JP4261331B2 - Induction heating molding equipment - Google Patents

Induction heating molding equipment Download PDF

Info

Publication number
JP4261331B2
JP4261331B2 JP2003418628A JP2003418628A JP4261331B2 JP 4261331 B2 JP4261331 B2 JP 4261331B2 JP 2003418628 A JP2003418628 A JP 2003418628A JP 2003418628 A JP2003418628 A JP 2003418628A JP 4261331 B2 JP4261331 B2 JP 4261331B2
Authority
JP
Japan
Prior art keywords
magnetic flux
mold
temperature
optical element
element material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003418628A
Other languages
Japanese (ja)
Other versions
JP2005179085A (en
JP2005179085A5 (en
Inventor
正俊 寺西
正和 平石
信二 近藤
正行 高橋
克喜 新宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003418628A priority Critical patent/JP4261331B2/en
Publication of JP2005179085A publication Critical patent/JP2005179085A/en
Publication of JP2005179085A5 publication Critical patent/JP2005179085A5/ja
Application granted granted Critical
Publication of JP4261331B2 publication Critical patent/JP4261331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/40Product characteristics
    • C03B2215/46Lenses, e.g. bi-convex
    • C03B2215/47Bi-concave

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Induction Heating (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、独立して駆動される2つの誘導コイルによる誘導加熱により、一対の金型のそれぞれを独立して加熱する誘導加熱装置であって、より詳細には、当該誘導加熱装置および金型を用いて光学素子材料を所望の温度に加熱すると共に所望の形状に成形して光学素子製品を製造する誘導加熱成形装置に関する。   The present invention is an induction heating apparatus that independently heats each of a pair of molds by induction heating by two induction coils that are driven independently, and more specifically, the induction heating apparatus and the mold The present invention relates to an induction heating molding apparatus for manufacturing an optical element product by heating an optical element material to a desired temperature and molding the optical element material into a desired shape.

図6に、従来の誘導加熱成形装置の構成を示す。同誘導加熱成形装置Fcは、光学素子材料OM(図示せず)を成形するための上成形面FS1を有する上型4aと、下成形面FS2を有する下型4bから成る一対の金型セット4が用いられる。上型4aは上誘導コイル3aで誘導加熱され、下型4bは下誘導コイル3bによって誘導加熱される。誘導加熱された金型セット4の熱が成形面FSを介して光学素子材料OMに伝えられる。つまり、光学素子材料OMの温度は、上型4aおよび下型4bの温度を制御することで実現される。言い換えれば、上誘導コイル3aから照射される上磁束Φa、および下誘導コイル3bから照射される下磁束Φbの量を変化させて、上型4aおよび下型4bの温度が制御される。このために、金型セット4は、誘導加熱により加熱され易いように、磁性体材料が用いられる。   In FIG. 6, the structure of the conventional induction heating molding apparatus is shown. The induction heating molding apparatus Fc includes a pair of mold sets 4 including an upper mold 4a having an upper molding surface FS1 and a lower mold 4b having a lower molding surface FS2 for molding an optical element material OM (not shown). Is used. The upper die 4a is induction heated by the upper induction coil 3a, and the lower die 4b is induction heated by the lower induction coil 3b. The heat of the die set 4 that has been induction-heated is transmitted to the optical element material OM through the molding surface FS. That is, the temperature of the optical element material OM is realized by controlling the temperatures of the upper mold 4a and the lower mold 4b. In other words, the temperature of the upper mold 4a and the lower mold 4b is controlled by changing the amounts of the upper magnetic flux Φa irradiated from the upper induction coil 3a and the lower magnetic flux Φb irradiated from the lower induction coil 3b. For this purpose, the mold set 4 is made of a magnetic material so as to be easily heated by induction heating.

金型セット4を誘導加熱するための磁束Φを生成させる電力を供給するインバータ1と、上変圧器2aおよび下変圧器2bとが備えられる。さらに、光学素子材料OMの金型セット4内への挿入、加圧成形、および成形後の取り出しのために、上型4aおよび下型4bのそれぞれを移動させる上型アクチュエータ6aおよび下型アクチュエータ6bが備えられる。上変圧器2aおよび下変圧器2bは、それぞれ、インバータ1から供給される加熱電力を上誘導コイル3aおよび上誘導コイル3aに適した電圧に変換する。さらに、所望の成形プロセスを実現させるために、金型セット4の温度を制御すると共にアクチュエータ6を制御する制御器8が更に設けられている。   An inverter 1 that supplies electric power for generating a magnetic flux Φ for induction heating the mold set 4, and an upper transformer 2 a and a lower transformer 2 b are provided. Further, an upper mold actuator 6a and a lower mold actuator 6b for moving the upper mold 4a and the lower mold 4b, respectively, for insertion of the optical element material OM into the mold set 4, pressure molding, and removal after molding. Is provided. Upper transformer 2a and lower transformer 2b convert the heating power supplied from inverter 1 into voltages suitable for upper induction coil 3a and upper induction coil 3a, respectively. Furthermore, in order to implement | achieve a desired shaping | molding process, the controller 8 which controls the actuator 6 while controlling the temperature of the metal mold | die set 4 is further provided.

そして光学素子製品を金型セット4から取り外す際の離型性を向上させるためには、上型4aおよび下型4bと、光学素子製品との熱膨張をコントロールする必要がある。そのためには、上型4aおよび下型4bの温度を独立に温度調整する必要がある。この観点からは、上誘導コイル3aおよび下誘導コイル3bを共通のインバータ1で駆動するのではなく、それぞれ別のインバータで独立して連続的に駆動制御することが望ましい。   In order to improve the releasability when removing the optical element product from the mold set 4, it is necessary to control the thermal expansion between the upper mold 4a and the lower mold 4b and the optical element product. For this purpose, it is necessary to independently adjust the temperatures of the upper mold 4a and the lower mold 4b. From this point of view, it is desirable that the upper induction coil 3a and the lower induction coil 3b are not driven by the common inverter 1, but are independently and continuously controlled by separate inverters.

しかしながら、上誘導コイル3aの磁束Φaと下誘導コイル3bの磁束Φbが同一軸上にあるため、別個のインバータで上誘導コイル3aと下誘導コイル3bを独立して連続駆動制御すると、上誘導コイル3aで発生する上磁束Φaと下誘導コイル3bで発生する下磁束Φbとが相互干渉(Φa+Φb)して、誘導結合により相手方のインバータ回路素子に誘導起電力がかかる。この誘導起電力は、消費できずに、インバータ素子などの回路素子を破損させてしまうことがある。   However, since the magnetic flux Φa of the upper induction coil 3a and the magnetic flux Φb of the lower induction coil 3b are on the same axis, if the upper induction coil 3a and the lower induction coil 3b are independently and continuously controlled by separate inverters, the upper induction coil The upper magnetic flux Φa generated in 3a and the lower magnetic flux Φb generated in the lower induction coil 3b interfere with each other (Φa + Φb), and an induced electromotive force is applied to the other inverter circuit element by inductive coupling. This induced electromotive force cannot be consumed and may damage circuit elements such as inverter elements.

このような事態を防止するために、誘導加熱成形装置Fcにおいては、2つの上誘導コイル3aと下誘導コイル3bと共通のインバータ1とを排他的に接続するべく上切替スイッチ7aおよび下切替スイッチ7bを設けている。つまり、上誘導コイル3aと下誘導コイル3bを排他的且つ断続的に駆動させることによって、上磁束Φaと下磁束Φbを同時に発生させないで、相互干渉(Φa+Φb)の発生を防止している。   In order to prevent such a situation, in the induction heating molding apparatus Fc, the upper changeover switch 7a and the lower changeover switch are exclusively connected to the two upper induction coils 3a, the lower induction coil 3b, and the common inverter 1. 7b is provided. That is, by driving the upper induction coil 3a and the lower induction coil 3b exclusively and intermittently, the occurrence of mutual interference (Φa + Φb) is prevented without simultaneously generating the upper magnetic flux Φa and the lower magnetic flux Φb.

また、上磁束Φaと下磁束Φbの相互干渉を抑えながら、上誘導コイル3aと下誘導コイル3bを同時に駆動させる誘導加熱成形装置(特許文献2)も提案されている。同誘導加熱成形装置においては、上型と下型の共振周波数を異なる値に設定する。そして、共振周波数を中心にインバータの発振周波数を可変させることで、上型に巻回された上誘導コイルおよび下型に巻回された下誘導コイルに流れる電流を制御し、上下型温度を独立に制御する。
特開平4−58491号公報 特開平6−64932号公報
In addition, an induction heating molding apparatus (Patent Document 2) that simultaneously drives the upper induction coil 3a and the lower induction coil 3b while suppressing mutual interference between the upper magnetic flux Φa and the lower magnetic flux Φb has been proposed. In the induction heating molding apparatus, the resonance frequencies of the upper mold and the lower mold are set to different values. And by changing the oscillation frequency of the inverter around the resonance frequency, the current flowing through the upper induction coil wound around the upper mold and the lower induction coil wound around the lower mold is controlled, and the upper and lower mold temperatures are made independent. To control.
JP-A-4-58491 JP-A-6-64932

上述の上誘導コイルと下誘導コイルを排他的且つ断続的に駆動制御する誘導加熱成形装置(特許文献1)においては、上型および下型の発熱量は交互且つ断続的にしか制御できない。つまり、上型および下型の温度は不連続且つ、温度差の大きな粗密な制御しかできない。このような粗密な温度制御では、光学素子材料OMの加熱時の対流などによる成分の均質化や、また冷却時の内部応力の抑制など得られる光学素子製品の品質管理が非常に困難である。   In the induction heating molding apparatus (Patent Document 1) that exclusively and intermittently drives and controls the upper induction coil and the lower induction coil, the heat generation amounts of the upper mold and the lower mold can be controlled only alternately and intermittently. In other words, the upper and lower mold temperatures are discontinuous and can only be controlled with a large temperature difference. With such a rough temperature control, it is very difficult to control the quality of the optical element product obtained by homogenizing components by convection during heating of the optical element material OM and suppressing internal stress during cooling.

また、上述の共振周波数を中心にインバータの発振周波数を可変させることで、上誘導コイルおよび下誘導コイルを連続的に駆動させる誘導加熱成形装置(特許文献2)においては、回路の共振点を外れた部分でインバータ駆動をする必要があるため、電力反射などが定常的に発生しインバータの効率が低下するなどの問題がある。   Further, in the induction heating molding apparatus (Patent Document 2) that continuously drives the upper induction coil and the lower induction coil by changing the oscillation frequency of the inverter around the above-described resonance frequency, the resonance point of the circuit is deviated. Since it is necessary to drive the inverter at the part, there is a problem that power reflection occurs regularly and the efficiency of the inverter decreases.

よって、本発明は、光学素子製品の加熱成形に用いられる上型と下型を個々に誘導加熱させる独立した上誘導コイルおよび下誘導コイルを連続駆動させると共に、それぞれのコイルから発生する磁束の相互干渉によるインバータへの負担を防止して、連続的で緻密且つ効率的な温度制御が可能な誘導加熱成形装置を提供することを目的とする。   Therefore, the present invention continuously drives the independent upper induction coil and the lower induction coil for individually heating the upper mold and the lower mold used for the thermoforming of the optical element product, and mutually controls the magnetic flux generated from each coil. It is an object of the present invention to provide an induction heating molding apparatus capable of preventing temperature on an inverter due to interference and enabling continuous, precise and efficient temperature control.

連続的かつ個別に発生させた第1の磁束および第2の磁束によって、互いに対向して用いられる第1の成形型および第2の成形型を誘導加熱し、当該第1および第2の成形型内に挿入された光学素子材料を溶融加圧成形する誘導加熱成形装置は、前記第1の成形型の周囲に設けられて前記第1の磁束を発生させる第1の磁束発生手段と、前記第2の成形型の周囲に設けられて前記第2の磁束を発生させる第2の磁束発生手段と、前記第1の磁束発生手段と前記第2の磁束発生手段の間であって前記第1および第2の磁束が重なりあって互いに干渉しあう位置に設けられて、前記第1の磁束と前記第2の磁束とで互いに干渉し合う磁束成分の作用を打ち消す磁束干渉防止手段(20、13c)とを備え、前記磁束干渉防止手段は、前記磁束成分のうち、前記第2の磁束発生手段を貫通する前記第1の磁束の磁束成分と、前記第1の磁束発生手段を貫通する前記第2の磁束の磁束成分とを電流および熱に変換して消費する磁束吸収手段であり、前記磁束吸収手段の発熱を冷却する冷却機構を備える。 The first and second molds used in opposition to each other are induction-heated by the first magnetic flux and the second magnetic flux generated continuously and individually, and the first and second molds are inductively heated. An induction heating molding apparatus for melting and press-molding an optical element material inserted therein is provided around the first molding die to generate the first magnetic flux, and the first magnetic flux generating means, A second magnetic flux generating means provided around the two molds for generating the second magnetic flux, and between the first magnetic flux generating means and the second magnetic flux generating means, Magnetic flux interference prevention means (20, 13c) provided at a position where the second magnetic fluxes overlap and interfere with each other to cancel the action of magnetic flux components that interfere with each other between the first magnetic flux and the second magnetic flux. with the door, the magnetic flux interference preventing means, the magnetic flux component Among them, the magnetic flux component of the first magnetic flux penetrating the second magnetic flux generation means and the magnetic flux component of the second magnetic flux penetrating the first magnetic flux generation means are converted into current and heat and consumed. a magnetic flux absorbing means, Ru provided with a cooling mechanism for cooling the heating of the magnetic flux absorbing means.

上述にように、本発明にかかる誘導加熱装置においては、上誘導コイルおよび下誘導コイルを連続的かつ緻密に駆動制御させて上磁束と下磁束と同時に発生させることによって、上型および下型の連続的且つ緻密な温度制御を可能している。さらに、発生した上磁束と下磁束との相互干渉を防止してインバータへの負担を防止している。結果、光学素子材料の温度を連続的、迅速、且つ緻密に制御できる。   As described above, in the induction heating apparatus according to the present invention, the upper induction coil and the lower induction coil are generated simultaneously with the upper magnetic flux and the lower magnetic flux by continuously and precisely driving and controlling the upper induction coil and the lower induction coil. Continuous and precise temperature control is possible. Furthermore, mutual interference between the generated upper magnetic flux and lower magnetic flux is prevented, thereby preventing a burden on the inverter. As a result, the temperature of the optical element material can be controlled continuously, rapidly and precisely.

本発明の実施形態について詳述する前に、本発明に係る誘導加熱成形装置の基本的概念について説明する。上述のように、光学素子製品の加熱成形においては、上型と下型を個々に、連続且つ緻密に発熱制御することが非常に望ましい。つまり、光学素子材料を加熱溶融させた時の対流や熱分布に起因する成分の均一性や、また加圧成型時の圧力の影響、さらに冷却時の残留応力や成分分布などの要因は、主に金型の発熱状態の管理精度のみで決まるといっても過言ではない。   Before describing the embodiment of the present invention in detail, the basic concept of the induction heating molding apparatus according to the present invention will be described. As described above, in the thermoforming of the optical element product, it is highly desirable to control the heat generation of the upper mold and the lower mold individually and continuously. In other words, factors such as the uniformity of components due to convection and heat distribution when optical element materials are heated and melted, the effect of pressure during pressure molding, and the residual stress and component distribution during cooling are the main factors. It is no exaggeration to say that it is determined only by the accuracy of heat generation control of the mold.

この観点から、本発明においても、金型の迅速な加熱および温度の制御のし易さから、上型と下型を独立して駆動される上誘導コイルと下誘導コイルで誘導加熱装置が採用されている。誘導加熱装置においては、上述の如く、上誘導コイルと下誘導コイルの間で発生する磁束干渉の問題がある。従来の誘導加熱成形装置においては、温度制御品質および温度制御効率を犠牲にして、磁束干渉の発生自体を防止している。しかしながら、本発明に係る誘導加熱成形装置においては、磁束干渉の発生を許容し、発生した磁束干渉を熱エネルギーに変換することによって、温度制御品質および温度制御効率を確保している。以下に、本発明の様々な実施形態に係る誘導加熱成形装置について具体的に説明する。   From this point of view, in the present invention, an induction heating device is adopted with an upper induction coil and a lower induction coil that are driven independently from each other in order to quickly heat the mold and easily control the temperature. Has been. In the induction heating apparatus, as described above, there is a problem of magnetic flux interference generated between the upper induction coil and the lower induction coil. In the conventional induction heating molding apparatus, the occurrence of magnetic flux interference itself is prevented at the expense of temperature control quality and temperature control efficiency. However, in the induction heating molding apparatus according to the present invention, generation of magnetic flux interference is allowed, and the generated magnetic flux interference is converted into thermal energy, thereby ensuring temperature control quality and temperature control efficiency. Below, the induction heating molding apparatus which concerns on various embodiment of this invention is demonstrated concretely.

(第1の実施形態)
以下に、図1および図2を参照して、本実施形態に係る誘導加熱成形装置について説明する。図1に示すように、誘導加熱成形装置F1は、光学素子材料OM(図示せず)を成形するための上成形面FS1を有する上型14aと、下成形面FS2を有する下型14bから成る一対の金型セット4が用いられる。誘導電力を供給する上インバータ11aが、上変圧器12aを介して上誘導コイル13aに接続されている。同様に、下インバータ11bは下変圧器12bを介して下誘導コイル13bに接続されている。
(First embodiment)
Below, with reference to FIG. 1 and FIG. 2, the induction heating molding apparatus which concerns on this embodiment is demonstrated. As shown in FIG. 1, the induction heating molding apparatus F1 includes an upper mold 14a having an upper molding surface FS1 for molding an optical element material OM (not shown) and a lower mold 14b having a lower molding surface FS2. A pair of mold sets 4 is used. An upper inverter 11a for supplying inductive power is connected to the upper induction coil 13a via an upper transformer 12a. Similarly, the lower inverter 11b is connected to the lower induction coil 13b via the lower transformer 12b.

上型14aは上誘導コイル13aで誘導加熱され、下型14bは下誘導コイル13bによって誘導加熱される。誘導加熱された金型セット14の熱が成形面FSを介して光学素子材料OMに伝えられる。つまり、光学素子材料OMの温度は、上型14aおよび下型14bの温度を制御することで実現される。言い換えれば、上誘導コイル13aから照射される上磁束Φa、および下誘導コイル13bから照射される下磁束Φbの量を変化させて、上型14aおよび下型14bの温度が制御される。   The upper die 14a is induction heated by the upper induction coil 13a, and the lower die 14b is induction heated by the lower induction coil 13b. The heat of the die set 14 induction-heated is transmitted to the optical element material OM through the molding surface FS. That is, the temperature of the optical element material OM is realized by controlling the temperatures of the upper mold 14a and the lower mold 14b. In other words, the amounts of the upper magnetic flux Φa irradiated from the upper induction coil 13a and the lower magnetic flux Φb irradiated from the lower induction coil 13b are changed to control the temperatures of the upper mold 14a and the lower mold 14b.

このために、金型セット14の材料としては、型内部を所望の温度に、例えば光学素子材料OMがガラス素材の場合には、600℃に加熱するため、誘導加熱しやすい磁性材料、例えばステンレスSUS410やNiAlが用いる。また光学素子材料OMと接触する成形面FSにはセラミックを用い、ガラス材料が溶けても接着しにくい構成としている。   For this reason, as the material of the mold set 14, the inside of the mold is heated to a desired temperature, for example, when the optical element material OM is a glass material, it is heated to 600 ° C. SUS410 or NiAl is used. Further, ceramic is used for the molding surface FS that comes into contact with the optical element material OM, and it is difficult to adhere even if the glass material is melted.

さらに、光学素子材料OMの金型セット14内への挿入、加圧成形、および成形後の取り出しのために、上型14aおよび下型14bのそれぞれを移動させる上型アクチュエータ19aおよび下型アクチュエータ19bが備えられる。上変圧器12aおよび下変圧器12bは、それぞれ、上インバータ11aおよび下インバータ11bから供給される加熱電力を上誘導コイル13aおよび上誘導コイル13aに適した電圧に変換する。さらに、所望の成形プロセスを実現させるために、金型セット14の上型14aおよび下型14b温度を個別に連続的に制御すると共にアクチュエータ19を制御する制御器17が更に設けられている。   Further, the upper mold actuator 19a and the lower mold actuator 19b are moved to move the upper mold 14a and the lower mold 14b, respectively, for insertion of the optical element material OM into the mold set 14, pressure molding, and removal after molding. Is provided. The upper transformer 12a and the lower transformer 12b convert the heating power supplied from the upper inverter 11a and the lower inverter 11b into voltages suitable for the upper induction coil 13a and the upper induction coil 13a, respectively. Further, in order to realize a desired molding process, a controller 17 is further provided for continuously controlling the temperatures of the upper mold 14a and the lower mold 14b of the mold set 14 individually and controlling the actuator 19.

図2に示すように、上誘導コイル13aと下誘導コイル13bとの間には、磁束遮断材20が設けられている。具体的には、磁束遮断材20は、上誘導コイル13aから発生する上磁束Φaと、下誘導コイル13bから発生する下磁束Φbが重なりあって、相互干渉(Φa+Φb)する位置に設けられる。つまり、磁束は電流が流れる導線からの距離に反比例して弱まることに着目し、最も磁束密度が高く、互いの干渉が問題となる上下のコイル13aおよび13bの間に磁束遮蔽材を挿入することで、磁束干渉を防ぐことが可能となり、2つのインバータ11aおよび11bで独立して上下の型14aおよび14bの温度を連続して調整することを可能としている。この機能を満たすために、磁束遮蔽材20は、例えば10mm程度の厚みの円板で中をくり貫いたドーナツ状に構成される。これは、加熱対象である光学素子材料OMが、上型14aおよび下型14bの間に挿入されるため、金型セット14の光学素子材料OMに接する部分以外を、磁束Φから極力遮蔽できるようにしている。このような効果を得られる形状であれば、磁束遮断材20は他のいかなる形状に構成してもよい。   As shown in FIG. 2, a magnetic flux shielding material 20 is provided between the upper induction coil 13a and the lower induction coil 13b. Specifically, the magnetic flux blocking material 20 is provided at a position where the upper magnetic flux Φa generated from the upper induction coil 13a and the lower magnetic flux Φb generated from the lower induction coil 13b overlap each other and cause mutual interference (Φa + Φb). That is, paying attention to the fact that the magnetic flux weakens in inverse proportion to the distance from the conducting wire through which the current flows, insert a magnetic flux shielding material between the upper and lower coils 13a and 13b, which has the highest magnetic flux density and causes mutual interference. Thus, magnetic flux interference can be prevented, and the temperatures of the upper and lower molds 14a and 14b can be continuously adjusted independently by the two inverters 11a and 11b. In order to satisfy this function, the magnetic flux shielding material 20 is configured in a donut shape that is hollowed out by a disk having a thickness of about 10 mm, for example. This is because the optical element material OM to be heated is inserted between the upper mold 14a and the lower mold 14b, so that the part other than the part in contact with the optical element material OM of the mold set 14 can be shielded from the magnetic flux Φ as much as possible. I have to. The magnetic flux blocking material 20 may be configured in any other shape as long as such an effect can be obtained.

本誘導加熱成形装置F1における、光学素子製品の製造方法について簡単に説明する。光学素子材料OMを金型セット14に充填する時には、アクチュエータユニット19を駆動させて、上型14aと下型14bとを離間させて、その間に光学素子材料OMを充填できる程度の空間が生じさせる。この離間間隔は、例えば直径10mm程度のガラス球を成形する場合には、上型14aと下型14bとの最短距離は30mm程度でよい。   A method for manufacturing an optical element product in the induction heating molding apparatus F1 will be briefly described. When the mold set 14 is filled with the optical element material OM, the actuator unit 19 is driven to separate the upper mold 14a and the lower mold 14b, so that a space that can be filled with the optical element material OM is generated therebetween. . For example, when forming a glass ball having a diameter of about 10 mm, the shortest distance between the upper mold 14a and the lower mold 14b may be about 30 mm.

光学素子材料OMとしてガラス球を充填した後に、上型14aと下型14bとの間隔を狭めていく。間隔を狭めるときは、上型14a、下型14bのいずれか一方の位置を固定させた状態で、他方の型をガラス球と当接するまで移動させ、一定の荷重、例えば20kgf程度をかけた状態の金型セット14を誘導加熱する。発熱成形体FHで発生した熱により、ガラス球(光学素子材料OM)が加熱軟化される。具体的には、上誘導コイル13aは上型14aの外周に巻回され、上誘導コイル13aに高周波電力、例えば23kHzが投入されたとき、上誘導コイル13a内部に磁束が発生し、上型14aを上磁束Φaが貫通することで加熱材料内部に誘導電流Iが流れ、加熱材料内部の電気抵抗によるジュール熱によって誘導加熱される。下型14bは外周に巻回された下誘導コイル13bによって、上型14aと同様に誘導加熱される。   After the glass sphere is filled as the optical element material OM, the distance between the upper mold 14a and the lower mold 14b is reduced. When narrowing the interval, the position of either the upper mold 14a or the lower mold 14b is fixed, the other mold is moved until it comes into contact with the glass ball, and a constant load, for example, about 20 kgf is applied. The mold set 14 is induction-heated. The glass sphere (optical element material OM) is heated and softened by the heat generated in the exothermic molded body FH. Specifically, the upper induction coil 13a is wound around the outer periphery of the upper mold 14a, and when high frequency power, for example, 23 kHz, is applied to the upper induction coil 13a, a magnetic flux is generated inside the upper induction coil 13a, and the upper mold 14a When the upper magnetic flux Φa passes through, the induction current I flows inside the heating material and is induction-heated by Joule heat due to the electric resistance inside the heating material. The lower die 14b is induction-heated by the lower induction coil 13b wound around the outer periphery in the same manner as the upper die 14a.

上磁束Φaと下磁束Φbの相互干渉を起こす相互干渉磁束△(Φa+Φb)は、磁束遮断材20によって吸収される。つまり、上誘導コイル13aから発生した上磁束Φaの干渉成分、つまり下誘導コイル13bを貫通する成分△(Φa)は、磁束遮断材20に吸収遮断されて、下誘導コイル13bには到達しない。同様に、下誘導コイル13bから発生した下磁束Φbの干渉成分、つまり上誘導コイル13aを貫通する成分△(Φb)は、磁束遮断材20によって吸収遮断されて、上誘導コイル13aには到達しない。吸収された干渉磁束△(Φa+Φb)は磁束遮断材20によって熱に変換されて消費される。   A mutual interference magnetic flux Δ (Φa + Φb) that causes mutual interference between the upper magnetic flux Φa and the lower magnetic flux Φb is absorbed by the magnetic flux blocking material 20. That is, the interference component of the upper magnetic flux Φa generated from the upper induction coil 13a, that is, the component Δ (Φa) penetrating the lower induction coil 13b is absorbed and blocked by the magnetic flux blocking material 20 and does not reach the lower induction coil 13b. Similarly, the interference component of the lower magnetic flux Φb generated from the lower induction coil 13b, that is, the component Δ (Φb) penetrating the upper induction coil 13a is absorbed and blocked by the magnetic flux blocking material 20 and does not reach the upper induction coil 13a. . The absorbed interference magnetic flux Δ (Φa + Φb) is converted into heat by the magnetic flux blocking material 20 and consumed.

このようにして、上誘導コイル13aと下誘導コイル13bを同時に連続的に駆動させても、発生する上磁束Φaと下磁束Φbによる相互干渉磁束△(Φa+Φb)は、上インバータ11aおよび下インバータ11bに悪影響を与えることがない。また上誘導コイル13aと下誘導コイル13bの共振周波数は同一であるので加熱効率も低下しない。なお、吸収された相互干渉磁束△(Φa+Φb)による磁束遮断材20の発熱は、自然空冷によって、誘導加熱成形装置F1の外部に放出される。しかしながら、自然空冷で不十分な場合には、強制空冷或いは強制水冷、または冷媒などを流通させる冷却機構を設けても良い。   Thus, even if the upper induction coil 13a and the lower induction coil 13b are continuously driven simultaneously, the mutual interference magnetic flux Δ (Φa + Φb) generated by the upper magnetic flux Φa and the lower magnetic flux Φb is equal to the upper inverter 11a and the lower inverter 11b. Will not be adversely affected. Further, since the resonance frequency of the upper induction coil 13a and the lower induction coil 13b is the same, the heating efficiency is not lowered. The heat generated by the magnetic flux shielding material 20 due to the absorbed mutual interference magnetic flux Δ (Φa + Φb) is released to the outside of the induction heating molding apparatus F1 by natural air cooling. However, if natural air cooling is insufficient, a forced air cooling or forced water cooling, or a cooling mechanism for circulating a refrigerant or the like may be provided.

加熱軟化、つまり溶融されて弾性を持った光学素子材料OMは、アクチュエータユニット19により加えられる350kgf程度での圧力によって加圧変形される。さらに、金型の成形面FSによって、光学素子材料OMに光学素子製品の形状を転写させるため、金型セット14を550℃程度まで降下させると同時に、成形のための押圧荷重を50kgf程度に減圧させて、光学素子製品として成形する。   The optical element material OM that has been softened by heating, that is, melted and elastic, is pressurized and deformed by a pressure of about 350 kgf applied by the actuator unit 19. Further, in order to transfer the shape of the optical element product to the optical element material OM by the molding surface FS of the mold, the mold set 14 is lowered to about 550 ° C. and at the same time, the pressing load for molding is reduced to about 50 kgf. And molded as an optical element product.

金型セット14の温度は、上型14aの温度T1(以降、「上型温度T1」と称する)と、下型14bの温度T2(「上型温度T2」と称する)とに基づいて判断される。上型14aの内部に挿入された上型温度計測手段18aによって、上成形面FS1の温度が測定されて上型温度T1として制御器17に入力される。同様に、下型14bの内部に挿入された下型温度計測手段18bによって、下成形面FS2の温度が測定されて下型温度T2として制御器17に入力される。制御器17は、入力される上型温度T1および下型温度T2と目標となる温度とに基づいて、一般的に知られるPID制御方式を用いて所望の操作量を算出する。そして制御器17はさらに、算出された操作量に応じて、上インバータ11aおよび下インバータ11bの出力電力を調整して、目標温度への温度追従制御を実現している。   The temperature of the mold set 14 is determined based on the temperature T1 of the upper mold 14a (hereinafter referred to as “upper mold temperature T1”) and the temperature T2 of the lower mold 14b (referred to as “upper mold temperature T2”). The The temperature of the upper molding surface FS1 is measured by the upper mold temperature measuring means 18a inserted into the upper mold 14a and is input to the controller 17 as the upper mold temperature T1. Similarly, the temperature of the lower molding surface FS2 is measured by the lower mold temperature measuring means 18b inserted into the lower mold 14b and is input to the controller 17 as the lower mold temperature T2. The controller 17 calculates a desired operation amount using a generally known PID control method based on the input upper mold temperature T1 and lower mold temperature T2 and the target temperature. The controller 17 further adjusts the output power of the upper inverter 11a and the lower inverter 11b in accordance with the calculated operation amount, thereby realizing temperature tracking control to the target temperature.

このような一連の成形プロセスにより成形された光学素子製品は、アクチュエータユニット19によって、上型14aと下型14bとの間隔を広げ、金型セット14から取り出される。この際に、一定の手順で離型させることで作業性を高め、金型から成型品を安全に取り出すため、光学素子製品を先ず上型14aから離型させ、次に下型14bを離型させる。このためには、例えば上型温度T1を、下型温度T2より100℃程度高く維持した状態で、上型温度T1を降下させる。   The optical element product molded by such a series of molding processes is taken out of the mold set 14 by the actuator unit 19 with the interval between the upper mold 14a and the lower mold 14b being increased. At this time, in order to improve workability by releasing the mold in a certain procedure and to safely take out the molded product from the mold, the optical element product is first released from the upper mold 14a, and then the lower mold 14b is released. Let For this purpose, for example, the upper mold temperature T1 is lowered while the upper mold temperature T1 is maintained about 100 ° C. higher than the lower mold temperature T2.

例えば、上型温度T1が450℃、下型温度T2が550℃になった時点で、アクチュエータユニット19を駆動して上型14aを上側に移動させて、光学素子材料を離型させる。上型14aを離型させたのち、下型温度T2を常温RT近傍まで下降させ、下型14bから光学素子製品を取り出す。 For example, when the upper mold temperature T1 reaches 450 ° C. and the lower mold temperature T2 reaches 550 ° C., the actuator unit 19 is driven to move the upper mold 14a upward to release the optical element material. After releasing the upper mold 14a, the lower mold temperature T2 is lowered to near room temperature RT, and the optical element product is taken out from the lower mold 14b.

上述のように、本実施形態においては、磁束は電流が流れる導線からの距離に反比例して弱まることに着目し、最も磁束密度が高く且つ互いの干渉が問題となる上下コイルの間に磁束遮蔽材を挿入して磁束干渉を防いでいる。結果、2つのインバータで独立して上下型温度調整でき、上下型を所望の温度差に保ち、成形後の離型を容易としている。   As described above, in this embodiment, focusing on the fact that the magnetic flux is weakened in inverse proportion to the distance from the conducting wire through which the current flows, the magnetic flux is shielded between the upper and lower coils where the magnetic flux density is highest and mutual interference is a problem. A material is inserted to prevent magnetic flux interference. As a result, the upper and lower mold temperatures can be adjusted independently by the two inverters, the upper and lower molds are kept at a desired temperature difference, and mold release after molding is facilitated.

(第2の実施形態)
以下に、図3および図4を参照して、本実施形態に係る誘導加熱成形装置について説明する。図3に示すように、本実施形態に係る誘導加熱成形装置F2は、図1に示した誘導加熱成形装置F1において、磁束遮断材20が磁束干渉防止誘導コイル13cに交換されると共に、下変圧器12bが下変圧器12cに交換されている。下変圧器12cは、下変圧器12bにおいて、磁束干渉防止誘導コイル13cを駆動するための二次コイルが設けられている。その他の部分は、誘導加熱成形装置F1と同様に構成されているので、磁束干渉防止誘導コイル13cおよび下変圧器12cについて重点的に説明する。
(Second Embodiment)
Below, with reference to FIG. 3 and FIG. 4, the induction heating molding apparatus which concerns on this embodiment is demonstrated. As shown in FIG. 3, the induction heating forming apparatus F2 according to the present embodiment is the same as the induction heating forming apparatus F1 shown in FIG. The transformer 12b is replaced with a lower transformer 12c. The lower transformer 12c is provided with a secondary coil for driving the magnetic flux interference prevention induction coil 13c in the lower transformer 12b. Since the other parts are configured in the same manner as the induction heating forming apparatus F1, the magnetic flux interference prevention induction coil 13c and the lower transformer 12c will be described mainly.

図4に示すように、磁束干渉防止誘導コイル13cは、磁束遮断材20と同様に上誘導コイル13aと下誘導コイル13bの間に設けられる。これは、上誘導コイル13aから発生する上磁束Φaと、下誘導コイル13bから発生する下磁束Φbによる相互干渉磁束△(Φa+Φb)を磁束干渉防止誘導コイルΔΦcで打ち消すことを目的としている。   As shown in FIG. 4, the magnetic flux interference prevention induction coil 13 c is provided between the upper induction coil 13 a and the lower induction coil 13 b similarly to the magnetic flux shielding material 20. This is intended to cancel the mutual interference magnetic flux Δ (Φa + Φb) caused by the upper magnetic flux Φa generated from the upper induction coil 13a and the lower magnetic flux Φb generated from the lower induction coil 13b by the magnetic flux interference prevention induction coil ΔΦc.

具体的には、上誘導コイル13aと下誘導コイル13bが接近する中央部分の磁束を弱めるために、磁束干渉防止誘導コイル13cは、上誘導コイル13aおよび下誘導コイル13bと逆向きの磁束を発生するように、トランス12の部分でコイルを互いに逆方向に巻回されている。結果、磁束干渉防止誘導コイル13cを貫通する磁束は、上誘導コイル13aおよび下誘導コイル13bと向きが逆であるので、互いに打ち消し合う。なお、この場合は、磁束干渉防止誘導コイル13cにおける発熱が問題になる場合には、誘導加熱成形装置F1におけるのと同様に、必要に応じて、適当な冷却手段を設ければ良い。   Specifically, in order to weaken the magnetic flux in the central portion where the upper induction coil 13a and the lower induction coil 13b approach, the magnetic flux interference prevention induction coil 13c generates a magnetic flux in the opposite direction to the upper induction coil 13a and the lower induction coil 13b. Thus, the coil is wound in the direction opposite to each other at the portion of the transformer 12. As a result, the magnetic fluxes penetrating the magnetic flux interference preventing induction coil 13c are opposite in direction to the upper induction coil 13a and the lower induction coil 13b, and thus cancel each other. In this case, if heat generation in the magnetic flux interference prevention induction coil 13c becomes a problem, an appropriate cooling means may be provided as necessary as in the induction heating molding apparatus F1.

上述のように、本実施形態においては、最も磁束密度が高く互いの干渉が問題となる上誘導コイルおよび下誘導コイルの間に、電流を流す向きが逆である第3の誘導コイルを挿入することで、磁束干渉が発生しやすい上下誘導コイルの接近個所における磁束を弱めることが可能となり、2つのインバータで独立して上下型温度調整する事ができ上下型に温度差を付けることができ離型が容易となる。   As described above, in the present embodiment, the third induction coil having a reverse current flow direction is inserted between the upper induction coil and the lower induction coil, which have the highest magnetic flux density and cause mutual interference. This makes it possible to weaken the magnetic flux near the upper and lower induction coils where magnetic flux interference is likely to occur, allowing the two inverters to adjust the upper and lower mold temperatures independently, creating a temperature difference between the upper and lower molds. Mold becomes easy.

上述のように本発明に係る誘導加熱成形装置においては、上誘導コイル13aと下誘導コイル13b間で発生する磁束干渉を防止して、連続的で緻密且つ効率的な温度制御が可能となる。特に成型品を金型から取り外す際、成型品の落下破損を防止するため、この温度制御が重要となる。以下に、図1及び図5を参照して本発明に係る誘導加熱成形方法について具体的に説明する。   As described above, in the induction heating molding apparatus according to the present invention, magnetic flux interference generated between the upper induction coil 13a and the lower induction coil 13b is prevented, and continuous, precise, and efficient temperature control is possible. In particular, when removing the molded product from the mold, this temperature control is important in order to prevent the molded product from being dropped and damaged. Hereinafter, the induction heating molding method according to the present invention will be described in detail with reference to FIGS. 1 and 5.

図5に、加熱成形して光学製品を作製する光学素子材料OMの熱成形プロセスを示す。同図において、縦軸Tは金型セット14の温度を示し、縦軸dは光学素子材料OMと金型セット14の成形面FSとの離間距離を示し、横軸tは成形プロセスにおける各時刻を示す。さらに、実線Laは上型温度T1を示し、二点鎖線Lbは下型温度T2を示し、実線Lgは加熱距離dを示している。なお、加熱距離dは、現実には上型14aの上成形面FS1と光学素子材料OMとの上面との間隔に相当する。   FIG. 5 shows a thermoforming process of the optical element material OM for producing an optical product by thermoforming. In the figure, the vertical axis T represents the temperature of the mold set 14, the vertical axis d represents the separation distance between the optical element material OM and the molding surface FS of the mold set 14, and the horizontal axis t represents each time in the molding process. Indicates. Further, the solid line La indicates the upper mold temperature T1, the two-dot chain line Lb indicates the lower mold temperature T2, and the solid line Lg indicates the heating distance d. The heating distance d actually corresponds to the distance between the upper molding surface FS1 of the upper mold 14a and the upper surface of the optical element material OM.

図5に示すように、光学製品は、溶融ステップS1、成形ステップS2、転写ステップS3、上型離型ステップS4、上下型分離ステップS5、ひずみ除去ステップS6、下型離型ステップS7、取り出しステップS8の8つのステップを経て完成される。なお、溶融ステップS1に先だって、光学素子材料OMは金型セット14の内部に以下の要領にて載置される。先ず、上型アクチュエータ19aおよび下型アクチュエータ19bによって上型14aと下型14bとの間隔を光学素子材料OMが挿入できる程度に広げておく。この間隔は、例えば直径10mm程度のガラス球(光学製品)を成形する場合は30mm程度でよく、作製する光学製品の大きさに応じて適宜決めることができる。この場合、上成形面FS1と下成形面FS2の曲率にもよるが、加熱距離dは20mm(30−10mm)以上である。
次に光学素子材料OMが上型14aと下型14bに間に挿入される。この場合は、光学素子材料OMは上型14aの上成形面FS1とは接触しておらず、また下型14bに下成形面FS2上に部分接触状態で載置される。
As shown in FIG. 5, the optical product includes a melting step S1, a molding step S2, a transfer step S3, an upper mold releasing step S4, an upper and lower mold separating step S5, a strain removing step S6, a lower mold releasing step S7, and an extraction step. It is completed through 8 steps of S8. Prior to the melting step S1, the optical element material OM is placed in the mold set 14 as follows. First, the distance between the upper mold 14a and the lower mold 14b is widened by the upper mold actuator 19a and the lower mold actuator 19b so that the optical element material OM can be inserted. This interval may be about 30 mm when a glass sphere (optical product) having a diameter of about 10 mm is formed, for example, and can be appropriately determined according to the size of the optical product to be manufactured. In this case, although depending on the curvatures of the upper molding surface FS1 and the lower molding surface FS2, the heating distance d is 20 mm (30-10 mm) or more.
Next, the optical element material OM is inserted between the upper mold 14a and the lower mold 14b. In this case, the optical element material OM is not in contact with the upper molding surface FS1 of the upper mold 14a, and is placed in a partial contact state on the lower molding surface FS2 on the lower mold 14b.

溶融ステップS1において、光学素子材料OMが挿入された上型14a及び下型14bがそれぞれ580℃、560℃程度に個別に誘導加熱される。上述のように、光学素子材料OMは上型14aの上成形面FS1とは非接触であり、下型14bの下成形面FS2とは部分接触である。よって、上型14aの熱は輻射によって光学素子材料OMに供給され、下型14bの熱は点接触部分からの直接伝導と共に輻射によって供給される。このように、光学素子材料OMは主に金型セット14からの輻射熱(一部伝導熱)によって全体が同時に加熱されるので、光学素子材料OMが上成形面FS1および下成形面FS2に接触させた状態で、主に金型セット14からの伝導熱(一部輻射熱)によって部分的に加熱される場合に比べて、遙かに均一に加熱される。結果、光学素子材料OMは、部分加熱の際に生じる成分比変動や歪み発生を大幅に低減でき、より均質に熱軟化される。つまり、加熱の最終段階において、光学素子材料OMに熱軟化していない部分が残ってしまう事態を防止できる。より均質な加熱の観点から、光学素子材料OMは下型14bと非接触であることがあることが望ましい事は言うまでもない。しかしながら、現実的には、接触面積が出来るだけ小さく、点接触に近づくような形状に光学素子材料OMを準備すればよい。   In the melting step S1, the upper mold 14a and the lower mold 14b in which the optical element material OM is inserted are individually induction-heated to about 580 ° C. and about 560 ° C., respectively. As described above, the optical element material OM is not in contact with the upper molding surface FS1 of the upper mold 14a, and is in partial contact with the lower molding surface FS2 of the lower mold 14b. Therefore, the heat of the upper mold 14a is supplied to the optical element material OM by radiation, and the heat of the lower mold 14b is supplied by radiation together with direct conduction from the point contact portion. As described above, since the entire optical element material OM is heated at the same time mainly by the radiant heat (partially conductive heat) from the mold set 14, the optical element material OM is brought into contact with the upper molding surface FS1 and the lower molding surface FS2. In this state, it is heated much more uniformly than when it is partially heated mainly by conduction heat (partially radiant heat) from the mold set 14. As a result, the optical element material OM can greatly reduce the component ratio fluctuation and distortion generated during the partial heating, and is more uniformly heat-softened. That is, in the final stage of heating, it is possible to prevent a situation in which a portion that has not been softened remains in the optical element material OM. It goes without saying that the optical element material OM is preferably not in contact with the lower mold 14b from the viewpoint of more uniform heating. However, in reality, the optical element material OM may be prepared in a shape that makes the contact area as small as possible and approaches point contact.

成形ステップS2においては、下型温度T2(Lb)を維持した状態で、上型アクチュエータ19aおよび下型アクチュエータ19bによって上型14aおよび下型14bは互いに接近させられる。結果、熱軟化された光学素子材料OMが上成形面FS1および下成形面FS2に倣って変形して、光学製品の形状に成形される。この際、光学素子材料OMには大凡350kgfの圧力(押圧荷重)が印可される。また、上型14aおよび下型14bの双方、或いはいずれか一方を移動させても良いが、好ましくは成型時の光学素子材料OMの安定のためには下型14bの位置を固定した状態で上型14aを移動させる。   In the molding step S2, the upper mold 14a and the lower mold 14b are brought close to each other by the upper mold actuator 19a and the lower mold actuator 19b while maintaining the lower mold temperature T2 (Lb). As a result, the heat-softened optical element material OM is deformed following the upper molding surface FS1 and the lower molding surface FS2, and is molded into the shape of the optical product. At this time, a pressure (pressing load) of approximately 350 kgf is applied to the optical element material OM. In addition, either or both of the upper mold 14a and the lower mold 14b may be moved, but preferably the upper mold 14b is fixed in a state where the position of the lower mold 14b is fixed in order to stabilize the optical element material OM during molding. The mold 14a is moved.

転写ステップS3においては、上型温度T1及び下型温度T2が560℃から550℃程度まで降下される共に、押圧荷重を350kgf程度から50kgf程度まで減少される。型温度(T1、T2)の降下につれて、光学素子材料OMの温度も降下することにより、熱軟化状態から通常の剛体状態に変化する。よって、押圧荷重の変化にも関わらず、加熱距離dは概ね変化しない。結果、光学素子材料OMが上成形面FS1および下成形面FS2の形状に完全に変形されて、光学製品の外形状が転写される。なお、本ステップにおいて得られる光学素子材料OMを、以降必要に応じて転写成型品OMと呼ぶ。   In the transfer step S3, the upper mold temperature T1 and the lower mold temperature T2 are lowered from about 560 ° C. to about 550 ° C., and the pressing load is reduced from about 350 kgf to about 50 kgf. As the mold temperature (T1, T2) is lowered, the temperature of the optical element material OM is also lowered, so that the heat softened state is changed to the normal rigid body state. Therefore, the heating distance d does not change substantially despite the change in the pressing load. As a result, the optical element material OM is completely deformed into the shapes of the upper molding surface FS1 and the lower molding surface FS2, and the outer shape of the optical product is transferred. The optical element material OM obtained in this step is hereinafter referred to as a transfer molded product OM as necessary.

また、加熱距離dにおいて上型14a、および下型14bを加熱する際にガラス球を均一に、かつ、高速に加熱するため、型温度上昇よりガラス球温度上昇が遅れることが想定される。そこで、上下型それぞれにおいて、PID制御方式などを用いて、目標温度よりもオーパーシュートして制御することも可能である。さらに、型とガラス球との距離に応じて、型温度を変化させ、ガラス球の温度を一定に保つように制御することも可能である。   In addition, when the upper mold 14a and the lower mold 14b are heated at the heating distance d, it is assumed that the glass sphere temperature rise is delayed from the mold temperature rise in order to heat the glass sphere uniformly and at high speed. Therefore, it is also possible to control the upper and lower molds by overshooting the target temperature using a PID control method or the like. Furthermore, it is also possible to control so as to keep the temperature of the glass sphere constant by changing the mold temperature in accordance with the distance between the mold and the glass sphere.

上型離型ステップS4においては、下型温度T2を550℃が維持されて状態で上型温度T1が550℃から450℃まで降下される。金型と光学素子材料OMとの熱膨張率の違いにより、転写成型品OMは上型14aから離反する。   In the upper mold release step S4, the upper mold temperature T1 is lowered from 550 ° C. to 450 ° C. while the lower mold temperature T2 is maintained at 550 ° C. Due to the difference in coefficient of thermal expansion between the mold and the optical element material OM, the transfer molded product OM is separated from the upper mold 14a.

上下型分離ステップS5においては、上型温度T1が450℃、下型温度T2が550℃に制御した状態で、転写成型品を取り出せるように上型14aと下型14bとの間隔が広げられる。   In the upper and lower mold separation step S5, the distance between the upper mold 14a and the lower mold 14b is widened so that the transfer molded product can be taken out while the upper mold temperature T1 is controlled to 450 ° C. and the lower mold temperature T2 is controlled to 550 ° C.

ひずみ除去ステップS6においては、上下型の間隔(d)および上下型の温度(T1、T2)を一定に保った状態で一定期間(t5〜t6)保持される。結果、成形ステップS2および転写ステップS3において、転写成型品OMの内部に生じた歪みが除去される。 In the strain removal step S6, the upper and lower mold intervals (d) and the upper and lower mold temperatures (T1 and T2) are maintained constant for a certain period (t 5 to t 6 ). As a result, in the molding step S2 and the transfer step S3, distortion generated in the transfer molded product OM is removed.

下型離型ステップS7においては、下型温度T2を550℃から常温RT近傍まで下降される。金型セット14と光学素子材料OMとの熱膨張率の違いにより、転写成型品OMは下型14bから離反される。その際、上型温度T1も450℃から常温RT近傍まで下降される。結果、光学製品が完成する。   In the lower mold release step S7, the lower mold temperature T2 is lowered from 550 ° C. to near room temperature RT. Due to the difference in thermal expansion coefficient between the mold set 14 and the optical element material OM, the transfer molded product OM is separated from the lower mold 14b. At that time, the upper mold temperature T1 is also lowered from 450 ° C. to near room temperature RT. As a result, the optical product is completed.

取り出しステップS8においては、光学製品が上型14aおよび下型14bのいずれにも固着することなく、下成形面FS2上に安定的に載置された状態にある。よって、金型から成型品を取り出すことができる。   In the removal step S8, the optical product is stably placed on the lower molding surface FS2 without being fixed to either the upper mold 14a or the lower mold 14b. Therefore, the molded product can be taken out from the mold.

上述の温度制御は以下の如く実現される。つまり、上金型温度T1および下金型温度T2は、それぞれに挿入された上型温度計測手段18aおよび下型温度計測手段18bによって測定されて、制御17に入力される。制御17にて設定された目標となる温度と上型14aおよび下型14bの測定温度をもとに、一般的に知られるPID制御方式などの制御方式を用いて所望の操作量を算出し、算出された操作量をインバータ出力電力調整用の外部入力手段に入力することで、目標温度への温度追従制御を上下個別に実現している。

The above temperature control is realized as follows. That is, the upper mold temperature T1 and lower mold temperature T2 is measured by the upper mold temperature measuring unit 18a and the lower mold temperature measuring unit 18b inserted respectively, are input to the controller 17. Based on the measured temperature of the set target become temperature and the upper die 14a and lower die 14b by the control unit 17 calculates the desired manipulated variable using a control system such as PID control method commonly known By inputting the calculated operation amount to the external input means for adjusting the inverter output power, the temperature follow-up control to the target temperature is realized individually above and below.

また、上誘導コイル13aと下誘導コイル13bの間に挿入されている磁束遮蔽材20によって、上誘導コイル13aによる磁束と、下誘導コイル13bとの磁束との干渉を防止することによって、上述の温度制御を高精度且つ効率的に実現している。また、磁束遮蔽材20としては、銅、真鍮などの低抵抗の非磁性材料が用いられる。加熱対象は上型14aと下型14bの間に挿入されているため、図2に示すように、磁束遮蔽材20の形状は加熱対象以外の部分を極力遮蔽できるように、例えば10mm程度の厚みの円板で中をくり貫いたドーナツ状のものを用いる。吸収された磁束によって遮蔽材が発熱する場合は、この磁束遮蔽材20に冷却機構を設けて、例えば冷媒などを流通させればよい。   Further, the magnetic flux shielding material 20 inserted between the upper induction coil 13a and the lower induction coil 13b prevents interference between the magnetic flux generated by the upper induction coil 13a and the magnetic flux generated by the lower induction coil 13b. Temperature control is realized with high accuracy and efficiency. Moreover, as the magnetic flux shielding material 20, a low-resistance nonmagnetic material such as copper or brass is used. Since the object to be heated is inserted between the upper mold 14a and the lower mold 14b, as shown in FIG. 2, the shape of the magnetic flux shielding material 20 is, for example, about 10 mm thick so that the part other than the object to be heated can be shielded as much as possible. Use a donut shape that is hollowed out. When the shielding material generates heat due to the absorbed magnetic flux, a cooling mechanism may be provided in the magnetic flux shielding material 20 to circulate, for example, a refrigerant.

光学素子材料を誘導加熱により加熱成形するに際し、成形部を重点的に誘導加熱することによって、より迅速且つ効率的な温度制御が可能な誘導加熱成形装置等として有用である。   When the optical element material is thermoformed by induction heating, it is useful as an induction heating molding apparatus or the like capable of more rapid and efficient temperature control by intensively induction heating the molding part.

本発明の第1の実施形態に係る誘導加熱成形装置の構成を示すブロック図The block diagram which shows the structure of the induction heating molding apparatus which concerns on the 1st Embodiment of this invention. 図1に示した金型セット、誘導コイル、および磁束遮断材の位置関係の説明図Explanatory drawing of the positional relationship of the metal mold | set set shown in FIG. 1, an induction coil, and a magnetic flux blocker 本発明の第2の実施形態に係る誘導加熱成形装置の構成を示すブロック図The block diagram which shows the structure of the induction heating molding apparatus which concerns on the 2nd Embodiment of this invention. 図3に示した金型セット、誘導コイル、および磁束干渉防止誘導コイルの位置関係の説明図Explanatory drawing of the positional relationship of the metal mold | die set shown in FIG. 3, an induction coil, and a magnetic flux interference prevention induction coil 誘導加熱成形工程を示すタイムチャートTime chart showing induction heating molding process 従来例における誘導加熱成形装置の構成ブロック図Configuration block diagram of induction heating molding apparatus in the conventional example

符号の説明Explanation of symbols

Fc、F1、F2 誘導加熱成形装置
11a 上インバータ
11b 下インバータ
12a 上変圧器
12b 下変圧器
13a 上誘導コイル
13b 下誘導コイル
13c 磁束干渉防止誘導コイル
14 金型セット
14a 上型
14b 下型
FS 成形面
FS1 上成形面
FS2 下成形面
17 制御器
19 アクチュエータユニット
19a 上型アクチュエータ
19b 下型アクチュエータ
20 磁束遮断材

Fc, F1, F2 Induction heating molding apparatus 11a Upper inverter 11b Lower inverter 12a Upper transformer 12b Lower transformer 13a Upper induction coil 13b Lower induction coil 13c Magnetic flux interference prevention induction coil 14 Mold set 14a Upper mold 14b Lower mold FS Molding surface FS1 Upper molding surface FS2 Lower molding surface 17 Controller 19 Actuator unit 19a Upper mold actuator 19b Lower mold actuator 20 Magnetic flux blocking material

Claims (12)

連続的かつ個別に発生させた第1の磁束および第2の磁束によって、互いに対向して用いられる第1の成形型および第2の成形型を誘導加熱し、当該第1および第2の成形型内に挿入された光学素子材料を溶融加圧成形する誘導加熱成形装置であって、
前記第1の成形型の周囲に設けられて前記第1の磁束を発生させる第1の磁束発生手段と、
前記第2の成形型の周囲に設けられて前記第2の磁束を発生させる第2の磁束発生手段と、
前記第1の磁束発生手段と前記第2の磁束発生手段の間であって前記第1および第2の磁束が重なりあって互いに干渉しあう位置に設けられて、前記第1の磁束と前記第2の磁束とで互いに干渉しあう磁束成分の作用を打ち消す磁束干渉防止手段とを備え
前記磁束干渉防止手段は、前記磁束成分のうち、前記第2の磁束発生手段を貫通する前記第1の磁束の磁束成分と、前記第1の磁束発生手段を貫通する前記第2の磁束の磁束成分とを電流および熱に変換して消費する磁束吸収手段であり、前記磁束吸収手段の発熱を冷却する冷却機構を備える誘導加熱成形装置。
The first and second molds used in opposition to each other are induction-heated by the first magnetic flux and the second magnetic flux generated continuously and individually, and the first and second molds are inductively heated. An induction heating molding apparatus for melt-pressing an optical element material inserted therein,
First magnetic flux generating means provided around the first mold for generating the first magnetic flux;
Second magnetic flux generating means provided around the second mold for generating the second magnetic flux;
The first magnetic flux generating means and the second magnetic flux generating means are provided at positions where the first and second magnetic fluxes overlap and interfere with each other, and the first magnetic flux and the second magnetic flux generation means Magnetic flux interference prevention means for canceling the action of magnetic flux components that interfere with each other with the magnetic flux of two ,
The magnetic flux interference prevention means includes a magnetic flux component of the first magnetic flux that penetrates the second magnetic flux generation means, and a magnetic flux of the second magnetic flux that penetrates the first magnetic flux generation means. a magnetic flux absorbing means for consumption by converting the component into a current and heat, inductive heating forming apparatus Ru provided with a cooling mechanism for cooling the heating of the magnetic flux absorbing means.
前記磁束干渉防止手段は、前記第1の成形型および前記第2の成形型の周囲にリング状に構成されていることを特徴とする請求項に記載の誘導加熱成形装置。 2. The induction heating molding apparatus according to claim 1 , wherein the magnetic flux interference prevention unit is configured in a ring shape around the first molding die and the second molding die. 3. 連続的かつ個別に発生させた第1の磁束および第2の磁束によって、互いに対向して用いられる第1の成形型および第2の成形型を誘導加熱し、当該第1および第2の成形型内に挿入された光学素子材料を溶融加圧成形する誘導加熱成形装置であって、
前記第1の成形型の周囲に設けられて前記第1の磁束を発生させる第1の磁束発生手段と、
前記第2の成形型の周囲に設けられて前記第2の磁束を発生させる第2の磁束発生手段と、
前記第1の磁束発生手段と、前記第2の磁束発生手段の間に設けられて、前記第1の磁束と前記第2の磁束とで互いに干渉しあう磁束成分の作用を打ち消す磁束干渉防止手段とを備え、
前記磁束干渉防止手段は、前記磁束成分のうち、前記第2の磁束発生手段を貫通する前記第1の磁束の磁束成分と、前記第1の磁束発生手段を貫通する前記第2の磁束の磁束成分とを第3の磁束で打ち消す磁束消去手段である誘導加熱成形装置。
The first and second molds used in opposition to each other are induction-heated by the first magnetic flux and the second magnetic flux generated continuously and individually, and the first and second molds are inductively heated. An induction heating molding apparatus for melt-pressing an optical element material inserted therein,
First magnetic flux generating means provided around the first mold for generating the first magnetic flux;
Second magnetic flux generating means provided around the second mold for generating the second magnetic flux;
Magnetic flux interference preventing means provided between the first magnetic flux generating means and the second magnetic flux generating means for canceling the action of magnetic flux components that interfere with each other between the first magnetic flux and the second magnetic flux. And
The magnetic flux interference prevention means includes a magnetic flux component of the first magnetic flux that penetrates the second magnetic flux generation means, and a magnetic flux of the second magnetic flux that penetrates the first magnetic flux generation means. An induction heating forming apparatus which is a magnetic flux erasing means for canceling the component with a third magnetic flux.
前記第3の磁束の向きは、前記第1の磁束および前記第2の磁束の向きと逆方向であることを特徴とする請求項に記載の誘導加熱成形装置。 4. The induction heating apparatus according to claim 3 , wherein the direction of the third magnetic flux is opposite to the direction of the first magnetic flux and the second magnetic flux. 5. 第1の磁束発生手段は前記第1の成形型の周囲に第1の向きに巻回された第1の誘導コイルを含み、
第2の磁束発生手段は前記第2の成形型の周囲に前記第1の向きに巻回された第2の誘導コイルを含み、
前記磁束消去手段は、前記第1の向きと逆向きに巻回された第3の誘導コイルであることを特徴とする請求項に記載の誘導加熱成形装置。
The first magnetic flux generation means includes a first induction coil wound in a first direction around the first mold,
The second magnetic flux generation means includes a second induction coil wound around the second mold in the first direction,
The induction heating forming apparatus according to claim 4 , wherein the magnetic flux erasing unit is a third induction coil wound in a direction opposite to the first direction.
前記第1の磁束によって、前記第1の成形型を加熱する第1の加熱制御手段と、
前記第2の磁束によって、前記第2の成形型を加熱する第2の加熱制御手段とを備え、
前記第1の加熱制御手段は、前記第1の成形型を前記光学素子材料に非接触の状態で加熱することを特徴とする請求項1に記載の誘導加熱成形装置。
First heating control means for heating the first mold by the first magnetic flux;
Second heating control means for heating the second mold by the second magnetic flux,
2. The induction heating molding apparatus according to claim 1, wherein the first heating control unit heats the first molding die in a non-contact state with the optical element material. 3.
連続的かつ個別に発生させた第1の磁束および第2の磁束によって、互いに対向して用いられる第1の成形型および第2の成形型を誘導加熱し、当該第1および第2の成形型内に挿入された光学素子材料を溶融加圧成形する成形方法であって、
前記光学素子材料から所定距離だけ離間させた状態で前記第1の成形型を第1の温度に第1の所定時間だけ加熱する第1の加熱ステップと、
前記光学素子材料を載置した状態で前記第2の成形型を、前記第1の温度より低い第2の温度に前記第1の所定時間だけ加熱する第2の加熱ステップと、
前記第1および第2の加熱ステップの後に、前記第1の成形型を第2の所定時間にわたって、前記第2の温度に降温すると共に第1の圧力で前記光学素子材料に押しつける降温加圧ステップと、
前記第1および第2の加熱ステップの後に、前記第2の所定時間にわたって、前記第2の成形型を前記第2の温度で保持すると共に前記第1の圧力に抗して前記光学素子材料に押しつける保温加圧ステップとを備え、
前記光学素子材料は、前記第1および第2の加熱ステップによって熱軟化し、前記降温加圧ステップおよび前記保温加圧ステップによって前記第1の成形型および第2の成形型との接触部の形状に成形されることを特徴とする成形方法。
The first and second molds used in opposition to each other are induction-heated by the first magnetic flux and the second magnetic flux generated continuously and individually, and the first and second molds are inductively heated. A molding method for melt-pressing an optical element material inserted therein,
A first heating step of heating the first mold to a first temperature for a first predetermined time in a state of being separated from the optical element material by a predetermined distance;
A second heating step in which the second mold is heated to a second temperature lower than the first temperature for the first predetermined time in a state where the optical element material is placed;
After the first and second heating steps, a temperature lowering and pressing step of lowering the first mold to the second temperature and pressing the first mold against the optical element material with the first pressure over a second predetermined time. When,
After the first and second heating steps, the second mold is held at the second temperature for the second predetermined time and the optical element material is resisted against the first pressure. A heat and pressure step for pressing,
The optical element material is thermally softened by the first and second heating steps, and the shape of the contact portion between the first mold and the second mold by the temperature drop pressurization step and the heat retention pressurization step. A forming method characterized by being formed into a shape.
前記降温加圧ステップおよび保温加圧ステップの後に、
第3の所定の時間にわたって、前記第1および第2の成形型を前記第2の温度から第3の温度に降温すると共に、前記光学素子材料に押しつける圧力を前記第1の圧力から第2の圧力に減圧する第1の降温減圧ステップとを備え、前記成形された光学素子材料に前記第1および第2の成形型との接触部の形状が転写されることを特徴とする請求項に記載の成形方法。
After the temperature drop pressurization step and the heat retention pressurization step,
Over the third predetermined time, the first and second molds are lowered from the second temperature to the third temperature, and the pressure pressing the optical element material is changed from the first pressure to the second temperature. to claim 7 in which a first and a cooling decompression step, the shape of the contact portion between the first and second mold to the optical element material the molded is characterized in that it is transferred to vacuum pressure The forming method as described.
前記第1の降温減圧ステップの後に、
第4の所定の時間にわたって、前記第1の成形型を第4の温度に降温し、前記光学素子材料に押しつける圧力を前記第2の圧力から第3の圧力に減圧すると共に、前記第2の成形型を前記第3の温度に保持する第2の降温減圧ステップとを備え、前記光学素子材料は前記第1の成形型から分離されることを特徴とする請求項に記載の成形方法、
After the first temperature decreasing pressure reduction step,
Over the fourth predetermined time, the first mold is lowered to a fourth temperature, the pressure pressing the optical element material is reduced from the second pressure to the third pressure, and the second The molding method according to claim 8 , further comprising: a second temperature lowering and depressurizing step for maintaining the mold at the third temperature, wherein the optical element material is separated from the first mold.
前記第2の降温減圧ステップの後に、
第5の所定の時間にわたって、前記第1および第2の成形型を互いに離間させると共に、それぞれを前記第4の温度および前記第3の温度に保持する離間ステップを備える請求項に記載の成形方法。
After the second temperature decreasing pressure reduction step,
The molding according to claim 9 , further comprising a separation step of separating the first and second molding dies from each other over a fifth predetermined time and holding them at the fourth temperature and the third temperature, respectively. Method.
前記離間ステップの後に、
第6の所定の時間にわたって、前記第1および第2の成形型のそれぞれを前記第4の温度および前記第3の温度に保持する温度保持ステップを備え、前記光学素子材料の内部歪みは除去されることを特徴とする請求項10に記載の成形方法。
After the spacing step,
A temperature holding step of holding each of the first and second molds at the fourth temperature and the third temperature for a sixth predetermined time, and internal strain of the optical element material is removed; The molding method according to claim 10 .
温度保持ステップの後に、
第7の所定の時間にわたって、前記第2の成形型を前記第3の温度から第5の温度に降温させる降温ステップを備え、前記光学素子材料は当該第2の成形型から分離されることを特徴とする請求項11に記載の成形方法。
After the temperature holding step,
A step of lowering the temperature of the second mold from the third temperature to the fifth temperature over a seventh predetermined time, wherein the optical element material is separated from the second mold. The molding method according to claim 11 , wherein the molding method is characterized in that:
JP2003418628A 2003-12-16 2003-12-16 Induction heating molding equipment Expired - Fee Related JP4261331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003418628A JP4261331B2 (en) 2003-12-16 2003-12-16 Induction heating molding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003418628A JP4261331B2 (en) 2003-12-16 2003-12-16 Induction heating molding equipment

Publications (3)

Publication Number Publication Date
JP2005179085A JP2005179085A (en) 2005-07-07
JP2005179085A5 JP2005179085A5 (en) 2006-12-07
JP4261331B2 true JP4261331B2 (en) 2009-04-30

Family

ID=34780795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003418628A Expired - Fee Related JP4261331B2 (en) 2003-12-16 2003-12-16 Induction heating molding equipment

Country Status (1)

Country Link
JP (1) JP4261331B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100404226C (en) * 2005-08-19 2008-07-23 重庆大学 Inductive hot compacting dies for precision engineering plastic rubber products
JP2007056959A (en) * 2005-08-23 2007-03-08 Nisshinbo Ind Inc Method for producing friction member
JP5547122B2 (en) * 2011-03-29 2014-07-09 富士フイルム株式会社 Optical element molding equipment

Also Published As

Publication number Publication date
JP2005179085A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
EP2601006B1 (en) A method for manufacturing a component by selective laser melting
JP6259180B2 (en) System and method for adjusting the equilibrium temperature of an induction heated susceptor
JP5450584B2 (en) Material processing apparatus using induction heating and deformable compression means
JP6855181B2 (en) 3D modeling device and manufacturing method of 3D modeled object
JP5469669B2 (en) Equipment for forming materials using induction heating that allows preheating of the equipment
JP2011514646A5 (en)
US9993946B2 (en) Method and apparatus for forming tooling and associated materials therefrom
US10974321B2 (en) Thermal control for additive manufacturing
KR102491898B1 (en) Glass forming apparatus and method
JP2012505777A5 (en)
JPWO2012133406A1 (en) Resin molding die, method for manufacturing the resin molding die, and method for manufacturing a resin molded product
CN103100713A (en) Preheat device and preheat method of selective laser selection area melting subscriber loop multiplex (SLM) equipment powder feeding barrel
TWI744228B (en) Glass forming device and method
US8734709B2 (en) Apparatus for reforming a portion of a plastic container
JP4261331B2 (en) Induction heating molding equipment
JP2005179084A (en) Induction heating molding apparatus
JP2010105888A (en) Device for feeding molten glass and apparatus for producing glass molding
JP2005063753A (en) Induction heating device and induction heating method
TW201808575A (en) Method and device for heating a mold
JP2013226810A (en) Resin molding manufacturing method using electromagnetic induction heating type mold apparatus
JP6691649B2 (en) Electromagnetic induction heating type resin molding die and method of manufacturing resin molding using the die
JP2004009387A (en) Method and apparatus for press molding
EP3668273B1 (en) Induction heating system for molding a thermoplastic article and method for molding a thermoplastic article
JP2004010385A (en) Press-forming apparatus and press-forming method
JP2004196596A (en) Induction heating molding apparatus and induction heating molding method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080709

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees