先端部23への輻射熱が高レベルに維持される結果、先端部23の温度低下を更に抑制できる。
[Coating]
The distal end portion 23 of the outflow pipe 20 is covered with a covering portion 40 that is disposed outwardly with a gap. Thereby, in addition to the induction heating of the front end part 23, the heat radiation from the front end part 23 to the outside air is suppressed, so that the temperature drop is sufficiently suppressed. Here, if the covering portion 40 is formed of a material capable of induction heating, preferably platinum or a platinum alloy or the like, the tip portion 23 is also heated by radiant heat from the covering portion 40 that has been induction-heated. Is suppressed. In addition, if the covering portion 40 is formed of a heat insulating material, the temperature drop of the covering portion 40 due to the outside air is suppressed, and the radiant heat to the tip portion 23 is maintained at a high level. Can be suppressed.

本明細書において「先端部」とは、溶融ガラスが流出する開口が形成された先端を含み、この先端から基部側へと加熱が望まれる所定範囲の部位を指す。所定範囲は溶融ガラスの組成や温度、先端部23の素材等に応じて適宜設定されてよい。また、「被覆」とは、好ましくは先端部の全周を包囲することを指すが、これに限られず部分周のみを包囲する態様も含む。   In the present specification, the “tip portion” includes a tip having an opening through which molten glass flows out, and indicates a region in a predetermined range where heating is desired from the tip to the base side. The predetermined range may be appropriately set according to the composition and temperature of the molten glass, the material of the tip portion 23, and the like. “Coating” preferably refers to surrounding the entire periphery of the tip, but is not limited to this and includes an embodiment of surrounding only a partial periphery.

図2に示されるように、被覆部40は、流出管20の先端25より基部21側へ所定距離Dの位置で、先端部23に接続されていることが好ましい。具体的に本実施形態では、流出管20の先端25より基部21側へ所定距離Dの位置に設けられた連結部45を介して、先端部23と被覆部40とが連結されている。なお、これに限られず、被覆部40は、図3に示されるように、流出管20の先端25に設けられた連結部45Aを介して先端部23に連結されていてもよい。ただし、図3の態様では、溶融ガラスが先端25から連結部45A、被覆部40へと濡れて移行しやすく、流出量の一定化が困難になったり、連結部45Aや被覆部40で冷え固まったガラスによって溶融ガラスMGが汚染されたりといった不具合が生じ得る。これに対し、図2に示される態様は、連結部45が先端25より所定距離Dだけ離れているので、MGが連結部45へと濡れて移行する(いわゆる濡れ上がり)事態は生じにくい点で好ましい。   As shown in FIG. 2, the covering portion 40 is preferably connected to the distal end portion 23 at a predetermined distance D from the distal end 25 of the outflow pipe 20 toward the base 21 side. Specifically, in the present embodiment, the distal end portion 23 and the covering portion 40 are coupled via a coupling portion 45 provided at a predetermined distance D from the distal end 25 of the outflow pipe 20 to the base 21 side. The covering portion 40 may be connected to the distal end portion 23 via a connecting portion 45A provided at the distal end 25 of the outflow pipe 20, as shown in FIG. However, in the embodiment of FIG. 3, the molten glass tends to wet and move from the tip 25 to the connecting portion 45 </ b> A and the covering portion 40, making it difficult to make the outflow constant, or cooling and solidifying at the connecting portion 45 </ b> A and the covering portion 40. There is a possibility that the molten glass MG is contaminated by the molten glass. On the other hand, in the aspect shown in FIG. 2, since the connecting portion 45 is separated from the tip 25 by a predetermined distance D, a situation in which MG wets and moves to the connecting portion 45 (so-called wetting up) hardly occurs. preferable.

また、図4に示されるように、被覆部40Bが流出管20の先端25に接続されていても、流出管20の基部21側に向けて拡径する形状を有することで、溶融ガラスMGの濡れ上がりを抑制できる。なお、図2及び図3に示される態様では、先端部23及び被覆部40が連結部45を介して連結されているが、これに限られず、先端部23及び被覆部40が分離した別体であってもよい。ただし、別体の態様では、後述の通電加熱によって先端25を充分に加熱することは困難になりやすいため、図2〜図4に示される態様が好ましい。   Further, as shown in FIG. 4, even when the covering portion 40 </ b> B is connected to the distal end 25 of the outflow pipe 20, the diameter of the molten glass MG is increased by having a shape that expands toward the base 21 side of the outflow pipe 20. Can suppress wetting. In addition, in the aspect shown by FIG.2 and FIG.3, although the front-end | tip part 23 and the coating | coated part 40 are connected via the connection part 45, it is not restricted to this, The separate body from which the front-end | tip part 23 and the coating | coated part 40 isolate | separated. It may be. However, in the case of a separate body, it is likely to be difficult to sufficiently heat the tip 25 by energization heating which will be described later, and therefore the embodiment shown in FIGS. 2 to 4 is preferable.

図2に戻って、所定距離Dは、溶融ガラスの連結部45への濡れ上がりを充分に抑制できる点で、その下限が1mmであることが好ましく、より好ましくは2mm、最も好ましくは3mmである。他方、後述のカップル51を設置するスペースを確保する観点から、所定距離Dの上限は40mmであることが好ましく、より好ましくは30mm、最も好ましくは15mmである。   Returning to FIG. 2, the predetermined distance D is preferably 1 mm, more preferably 2 mm, and most preferably 3 mm, in terms of sufficiently suppressing the wetting of the molten glass to the connecting portion 45. . On the other hand, the upper limit of the predetermined distance D is preferably 40 mm, more preferably 30 mm, and most preferably 15 mm from the viewpoint of securing a space for installing a couple 51 described later.

また、連結部45の幅(つまり、先端部23と被覆部40との間隔)は、被覆部40からの輻射熱を先端部23へと効率的に到達できる点で、その上限が10mmであることが好ましく、より好ましくは9mm、最も好ましくは7mmである。他方、後述のカップル51を設置するスペースを確保する場合には、連結部45の幅は3mm以上であることが好ましい。   Moreover, the upper limit of the width of the connecting portion 45 (that is, the distance between the tip portion 23 and the covering portion 40) is 10 mm in that the radiant heat from the covering portion 40 can efficiently reach the tip portion 23. Is preferred, more preferably 9 mm, and most preferably 7 mm. On the other hand, when securing a space for installing a couple 51 described later, the width of the connecting portion 45 is preferably 3 mm or more.

連結部45は、従来周知の素材で形成されてよいが、後述のように先端25を通電加熱する態様においては、電気伝導性を有する素材、好ましくは白金又は白金合金等の金属で形成されていることが好ましい。なお、基部21、先端部23及び連結部45は、同一又は異なる素材で形成されていてよい。   The connecting portion 45 may be formed of a conventionally known material. However, in a mode in which the tip 25 is energized and heated as described later, the connecting portion 45 is formed of an electrically conductive material, preferably a metal such as platinum or a platinum alloy. Preferably it is. In addition, the base part 21, the front-end | tip part 23, and the connection part 45 may be formed with the same or different raw material.

本実施形態のように、被覆部40は、流出管20の先端25より下方へ延出することが好ましい。これにより、先端25の開口から流出した溶融ガラスMGが被覆部40で囲まれ、その急激な冷却を抑制されるため、失透をより確実に抑制できる。また、かかる態様は、最も冷却されやすい先端25が周方向(図2における左右方向)のみならず、下方向からも温度低下を抑制されるため、溶融ガラスMGの冷却を間接的にも更に抑制できる点で好ましい。   As in this embodiment, the covering portion 40 preferably extends downward from the tip 25 of the outflow pipe 20. Thereby, since the molten glass MG which flowed out from opening of the front-end | tip 25 is surrounded by the coating | coated part 40, the rapid cooling is suppressed, and devitrification can be suppressed more reliably. Further, in this aspect, since the tip 25 that is most easily cooled is suppressed not only in the circumferential direction (left and right direction in FIG. 2) but also in the downward direction, the cooling of the molten glass MG is further suppressed indirectly. It is preferable in that it can be performed.

上記の効果がより得られる点で、被覆部40の流出管20の先端25より下方へ延出する延出長さEの下限は、3mmであることが好ましく、より好ましくは5mm、最も好ましくは7mmである。他方、延出長さEが過大であると、流出管20の先端25から、溶融ガラスを受ける成形型までの間隔が長くならざるを得ず、これにより、ガラスが過度に冷却されやすかったり、落下衝撃によって溶融ガラス塊の形状が崩れやすかったりする。そこで、延出長さEの上限は、200mmであることが好ましく、より好ましくは150mm、最も好ましくは100mmである。   The lower limit of the extending length E extending downward from the tip 25 of the outflow pipe 20 of the covering portion 40 is preferably 3 mm, more preferably 5 mm, and most preferably, in that the above effect can be obtained more. 7 mm. On the other hand, if the extension length E is excessively large, the distance from the tip 25 of the outflow pipe 20 to the mold for receiving the molten glass must be long, which makes it easy for the glass to be excessively cooled, The shape of the molten glass lump is easy to collapse due to the drop impact. Therefore, the upper limit of the extension length E is preferably 200 mm, more preferably 150 mm, and most preferably 100 mm.

[加熱部]
加熱部30は、被覆部40の外周に巻回されたコイル31を有し、このコイル31には高周波電流供給手段としての高周波電源33が電線を通じて高周波電流を供給することで、先端部23を誘導加熱する。すると、先端部23は、それ自身が加熱されるのに加え、被覆部40によって外気への放熱が抑制されるので、先端部23の温度低下をより抑制できることになる。なお、高周波電源33は後述の制御部61によって出力制御される。
[Heating section]
The heating unit 30 includes a coil 31 wound around the outer periphery of the covering unit 40, and a high-frequency power source 33 as a high-frequency current supply unit supplies a high-frequency current to the coil 31 through an electric wire. Induction heating. Then, in addition to the tip part 23 being heated, the heat release to the outside air is suppressed by the covering part 40, so that the temperature drop of the tip part 23 can be further suppressed. Note that the output of the high frequency power supply 33 is controlled by a control unit 61 described later.

コイル31が巻回される範囲は、被覆部40の全周であることが好ましいが、被覆部40の部分周であってもよい。なお、図1では説明の便宜上、被覆部40が5周巻回されているが、巻回数がこれに限られないことは当然である。また、使用する高周波電源33は、従来周知のものであってよい。   The range in which the coil 31 is wound is preferably the entire circumference of the covering portion 40, but may be a partial circumference of the covering portion 40. In FIG. 1, for convenience of explanation, the covering portion 40 is wound five times, but the number of turns is not limited to this. Further, the high frequency power supply 33 to be used may be a conventionally known one.

加熱部30は、図1に示されるように、先端部23及び被覆部40に配置された一対の電極35a’,35aを更に有し、これら電極35a’,35a間には電気流通手段としての交流電源36が電流を流す。これにより、先端部23及び被覆部40が通電加熱されるため、ガラスの失透をより確実に抑制できる。なお、交流電源36は後述の制御部61によって出力制御される。   As shown in FIG. 1, the heating unit 30 further includes a pair of electrodes 35 a ′ and 35 a disposed on the tip end portion 23 and the covering portion 40, and an electric flow means is provided between the electrodes 35 a ′ and 35 a. The alternating current power supply 36 passes a current. Thereby, since the front-end | tip part 23 and the coating | coated part 40 are electrically heated, devitrification of glass can be suppressed more reliably. The output of the AC power source 36 is controlled by a control unit 61 described later.

ここで、最も冷却されやすい先端25を通電加熱で効率的に加熱するためには、通電した電流が先端25を通過しやすい構成、例えば図3及び図4のように、被覆部が先端25において先端部23に接続されている構成が好ましい。   Here, in order to efficiently heat the tip 25 that is most easily cooled by energization heating, a configuration in which the energized current easily passes through the tip 25, for example, as shown in FIGS. The structure connected to the front-end | tip part 23 is preferable.

また、通電加熱は、先端部23のみならず、基部21に対して行ってもよい。これにより、溶融ガラスが基部21を流れる間に受ける温度変化を抑制できるため、流出する溶融ガラスMGの正確な温度制御をしやすくなる。具体的に図1では、一対の電極37a,37a’が基部21に設けられ、これら電極37a,37a’には交流電源38からの電流が供給される。なお、図1には、電極37a,37a’しか示していないが、電極のセットを更に多数設けてもよい(詳細は特開2006−143563号公報参照)。   Further, the energization heating may be performed not only on the distal end portion 23 but also on the base portion 21. Thereby, since the temperature change which a molten glass receives while flowing the base 21 can be suppressed, it becomes easy to perform exact temperature control of the molten glass MG which flows out. Specifically, in FIG. 1, a pair of electrodes 37 a and 37 a ′ are provided on the base 21, and current from an AC power supply 38 is supplied to these electrodes 37 a and 37 a ′. Although only the electrodes 37a and 37a 'are shown in FIG. 1, a larger number of sets of electrodes may be provided (refer to JP-A-2006-143563 for details).

[検出装置]
溶融ガラス供給装置10は、先端部23と被覆部40との間に配置されて先端部23の温度を検出する検出手段としてのカップル51を更に備える。本発明では、先端部23と被覆部40との間にスペースが形成されるので、このスペースを活用してカップル51を容易に設置することができる。これにより、先端部23の温度が把握されるので、高周波電源33、交流電源36、交流電源38の出力、供給時間、タイミング等を適切に調節することで、失透の発生を計画的に抑制できる。なお、カップル51及び後述の送信部53は検出装置50を構成する。
[Detection device]
The molten glass supply apparatus 10 is further provided with a couple 51 as a detecting means that is disposed between the tip portion 23 and the covering portion 40 and detects the temperature of the tip portion 23. In the present invention, since a space is formed between the distal end portion 23 and the covering portion 40, the couple 51 can be easily installed using this space. As a result, the temperature of the distal end portion 23 is grasped, and therefore the occurrence of devitrification is systematically suppressed by appropriately adjusting the output, supply time, timing, etc. of the high frequency power source 33, the AC power source 36, and the AC power source 38. it can. The couple 51 and a transmission unit 53 described later constitute a detection device 50.

また、溶融ガラス供給装置10は、カップル51の検出値に基づいて高周波電源33を制御する制御手段としての制御装置60を備えることが好ましい。これにより、高周波電源33の出力、供給時間、タイミング等が自動的に調節されるため、人為的ミスを回避して失透の発生をより確実に抑制できる。図1に示されるように、制御装置60の制御部61は、カップル51で測定された温度データを送信部53から受信し、この検出値に基づいて高周波電源33を制御している。具体的に制御部61は、検出値が所定範囲を下回ると、高周波電源33の出力及び/又は供給時間を増加させ、逆に検出値が所定範囲を超えると、高周波電源33の出力及び/又は供給時間を減少させる。なお、送受信の方式は従来周知のものであってよい。   Moreover, it is preferable that the molten glass supply apparatus 10 is provided with the control apparatus 60 as a control means which controls the high frequency power supply 33 based on the detected value of the couple 51. Thereby, since the output, supply time, timing, etc. of the high frequency power supply 33 are automatically adjusted, the occurrence of devitrification can be more reliably suppressed by avoiding human error. As shown in FIG. 1, the control unit 61 of the control device 60 receives the temperature data measured by the couple 51 from the transmission unit 53 and controls the high-frequency power source 33 based on this detected value. Specifically, the control unit 61 increases the output and / or supply time of the high-frequency power source 33 when the detection value falls below a predetermined range, and conversely when the detection value exceeds the predetermined range, Reduce supply time. The transmission / reception method may be a conventionally known one.

なお、先端部23の温度の変動を抑制できる点で、カップル51で検出した温度データをフィードバックして高周波電源33を制御する周期は、0.08秒以下であることが好ましく、より好ましくは0.05秒以下、最も好ましくは0.04秒以下である。   It should be noted that the period for controlling the high frequency power supply 33 by feeding back the temperature data detected by the couple 51 is preferably 0.08 seconds or less, more preferably 0 in that the fluctuation of the temperature of the tip 23 can be suppressed. .05 seconds or less, most preferably 0.04 seconds or less.

制御部61は、高周波電源33のみならず、交流電源36及び/又は交流電源38の出力、供給時間、タイミング等も制御することが好ましい。これにより、通電加熱の程度も適切に調節されるため、溶融ガラスMGの温度管理をより最適化できる。   The controller 61 preferably controls not only the high frequency power supply 33 but also the output, supply time, timing, and the like of the AC power supply 36 and / or the AC power supply 38. Thereby, since the grade of electric heating is also adjusted appropriately, the temperature management of molten glass MG can be optimized more.

本発明に係るガラス成形体装置は、以上の溶融ガラス供給装置10と、この溶融ガラス供給装置10から供給される溶融ガラスMGを成形する成形手段としての成形装置(図示せず)とを備える。この成形装置は、溶融ガラス供給装置10の流出管20から流出した溶融ガラスを受け止める成形型を有する。具体的に用いる成形装置の構成は、目的に応じて適宜選択されてよい。特に限定されないが、溶融ガラスが高温であることを考慮すると、成形面が多孔質部材からなるものを用い、成形面から気体を噴出することで、浮上成形を行うことが好ましい。また、成形装置を構成する成形型を複数種用いてもよく、例えばプリフォーム形成用の成形型、精密プレス成形用の成形型等を併用してもよい。   The glass molded body device according to the present invention includes the above-described molten glass supply device 10 and a forming device (not shown) as a forming means for forming the molten glass MG supplied from the molten glass supply device 10. This molding apparatus has a mold for receiving the molten glass flowing out from the outflow pipe 20 of the molten glass supply apparatus 10. The configuration of the molding apparatus specifically used may be appropriately selected according to the purpose. Although not particularly limited, in consideration of the fact that the molten glass is at a high temperature, it is preferable to perform the floating molding by using a porous member having a molding surface made of a porous member and ejecting gas from the molding surface. A plurality of molds constituting the molding apparatus may be used. For example, a mold for forming a preform and a mold for precision press molding may be used in combination.

<ガラス成形体製造方法>
本発明の実施形態に係るガラス成形体製造方法は、溶融ガラス流を供給する供給工程と、溶融ガラスを成形する成形工程とを有する。各工程を、以上の溶融ガラス供給装置10を参照しつつ説明する。
<Glass compact manufacturing method>
The glass molded object manufacturing method which concerns on embodiment of this invention has the supply process which supplies a molten glass flow, and the shaping | molding process which shape | molds molten glass. Each process is demonstrated referring the above molten glass supply apparatus 10. FIG.

[供給工程]
供給工程は、流出管20から溶融ガラスMGを流出する流出工程と、流出管20の先端部23を加熱する加熱工程と、を有する。本発明の製造方法では、先端部23を、外方に間隔をあけて配置された被覆部40で被覆し、加熱工程で、被覆部40の外周に巻回されたコイル31に高周波電源33から高周波電流を供給することで、先端部23を誘導加熱する。これにより、先端部23は、それ自身の誘導加熱に加え、先端部23から外気への放熱が抑制されるため、温度低下が充分に抑制されることになる。
[Supply process]
The supply process includes an outflow process for flowing out the molten glass MG from the outflow pipe 20 and a heating process for heating the tip portion 23 of the outflow pipe 20. In the manufacturing method of the present invention, the distal end portion 23 is covered with the covering portion 40 that is arranged outwardly at a distance, and the coil 31 wound around the outer periphery of the covering portion 40 is heated from the high frequency power source 33 in the heating process. By supplying a high-frequency current, the tip 23 is induction-heated. Thereby, in addition to the induction heating of the front end part 23, the heat radiation from the front end part 23 to the outside air is suppressed, so that the temperature drop is sufficiently suppressed.

図2に示されるように、被覆部40を、流出管20の先端25より基部21側へ所定距離Dの位置で、先端部23に接続することが好ましい。これにより、MGが連結部45へと濡れて移行する(いわゆる濡れ上がり)事態を生じにくくすることができる。なお、これに限られず、被覆部40を、図3に示されるように、流出管20の先端25に設けられた連結部45Aを介して先端部23に連結されていてもよい。ただし、図3の態様では、溶融ガラスが先端25から連結部45A、被覆部40へと濡れて移行しやすく、流出量の一定化が困難になったり、連結部45Aや被覆部40で冷え固まったガラスによって溶融ガラスMGが汚染されたりといった不具合が生じ得る。   As shown in FIG. 2, the covering portion 40 is preferably connected to the distal end portion 23 at a predetermined distance D from the distal end 25 of the outflow pipe 20 to the base 21 side. Thereby, it is possible to make it difficult for the MG to get wet and transfer to the connecting portion 45 (so-called wetting up). In addition, not only this but the coating | coated part 40 may be connected with the front-end | tip part 23 via the connection part 45A provided in the front-end | tip 25 of the outflow tube 20, as FIG. 3 shows. However, in the embodiment of FIG. 3, the molten glass tends to wet and move from the tip 25 to the connecting portion 45 </ b> A and the covering portion 40, making it difficult to make the outflow constant, or cooling and solidifying at the connecting portion 45 </ b> A and the covering portion 40. There is a possibility that the molten glass MG is contaminated by the molten glass.

そこで、被覆部を流出管の先端に接続する場合には、図4に示されるように、被覆部40Bを流出管20の基部21側に向けて拡径させることが好ましい。これにより、溶融ガラスMGの濡れ上がりを抑制できる。   Therefore, when connecting the covering portion to the tip of the outflow pipe, it is preferable to expand the diameter of the covering portion 40B toward the base 21 side of the outflow pipe 20 as shown in FIG. Thereby, the wetting up of the molten glass MG can be suppressed.

また、図2に示されるように、被覆部40を、流出管20の先端25より下方へ延出させることが好ましい。これにより、先端25の開口から流出した溶融ガラスMGが被覆部40で囲まれ、その急激な冷却を抑制されるため、失透をより確実に抑制できる。また、かかる態様は、最も冷却されやすい先端25が周方向(図2における左右方向)のみならず、下方向からも温度低下を抑制されるため、溶融ガラスMGの冷却を間接的にも更に抑制できる点で好ましい。   Further, as shown in FIG. 2, it is preferable that the covering portion 40 extends downward from the tip 25 of the outflow pipe 20. Thereby, since the molten glass MG which flowed out from opening of the front-end | tip 25 is surrounded by the coating | coated part 40, the rapid cooling is suppressed, and devitrification can be suppressed more reliably. Further, in this aspect, since the tip 25 that is most easily cooled is suppressed not only in the circumferential direction (left and right direction in FIG. 2) but also in the downward direction, the cooling of the molten glass MG is further suppressed indirectly. It is preferable in that it can be performed.

供給工程は、先端部23と被覆部40との間にカップル51を配置し、このカップル51で先端部23の温度を検出する工程を更に有することが好ましい。これにより、先端部23の温度が把握されるので、高周波電源33、交流電源36、交流電源38の出力、供給時間、タイミング等を適切に調節することで、失透の発生を計画的に抑制できる。   It is preferable that the supplying step further includes a step of disposing a couple 51 between the tip portion 23 and the covering portion 40 and detecting the temperature of the tip portion 23 by the couple 51. As a result, the temperature of the distal end portion 23 is grasped, and therefore the occurrence of devitrification is systematically suppressed by appropriately adjusting the output, supply time, timing, etc. of the high frequency power source 33, the AC power source 36, and the AC power source 38 it can.

供給工程は、カップル51の検出値に基づいて、高周波電流の供給条件を制御する制御工程を更に有することが好ましい。これにより、高周波電源33の出力、供給時間、タイミング等が自動的に調節されるため、人為的ミスを回避して失透の発生をより確実に抑制できる。具体的に制御工程では、検出値が所定範囲を下回ると、高周波電源33の出力及び/又は供給時間を増加させ、逆に検出値が所定範囲を超えると、高周波電源33の出力及び/又は供給時間を減少させる。なお、送受信の方式は従来周知のものであってよい。   It is preferable that the supply process further includes a control process for controlling the supply condition of the high-frequency current based on the detected value of the couple 51. Thereby, since the output, supply time, timing, etc. of the high frequency power supply 33 are automatically adjusted, the occurrence of devitrification can be more reliably suppressed by avoiding human error. Specifically, in the control process, when the detected value falls below a predetermined range, the output and / or supply time of the high-frequency power source 33 is increased. Conversely, when the detected value exceeds the predetermined range, the output and / or supply of the high-frequency power source 33 is increased. Reduce time. The transmission / reception method may be a conventionally known one.

加熱工程は、先端部23及び被覆部40に配置された一対の電極35a’,35a間に交流電源36から電流を流すことで、先端部23を通電加熱する工程を更に有することが好ましい。これにより、先端部23及び被覆部40が通電加熱されるため、ガラスの失透をより確実に抑制できる。   It is preferable that the heating step further includes a step of energizing and heating the tip end portion 23 by causing a current to flow from the AC power source 36 between the pair of electrodes 35 a ′ and 35 a arranged at the tip end portion 23 and the covering portion 40. Thereby, since the front-end | tip part 23 and the coating | coated part 40 are electrically heated, devitrification of glass can be suppressed more reliably.

[成形工程]
成形工程では、供給工程で供給した溶融ガラスMGを成形し、ガラス成形体を形成する。具体的な手順は、目的に応じて適宜選択してよい。特に限定されないが、溶融ガラスが高温であることを考慮すると、成形面が多孔質部材からなるものを用い、成形面から気体を噴出することで、浮上成形を行うことが好ましい。また、成形装置を構成する成形型を複数種用いてもよく、例えばプリフォーム形成用の成形型、精密プレス成形用の成形型等を併用してもよい。また、成形面が分割可能なものを用いることで、他の成形型への移送を円滑に行うこともできる。
[Molding process]
In the forming step, the molten glass MG supplied in the supplying step is formed to form a glass molded body. Specific procedures may be appropriately selected according to the purpose. Although not particularly limited, in consideration of the fact that the molten glass is at a high temperature, it is preferable to perform the floating molding by using a porous member having a molding surface made of a porous member and ejecting gas from the molding surface. A plurality of molds constituting the molding apparatus may be used. For example, a mold for forming a preform and a mold for precision press molding may be used in combination. Moreover, the transfer to another shaping | molding die can also be performed smoothly by using what can divide | mold a shaping | molding surface.

このようにして製造されたガラス成形体は、失透が少ない又は存在しないため、情報磁気記録媒体用基板ブランク、光学素子製造用のプリフォーム、光学素子等に有用である。   Since the glass molded body thus produced has little or no devitrification, it is useful for substrate blanks for information magnetic recording media, preforms for producing optical elements, optical elements, and the like.

<実施例>
SiO−Li2O系のガラスを溶融し、この溶融ガラスを、図1及び2に示される溶融ガラス供給装置(連結部45の幅3mm、距離D3mm、距離E10mm、被覆部40の長さ60mm、流出管20の内径9mm)の流出管20の先端25から流出し、成形型の下型で受け、上型でプレスして成形を行った。この間、高周波電流をコイル31に供給することで、加熱を行い続けた。なお、カップル51で検出した温度データに基づく高周波電源33の制御の周期は0.03秒とした。
<Example>
SiO 2 —Li 2 2O-based glass is melted, and this molten glass is melted into a molten glass supply device shown in FIGS. 1 and 2 (width of connection portion 45 mm, distance D 3 mm, distance E 10 mm, and length of covering portion 40 60 mm. , The inner diameter of the outflow pipe 20 was 9 mm), and flowed out from the tip 25 of the outflow pipe 20, received by the lower mold of the mold and pressed by the upper mold. During this time, heating was continued by supplying a high frequency current to the coil 31. The control period of the high frequency power supply 33 based on the temperature data detected by the couple 51 was set to 0.03 seconds.

作製されたガラス成形体には失透が確認されなかった。また、溶融ガラスの流出量が一定である結果、得られるガラス成形体の重量もほぼ均一であった。   Devitrification was not confirmed in the produced glass molded body. Further, as a result of the constant flow rate of the molten glass, the weight of the obtained glass molded body was almost uniform.

(比較例)
加熱部30及び被覆部40が設けられていない流出管を用い、流出管の先端をリングバーナで加熱した点を除き、実施例と同様の手順でガラス成形体を作製した。
(Comparative example)
A glass molded body was produced in the same procedure as in the example except that the outflow pipe without the heating unit 30 and the covering unit 40 was used and the tip of the outflow pipe was heated with a ring burner.

リングバーナに供給するガス圧力が変動しやすく、これによって流出管の先端部の温度が不安定であった。また、作製されたガラス成形体には失透が生じているものが混在し、特に、溶融ガラス流出初期に作製されたガラス成形体には失透が生じているものが多かった。   The gas pressure supplied to the ring burner was likely to fluctuate, which caused the temperature at the tip of the outflow pipe to be unstable. Moreover, the produced glass moldings include those in which devitrification occurs, and in particular, many of the glass moldings produced in the early stage of molten glass outflow are devitrified.

本発明は前記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   The present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.

本発明の一実施形態に係る溶融ガラス供給装置の概略構成図である。It is a schematic block diagram of the molten glass supply apparatus which concerns on one Embodiment of this invention. 図1の溶融ガラス供給装置の要部拡大図である。It is a principal part enlarged view of the molten glass supply apparatus of FIG. 本発明の別の実施形態に係る溶融ガラス供給装置の要部拡大図である。It is a principal part enlarged view of the molten glass supply apparatus which concerns on another embodiment of this invention. 本発明の別の実施形態に係る溶融ガラス供給装置の要部拡大図である。It is a principal part enlarged view of the molten glass supply apparatus which concerns on another embodiment of this invention.

符号の説明Explanation of symbols

10 溶融ガラス供給装置
20 流出管
21 基部
23 先端部
25 先端
29 溶融槽
30 加熱部(加熱手段)
31 コイル
33 高周波電源(高周波電流供給手段)
35 電極
36 交流電源
37 電極
38 交流電源
40 被覆部
45 連結部
50 検出装置
51 カップル(検出手段)
53 送信部
60 制御装置
61 制御部(制御手段)
DESCRIPTION OF SYMBOLS 10 Molten glass supply apparatus 20 Outflow pipe 21 Base 23 Tip part 25 Tip 29 Melting tank 30 Heating part (heating means)
31 Coil 33 High frequency power supply (high frequency current supply means)
35 Electrode 36 AC power supply 37 Electrode 38 AC power supply 40 Covering part 45 Connection part 50 Detection device 51 Couple (detection means)
53 Transmission Unit 60 Control Device 61 Control Unit (Control Unit)

Claims (16)

溶融ガラスを流出する流出管と、前記流出管の先端部を加熱する加熱手段と、を備える溶融ガラス供給装置であって、
前記先端部は、外方に間隔をあけて配置された被覆部で被覆され、
前記加熱手段は、前記被覆部の外周に巻回されたコイルと、このコイルに高周波電流を供給する高周波電流供給手段と、を有し、前記先端部を誘導加熱する溶融ガラス供給装置。
A molten glass supply device comprising an outflow pipe for flowing out the molten glass, and a heating means for heating the tip of the outflow pipe,
The tip portion is covered with a covering portion that is spaced outwardly;
The said heating means has a coil wound around the outer periphery of the said coating | coated part, and the high frequency current supply means which supplies a high frequency current to this coil, The molten glass supply apparatus which induction-heats the said front-end | tip part.
前記被覆部は、前記流出管の先端より基部側へ所定距離の位置で、前記先端部に接続されている請求項1記載の溶融ガラス供給装置。   The molten glass supply apparatus according to claim 1, wherein the covering portion is connected to the distal end portion at a predetermined distance from the distal end of the outflow pipe to the base side. 前記被覆部は、前記流出管の先端より下方へ延出する請求項1又は2記載の溶融ガラス供給装置。   The molten glass supply apparatus according to claim 1, wherein the covering portion extends downward from a tip of the outflow pipe. 前記被覆部は、前記流出管の先端に接続され、前記流出管の基部側に向けて拡径する形状を有する請求項1記載の溶融ガラス供給装置。   The molten glass supply apparatus according to claim 1, wherein the covering portion is connected to a distal end of the outflow pipe and has a shape that expands toward a base side of the outflow pipe. 前記先端部と前記被覆部との間に配置されて前記先端部の温度を検出する検出手段を更に備える請求項1から4いずれか記載の溶融ガラス供給装置。   The molten glass supply apparatus according to any one of claims 1 to 4, further comprising a detection unit that is disposed between the tip portion and the covering portion and detects a temperature of the tip portion. 前記検出手段の検出値に基づいて、前記高周波電流供給手段を制御する制御手段を更に備える請求項5記載の溶融ガラス供給装置。   The molten glass supply apparatus according to claim 5, further comprising a control unit that controls the high-frequency current supply unit based on a detection value of the detection unit. 前記加熱手段は、前記先端部及び前記被覆部に配置された一対の電極と、これら電極間に電流を流す電気流通手段と、を更に有し、前記先端部を通電加熱する請求項1から6いずれか記載の溶融ガラス供給装置。   The heating means further includes a pair of electrodes disposed on the tip portion and the covering portion, and an electric flow means for passing a current between the electrodes, and the tip portion is energized and heated. The molten glass supply apparatus in any one. 請求項1から7いずれか記載の溶融ガラス供給装置と、この溶融ガラス供給装置から供給される溶融ガラスを成形する成形手段と、を備えるガラス成形体製造装置。   A glass molded body manufacturing apparatus comprising: the molten glass supply device according to any one of claims 1 to 7; and a molding unit that molds the molten glass supplied from the molten glass supply device. 流出管から溶融ガラスを流出する流出工程と、前記流出管の先端部を加熱する加熱工程と、を有する溶融ガラス供給方法であって、
前記先端部を、外方に間隔をあけて配置された被覆部で被覆し、
前記加熱工程では、前記被覆部の外周に巻回されたコイルに高周波電流を供給することで、前記先端部を誘導加熱する溶融ガラス供給方法。
A molten glass supply method comprising: an outflow step of flowing out the molten glass from the outflow tube; and a heating step of heating the tip of the outflow tube,
The tip is covered with a covering portion that is spaced outwardly,
In the heating step, a molten glass supply method in which the tip portion is induction-heated by supplying a high-frequency current to a coil wound around the outer periphery of the covering portion.
前記被覆部を、前記流出管の先端より基部側へ所定距離の位置で、前記先端部に接続する請求項9記載の溶融ガラス供給方法。   The molten glass supply method according to claim 9, wherein the covering portion is connected to the tip portion at a predetermined distance from the tip of the outflow pipe to the base side. 前記被覆部を、前記流出管の先端より下方へ延出させる請求項9又は10記載の溶融ガラス供給方法。   The molten glass supply method according to claim 9 or 10, wherein the covering portion is extended downward from a tip of the outflow pipe. 前記被覆部を、前記流出管の先端に接続し、前記流出管の基部側に向けて拡径させる請求項9記載の溶融ガラス供給方法。   The molten glass supply method according to claim 9, wherein the covering portion is connected to a distal end of the outflow pipe and the diameter is expanded toward a base side of the outflow pipe. 前記先端部と前記被覆部との間に検出手段を配置し、この検出手段で前記先端部の温度を検出する工程を更に有する請求項9から12いずれか記載の溶融ガラス供給方法。   The molten glass supply method according to any one of claims 9 to 12, further comprising a step of disposing a detection means between the tip portion and the covering portion, and detecting the temperature of the tip portion by the detection means. 前記検出手段の検出値に基づいて、高周波電流の供給条件を制御する制御工程を更に有する請求項13記載の溶融ガラス供給方法。   The molten glass supply method according to claim 13, further comprising a control step of controlling a supply condition of the high-frequency current based on a detection value of the detection means. 前記加熱工程は、前記先端部及び前記被覆部に配置された一対の電極間に電流を流すことで、前記先端部を通電加熱する工程を更に有する請求項9から14いずれか記載の溶融ガラス供給方法。   The molten glass supply according to any one of claims 9 to 14, wherein the heating step further includes a step of energizing and heating the tip portion by passing an electric current between a pair of electrodes arranged in the tip portion and the covering portion. Method. 請求項9から15いずれか記載の溶融ガラス供給方法で供給した溶融ガラスを成形する工程を有するガラス成形体製造方法。   A glass molded body manufacturing method comprising a step of molding the molten glass supplied by the molten glass supply method according to claim 9.
JP2008281831A 2008-10-31 2008-10-31 Device for feeding molten glass and apparatus for producing glass molding Pending JP2010105888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008281831A JP2010105888A (en) 2008-10-31 2008-10-31 Device for feeding molten glass and apparatus for producing glass molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008281831A JP2010105888A (en) 2008-10-31 2008-10-31 Device for feeding molten glass and apparatus for producing glass molding

Publications (1)

Publication Number Publication Date
JP2010105888A true JP2010105888A (en) 2010-05-13

Family

ID=42295712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281831A Pending JP2010105888A (en) 2008-10-31 2008-10-31 Device for feeding molten glass and apparatus for producing glass molding

Country Status (1)

Country Link
JP (1) JP2010105888A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136394A1 (en) 2010-04-30 2011-11-03 Dow Corning Toray Co., Ltd. Powder treatment agent comprising sugar alcohol -modified organopolysiloxane
WO2015026615A1 (en) * 2013-08-20 2015-02-26 Corning Incorporated Method and apparatus for glass sheet manufacturing including an induction heated enclosure
JP2015063436A (en) * 2013-09-26 2015-04-09 Hoya株式会社 Glass outflow device, glass outflow method, method for manufacturing glass molding and method for manufacturing optical element
JP2015171980A (en) * 2014-03-12 2015-10-01 日本電気硝子株式会社 Production method of glass article and molten glass feeding device
CN108395075A (en) * 2018-04-10 2018-08-14 湖北新华光信息材料有限公司 Molding expects pipe for inhibiting glass ingredient to volatilize and forming method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011136394A1 (en) 2010-04-30 2011-11-03 Dow Corning Toray Co., Ltd. Powder treatment agent comprising sugar alcohol -modified organopolysiloxane
WO2015026615A1 (en) * 2013-08-20 2015-02-26 Corning Incorporated Method and apparatus for glass sheet manufacturing including an induction heated enclosure
CN105658587A (en) * 2013-08-20 2016-06-08 康宁股份有限公司 Method and apparatus for glass sheet manufacturing including an induction heated enclosure
JP2015063436A (en) * 2013-09-26 2015-04-09 Hoya株式会社 Glass outflow device, glass outflow method, method for manufacturing glass molding and method for manufacturing optical element
JP2015171980A (en) * 2014-03-12 2015-10-01 日本電気硝子株式会社 Production method of glass article and molten glass feeding device
CN108395075A (en) * 2018-04-10 2018-08-14 湖北新华光信息材料有限公司 Molding expects pipe for inhibiting glass ingredient to volatilize and forming method

Similar Documents

Publication Publication Date Title
JP6324632B2 (en) Printer head for 3D printing
JP2010105888A (en) Device for feeding molten glass and apparatus for producing glass molding
EP4275818A2 (en) Apparatus, system and method of operating an additive manufacturing nozzle
JP2010167495A (en) Continuous casting method and nozzle heating device
EP1755856B1 (en) Method for manufacturing a heated nozzle unit for the moulding of plastics materials
CN103328394A (en) Process and apparatus for drawing a quartz glass strand
WO2018002001A1 (en) A method and apparatus for 3d printing of quartz glass
JP2009504414A (en) Ladle bottom nozzle with induction power
JP2006143563A (en) Glass molding, optical element, their production method, fused glass outflow device and device for producing glass molding
JP2008120643A (en) Method for manufacturing optical fiber and manufacturing apparatus
EP0386756A1 (en) Furnace and process for optical fiber drawing
JP2007015157A (en) Apparatus for producing rubber covered roll, method for producing rubber covered roll, and rubber covered roll
CN1699125A (en) Conveyance and forming apparatus
JP4062004B2 (en) Induction heating and melting equipment for metal wire
JP2007106643A (en) Glass molding apparatus and glass molding method
JP7313122B2 (en) Hot water tapping method in induction heating melting device and induction heating melting device
JP5429561B2 (en) Glass rod manufacturing apparatus and manufacturing method
JP2007253230A (en) High-frequency induction heating device for die casting machine
JP4261331B2 (en) Induction heating molding equipment
JP2005179084A (en) Induction heating molding apparatus
JP6303638B2 (en) Glass article manufacturing method and molten glass supply apparatus
JPWO2018097165A1 (en) Die casting mold manufacturing method and die casting mold
JP7031425B2 (en) Single crystal growth device and single crystal growth method
TW201818038A (en) Crucible apparatus with temperature control design and temperature control method thereof characterized by controlling the decrease of the melted shell curve to maintain the melting quality and promote the melting utilization
JP2006248091A (en) Method for connecting resin mandrel