JP2015063436A - Glass outflow device, glass outflow method, method for manufacturing glass molding and method for manufacturing optical element - Google Patents

Glass outflow device, glass outflow method, method for manufacturing glass molding and method for manufacturing optical element Download PDF

Info

Publication number
JP2015063436A
JP2015063436A JP2013199783A JP2013199783A JP2015063436A JP 2015063436 A JP2015063436 A JP 2015063436A JP 2013199783 A JP2013199783 A JP 2013199783A JP 2013199783 A JP2013199783 A JP 2013199783A JP 2015063436 A JP2015063436 A JP 2015063436A
Authority
JP
Japan
Prior art keywords
glass
outflow
preform
pipe
molten glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013199783A
Other languages
Japanese (ja)
Other versions
JP2015063436A5 (en
Inventor
敦司 上▲崎▼
Atsushi Kamisaki
敦司 上▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2013199783A priority Critical patent/JP2015063436A/en
Priority to CN201410497557.0A priority patent/CN104512996B/en
Publication of JP2015063436A publication Critical patent/JP2015063436A/en
Publication of JP2015063436A5 publication Critical patent/JP2015063436A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/07Electric means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for flowing out a molten glass material having volatility from a pipe to manufacture a preform, capable of preventing a stria from occurring in the preform.SOLUTION: A glass outflow device 1 for flowing out a molten glass comprises: an outflow pipe 4 extended in a vertical direction and flowing out the molten glass; an induction heating coil 6 provided on the outer peripheral side of the outflow pipe 4; and a loop member 14 provided so as to surround the outside of the outflow pipe 4 in a horizontal view and consisting of a closed loop shaped conductor allowing induction heating by the induction heating coil 6.

Description

本発明は、ガラス流出装置、ガラス流出方法、ガラス成形品の製造方法、及び、光学素子の製造方法に関し、特に、プリフォーム等のガラス成形品を製造するためのガラス流出装置、ガラス流出方法、ガラス成形品の製造方法、及び、光学素子の製造方法に関する。   The present invention relates to a glass outflow device, a glass outflow method, a glass molded product manufacturing method, and an optical element manufacturing method, and in particular, a glass outflow device, a glass outflow method for manufacturing a glass molded product such as a preform, The present invention relates to a method for producing a glass molded article and a method for producing an optical element.

従来より、レンズ等のガラス製光学素子の製造方法として、光学素子に近似した形状を有するプリフォームを成形し、このプリフォームを加熱してプレス成形する方法が用いられている。この方法で用いられるプリフォームの製造方法としては、ガラス流出装置により、坩堝中で熔融した熔融ガラスを流出パイプから流出させて成形型(キャスト)上に滴下し、成形型上で成形、冷却する方法が広く用いられている(例えば、特許文献1乃至4参照)。   Conventionally, as a method for producing a glass optical element such as a lens, a method is used in which a preform having a shape similar to the optical element is molded, and this preform is heated and press-molded. As a manufacturing method of the preform used in this method, the glass melted in the crucible is caused to flow out of the outflow pipe by a glass outflow device, dropped onto the forming die (cast), and molded and cooled on the forming die. The method is widely used (for example, see Patent Documents 1 to 4).

図4は、従来よりプリフォームの製造に用いられているガラス流出装置の一例の構成を示す鉛直断面図である。同図に示すように、従来より用いられているガラス流出装置101は、ケーシング102内に配置された流出パイプ104と、ケーシング102の外側に配置された誘導加熱コイル106と、不活性ガスを吹き出すガス流路112を画成する外側流路部材108及び内側流路部材110とを備える。かかる装置を用いてプリフォームを製造をする際には、ガラス熔融装置120から供給された熔融ガラスを流出パイプ104から流出さえて成形型116に滴下させる。この際、熔融ガラスを外気から隔離するためにガス流路112から不活性ガスを流出パイプ104の先端に吹き付けるとともに、熔融ガラスの温度が低下しないように、誘導加熱コイル106により流出パイプ104を加熱する。   FIG. 4 is a vertical sectional view showing a configuration of an example of a glass outflow apparatus conventionally used for manufacturing a preform. As shown in the figure, a conventionally used glass spill device 101 is composed of an spill pipe 104 disposed in a casing 102, an induction heating coil 106 disposed outside the casing 102, and an inert gas. An outer channel member 108 and an inner channel member 110 that define the gas channel 112 are provided. When a preform is manufactured using such an apparatus, the molten glass supplied from the glass melting apparatus 120 flows out of the outflow pipe 104 and is dropped onto the forming die 116. At this time, in order to isolate the molten glass from the outside air, an inert gas is blown from the gas flow path 112 to the tip of the outflow pipe 104, and the outflow pipe 104 is heated by the induction heating coil 106 so that the temperature of the molten glass does not decrease. To do.

特許文献1に記載の装置では、特許文献1の図1(b)に図示されているように、流出パイプ周辺を石英ガラスカバーで囲むとともに、成形型の周囲もカバーで囲み、熔融ガラスを流出、成形する空間内の雰囲気を制御できるようになっている。
特許文献2に記載の装置では、特許文献2の図2に図示されているように、熔融ガラスを流出するノズルの周りにノズルカバーを設け、ノズルとノズルカバーの間に下向きにガスを流し、ノズル先端に出現する熔融ガラスに下向きの風圧を加え、自然に滴下する重量よりも軽量の熔融ガラス滴を滴下可能にしている。
特許文献3に記載の装置では、流出パイプ外周への熔融ガラスの濡れ上がりを抑制するために、特許文献3の図2に図示されているように、乾燥ガスを流出パイプの外周に流す構造になっている。
特許文献4に記載の装置では、流出する熔融ガラスからの揮発を抑制するため、熔融ガラス表面の冷却を促進するためにガスを吹き付ける構造を有している。
In the apparatus described in Patent Document 1, as shown in FIG. 1B of Patent Document 1, the periphery of the outflow pipe is surrounded by a quartz glass cover, and the periphery of the mold is also surrounded by the cover, and the molten glass flows out. The atmosphere in the molding space can be controlled.
In the apparatus described in Patent Document 2, as shown in FIG. 2 of Patent Document 2, a nozzle cover is provided around the nozzle that flows out of the molten glass, and gas is allowed to flow downward between the nozzle and the nozzle cover. A downward wind pressure is applied to the molten glass that appears at the tip of the nozzle to allow dripping of a molten glass droplet that is lighter than the weight that naturally drops.
In the apparatus described in Patent Document 3, in order to suppress the wetting of the molten glass on the outer periphery of the outflow pipe, as shown in FIG. It has become.
The apparatus described in Patent Document 4 has a structure in which gas is blown to promote cooling of the surface of the molten glass in order to suppress volatilization from the molten glass flowing out.

特開2006−232584号公報JP 2006-232584 A 特開2002−121032号公報JP 2002-121032 A 特開2003−026424号公報JP 2003-026424 A 特開2006−248873号公報JP 2006-248873 A

近年、ガラス材料として、熔融状態で揮発性を示すガラス材料が用いられている。中でもフツリン酸ガラス、ホウ酸含有ガラス、及び、アルカリ金属含有ガラスなどは熔融状態で高い揮発性を示す。このような揮発性を有する熔融ガラスから上記のガラス流出装置を用いてプリフォームを連続的に製造する場合において、製造時間が長時間にわたると、突発的にプリフォームに脈理が発生し、プリフォームの品質が低下するという問題が生じる。   In recent years, glass materials that are volatile in a molten state have been used as glass materials. Among these, fluorophosphate glass, boric acid-containing glass, alkali metal-containing glass, and the like exhibit high volatility in the molten state. In the case where preforms are continuously produced from such volatile molten glass using the glass outflow device described above, striations occur suddenly in the preforms if the production time is extended for a long time. There arises a problem that the quality of the reform is deteriorated.

本発明は、上記の問題に鑑みなされたものであり、熔融ガラスをパイプから流出させて高品質のガラス成形品を安定的に作製可能なガラス流出装置、ガラス流出方法およびガラス成形品の製造方法を提供すること、ならびに、前記方法により作製したガラス成形品を用いる光学素子の製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and a glass outflow device, a glass outflow method, and a glass molded product manufacturing method capable of stably producing a high-quality glass molded product by causing molten glass to flow out of a pipe. And to provide a method for producing an optical element using the glass molded article produced by the above method.

本願出願人らは、試行錯誤の結果、プリフォームにおける脈理の発生は、熔融ガラスから発生する揮発物がパイプ外周に付着し、この付着物が異質物としてパイプから流出する熔融ガラスに混ざりこむことが原因であるとの知見を得た。   As a result of trial and error, the applicants of the present application have found that the occurrence of striae in the preform is caused by the volatile matter generated from the molten glass adhering to the outer periphery of the pipe, and this adhering matter is mixed into the molten glass flowing out of the pipe as a foreign substance It was found that this was the cause.

本発明のガラス流出装置は、上記の出願人らの知見に基づくものであり、熔融ガラスを流出するガラス流出装置であって、上下方向に延び、熔融ガラスを流出するパイプと、パイプの外周側に設けられた誘導加熱コイルと、水平視においてパイプの外側を囲むように設けられ、誘導加熱コイルにより誘導加熱可能な閉ループ状の導電体からなるループ部材と、を備える。   The glass outflow device of the present invention is based on the above-mentioned knowledge of the applicants, and is a glass outflow device for outflowing molten glass, which extends in the vertical direction and flows out of the molten glass, and the outer peripheral side of the pipe And a loop member made of a closed loop conductor that is provided so as to surround the outside of the pipe in a horizontal view and can be induction-heated by the induction heating coil.

また、本発明のガラス流出方法は、熔融ガラスを流出する方法であって、熔融ガラスを流出するパイプの外周側に、誘導加熱コイルが設けられ、誘導加熱コイルにより誘導加熱可能な閉ループ状の導電体からなるループ部材が水平視においてパイプの外側を囲むように設けられ、誘導加熱コイルによりループ部材を誘導加熱しながら、パイプから熔融ガラスを流出する。   Further, the glass outflow method of the present invention is a method of outflowing molten glass, and an induction heating coil is provided on the outer peripheral side of a pipe through which molten glass flows out, and a closed loop conductive material that can be induction heated by the induction heating coil. A loop member made of a body is provided so as to surround the outside of the pipe in a horizontal view, and the molten glass flows out from the pipe while induction heating the loop member by an induction heating coil.

また、本発明のガラス成形品の製造方法は、上記のガラス流出方法により熔融ガラスを流出し、成形する。   Moreover, the manufacturing method of the glass molded product of this invention flows out and shape | molds molten glass with said glass outflow method.

また、本発明の光学素子の製造方法は、上記のガラス流出方法により熔融ガラスを流出してプレス成形用プリフォームを製造するステップと、プリフォームを加熱するステップと、加熱されたプリフォームをプレス成形するステップと、を備える。   The optical element manufacturing method of the present invention includes a step of manufacturing a press molding preform by flowing out molten glass by the glass outflow method, a step of heating the preform, and pressing the heated preform. Forming.

上記構成の本発明によれば、ループ部材を流出パイプの外周に配置しているため、このループ部材を誘導加熱コイルにより加熱しながら、流出パイプから熔融ガラスを流出することができる。これにより、流出パイプの周囲を高温に保つことができ、熔融ガラスから発生した揮発物が流出パイプの下端に付着するのを防止でき、プリフォームに脈理が突発的に発生するのを防止することができる。   According to this invention of the said structure, since the loop member is arrange | positioned on the outer periphery of the outflow pipe, molten glass can be flowed out from an outflow pipe, heating this loop member with an induction heating coil. As a result, the periphery of the outflow pipe can be kept at a high temperature, volatiles generated from the molten glass can be prevented from adhering to the lower end of the outflow pipe, and striae can be prevented from suddenly occurring in the preform. be able to.

本発明のガラス流出装置によれば、熔融ガラスから高品質のガラス成形品を安定して作製可能にするガラス流出装置を提供することができる。
また、本発明のガラス流出方法によれば、熔融ガラスから高品質のガラス成形品を安定して作製するためのガラス流出方法を提供することができる。
また、本発明のガラス成形品の製造方法によれば、熔融ガラスから高品質のガラス成形品を安定して製造可能なガラス成形品の製造方法を提供することができる。
さらに、本発明の光学素子の製造方法によれば、熔融ガラスからプリフォームを経て、高品質な光学素子を安定して製造可能な光学素子の製造方法を提供することができる。
According to the glass outflow device of the present invention, it is possible to provide a glass outflow device that can stably produce a high-quality glass molded product from molten glass.
Moreover, according to the glass outflow method of this invention, the glass outflow method for producing stably a high quality glass molded product from molten glass can be provided.
Moreover, according to the manufacturing method of the glass molded product of this invention, the manufacturing method of the glass molded product which can manufacture a high quality glass molded product stably from molten glass can be provided.
Furthermore, according to the method for manufacturing an optical element of the present invention, it is possible to provide an optical element manufacturing method capable of stably manufacturing a high-quality optical element through a preform from molten glass.

第1実施形態のガラス流出装置の構成を示す鉛直断面図である。It is a vertical sectional view showing the composition of the glass outflow device of a 1st embodiment. 第2実施形態のガラス流出装置を示す鉛直断面図であり、流出パイプの周囲を拡大して示している。It is a vertical sectional view showing the glass outflow device of a 2nd embodiment, and the circumference of an outflow pipe is expanded and shown. 第3実施形態のガラス流出装置を示す鉛直断面図であり、流出パイプの周囲を拡大して示している。It is a vertical sectional view showing a glass outflow device of a 3rd embodiment, and the circumference of an outflow pipe is expanded and shown.

以下、本発明の第1実施形態を図面を参照しながら詳細に説明する。
図1は、本実施形態のガラス流出装置の構成を示す鉛直断面図である。本実施形態のガラス流出装置1は、熔解炉において加熱されて熔解した熔融ガラスが供給され、供給された熔融ガラスを滴下することにより、ガラス成形品であるプリフォームを製造する装置である。
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a vertical cross-sectional view showing the configuration of the glass outflow device of the present embodiment. The glass outflow apparatus 1 of this embodiment is an apparatus which manufactures the preform which is a glass molded article by supplying the molten glass heated and melt | dissolved in the melting furnace, and dripping the supplied molten glass.

図1に示すように、ガラス流出装置1は、円筒状に形成されたケーシング2と、ケーシング2の中心に配置された流出パイプ4と、ケーシング2の外側に配置された誘導加熱コイル6と、不活性ガスを吹き出すガス流路12を画成する外側流路部材8及び内側流路部材10と、ガス流路12内に配置されたループ部材14と、を備える。また、ガラス流出装置1の流出パイプ4の下方には、昇降装置22に支持された成形型16が配置されている。なお、本発明のガラス成形品の製造装置は、ガラス流出装置1及び成形型16とを含んで構成される。   As shown in FIG. 1, the glass outflow device 1 includes a casing 2 formed in a cylindrical shape, an outflow pipe 4 disposed in the center of the casing 2, an induction heating coil 6 disposed outside the casing 2, The outer flow path member 8 and the inner flow path member 10 which define the gas flow path 12 which blows inactive gas, and the loop member 14 arrange | positioned in the gas flow path 12 are provided. Further, below the outflow pipe 4 of the glass outflow device 1, a forming die 16 supported by the lifting device 22 is disposed. In addition, the manufacturing apparatus of the glass molded product of this invention is comprised including the glass outflow apparatus 1 and the shaping | molding die 16. FIG.

ケーシング2は、円筒状に形成された部材であり、例えば、石英などの伝熱性が低い非伝導体材料からなる。ケーシング2は、成形型側ケーシング18とともに、内部に気密空間を形成している。   The casing 2 is a member formed in a cylindrical shape, and is made of, for example, a non-conductive material with low heat conductivity such as quartz. The casing 2 forms an airtight space in the interior together with the mold side casing 18.

流出パイプ4は、ガラス熔融装置20に接続されており、ガラス熔融装置20から熔融ガラスが供給されている。流出パイプ4は、例えば、白金などの腐食に強い導電体材料から構成される。流出パイプ4の下端部の内径は、製造するプリフォームの大きさに応じた所定の径となっている。流出パイプ4は、ガラス熔融装置20より供給された熔融ガラスを成形型16上にキャストする。   The outflow pipe 4 is connected to the glass melting apparatus 20, and molten glass is supplied from the glass melting apparatus 20. The outflow pipe 4 is made of a conductor material that is resistant to corrosion, such as platinum. The inner diameter of the lower end portion of the outflow pipe 4 is a predetermined diameter corresponding to the size of the preform to be manufactured. The outflow pipe 4 casts the molten glass supplied from the glass melting apparatus 20 onto the mold 16.

誘導加熱コイル6は、コイル状に成形された導電体からなる部材であり、電源(不図示)が接続されている。電源から誘導加熱コイル6に電流が流されると、誘導加熱コイル6の内側に磁場が発生する。これにより、誘導加熱コイル6の内側に配置された導電体に、電磁誘導による渦電流を発生させ、導電体の電気抵抗により導電体を発熱させることができる。   The induction heating coil 6 is a member made of a conductor formed in a coil shape, and is connected to a power source (not shown). When a current flows from the power source to the induction heating coil 6, a magnetic field is generated inside the induction heating coil 6. Thereby, an eddy current due to electromagnetic induction can be generated in the conductor disposed inside the induction heating coil 6, and the conductor can be heated by the electric resistance of the conductor.

外側流路部材8及び内側流路部材10は、例えば、石英等の非導電体材料が円筒状に形成されてなる。内側流路部材10は、中心軸が同軸となるように外側流路部材8内に配置されている。また、内側流路部材10及び外側流路部材8の間には、流出パイプ4を包囲するように、水平断面円環状のガス流路12が画成されている。このガス流路12には、外部のガス源から例えば、窒素ガスなどの不活性ガスが供給される。外側流路部材8の下端は、中心に向かって傾斜している。これにより、ガス流路12から供給された不活性ガスは、流出パイプ4の先端に向かって吹き付けられる。   The outer flow path member 8 and the inner flow path member 10 are made of, for example, a non-conductive material such as quartz formed in a cylindrical shape. The inner flow path member 10 is disposed in the outer flow path member 8 so that the central axis is coaxial. In addition, a gas flow path 12 having an annular horizontal section is defined between the inner flow path member 10 and the outer flow path member 8 so as to surround the outflow pipe 4. For example, an inert gas such as nitrogen gas is supplied to the gas flow path 12 from an external gas source. The lower end of the outer flow path member 8 is inclined toward the center. Thereby, the inert gas supplied from the gas flow path 12 is sprayed toward the tip of the outflow pipe 4.

ループ部材14は、導電体からなる閉ループ状の部材であり、ガス流路12内に配置されており、水平視において流出パイプ4の外側を囲むように設けられている。ループ部材14を構成する導電体としては、熔融ガラスから揮発した揮発ガスによる腐食に抵抗できるように、貴金属または貴金属合金、例えば白金などの材料が適している。ループ部材14は、全長が所望の長さとなるように、上下方向に振れる波形状を呈している。このように、ループ部材14の全長を長くすることにより、ループ部材14が高温になりすぎて、破断してしまうのを防止できる。
成形型16は、昇降装置22に支持されており、この昇降装置22により上下方向に昇降可能である。
The loop member 14 is a closed loop member made of a conductor, and is disposed in the gas flow path 12 so as to surround the outside of the outflow pipe 4 in a horizontal view. As the conductor constituting the loop member 14, a material such as a noble metal or a noble metal alloy such as platinum is suitable so that it can resist corrosion caused by volatile gas volatilized from the molten glass. The loop member 14 has a wave shape that swings in the vertical direction so that the entire length becomes a desired length. In this way, by making the entire length of the loop member 14 longer, it is possible to prevent the loop member 14 from becoming too hot and breaking.
The molding die 16 is supported by an elevating device 22 and can be moved up and down by the elevating device 22.

以下、このガラス流出装置1を用いてプリフォームを製造する方法を説明する。
プリフォームを製造する際には、まず、ガラス熔融装置20によりガラス材料を熔融させる。ガラス材料としては、本実施形態では、例えば、フツリン酸ガラス、ホウ酸含有ガラス、又はアルカリ金属含有ガラス等の高揮発性のガラス材料である。熔融されたガラス材料は、流出パイプ4へ供給される。
また、これと並行して、誘導加熱コイル6に高周波の交流電流を供給する。これにより、誘導加熱コイル6による電磁誘導により、流出パイプ4及びループ部材14が加熱される。
Hereinafter, a method for producing a preform using the glass outflow device 1 will be described.
When manufacturing the preform, first, the glass material is melted by the glass melting device 20. In the present embodiment, the glass material is a highly volatile glass material such as fluorophosphate glass, boric acid-containing glass, or alkali metal-containing glass. The molten glass material is supplied to the outflow pipe 4.
In parallel with this, a high-frequency alternating current is supplied to the induction heating coil 6. Thereby, the outflow pipe 4 and the loop member 14 are heated by electromagnetic induction by the induction heating coil 6.

そして、誘導加熱コイル6により流出パイプ4及びループ部材14を加熱しながら、流出パイプ4の下端から、熔融ガラスを流出させる。また、この際、ガス流路12を通して、不活性ガスを流出パイプ4に向けて噴射する。ループ部材14はガス流路12内に設けられているため、不活性ガスはループ部材14により高温に加熱された状態で、流出パイプ4に向けて吹き付けられる。このように高温のガスを流出パイプ4に吹き付けることにより、流出パイプ4の周辺に漂う揮発物を吹き飛ばすことができる。また、流出パイプ4の外周面の温度が低下すると揮発物が外周面に結露するように付着しやすくなるが、高温のガスを吹き付けることにより、流出パイプ4の外周面の温度を高温に維持し、揮発物が付着しにくくなる。さらに、流出パイプ4の温度が低下すると、熔融ガラスの流出量が変化し、プリフォーム1個の質量が変動したり、熔融ガラスが結晶化しやすくなるなどの不具合が生じやすくなるが、流出パイプ4に吹き付けるガスを高温にすることによって、こうした不具合の発生を回避することもできる。   Then, the molten glass is caused to flow out from the lower end of the outflow pipe 4 while heating the outflow pipe 4 and the loop member 14 by the induction heating coil 6. At this time, the inert gas is injected toward the outflow pipe 4 through the gas flow path 12. Since the loop member 14 is provided in the gas flow path 12, the inert gas is blown toward the outflow pipe 4 while being heated to a high temperature by the loop member 14. By blowing high temperature gas onto the outflow pipe 4 in this way, volatile substances drifting around the outflow pipe 4 can be blown off. Further, when the temperature of the outer peripheral surface of the outflow pipe 4 is lowered, volatiles are likely to adhere to the outer peripheral surface, but by blowing high temperature gas, the temperature of the outer peripheral surface of the outflow pipe 4 is maintained at a high temperature. , Volatiles are less likely to adhere. Further, when the temperature of the outflow pipe 4 is lowered, the outflow amount of the molten glass is changed, so that the mass of one preform fluctuates or the molten glass is easily crystallized. The occurrence of such problems can be avoided by increasing the temperature of the gas blown to the nozzle.

流出パイプ4の下端から流出した熔融ガラスは、成形型16上に滞留する。成形型16上に滞留する熔融ガラスが所定量に達した後、昇降装置22により成形型16を急速に下降させて、流出パイプ4から成形型16上の熔融ガラスを分離する。分離された熔融ガラス塊が所定の形状に成形され、固化することにより、プリフォームを作製することができる。   The molten glass flowing out from the lower end of the outflow pipe 4 stays on the mold 16. After the molten glass staying on the mold 16 reaches a predetermined amount, the mold 16 is rapidly lowered by the lifting device 22 to separate the molten glass on the mold 16 from the outflow pipe 4. A preform can be produced by forming the separated molten glass gob into a predetermined shape and solidifying.

なお、このようにして形成したプリフォームは、レンズ等の光学素子に成形される。光学素子に成形する方法としては、精密プレス成形法を例示することができる。精密プレス成形法の一例では、まず、プリフォームを成形型に収容した状態で加熱、軟化させ、成形型によりプレスする。これにより、成形型に対応した形状の光学素子が得られる。   The preform thus formed is molded into an optical element such as a lens. As a method for molding into an optical element, a precision press molding method can be exemplified. In an example of the precision press molding method, first, a preform is heated and softened in a state of being accommodated in a mold, and then pressed by the mold. Thereby, an optical element having a shape corresponding to the mold is obtained.

本実施形態によれば、ループ部材14を流出パイプ4の外周に配置し、このループ部材14を誘導加熱コイル6により加熱しながら、流出パイプ4から熔融ガラスを流出させている。これにより、流出パイプ4の周囲を高温に保つことができ、熔融ガラスから発生した揮発物が流出パイプ4の下端に付着するのを防止できる。これにより、プリフォームの脈理が突発的に発生するのを防止できる。   According to the present embodiment, the loop member 14 is disposed on the outer periphery of the outflow pipe 4, and the molten glass is caused to flow out from the outflow pipe 4 while the loop member 14 is heated by the induction heating coil 6. Thereby, the circumference | surroundings of the outflow pipe 4 can be maintained at high temperature, and it can prevent that the volatile matter generated from the molten glass adheres to the lower end of the outflow pipe 4. Thereby, it is possible to prevent sudden striae of the preform.

また、流出パイプ4自体の温度を高くしすぎると、流出パイプ4内を流れる熔融ガラスの温度が上昇して粘度が低下してしまうため、適切な流出条件を維持することができない。これに対して、本実施形態では、ループ部材14により、流出パイプ4の周囲を高温に保っているため、熔融ガラスの温度が上昇させることなく、熔融ガラスから発生した揮発物が流出パイプ4の下端に付着するのを防止できる。   Moreover, since the temperature of the molten glass which flows in the outflow pipe 4 will rise and a viscosity will fall when the temperature of the outflow pipe 4 itself is made too high, appropriate outflow conditions cannot be maintained. On the other hand, in this embodiment, since the periphery of the outflow pipe 4 is maintained at a high temperature by the loop member 14, volatiles generated from the molten glass are not generated in the outflow pipe 4 without increasing the temperature of the molten glass. It can prevent adhering to the lower end.

また、従来のガラス流出装置にも誘導加熱コイル6は設けられている。このため、ループ部材14を組み込むことだけで、従来のガラス流出装置を本実施形態のガラス流出装置1に容易に変更できる。   The induction heating coil 6 is also provided in the conventional glass outflow device. For this reason, the conventional glass outflow apparatus can be easily changed to the glass outflow apparatus 1 of this embodiment only by incorporating the loop member 14.

また、本実施形態によれば、ガス流路12内にループ部材14を設けているため、流出パイプ4に吹き付けられる不活性ガスを加熱することができる。これにより、より確実に熔融ガラスから発生した揮発物が流出パイプ4の下端に付着するのを防止できる。   Moreover, according to this embodiment, since the loop member 14 is provided in the gas flow path 12, the inert gas sprayed on the outflow pipe 4 can be heated. Thereby, it can prevent that the volatile matter which generate | occur | produced from the molten glass adhered to the lower end of the outflow pipe 4 more reliably.

また、本実施形態によれば、ループ部材14を上下方向に振れる波型としている。これにより、ループ部材14の全長を変更し、ループ部材14の加熱時の温度を調整することができる。このため、ループ部材14が過度の加熱により破断することを防止できる。   Further, according to the present embodiment, the loop member 14 has a wave shape that swings in the vertical direction. Thereby, the full length of the loop member 14 can be changed and the temperature at the time of the heating of the loop member 14 can be adjusted. For this reason, it is possible to prevent the loop member 14 from being broken by excessive heating.

なお、本実施形態では、ループ部材14をガス流路12に設けていたが、ループ部材を設ける位置は、流出パイプ4の周囲であれば、これに限られない。   In the present embodiment, the loop member 14 is provided in the gas flow path 12, but the position where the loop member is provided is not limited to this as long as it is around the outflow pipe 4.

図2は、本発明の第2実施形態のガラス流出装置を示す鉛直断面図であり、流出パイプ4の周囲を拡大して示している。本実施形態では、第1実施形態に対して、ループ部材34の位置と形状、及び、外側流路部材30の下端位置が異なるものの、その他の構成については同一である。なお、本実施形態において、第1実施形態の同様の機能、構成を有する構成要素については、第1実施形態と同じ符号を付して、説明を省略する。   FIG. 2 is a vertical cross-sectional view showing a glass outflow device according to a second embodiment of the present invention, and shows the periphery of the outflow pipe 4 in an enlarged manner. In the present embodiment, the position and shape of the loop member 34 and the lower end position of the outer flow path member 30 are different from those of the first embodiment, but the other configurations are the same. In the present embodiment, components having the same functions and configurations as those of the first embodiment are denoted by the same reference numerals as those of the first embodiment, and description thereof is omitted.

図2に示すように、本実施形態では、石英からなる外側流路部材30が、下端が流出パイプ4の下端よりもわずかに低い位置するまで延出している。外側流路部材30の下端には、内側に向かって傾斜する傾斜部30Aが形成されている。また、本実施形態では、ループ部材34は、円環状に形成されており、外側流路部材30の傾斜部30Aにより、流出パイプ4の下端と略同じ高さに保持されている。   As shown in FIG. 2, in this embodiment, the outer flow path member 30 made of quartz extends until the lower end is positioned slightly lower than the lower end of the outflow pipe 4. An inclined portion 30 </ b> A that is inclined inward is formed at the lower end of the outer flow path member 30. In the present embodiment, the loop member 34 is formed in an annular shape, and is held at substantially the same height as the lower end of the outflow pipe 4 by the inclined portion 30 </ b> A of the outer flow path member 30.

誘導加熱コイル6により流出パイプ4を加熱すると、コイル中心付近に比べてコイル端部側は放熱量が大きいため、流出パイプ4の下端部は中心部よりも温度が低くなる。このため、流出パイプ4の下端部に、熔融ガラスから発生した揮発物が付着するおそれがある。   When the outflow pipe 4 is heated by the induction heating coil 6, the amount of heat released from the coil end is larger than that near the center of the coil, so that the lower end of the outflow pipe 4 has a lower temperature than the center. For this reason, the volatile matter generated from the molten glass may adhere to the lower end portion of the outflow pipe 4.

これに対して、本実施形態では、ループ部材34が流出パイプ4の下端と略同じ高さに配置されているため、誘導加熱コイル6によりループ部材34を加熱することにより、流出パイプ4の下端を効果的に加熱することができる。さらに、石英からなる外側流路部材30が、下端が流出パイプ4の下端よりもわずかに低い位置するまで延出しているため、この外側流路部材30により流出パイプ4の先端部が保温される。   On the other hand, in this embodiment, since the loop member 34 is disposed at substantially the same height as the lower end of the outflow pipe 4, the lower end of the outflow pipe 4 is heated by heating the loop member 34 with the induction heating coil 6. Can be effectively heated. Furthermore, since the outer flow path member 30 made of quartz extends until the lower end is positioned slightly lower than the lower end of the outflow pipe 4, the tip of the outflow pipe 4 is kept warm by the outer flow path member 30. .

このように、第2実施形態によれば、流出パイプ4の下端を効果的に加熱し、さらに、保温することが可能となる。   As described above, according to the second embodiment, the lower end of the outflow pipe 4 can be effectively heated and further kept warm.

なお、小型のプリフォームを製造する場合には、流出パイプ4の先端を細くし、ガラス流出口を小さくする必要がある。このように、細くなった流出パイプ4の先端は、放熱が大きいため、誘導加熱コイル6では十分に加熱することが難しく、プリフォームの質量にばらつきが生じる原因となる。これに対して、第2実施形態のように、ループ部材34が流出パイプ4の下端と略同じ高さに配置することにより、流出パイプ4の先端近傍の温度を高温に保つことができ、プリフォームの質量精度を高く維持することができる。   In addition, when manufacturing a small preform, it is necessary to make the front-end | tip of the outflow pipe 4 thin, and to make a glass outflow port small. As described above, the thinned outflow pipe 4 has a large amount of heat radiation, so that it is difficult to sufficiently heat the induction heating coil 6, which causes variations in the mass of the preform. On the other hand, as in the second embodiment, the loop member 34 is disposed at substantially the same height as the lower end of the outflow pipe 4, so that the temperature in the vicinity of the end of the outflow pipe 4 can be kept high. The mass accuracy of the reform can be maintained high.

また、第1及び第2実施形態では、ループ部材をケーシング2内に配置していたが、ケーシング2の下方に配置してもよい。   In the first and second embodiments, the loop member is disposed in the casing 2, but may be disposed below the casing 2.

図3は、本発明の第3実施形態のガラス流出装置を示す鉛直断面図であり、流出パイプ4の周囲を拡大して示している。本実施形態では、ループ部材44をケーシング2の下方に配置している。なお、他の構成については、第1実施形態と同様であり、本実施形態において、第1実施形態の同様の機能、構成を有する構成要素については、第1実施形態と同じ符号を付して、説明を省略する。   FIG. 3 is a vertical sectional view showing a glass outflow device according to a third embodiment of the present invention, and shows the periphery of the outflow pipe 4 in an enlarged manner. In the present embodiment, the loop member 44 is disposed below the casing 2. In addition, about another structure, it is the same as that of 1st Embodiment, In this embodiment, the code | symbol same as 1st Embodiment is attached | subjected about the component which has the function and structure similar to 1st Embodiment. The description is omitted.

図3に示すように、本実施形態のループ部材44は、円環状に形成されており、ケーシング2の下端よりも下方に配置されている。また、本実施形態では、大型のプリフォームを製造するべく、流出パイプ4として、第1及び第2実施形態に比べて径の大きいものが用いられている。   As shown in FIG. 3, the loop member 44 of the present embodiment is formed in an annular shape and is disposed below the lower end of the casing 2. Moreover, in this embodiment, in order to manufacture a large-sized preform, the outflow pipe 4 having a larger diameter than the first and second embodiments is used.

大型のプリフォームを製造する場合には、流出パイプ4から熔融ガラス(ガラス材料)を流出させる時間が長くなるため、成形型16内のガラス材料の温度が低下してしまい、プリフォームに変形が生じる原因となる。   In the case of manufacturing a large-sized preform, the time for the molten glass (glass material) to flow out from the outflow pipe 4 becomes long, so the temperature of the glass material in the mold 16 decreases, and the preform is deformed. Cause.

これに対して、本実施形態では、ループ部材44をケーシング2の下方に配置している。これにより、ループ部材44により流出パイプ4の下端のみならず、成形型16内にキャストされた熔融ガラス(ガラス材料)を加熱することができる。これにより、大型のプリフォームを製造する場合であっても、変形の少ないプリフォームを製造することが可能となる。   On the other hand, in this embodiment, the loop member 44 is disposed below the casing 2. Thereby, not only the lower end of the outflow pipe 4 but also the molten glass (glass material) cast in the mold 16 can be heated by the loop member 44. Thereby, even when a large preform is manufactured, a preform with less deformation can be manufactured.

なお、上記の各実施形態では、単一のループ部材が設けられている場合について説明したが、これに限らず、各実施形態のループ部材を組み合わせて用いることも可能である。
ここで、発明者らは、図1を参照して説明した第1実施形態のループ部材を備えたガラス流出装置(以下、試験例という)と、ループ部材を備えていないガラス流出装置(以下、比較例という)とを用いて、フツリン酸ガラス製、ホウ酸含有ガラス製、及び、アルカリ含有ガラス製のプリフォームを作成する試験を行ったので、以下説明する。
In addition, although each said embodiment demonstrated the case where the single loop member was provided, it is not restricted to this, It is also possible to use it combining the loop member of each embodiment.
Here, the inventors have described a glass outflow device (hereinafter referred to as a test example) including the loop member of the first embodiment described with reference to FIG. 1 and a glass outflow device (hereinafter referred to as a test example) that does not include the loop member. A comparative example) was used to make preforms made of fluorophosphate glass, boric acid-containing glass, and alkali-containing glass, which will be described below.

[第1実施態様の試験例]
(試験例1‐1:フツリン酸ガラス製プリフォームの製造)
最初に、リン酸塩、フッ化物などを使用し、カチオン成分としてP5+を26カチオン%、Al3+を20カチオン%、Mg2+を10カチオン%、Ca2+を14カチオン%、Sr2+を15カチオン%、Ba2+を10カチオン%、Li+を4カチオン%、Y3+を1カチオン%含み、アニオン成分としてF-を64アニオン%、O2-を36アニオン%含み、屈折率ndが1.501、アッベ数νdが81.2であるフツリン酸ガラスが得られるようにガラス原料を調合した。
[Test Example of First Embodiment]
(Test Example 1-1: Production of preform made of fluorophosphate glass)
First, using phosphate, fluoride, etc., P 5+ is 26 cation%, Al 3+ is 20 cation%, Mg 2+ is 10 cation%, Ca 2+ is 14 cation%, Sr as cation components. 2+ 15 cation%, Ba 2+ 10 cation%, Li + 4 cation%, Y 3+ 1 cation%, F 64 anion%, O 2− 36 anion% A glass raw material was prepared so that a fluorophosphate glass having a refractive index nd of 1.501 and an Abbe number νd of 81.2 was obtained.

次に、ガラス熔融装置20の白金製坩堝中に調合したガラス原料を導入し、850〜1100℃の範囲で数時間かけて加熱、熔融し、清澄、均質化して熔融ガラス(ガラス材料)を用意した。   Next, the glass raw material prepared in the platinum crucible of the glass melting apparatus 20 is introduced, heated and melted in the range of 850 to 1100 ° C. for several hours, clarified and homogenized to prepare a molten glass (glass material). did.

上記白金坩堝の下には図1に示すガラス流出装置が取り付けられている。ケーシング2、外側流路部材8、内側流路部材10はいずれも石英製である。ケーシング2の内部には、図1に示すように白金製のループ部材14を固定してある。ループ部材14は上下方向に振れる波形状を呈しており、力を加えていない状態では、その水平視したときの直径は内側流路部材10の外径よりも僅かに小さく形成されている。ループ部材14の水平視したときの直径が内側流路部材10の外径よりも僅かに大きくなるように外力を加え、ループ部材14を内側流路部材10の外周面に被せた後、外力を解除することにより、ループ部材14に縮径しようとする弾性力が生じ、ループ部材14が内側流路部材10の外側に固定されている。   A glass outflow device shown in FIG. 1 is attached under the platinum crucible. The casing 2, the outer flow path member 8, and the inner flow path member 10 are all made of quartz. A platinum loop member 14 is fixed inside the casing 2 as shown in FIG. The loop member 14 has a wave shape that swings in the vertical direction. When no force is applied, the loop member 14 has a diameter that is slightly smaller than the outer diameter of the inner flow path member 10 when viewed horizontally. An external force is applied so that the diameter of the loop member 14 in a horizontal view is slightly larger than the outer diameter of the inner flow path member 10, and the loop member 14 is placed on the outer peripheral surface of the inner flow path member 10, and then the external force is applied. By releasing, an elastic force to reduce the diameter is generated in the loop member 14, and the loop member 14 is fixed to the outside of the inner flow path member 10.

白金坩堝中の熔融ガラスをガラス流出装置から流出するにあたり、誘導加熱コイル6に高周波交流電流を流すとともに、ガス流路12に下方に向けて乾燥窒素ガスを一定の流量で流した。成形型側ケーシング18内部も乾燥窒素ガスを満たしてある。   In flowing out the molten glass in the platinum crucible from the glass outflow device, a high-frequency alternating current was passed through the induction heating coil 6 and dry nitrogen gas was passed through the gas passage 12 downward at a constant flow rate. The inside of the mold side casing 18 is also filled with dry nitrogen gas.

流出パイプ4から一定の流量で流出する熔融ガラスの下端を、昇降装置22により高位置で支持されている成形型16の凹面で受け、所要の量の熔融ガラスが凹面に溜まったら、昇降装置22により成形型16を垂直下方に急速に降下させる。この動作により、流出パイプ4から流出する熔融ガラスから、成形型16の凹面に溜めた熔融ガラスを分離し、プリフォーム1個分に相当する熔融ガラス塊を成形型16の凹面上に得る。   When the lower end of the molten glass flowing out from the outflow pipe 4 at a constant flow rate is received by the concave surface of the molding die 16 supported at a high position by the lifting device 22, and the required amount of molten glass has accumulated in the concave surface, the lifting device 22. As a result, the mold 16 is rapidly lowered vertically downward. By this operation, the molten glass accumulated in the concave surface of the mold 16 is separated from the molten glass flowing out from the outflow pipe 4, and a molten glass lump corresponding to one preform is obtained on the concave surface of the mold 16.

成形型16の凹面は多孔質体で作られており、多孔質体の背面に高圧の乾燥窒素ガスを供給することによって、凹面から乾燥窒素ガスを噴射させる。この凹面から噴射する乾燥窒素ガスの風圧により凹面上の熔融ガラス塊を浮上状態で成形する。   The concave surface of the mold 16 is made of a porous body, and dry nitrogen gas is injected from the concave surface by supplying high-pressure dry nitrogen gas to the back surface of the porous body. The molten glass lump on the concave surface is formed in a floating state by the wind pressure of the dry nitrogen gas sprayed from the concave surface.

このように、複数の成形型を回転テーブル上に載せ、回転テーブルをインデックス回転させ、成形型を順次、流出パイプ4の下方に移送し、連続して流出する熔融ガラスからプリフォームを次々に成形する。回転テーブルを使用して成形型を移送する点、成形型側ケーシング18の構造、成形型から成形したプリフォームを取り出すための構造などは特許文献1に記載の装置と共通である。   In this way, a plurality of molds are placed on the rotary table, the rotary table is index-rotated, the molds are sequentially transferred below the outflow pipe 4, and preforms are formed one after another from the molten glass that flows out continuously. To do. The point of transferring the mold using the rotary table, the structure of the mold side casing 18, the structure for taking out the preform molded from the mold, and the like are the same as the apparatus described in Patent Document 1.

上記のように連続して一日、熔融ガラスを流出し、次々にプリフォームに成形した。成形したプリフォームを観察したところ、脈理、失透は見られず、光学的に均質性の高いプリフォームを一日連続して作製することができた。
なお、成形したプリフォームの質量を測定したところ、すべてのプリフォームの質量は300mg±5mgの範囲内であった。
さらに、熔融ガラスの流出、成形を終えた後、成形型側ケーシング18を取り外して流出パイプ4の外周部を目視で観察したところ、熔融ガラスからの揮発物の付着は無かった。
As described above, the molten glass was poured out continuously for one day, and formed into a preform one after another. When the molded preform was observed, no striae and devitrification were observed, and an optically homogeneous preform could be produced continuously for one day.
When the masses of the molded preforms were measured, the masses of all preforms were in the range of 300 mg ± 5 mg.
Further, after the outflow and molding of the molten glass were completed, the mold side casing 18 was removed and the outer periphery of the outflow pipe 4 was visually observed. As a result, there was no adhesion of volatiles from the molten glass.

(試験例1‐2:ホウ酸含有ガラス製プリフォームの製造)
本試験例1−2では、白金坩堝中のガラスをホウ酸含有ガラスに変えるとともに、成形型側ケーシング18を取り外し、ガラスの成形は大気雰囲気中で行うようにした。それ以外は試験例1−1と同様にして、熔融ガラスを流出し、次々にホウ酸含有ガラスからなるプリフォームを成形した。
(Test Example 1-2: Production of boric acid-containing glass preform)
In Test Example 1-2, the glass in the platinum crucible was changed to boric acid-containing glass, the mold-side casing 18 was removed, and the glass was formed in an air atmosphere. Other than that was carried out similarly to Experiment 1-1, and the molten glass was flowed out and the preform which consists of a boric-acid containing glass one after another was shape | molded.

上記のように連続して一日、熔融ガラスを流出し、次々にプリフォームに成形した。成形したプリフォームを観察したところ、脈理、失透は見られず、光学的に均質性の高いプリフォームを一日連続して作製することができた。   As described above, the molten glass was poured out continuously for one day, and formed into a preform one after another. When the molded preform was observed, no striae and devitrification were observed, and an optically homogeneous preform could be produced continuously for one day.

なお、成形したプリフォームの質量を測定したところ、すべてのプリフォームの質量は1100g±15mgの範囲内であった。
さらに、熔融ガラスの流出、成形を終えた後、流出パイプ4の外周部を目視で観察したところ、熔融ガラスからの揮発物の付着は無かった。
When the masses of the molded preforms were measured, the masses of all the preforms were in the range of 1100 g ± 15 mg.
Furthermore, when the outer periphery of the outflow pipe 4 was visually observed after the outflow and molding of the molten glass, there was no adhesion of volatiles from the molten glass.

(試験例1‐3:アルカリ金属含有ガラス製プリフォームの製造)
白金坩堝中のガラスをアルカリ金属含有ガラスに変えた以外は、試験例1−2と同様にして熔融ガラスを流出し、次々にアルカリ金属含有ガラスからなるプリフォームを成形した。
(Test Example 1-3: Production of glass preform containing alkali metal)
Except for changing the glass in the platinum crucible to an alkali metal-containing glass, the molten glass was flowed out in the same manner as in Test Example 1-2, and a preform made of the alkali metal-containing glass was formed one after another.

上記のように連続して一日、熔融ガラスを流出し、次々にプリフォームに成形した。成形したプリフォームを観察したところ、脈理、失透は見られず、光学的に均質性の高いプリフォームを一日連続して作製することができた。   As described above, the molten glass was poured out continuously for one day, and formed into a preform one after another. When the molded preform was observed, no striae and devitrification were observed, and an optically homogeneous preform could be produced continuously for one day.

なお、成形したプリフォームの質量を測定したところ、すべてのプリフォームの質量は4500g±25mgの範囲内であった。
さらに、熔融ガラスの流出、成形を終えた後、流出パイプ4の外周部を目視で観察したところ、熔融ガラスからの揮発物の付着は無かった。
When the masses of the molded preforms were measured, the masses of all the preforms were within the range of 4500 g ± 25 mg.
Furthermore, when the outer periphery of the outflow pipe 4 was visually observed after the outflow and molding of the molten glass, there was no adhesion of volatiles from the molten glass.

[第1実施態様の比較例]]
(比較例1-1:フツリン酸ガラス製プリフォームの製造)
ループ部材14を取り外した以外は、試験例1−1と同様にしてフツリン酸ガラスからなるプリフォームを連続して成形した。
[Comparative example of the first embodiment]
(Comparative Example 1-1: Production of fluorophosphate glass preform)
A preform made of fluorophosphate glass was continuously formed in the same manner as in Test Example 1-1 except that the loop member 14 was removed.

成形を開始してから、90分後に突発的にプリフォームに脈理が発生し、一度発生した脈理は徐々に拡大し、光学的に均質なプリフォームを得ることができなくなった。   90 minutes after the start of molding, striae suddenly occurred in the preform, and once the striae expanded gradually, it became impossible to obtain an optically homogeneous preform.

熔融ガラスの流出、成形を停止し、成形型側ケーシング18を取り外して流出パイプ4の外周部を目視で観察したところ、熔融ガラスからの揮発物と思われる白色の付着物が流出パイプ4の外周部からガラス流出口にかけて付着していた。   The outflow and molding of the molten glass were stopped, the mold side casing 18 was removed, and the outer periphery of the outflow pipe 4 was visually observed. As a result, white deposits that seemed to be volatile from the molten glass were found on the outer periphery of the outflow pipe 4. From the part to the glass outlet.

この付着物を除去した後に、成形型側ケーシング18を取り付け、熔融ガラスの流出、成形を再開したところ、暫くは脈理のない光学的に均質なプリフォームが得られたが、成形再開から30分後に再び突発的にプリフォームに脈理が発生し、一度発生した脈理は徐々に拡大し、光学的に均質なプリフォームを得ることができなくなった。   After removing the deposits, the mold side casing 18 was attached, and the molten glass flowed out and the molding was resumed. As a result, an optically homogeneous preform with no striae was obtained. After a minute, striae suddenly occurred again, and the striae once occurred gradually expanded, making it impossible to obtain an optically homogeneous preform.

熔融ガラスの流出、成形を再度、停止し、成形型側ケーシング18を取り外して流出パイプ4の外周部を目視で観察したところ、流出パイプ4の外周部からガラス流出口にかけて白色の付着物が付着していた。   The outflow and molding of the molten glass were stopped again, the mold side casing 18 was removed, and the outer periphery of the outflow pipe 4 was visually observed. As a result, a white deposit adhered from the outer periphery of the outflow pipe 4 to the glass outlet. Was.

(比較例1-2:ホウ酸含有ガラス製プリフォームの製造)
ループ部材14を取り外した以外は、試験例1−2と同様にしてホウ酸含有ガラスからなるプリフォームを連続して成形した。フツリン酸ガラスの流出、成形ほどの頻度ではないが、突発的に脈理が発生し、光学的に均質なプリフォームが得られなくなった。
(Comparative Example 1-2: Production of boric acid-containing glass preform)
A preform made of boric acid-containing glass was continuously formed in the same manner as in Test Example 1-2 except that the loop member 14 was removed. Although it was not as frequent as the outflow and molding of fluorophosphate glass, striae suddenly occurred and an optically homogeneous preform could not be obtained.

(比較例1-3:アルカリ含有ガラス製プリフォームの製造)
ループ部材14を取り外した以外は、試験例1−3と同様にしてアルカリ金属含有ガラスからなるプリフォームを連続して成形した。フツリン酸ガラスの流出、成形ほどの頻度ではないが、突発的に脈理が発生し、光学的に均質なプリフォームが得られなくなった。
(Comparative Example 1-3: Manufacture of alkali-containing glass preform)
A preform made of alkali metal-containing glass was continuously formed in the same manner as in Test Example 1-3 except that the loop member 14 was removed. Although it was not as frequent as the outflow and molding of fluorophosphate glass, striae suddenly occurred and an optically homogeneous preform could not be obtained.

次に、発明者らは、図2を参照して説明した第2実施形態のループ部材を備えたガラス流出装置(以下、試験例という)と、ループ部材を備えていないガラス流出装置(以下、比較例という)とを用いて、ホウ酸含有ガラス製、及び、アルカリ含有ガラス製のプリフォームを作成する試験を行ったので、以下説明する。   Next, the inventors have described a glass outflow device (hereinafter referred to as a test example) provided with the loop member of the second embodiment described with reference to FIG. 2 and a glass outflow device not provided with the loop member (hereinafter referred to as a test example). A test for preparing preforms made of boric acid-containing glass and alkali-containing glass was performed using a comparative example), and will be described below.

[第2実施態様の試験例]
(試験例2−1:ホウ酸含有ガラス製プリフォームの製造)
試験例1−2で使用したホウ酸ガラスを用い、図2に示すガラス流出装置から熔融ガラス(ガラス材料)を流出、流出パイプ4の下端のガラス流出口から熔融ガラスを滴下し、その熔融ガラス滴を図示されていない成形型で受けて球状のプリフォームに成形した。
[Test Example of Second Embodiment]
(Test Example 2-1: Production of boric acid-containing glass preform)
Using the borate glass used in Test Example 1-2, the molten glass (glass material) flows out from the glass outflow device shown in FIG. 2, and the molten glass is dropped from the glass outlet at the lower end of the outflow pipe 4. The droplets were received by a mold (not shown) and formed into a spherical preform.

流出パイプ4を細くし、熔融ガラス滴の滴下に適したパイプ径にした点、ループ部材34を円環状とし、外側流路部材30の傾斜部30Aにより、流出パイプ4の下端と略同じ高さに保持した点、成形型は昇降装置により上下動させることなく、同一水平面内を回転テーブルによりインデックス回転させた点、及び、成形型の凹面が多孔質体ではなく、底部にガス噴出口を1つ有するラッパ型である点が、試験例1−2と異なる。熔融ガラスの成形雰囲気は大気雰囲気とした。   The outflow pipe 4 is thinned to have a pipe diameter suitable for dripping molten glass droplets, the loop member 34 is formed in an annular shape, and is substantially the same height as the lower end of the outflow pipe 4 by the inclined portion 30A of the outer flow path member 30. The mold is not moved up and down by the lifting device, the index plane is rotated by the rotary table in the same horizontal plane, and the concave surface of the mold is not a porous body, and a gas outlet is provided at the bottom. It differs from Test Example 1-2 in that it has a trumpet type. The molding atmosphere of the molten glass was an air atmosphere.

上記条件により連続して一日、流出パイプの下端から熔融ガラスを滴下し、次々に球状のプリフォームに成形した。成形したプリフォームを観察したところ、脈理、失透は見られず、光学的に均質性の高いプリフォームを一日連続して作製することができた。   Under the above conditions, molten glass was dropped from the lower end of the outflow pipe for one day continuously, and formed into a spherical preform one after another. When the molded preform was observed, no striae and devitrification were observed, and an optically homogeneous preform could be produced continuously for one day.

なお、成形したプリフォームの質量を測定したところ、すべてのプリフォームの質量は15mg±0.1mgの範囲内であった。
さらに、熔融ガラスの流出、成形を終えた後、流出パイプ4の外周部を目視で観察したところ、熔融ガラスからの揮発物の付着は無かった。
When the masses of the molded preforms were measured, the masses of all preforms were in the range of 15 mg ± 0.1 mg.
Furthermore, when the outer periphery of the outflow pipe 4 was visually observed after the outflow and molding of the molten glass, there was no adhesion of volatiles from the molten glass.

(試験例2−2:アルカリ金属含有ガラス製プリフォームの製造)
試験例1−3で使用したアルカリ金属含有ガラスを用い、図2に示すガラス流出装置から熔融ガラス(ガラス材料)を流出、流出パイプ4の下端のガラス流出口から熔融ガラスを滴下し、その熔融ガラス滴を図示されていない成形型で受けて球状のプリフォームに成形した。
(Test Example 2-2: Production of alkali metal-containing glass preform)
Using the alkali metal-containing glass used in Test Example 1-3, the molten glass (glass material) flows out from the glass outflow device shown in FIG. 2, and the molten glass is dropped from the glass outlet at the lower end of the outflow pipe 4. Glass droplets were received by a mold (not shown) and formed into a spherical preform.

流出パイプ4を細くし、熔融ガラス滴の滴下に適したパイプ径にした点、ループ部材34を円環状とし、外側流路部材30の傾斜部30Aにより、流出パイプ4の下端と略同じ高さに保持した点、成形型は昇降装置により上下動させることなく、同一水平面内を回転テーブルによりインデックス回転させた点、及び、成形型の凹面が多孔質体ではなく、底部にガス噴出口を1つ有するラッパ型である点が試験例1−3と異なる。熔融ガラスの成形雰囲気は大気雰囲気とした。   The outflow pipe 4 is thinned to have a pipe diameter suitable for dripping molten glass droplets, the loop member 34 is formed in an annular shape, and is substantially the same height as the lower end of the outflow pipe 4 by the inclined portion 30A of the outer flow path member 30. The mold is not moved up and down by the lifting device, the index plane is rotated by the rotary table in the same horizontal plane, and the concave surface of the mold is not a porous body, and a gas outlet is provided at the bottom. It differs from Test Example 1-3 in that it has a trumpet type. The molding atmosphere of the molten glass was an air atmosphere.

上記条件により連続して一日、流出パイプの下端から熔融ガラスを滴下し、次々に球状のプリフォームに成形した。成形したプリフォームを観察したところ、脈理、失透は見られず、光学的に均質性の高いプリフォームを一日連続して作製することができた。
なお、成形したプリフォームの質量を測定したところ、すべてのプリフォームの質量は25mg±0.15mgの範囲内であった。
さらに、熔融ガラスの流出、成形を終えた後、流出パイプ4の外周部を目視で観察したところ、熔融ガラスからの揮発物の付着は無かった。
Under the above conditions, molten glass was dropped from the lower end of the outflow pipe for one day continuously, and formed into a spherical preform one after another. When the molded preform was observed, no striae and devitrification were observed, and an optically homogeneous preform could be produced continuously for one day.
When the masses of the molded preforms were measured, the masses of all the preforms were in the range of 25 mg ± 0.15 mg.
Furthermore, when the outer periphery of the outflow pipe 4 was visually observed after the outflow and molding of the molten glass, there was no adhesion of volatiles from the molten glass.

[第2実施態様の比較例]
(比較例2-1:ホウ酸含有ガラス製プリフォームの製造)
ループ部材34を取り外した以外は、試験例2−1と同様にしてホウ酸含有ガラスからなるプリフォームを連続して成形した。
プリフォームの重量は15mg±0.3mgの範囲内であり重量バラツキが大きかった。
[Comparative Example of Second Embodiment]
(Comparative Example 2-1: Production of boric acid-containing glass preform)
A preform made of boric acid-containing glass was continuously formed in the same manner as in Test Example 2-1, except that the loop member 34 was removed.
The weight of the preform was in the range of 15 mg ± 0.3 mg, and the weight variation was large.

(比較例2-2:アルカリ金属含有ガラス製プリフォームの製造)
ループ部材34を取り外した以外は、試験例2−2と同様にしてアルカリ金属含有ガラスからなるプリフォームを連続して成形した。
プリフォームの重量は25mg±0.4mgの範囲内であり重量バラツキが大きかった。
(Comparative Example 2-2: Production of alkali metal-containing glass preform)
A preform made of alkali metal-containing glass was continuously formed in the same manner as in Test Example 2-2 except that the loop member 34 was removed.
The weight of the preform was in the range of 25 mg ± 0.4 mg, and the weight variation was large.

次に、発明者らは、図3を参照して説明した第3実施形態のループ部材を備えたガラス流出装置(以下、試験例という)と、ループ部材を備えていないガラス流出装置(以下、比較例という)とを用いて、フツリン酸ガラス製、ホウ酸含有ガラス製、及び、アルカリ含有ガラス製のプリフォームを作成する試験を行ったので、以下説明する。   Next, the inventors have described a glass outflow device (hereinafter referred to as a test example) provided with the loop member of the third embodiment described with reference to FIG. A comparative example) was used to make preforms made of fluorophosphate glass, boric acid-containing glass, and alkali-containing glass, which will be described below.

[第3実施態様の試験例]
(試験例3−1:フツリン酸ガラス製プリフォームの製造)
次に、図3に示すガラス流出装置を用いてプリフォームを作製した。
使用するガラスは試験例1−1と同じガラスである。図3に示すガラス流出装置は試験例1−1で使用したものとほぼ同じであるが、大型のプリフォームを作製するために、流出パイプ4の径が試験例1−1における流出パイプの径よりも太く、ループ部材44が円環状で流出パイプ4の周りを覆うケーシングも下端に図示しない固定具により固定されている。また大型のプリフォームを成形するため、成形型16の凹面の直径が図1の場合よりも大きい。
[Test Example of Third Embodiment]
(Test Example 3-1: Production of fluorophosphate glass preform)
Next, a preform was produced using the glass outflow apparatus shown in FIG.
The glass used is the same glass as in Test Example 1-1. The glass outflow device shown in FIG. 3 is substantially the same as that used in Test Example 1-1, but the diameter of the outflow pipe 4 is the diameter of the outflow pipe in Test Example 1-1 in order to produce a large preform. The casing which is thicker than the loop member 44 and has an annular shape and covers the periphery of the outflow pipe 4 is also fixed to the lower end by a fixture (not shown). Further, since a large preform is molded, the diameter of the concave surface of the mold 16 is larger than that in the case of FIG.

熔融ガラスの成形雰囲気は試験例1−1と同様、成形型側ケーシングの内部を乾燥窒素ガスで満たすことにより、乾燥窒素雰囲気とした。   The molding atmosphere of the molten glass was set to a dry nitrogen atmosphere by filling the inside of the mold side casing with dry nitrogen gas, as in Test Example 1-1.

成形型16の凹面は試験例1−1と同様、多孔質体で作られており、乾燥窒素ガスを噴出して凹面にキャストされた熔融ガラス塊に上向きの風圧を加え、浮上させながらプリフォームに成形する。   The concave surface of the mold 16 is made of a porous material, similar to Test Example 1-1, and a preform is formed by blowing up dry nitrogen gas and applying upward wind pressure to the molten glass lump cast on the concave surface to float. To form.

このように連続して一日、流出パイプの下端から熔融ガラスを流出し、次々にプリフォームに成形した。成形したプリフォームを観察したところ、脈理、失透は見られず、光学的に均質性の高いプリフォームを一日連続して作製することができた。   In this way, the molten glass was discharged from the lower end of the outflow pipe for one day in succession and formed into a preform one after another. When the molded preform was observed, no striae and devitrification were observed, and an optically homogeneous preform could be produced continuously for one day.

なお、成形したプリフォームの質量を測定したところ、すべてのプリフォームの質量は11800mg±100mg範囲内であった。
さらに、熔融ガラスの流出、成形を終えた後、成形型側ケーシング18を取り外して流出パイプ4の外周部を目視で観察したところ、熔融ガラスからの揮発物の付着は無かった。
When the mass of the molded preform was measured, the mass of all the preforms was in the range of 11800 mg ± 100 mg.
Further, after the outflow and molding of the molten glass were completed, the mold side casing 18 was removed and the outer periphery of the outflow pipe 4 was visually observed. As a result, there was no adhesion of volatiles from the molten glass.

(試験例3‐2:ホウ酸含有ガラス製プリフォームの製造)
白金坩堝中のガラスをホウ酸含有ガラスに変えるとともに、成形型側ケーシング18を取り外し、ガラスの成形は大気雰囲気中で行うようにした以外は、試験例3−1と同様にして熔融ガラスを流出し、次々にホウ酸含有ガラスからなるプリフォームを成形した。
(Test Example 3-2: Production of boric acid-containing glass preform)
The molten glass flows out in the same manner as in Test Example 3-1, except that the glass in the platinum crucible is changed to boric acid-containing glass, the mold-side casing 18 is removed, and the glass is molded in an air atmosphere. Then, preforms made of boric acid-containing glass were formed one after another.

上記のように連続して一日、熔融ガラスを流出し、次々にプリフォームに成形した。成形したプリフォームを観察したところ、脈理、失透及び変形イビツ形状は見られず、光学的に均質性の高いプリフォームを一日連続して作製することができた。   As described above, the molten glass was poured out continuously for one day, and formed into a preform one after another. When the molded preform was observed, no striae, devitrification, and deformed ibis shape were observed, and an optically homogeneous preform could be produced continuously for one day.

なお、成形したプリフォームの質量を測定したところ、すべてのプリフォームの質量は9800mg±80mgの範囲内であった。
さらに、熔融ガラスの流出、成形を終えた後、流出パイプ4の外周部を目視で観察したところ、熔融ガラスからの揮発物の付着は無かった。
When the masses of the molded preforms were measured, the masses of all the preforms were in the range of 9800 mg ± 80 mg.
Furthermore, when the outer periphery of the outflow pipe 4 was visually observed after the outflow and molding of the molten glass, there was no adhesion of volatiles from the molten glass.

(試験例3‐3:アルカリ金属含有ガラス製プリフォームの製造)
白金坩堝中のガラスをアルカリ金属含有ガラスに変えた以外は、試験例3−2と同様にして熔融ガラスを流出し、次々にアルカリ金属含有ガラスからなるプリフォームを成形した。
(Test Example 3-3: Production of preform made of alkali metal-containing glass)
Except for changing the glass in the platinum crucible to the alkali metal-containing glass, the molten glass was flowed out in the same manner as in Test Example 3-2, and a preform made of the alkali metal-containing glass was formed one after another.

上記のように連続して一日、熔融ガラスを流出し、次々にプリフォームに成形した。成形したプリフォームを観察したところ、脈理、失透及び変形イビツ形状は見られず、光学的に均質性の高いプリフォームを一日連続して作製することができた。   As described above, the molten glass was poured out continuously for one day, and formed into a preform one after another. When the molded preform was observed, no striae, devitrification, and deformed ibis shape were observed, and an optically homogeneous preform could be produced continuously for one day.

なお、成形したプリフォームの質量を測定したところ、すべてのプリフォームの質量は30000mg±130mgの範囲内であった。
さらに、熔融ガラスの流出、成形を終えた後、流出パイプ4の外周部を目視で観察したところ、熔融ガラスからの揮発物の付着は無かった。
When the masses of the molded preforms were measured, the masses of all the preforms were within the range of 30000 mg ± 130 mg.
Furthermore, when the outer periphery of the outflow pipe 4 was visually observed after the outflow and molding of the molten glass, there was no adhesion of volatiles from the molten glass.

[第3実施態様の比較例]
(比較例3-1:フツリン酸ガラス製プリフォームの製造)
ループ部材44を取り外した以外は、試験例3−1と同様にしてフツリン酸ガラスからなるプリフォームを連続して成形した。
[Comparative Example of Third Embodiment]
(Comparative Example 3-1: Production of preform made of fluorophosphate glass)
A preform made of fluorophosphate glass was continuously formed in the same manner as in Test Example 3-1, except that the loop member 44 was removed.

成形を開始してから、60分後に突発的にプリフォームに脈理が発生し、一度発生した脈理は徐々に拡大し、光学的に均質なプリフォームを得ることができなくなった。   60 minutes after molding started, striae suddenly occurred in the preform, and once the striae expanded gradually, it became impossible to obtain an optically homogeneous preform.

熔融ガラスの流出、成形を停止し、成形型側ケーシングを取り外して流出パイプ4の外周部を目視で観察したところ、熔融ガラスからの揮発物と思われる白色の付着物が流出パイプ4の外周部からガラス流出口にかけて付着していた。   The outflow and molding of the molten glass was stopped, the mold side casing was removed, and the outer periphery of the outflow pipe 4 was visually observed. To the glass outlet.

この付着物を除去した後に、成形型側ケーシングを取り付け、熔融ガラスの流出、成形を再開したところ、暫くは脈理のない光学的に均質なプリフォームが得られたが、成形再開から30分後に再び突発的にプリフォームに脈理が発生し、一度発生した脈理は徐々に拡大し、光学的に均質なプリフォームを得ることができなくなった。   After removing this deposit, the mold side casing was attached, and molten glass flowed out and molding was resumed. As a result, an optically homogeneous preform with no striae was obtained, but 30 minutes after molding resumed. Later, striae occurred suddenly again in the preform, and once the striae gradually expanded, it became impossible to obtain an optically homogeneous preform.

熔融ガラスの流出、成形を再度、停止し、成形型側ケーシングを取り外して流出パイプ4の外周部を目視で観察したところ、流出パイプ4の外周部からガラス流出口にかけて白色の付着物が付着していた。   The outflow and molding of the molten glass were stopped again, the mold side casing was removed, and the outer periphery of the outflow pipe 4 was visually observed. As a result, a white deposit adhered from the outer periphery of the outflow pipe 4 to the glass outlet. It was.

(比較例3-2:ホウ酸含有ガラス製プリフォームの製造)
ループ部材44を取り外した以外は、試験例3−2と同様にしてホウ酸含有ガラスからなるプリフォームを連続して成形した。フツリン酸ガラスの流出、成形ほどの頻度ではないが、時間とともに脈理が発生した。さらにプリフォームの形状が変形、イビツとなり、光学的に均質なプリフォームが得られなくなった。
(Comparative Example 3-2: Production of boric acid-containing glass preform)
A preform made of boric acid-containing glass was continuously molded in the same manner as in Test Example 3-2 except that the loop member 44 was removed. Streaks occurred over time, although not as frequently as the outflow and molding of fluorophosphate glass. Furthermore, the shape of the preform was deformed and distorted, making it impossible to obtain an optically homogeneous preform.

(比較例3-3:アルカリ含有ガラス製プリフォームの製造)
ループ部材44を取り外した以外は、試験例3−3と同様にしてアルカリ金属含有ガラスからなるプリフォームを連続して成形した。フツリン酸ガラスの流出、成形ほどの頻度ではないが、時間の経過とともに脈理が発生した。さらにプリフォームの形状が変形、イビツとなり、光学的に均質なプリフォームが得られなくなった。
(Comparative Example 3-3: Production of alkali-containing glass preform)
A preform made of alkali metal-containing glass was continuously formed in the same manner as in Test Example 3-3 except that the loop member 44 was removed. Although it was not as frequent as the outflow and forming of fluorophosphate glass, striae occurred over time. Furthermore, the shape of the preform was deformed and distorted, making it impossible to obtain an optically homogeneous preform.

さらに、発明者らは、第1実施形態の上下方向に振れるは形状を呈するループ部材14と、3実施形態のケーシング2の下方に配置されたループ部材44を備えたガラス流出装置(以下、試験例という)を用いて、フツリン酸ガラス製のプリフォームを作成する試験を行ったので、以下説明する。   Furthermore, the inventors have made a glass outflow device (hereinafter referred to as a test) including the loop member 14 that swings in the vertical direction of the first embodiment and has a loop member 44 disposed below the casing 2 of the third embodiment. A test for preparing a preform made of fluorophosphate glass was performed using an example), which will be described below.

[第1実施態様と第3実施態様の組合せ]
(試験例4)
試験例3−1において、試験例1−1のように上下方向に振れる波形状を呈する白金製のループ部材を取り付け、ループ部材44とともに高周波誘導加熱により、流出パイプ4および流出した熔融ガラスを補助的に加熱した。
[Combination of the first embodiment and the third embodiment]
(Test Example 4)
In Test Example 3-1, a platinum loop member having a wave shape that swings in the vertical direction as in Test Example 1-1 is attached, and the outflow pipe 4 and the outflowing molten glass are assisted by high-frequency induction heating together with the loop member 44. Heated.

本試験例においても、一日、連続してフツリン酸ガラスからなり、脈理のない光学的に均質なプリフォームを、高い質量精度で作製することができた。   Also in this test example, an optically homogeneous preform made of fluorophosphate glass and having no striae could be produced with high mass accuracy.

最後に、第1実施形態を図等を用いて総括する。
図1に示すように、第1実施形態のガラス流出装置1は、熔融ガラスを流出するガラス流出装置であって、上下方向に延び、熔融ガラスを流出する流出パイプ4と、流出パイプ4の外周側に設けられた誘導加熱コイル6と、水平視において流出パイプ4の外側を囲むように設けられ、誘導加熱コイル6により誘導加熱可能な閉ループ状の導電体からなるループ部材14と、を備える。
Finally, the first embodiment will be summarized with reference to the drawings.
As shown in FIG. 1, the glass outflow apparatus 1 of 1st Embodiment is a glass outflow apparatus which flows out molten glass, Comprising: The outflow pipe 4 extended in an up-down direction and outflowing molten glass, and the outer periphery of the outflow pipe 4 An induction heating coil 6 provided on the side, and a loop member 14 that is provided so as to surround the outside of the outflow pipe 4 in a horizontal view and is made of a closed loop conductor that can be induction-heated by the induction heating coil 6.

また、第1実施形態のガラス流出方法は、熔融ガラスを流出する方法であって、熔融ガラスを流出する流出パイプ4の外周側に、誘導加熱コイル6が設けられ、誘導加熱コイル6により誘導加熱可能な閉ループ状の導電体からなるループ部材14が水平視において流出パイプ4の外側を囲むように設けられ、誘導加熱コイル6によりループ部材14を誘導加熱しながら、流出パイプ4から熔融ガラスを流出する。   Moreover, the glass outflow method of 1st Embodiment is a method of flowing out molten glass, Comprising: The induction heating coil 6 is provided in the outer peripheral side of the outflow pipe 4 which flows out molten glass, and induction heating coil 6 carries out induction heating. A loop member 14 made of a possible closed loop conductor is provided so as to surround the outside of the outflow pipe 4 in a horizontal view, and the molten glass flows out from the outflow pipe 4 while induction heating the loop member 14 by the induction heating coil 6. To do.

1 ガラス流出装置
2 ケーシング
4 流出パイプ
6 誘導加熱コイル
8、30 外側流路部材
10 内側流路部材
12 ガス流路
14、34、44ループ部材
16 成形型
18 成形型側ケーシング
20 ガラス熔融装置
22 昇降装置
DESCRIPTION OF SYMBOLS 1 Glass outflow apparatus 2 Casing 4 Outflow pipe 6 Induction heating coil 8, 30 Outer flow path member 10 Inner flow path member 12 Gas flow path 14, 34, 44 Loop member 16 Mold 18 Mold side casing 20 Glass melting apparatus 22 Elevation apparatus

Claims (12)

熔融ガラスを流出するガラス流出装置であって、
上下方向に延び、前記熔融ガラスを流出するパイプと、
前記パイプの外周側に設けられた誘導加熱コイルと、
水平視において前記パイプの外側を囲むように設けられ、前記誘導加熱コイルにより誘導加熱可能な閉ループ状の導電体からなるループ部材と、を備える、ガラス流出装置。
A glass outflow device for flowing out molten glass,
A pipe extending vertically and flowing out of the molten glass;
An induction heating coil provided on the outer peripheral side of the pipe;
A glass outflow device comprising: a loop member that is provided so as to surround the outside of the pipe in a horizontal view and is formed of a closed loop-shaped conductor that can be induction heated by the induction heating coil.
前記ループ部材は、前記パイプの外周側、かつ、前記誘導加熱コイルの内周側に設けられている、請求項1記載のガラス流出装置。   The glass outflow device according to claim 1, wherein the loop member is provided on an outer peripheral side of the pipe and on an inner peripheral side of the induction heating coil. 前記ループ部材は前記パイプの外周側を包囲するように設けられている、請求項1又は2記載のガラス流出装置。   The glass outflow device according to claim 1 or 2, wherein the loop member is provided so as to surround an outer peripheral side of the pipe. 前記ループ部材は、上下方向に振れる波形状を呈している、請求項1から3の何れか1項に記載のガラス流出装置。   The glass outflow device according to any one of claims 1 to 3, wherein the loop member has a wave shape that swings in a vertical direction. 前記パイプを包囲するように形成され、前記パイプの先端近傍に不活性ガスを吹き付けるためのガス流路を備え、前記ループ部材は、前記ガス流路内に設けられている、請求項1から4の何れか1項に記載のガラス流出装置。   5. The gas passage is formed so as to surround the pipe, and is provided with a gas passage for blowing an inert gas in the vicinity of a tip of the pipe, and the loop member is provided in the gas passage. The glass outflow apparatus of any one of these. 請求項1から5の何れか1項に記載のガラス流出装置と、
前記ガラス流出装置により熔融ガラスを流出して成形する成形装置と、を備える、ガラス成形品製造装置。
The glass outflow device according to any one of claims 1 to 5,
A glass molded product manufacturing apparatus, comprising: a molding apparatus configured to flow molten glass out of the glass outflow apparatus.
熔融ガラスを流出する方法であって、
前記熔融ガラスを流出するパイプの外周側に、誘導加熱コイルが設けられ、
前記誘導加熱コイルにより誘導加熱可能な閉ループ状の導電体からなるループ部材が水平視において前記パイプの外側を囲むように設けられ、
前記誘導加熱コイルにより前記ループ部材を誘導加熱しながら、前記パイプから前記熔融ガラスを流出する、ガラス流出方法。
A method for discharging molten glass,
An induction heating coil is provided on the outer peripheral side of the pipe that flows out of the molten glass,
A loop member made of a closed loop conductor that can be induction heated by the induction heating coil is provided so as to surround the outside of the pipe in a horizontal view,
A glass outflow method of flowing out the molten glass from the pipe while induction heating the loop member by the induction heating coil.
前記パイプの先端近傍に、前記パイプの外周面に沿って不活性ガスを流すためのガス流路が前記パイプを包囲するように形成されており、
前記ガス流路に下方に向かって前記不活性ガスを流す、請求項7に記載されたガラス流出方法。
Near the tip of the pipe, a gas flow path for flowing an inert gas along the outer peripheral surface of the pipe is formed so as to surround the pipe,
The glass outflow method according to claim 7, wherein the inert gas is allowed to flow downward in the gas flow path.
前記ループ部材は、前記ガス流路内に設けられている、請求項7又は8に記載のガラス流出方法。   The glass outflow method according to claim 7 or 8, wherein the loop member is provided in the gas flow path. 請求項7から9の何れか1項に記載のガラス流出方法により熔融ガラスを流出し、成形するガラス成形品の製造方法。   The manufacturing method of the glass molded product which flows out molten glass with the glass outflow method of any one of Claim 7 to 9, and shape | molds. 熔融ガラスをプレス成形用プリフォームに成形する請求項10に記載のガラス成形品の製造方法。   The manufacturing method of the glass molded product of Claim 10 which shape | molds molten glass to the preform for press molding. 請求項11に記載のガラス流出方法により熔融ガラスを流出してプレス成形用プリフォームを製造するステップと、
前記プリフォームを加熱するステップと、
前記加熱されたプリフォームをプレス成形するステップと、
を備える、光学素子の製造方法。
A step of producing a preform for press molding by flowing out the molten glass by the glass outflow method according to claim 11;
Heating the preform;
Press-molding the heated preform;
A method for manufacturing an optical element.
JP2013199783A 2013-09-26 2013-09-26 Glass outflow device, glass outflow method, method for manufacturing glass molding and method for manufacturing optical element Pending JP2015063436A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013199783A JP2015063436A (en) 2013-09-26 2013-09-26 Glass outflow device, glass outflow method, method for manufacturing glass molding and method for manufacturing optical element
CN201410497557.0A CN104512996B (en) 2013-09-26 2014-09-25 Glass bleeder and method and glass products formed and Optical element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013199783A JP2015063436A (en) 2013-09-26 2013-09-26 Glass outflow device, glass outflow method, method for manufacturing glass molding and method for manufacturing optical element

Publications (2)

Publication Number Publication Date
JP2015063436A true JP2015063436A (en) 2015-04-09
JP2015063436A5 JP2015063436A5 (en) 2015-05-21

Family

ID=52788915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013199783A Pending JP2015063436A (en) 2013-09-26 2013-09-26 Glass outflow device, glass outflow method, method for manufacturing glass molding and method for manufacturing optical element

Country Status (2)

Country Link
JP (1) JP2015063436A (en)
CN (1) CN104512996B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106904818B (en) * 2017-04-26 2023-01-24 南京广兆测控技术有限公司 Glass forming bead dripping furnace and glass forming system
CN108395075B (en) * 2018-04-10 2020-05-22 湖北新华光信息材料有限公司 Forming material pipe for inhibiting volatilization of glass components and forming method
CN109678322A (en) * 2019-03-08 2019-04-26 长沙理工大学 A kind of electromagnetism auxiliary precision hot pressing molding machine of small-bore optical glass device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311589A (en) * 1988-06-10 1989-12-15 Denki Kogyo Co Ltd High-frequency induction heating device for spiral metal pipeline
JPH08277120A (en) * 1995-04-06 1996-10-22 Minolta Co Ltd Production of glass gob
JP2002121032A (en) * 2000-10-06 2002-04-23 Hoya Corp Method of manufacturing glass gob, method of manufacturing glass formed parts and apparatus for manufacturing glass gob
JP2010105888A (en) * 2008-10-31 2010-05-13 Ohara Inc Device for feeding molten glass and apparatus for producing glass molding

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4351664A (en) * 1981-03-16 1982-09-28 Corning Glass Works Furnace delivery system
JP4120910B2 (en) * 1999-09-08 2008-07-16 日本電気硝子株式会社 Method for supplying molten glass
JP4313753B2 (en) * 2004-11-24 2009-08-12 Hoya株式会社 Glass molded body, optical element manufacturing method, molten glass outflow apparatus, and glass molded body manufacturing apparatus
CN102442758A (en) * 2010-09-30 2012-05-09 旭硝子株式会社 Glass manufacture apparatus, components and ohmic heating method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01311589A (en) * 1988-06-10 1989-12-15 Denki Kogyo Co Ltd High-frequency induction heating device for spiral metal pipeline
JPH08277120A (en) * 1995-04-06 1996-10-22 Minolta Co Ltd Production of glass gob
JP2002121032A (en) * 2000-10-06 2002-04-23 Hoya Corp Method of manufacturing glass gob, method of manufacturing glass formed parts and apparatus for manufacturing glass gob
JP2010105888A (en) * 2008-10-31 2010-05-13 Ohara Inc Device for feeding molten glass and apparatus for producing glass molding

Also Published As

Publication number Publication date
CN104512996B (en) 2018-04-24
CN104512996A (en) 2015-04-15

Similar Documents

Publication Publication Date Title
JP4309859B2 (en) Method for manufacturing press-molding preform and method for manufacturing optical element
US20070251271A1 (en) Processes for the production of glass article and optical device
CN100422100C (en) Manufacturing method of glass former and optical component, melting glass outflow device and manufacturing device of glass former
JP3853622B2 (en) Manufacturing method of glass molded body, manufacturing method of press-molded product, manufacturing method of glass optical element, and manufacturing apparatus of glass molded body
KR20070090763A (en) Process for producing preform for precision press-molding and process for producing optical element
JP4359169B2 (en) Press molding preform manufacturing method, manufacturing apparatus, and optical element manufacturing method
JP4309858B2 (en) Glass lump manufacturing apparatus, glass lump manufacturing method, and optical element manufacturing method
JP5961206B2 (en) Optical glass, precision press-molding preform, and optical element
JP2015063436A (en) Glass outflow device, glass outflow method, method for manufacturing glass molding and method for manufacturing optical element
JP4938988B2 (en) Press molding preform manufacturing method, optical element manufacturing method, and molten glass outflow device
TW200829522A (en) A group of glass preforms and processes for the production of a group of glass preforms and optical elements
JP4346624B2 (en) Method for producing glass molded body and method for producing optical element
TWI652239B (en) Glass outflow device, glass outflow method, method for producing glass molded article, and method for producing optical element
JP4834756B2 (en) Press molding preform manufacturing method, manufacturing apparatus, and optical element manufacturing method
JP2007099527A (en) Glass preform lot and glass preform, method of producing glass preform, and method for production of optical element
JP5438084B2 (en) Manufacturing method of glass molded body, and manufacturing method of optical element using the glass molded body
JP2004284847A (en) Method of manufacturing glass lump and method of manufacturing optical element
JP4871236B2 (en) Glass outflow pipe, glass manufacturing apparatus, glass molded body manufacturing method, and optical element manufacturing method
CN112189000A (en) Optical glass, optical element, optical device, method for producing optical glass, and method for producing optical lens
WO2023089966A1 (en) Glass production method
JP3965627B2 (en) Method for producing glass molded body and method for producing optical element
JP4957623B2 (en) Method for miniaturizing molten glass droplet, method for producing glass gob, and method for producing glass molded body
JP4843063B2 (en) Method for manufacturing press-molding preform and method for manufacturing optical element
JPH06206730A (en) Production of glass gob
JP2008285413A (en) Processes for the production of glass article and optical device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171220