JPWO2018097165A1 - Die casting mold manufacturing method and die casting mold - Google Patents

Die casting mold manufacturing method and die casting mold Download PDF

Info

Publication number
JPWO2018097165A1
JPWO2018097165A1 JP2018552609A JP2018552609A JPWO2018097165A1 JP WO2018097165 A1 JPWO2018097165 A1 JP WO2018097165A1 JP 2018552609 A JP2018552609 A JP 2018552609A JP 2018552609 A JP2018552609 A JP 2018552609A JP WO2018097165 A1 JPWO2018097165 A1 JP WO2018097165A1
Authority
JP
Japan
Prior art keywords
hardness
hole
water
die
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018552609A
Other languages
Japanese (ja)
Other versions
JP6754844B2 (en
Inventor
秀治 稲垣
秀治 稲垣
雅稔 鳴海
雅稔 鳴海
春幸 森
春幸 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOYAMA STEEL, LTD.
Proterial Ltd
Original Assignee
KOYAMA STEEL, LTD.
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOYAMA STEEL, LTD., Hitachi Metals Ltd filed Critical KOYAMA STEEL, LTD.
Publication of JPWO2018097165A1 publication Critical patent/JPWO2018097165A1/en
Application granted granted Critical
Publication of JP6754844B2 publication Critical patent/JP6754844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/06Permanent moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/22Dies; Die plates; Die supports; Cooling equipment for dies; Accessories for loosening and ejecting castings from dies

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

水冷孔(2)の底面(4)を含む領域に確実に軟化熱処理を施すことができるダイカスト金型(1)の製造方法と、ダイカスト金型(1)を提供する。内径Dの有底の水冷孔(2)が設けられたダイカスト金型(1)の製造方法であって、水冷孔(2)をなす孔面(3)は、水冷孔(2)の底をなす底面(4)と、底面(4)から入口(6)に向かって延びる側面(5)を有し、水冷孔(2)に挿入した外径dの管(10)の先端から底面(4)に向けて過熱蒸気を送り込み、底面(4)を加熱して軟化させる熱処理工程を有する。この製造方法によって、本発明のダイカスト金型(1)を製造することができる。A method for producing a die-casting die (1) and a die-casting die (1) capable of reliably performing a softening heat treatment on a region including a bottom surface (4) of a water-cooled hole (2). A method of manufacturing a die-casting die (1) provided with a bottomed water-cooled hole (2) having an inner diameter D, wherein the hole surface (3) forming the water-cooled hole (2) A bottom surface (4) formed and a side surface (5) extending from the bottom surface (4) toward the inlet (6), the bottom surface (4 from the tip of the pipe (10) having an outer diameter d inserted into the water cooling hole (2). ) Has a heat treatment process in which superheated steam is fed toward the bottom surface (4) to soften it by heating. With this manufacturing method, the die casting mold (1) of the present invention can be manufactured.

Description

本発明は、ダイカスト金型の製造方法およびダイカスト金型に関するものである。   The present invention relates to a method of manufacturing a die casting mold and a die casting mold.

特許文献1に金型の熱処理方法が知られている。金型には、成形面の温度を低減させるために金型の内部に水冷孔が設けられている。使用中の金型において、この水冷孔には熱応力が生じる。また、水冷孔をなす面には鋼材が錆び、水素が侵入しやすく、水素脆化を起こしやすい。これらのことによって、水冷孔周囲には割れが生じる懸念がある。そこで、特許文献1は、金型に設ける水冷孔に局部的に焼鈍処理を行うことを提案している。これにより、金型自体の硬さを保ちつつ、水冷孔の周囲のみ硬さを下げて水冷孔周囲に割れが生じにくくしている。   Patent Document 1 discloses a heat treatment method of a mold. The mold is provided with water cooling holes inside the mold to reduce the temperature of the molding surface. In the mold in use, thermal stress is generated in the water cooling hole. In addition, the steel material rusts on the surface of the water-cooled hole, hydrogen easily penetrates, and hydrogen embrittlement tends to occur. Due to these, there is a concern that a crack may occur around the water cooling hole. Then, patent document 1 proposes performing an annealing process locally to the water cooling hole provided in a metal mold | die. As a result, while maintaining the hardness of the mold itself, the hardness is lowered only at the periphery of the water cooling hole to make it difficult for the crack to occur around the water cooling hole.

日本国特開平8-31557号公報Japanese Patent Application Laid-Open No. 8-31557

特許文献1に記載の方法では、高周波熱処理装置を用いて水冷孔の孔面における表層部の軟化熱処理をしている。ところが、特許文献1の方法においては、高周波熱処理装置の加熱部は水冷孔の側面は加熱しやすいが、底面は加熱しにくい。しかしながら、水冷孔は成形面に向かって形成され、成形面の冷却を目的としている。このため、特に水冷孔の底面にこそ軟化熱処理を行いたい。この点で、特許文献1の方法に改善の余地があった。   In the method described in Patent Document 1, the heat treatment of the surface layer portion in the hole surface of the water-cooled hole is performed using a high-frequency heat treatment apparatus. However, in the method of Patent Document 1, although the heating section of the high-frequency heat treatment apparatus easily heats the side surface of the water-cooled hole, the bottom surface is difficult to heat. However, the water-cooled holes are formed towards the molding surface and are intended for cooling the molding surface. For this reason, I especially want to do the softening heat treatment only on the bottom of the water cooling hole. In this respect, the method of Patent Document 1 has room for improvement.

また、一般的に、水冷孔はドリルで側面を形成したときに、その底面にドリル先端部の形状跡である隅(コーナー)が残る。つまり、ドリルで穿孔加工したときの水冷孔の底面には、そのドリルの先端に対応した中央の位置(つまり、水冷孔の最深の位置)と、ドリルの外周コーナーに対応した中央周りの位置とに、ドリル先端部の形状に起因する隅が形成される。そして、この隅を起点に割れが生じやすい。そこで、この隅をなくして、割れを生じ難くするために、底面が半球状となるようにアール加工している。そして、このアール加工をした後の水冷孔の底面の形状は、一般的に、水冷孔の内径をDとしたときに、底面の中央からおおよそD/2の高さの位置を球の中心とした半球状となる。そして、水冷孔の底面から割れがさらに生じにくくするために、上記の半球状の面でなる水冷孔の底面に軟化熱処理を行いたい。
そこで本発明は、水冷孔の底面を含む領域に確実に軟化熱処理を施すことができるダイカスト金型の製造方法およびダイカスト金型を提供する。
Also, in general, when the side of the water-cooled hole is formed by a drill, a corner which is a trace of the shape of the tip of the drill remains on the bottom surface. That is, the bottom of the water cooling hole when drilled by the drill has a central position corresponding to the tip of the drill (that is, the deepest position of the water cooling hole) and a position around the center corresponding to the outer peripheral corner of the drill Then, a corner is formed due to the shape of the drill tip. And it is easy to produce a crack from this corner as a starting point. Therefore, in order to eliminate this corner and to make it difficult to form a crack, the base is rounded so that the bottom surface is hemispherical. And, generally, the shape of the bottom of the water-cooled hole after this rounding process, when the inner diameter of the water-cooled hole is D, the position of the height of approximately D / 2 from the center of the bottom is the center of the sphere Become hemispherical. Then, in order to make it more difficult for a crack to be generated from the bottom of the water cooling hole, it is desirable to carry out the softening heat treatment on the bottom of the water cooling hole formed of the above-mentioned hemispherical surface.
Therefore, the present invention provides a method of manufacturing a die casting mold and a die casting mold capable of reliably performing a softening heat treatment on a region including the bottom surface of a water-cooled hole.

本開示の一形態によれば、
内径Dの有底の水冷孔が設けられたダイカスト金型の製造方法であって、
前記水冷孔をなす孔面は、前記水冷孔の底をなす底面と、前記底面から入口に向かって延びる側面を有し、
前記水冷孔に挿入した外径dの管の先端から前記底面に向けて過熱蒸気を送り込み、前記底面を加熱して軟化させる熱処理工程を有する、ダイカスト金型の製造方法が提供される。
According to one aspect of the present disclosure,
A method of manufacturing a die-casting die provided with a bottomed water-cooled hole of inner diameter D, comprising:
The hole surface forming the water cooling hole has a bottom surface forming a bottom of the water cooling hole and a side surface extending from the bottom surface toward the inlet,
A method of manufacturing a die casting mold is provided, comprising a heat treatment step of sending superheated steam from the tip of a tube of outer diameter d inserted into the water cooling hole toward the bottom surface to heat and soften the bottom surface.

本開示の一形態によれば、
前記管の先端と前記底面の最深の位置との離間距離をhと定義したとき、
0.5×(D−d)/2 ≦ h ≦ 1.5×(D−d)/2
となる位置に前記管の先端を保持して前記熱処理工程を行ってもよい。
According to one aspect of the present disclosure,
When the separation distance between the tip of the pipe and the deepest position of the bottom is defined as h,
0.5 × (D−d) /2≦h≦1.5× (D−d) / 2
The heat treatment step may be performed by holding the tip of the tube at the position where

本開示の一形態によれば、
前記管の先端が円錐台形状であってもよい。
According to one aspect of the present disclosure,
The tip of the tube may be frusto-conical in shape.

本開示の一形態によれば、
前記底面が略半球状となるように加工して前記水冷孔を形成してもよい。
According to one aspect of the present disclosure,
The water cooling hole may be formed by processing so that the bottom surface has a substantially hemispherical shape.

本開示の一形態によれば、
内径Dの有底の水冷孔が設けられたダイカスト金型であって、
前記水冷孔をなす孔面は、前記水冷孔の底をなす底面と、前記底面から入口に向かって延びる側面を有し、
前記底面の最深の位置の硬さH1が、前記水冷孔の入口の入口硬さH2よりも低い、ダイカスト金型が提供される。
According to one aspect of the present disclosure,
A die-casting die provided with a bottomed water-cooling hole of inner diameter D,
The hole surface forming the water cooling hole has a bottom surface forming a bottom of the water cooling hole and a side surface extending from the bottom surface toward the inlet,
A die-casting mold is provided in which the hardness H1 at the deepest position of the bottom surface is lower than the inlet hardness H2 at the inlet of the water-cooled hole.

本開示の一形態によれば、
前記孔面のうち、前記底面の最深の位置から高さDの位置までの領域の硬さH3が、前記入口硬さH2より低くてもよい。
According to one aspect of the present disclosure,
The hardness H3 of the region from the deepest position of the bottom surface to the position of the height D among the hole surfaces may be lower than the entrance hardness H2.

本開示の一形態によれば、
前記底面の最深の位置から前記金型内部に向かって、前記水冷孔の径方向と直角の方向に1mm入った位置の金型内部の硬さH12が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口硬さH2の95%より低くてもよい。
According to one aspect of the present disclosure,
The hardness H12 inside the mold at a position 1 mm in the direction perpendicular to the radial direction of the water-cooled hole from the deepest position of the bottom toward the inside of the mold is compared with the Rockwell hardness HRC of C scale. When it does, it may be lower than 95% of said entrance hardness H2.

本開示の一形態によれば、
前記底面の最深の位置から前記金型内部に向かって、前記水冷孔の径方向と直角の方向に5mm入った位置の金型内部の硬さH15が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口硬さH2の95%より高くてもよい。
According to one aspect of the present disclosure,
The hardness H15 inside the mold at a position 5 mm in the direction perpendicular to the radial direction of the water-cooled hole from the deepest position of the bottom toward the inside of the mold is compared with the Rockwell hardness HRC of C scale. When it does, it may be higher than 95% of said entrance hardness H2.

本開示の一形態によれば、
前記底面の最深の位置から高さD/2の位置の前記側面から金型内部に向かって前記水冷孔の径方向に3mm入った位置の金型内部の硬さH33が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口の硬さH2の95%より低くてもよい。
According to one aspect of the present disclosure,
The hardness H33 inside the mold at a position 3 mm in the radial direction of the water-cooled hole from the side at the position of height D / 2 from the deepest position of the bottom to the inside of the mold is C scale Rockwell The hardness may be lower than 95% of the hardness H2 of the inlet when compared with the hardness HRC.

本開示の一形態によれば、
前記底面の最深の位置から高さD/2の位置の前記側面から金型内部に向かって前記水冷孔の径方向に7mm入った位置の金型内部の硬さH37が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口の硬さH2の95%より高くてもよい。
According to one aspect of the present disclosure,
The hardness H37 inside the mold at a position 7 mm in the radial direction of the water-cooled hole from the side at the height D / 2 from the deepest position of the bottom to the inside of the mold is C scale Rockwell When compared with hardness HRC, it may be higher than 95% of the hardness H2 of the inlet.

本開示の一形態によれば、
前記金型内部の領域において、Cスケールのロックウェル硬さHRCで比較したときに、前記入口硬さH2の95%以下となっている領域を軟化領域と呼び、
前記底面の最深の位置から前記水冷孔の径方向と直角する方向における前記軟化領域の厚みをD1と呼び、
前記底面の最深の位置から高さD/2の位置の前記側面から前記水冷孔の径方向における前記軟化領域の厚みをD2と呼ぶとき、
前記厚みD1が前記厚みD2より小さくてもよい。
According to one aspect of the present disclosure,
In the region inside the mold, a region having 95% or less of the inlet hardness H2 when compared with the Rockwell hardness HRC of C scale is called a softening region,
The thickness of the softened region in the direction perpendicular to the radial direction of the water-cooled hole from the deepest position of the bottom surface is called D1.
When the thickness of the softened region in the radial direction of the water-cooled hole is referred to as D2 from the side surface at the position of height D / 2 from the deepest position of the bottom surface,
The thickness D1 may be smaller than the thickness D2.

本開示の一形態によれば、
前記底面が略半球状であってもよい。
According to one aspect of the present disclosure,
The bottom surface may be substantially hemispherical.

本発明によれば、水冷孔の底面を含む領域に確実に軟化熱処理を施すことができるダイカスト金型の製造方法およびダイカスト金型が提供される。   According to the present invention, a method of manufacturing a die casting mold and a die casting mold capable of reliably performing a softening heat treatment on a region including the bottom surface of a water-cooled hole are provided.

(a)は本実施形態のダイカスト金型の上面図(水冷孔の入口側から見た図)であり、(b)はその側面図である。(A) is a top view (figure seen from the inlet side of a water cooling hole) of the die-cast metal mold | die of this embodiment, (b) is the side view. 本発明の実施形態に係るダイカスト金型の熱処理工程を行う際の模式図である。It is a schematic diagram at the time of performing the heat treatment process of the die-cast metal mold which concerns on embodiment of this invention. 水冷孔の内部に管を挿入した様子を示す断面図である。It is sectional drawing which shows a mode that the pipe | tube was inserted inside the water-cooling hole. φ15の水冷孔が設けられたテストピースの各部の寸法と、温度測定点を示す図である。It is a figure which shows the dimension of each part of the test piece in which the water-cooling hole of (phi) 15 was provided, and a temperature measurement point. 過熱水蒸気を供給した際の温度履歴を示す図である。It is a figure which shows the temperature history at the time of supplying superheated steam. (a)は水冷孔の中心軸線に沿ったテストピースの断面図であり、(b)は水冷孔の中心軸線に直交する面のテストピースの断面図である。(A) is a cross-sectional view of the test piece along the central axis of the water-cooled hole, and (b) is a cross-sectional view of the test piece on a plane orthogonal to the central axis of the water-cooled hole. 水冷孔の底面の最深の位置から上方へ7.5mmに位置する断面Bにおける硬さを示すレーダーチャートである。It is a radar chart which shows the hardness in section B located 7.5 mm above from the deepest position of the bottom of a water cooling hole. 水冷孔の底面の最深の位置から上方へ15mmに位置する断面Cにおける硬さを示すレーダーチャートである。It is a radar chart which shows the hardness in the section C which is located 15 mm upwards from the deepest position of the bottom of a water cooling hole. テストピースの上面Eにおける硬さを示すレーダーチャートである。It is a radar chart which shows the hardness in upper surface E of a test piece. 図11に示す硬さを測定した測定点を示す図である。It is a figure which shows the measuring point which measured the hardness shown in FIG. 水冷孔の孔面からの離間距離と硬度との関係を示すグラフである。It is a graph which shows the relationship between the separation distance from the hole surface of a water cooling hole, and hardness. 金型内部の領域における軟化領域を示した模式図である。It is the model which showed the softening area | region in the area | region inside a metal mold | die. ダイカスト金型の各部の硬さを示す図である。It is a figure which shows the hardness of each part of a die-cast metal mold. φ20の水冷孔が設けられたテストピースの各部の寸法と、温度測定点を示す図である。It is a figure which shows the dimension of each part of the test piece in which the water-cooling hole of (phi) 20 was provided, and a temperature measurement point. 過熱水蒸気を供給した際の温度履歴を示す図である。It is a figure which shows the temperature history at the time of supplying superheated steam. 水冷孔の底面の最深の位置から上方へ10mmに位置する断面における硬さを示すレーダーチャートである。It is a radar chart which shows the hardness in the section located in 10 mm upwards from the deepest position of the bottom of a water-cooling hole. 水冷孔の底面の最深の位置から上方へ20mmに位置する断面における硬さを示すレーダーチャートである。It is a radar chart which shows the hardness in the section located in 20 mm upwards from the deepest position of the bottom of a water-cooling hole. テストピースの上面における硬さを示すレーダーチャートである。It is a radar chart which shows the hardness in the upper surface of a test piece. 水冷孔の孔面からの離間距離と硬さの関係を示すグラフである。It is a graph which shows the separation distance from the hole surface of a water cooling hole, and the relation of hardness.

以下、本発明の実施形態について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, about the member which has the same reference number as the member already demonstrated in description of this embodiment, the description is abbreviate | omitted for convenience of explanation. Further, the dimensions of the respective members shown in the drawings may differ from the actual dimensions of the respective members for the convenience of the description.

図1は、本実施形態のダイカスト金型1の略直方体状のテストピースを示している。図1の(a)は、ダイカスト金型1を、その水冷孔の入口側(上面1b)から見た図、(b)は、その側面図である。実際のダイカスト金型1は複雑な形状をしているが、以降の説明では、この直方体状のテストピースをダイカスト金型1と呼ぶことにする。
ダイカスト金型1は鋼材で形成されている。ダイカスト金型1の下面が成形面1aをなす。ダイカスト金型1の使用時には、この成形面1aがキャビティを構成する。成形面1aの形状がダイカストで製造される製品の表面に転写される。ダイカスト金型1の使用時には、成形面1aは高温の溶湯に曝され、成形面1aを含むダイカスト金型1全体が高温になる。そこで、この成形面1aが高温になることを防止するために、ダイカスト金型1には水冷孔2が設けられている。
FIG. 1 shows a substantially rectangular parallelepiped test piece of the die casting mold 1 of the present embodiment. (A) of FIG. 1 is a view of the die casting mold 1 as viewed from the inlet side (upper surface 1 b) of its water-cooled hole, and (b) is a side view thereof. The actual die casting mold 1 has a complicated shape, but in the following description, this rectangular parallelepiped test piece will be referred to as the die casting mold 1.
The die casting mold 1 is formed of steel. The lower surface of the die casting mold 1 forms a molding surface 1 a. When the die casting mold 1 is used, the molding surface 1 a constitutes a cavity. The shape of the molding surface 1a is transferred to the surface of a product manufactured by die casting. When the die casting mold 1 is used, the molding surface 1a is exposed to a high temperature molten metal, and the entire die casting mold 1 including the molding surface 1a becomes a high temperature. Therefore, in order to prevent the molding surface 1a from becoming hot, the water-cooling hole 2 is provided in the die casting mold 1.

水冷孔2は、ダイカスト金型1の上面1bに開口している。水冷孔2は、上面1bから下方(つまり、成形面1a)に向かって延びる有底の穴である。水冷孔2を構成するダイカスト金型1の面を孔面3と呼ぶ。この孔面3として、水冷孔2の底をなす部位を底面4と呼び、底面4から入口に向かって延びる部位を側面5と呼ぶ。水冷孔2は底面4を含む半球状の領域(半球状領域)と、それより上方に位置する略円柱状の領域(円柱状領域)で構成されている。以降の説明において、水冷孔2の直径(内径)をDと呼ぶ。ダイカスト金型1の使用時には、水冷孔2の入口6から内部に冷却管が差し込まれ、水冷孔2の内部に水等の冷却媒体を流し込むことによりダイカスト金型1を冷却する。   The water cooling hole 2 is opened in the upper surface 1 b of the die casting mold 1. The water cooling hole 2 is a bottomed hole extending downward from the upper surface 1 b (that is, toward the molding surface 1 a). The surface of the die casting mold 1 constituting the water cooling hole 2 is called a hole surface 3. As the hole surface 3, a portion forming the bottom of the water cooling hole 2 is called a bottom surface 4, and a portion extending from the bottom surface 4 toward the inlet is called a side surface 5. The water cooling hole 2 is composed of a semispherical area (hemispherical area) including the bottom surface 4 and a substantially cylindrical area (cylindrical area) located above the hemispherical area. In the following description, the diameter (inner diameter) of the water cooling hole 2 is called D. When the die casting mold 1 is used, a cooling pipe is inserted into the interior from the inlet 6 of the water cooling hole 2 and the die casting mold 1 is cooled by pouring a cooling medium such as water into the water cooling hole 2.

ところで、ダイカスト金型1の使用時には、水冷孔2に応力が生じる。そして、このように水冷孔2は水に曝されるので、鋼材が錆びたり水素脆化を起こしたりしやすい。これらのことによって、水冷孔2の孔面3には割れが生じることが懸念される。そこで水冷孔2に焼鈍処理を施して、硬さを下げ、割れが生じにくくすることが行われている。また、焼入れ処理後に施される焼戻し処理を利用して、水冷孔2の周囲の硬さを下げることも可能である。ダイカスト金型1の使用時には、水冷孔2の底面4側の領域は入口6側に比べて高温に曝される。このため、水冷孔2の底面4側の硬さは下げたいが、入口6側はそれほど硬さを下げなくてもよい。そこで、この硬さ分布を達成するための、上記の焼鈍工程や焼戻し工程に適用することが可能な熱処理工程について次に説明する。   By the way, when the die casting mold 1 is used, stress occurs in the water cooling hole 2. And since the water-cooling hole 2 is exposed to water in this way, the steel material tends to rust and to cause hydrogen embrittlement. It is feared that a crack may occur in the hole surface 3 of the water cooling hole 2 by these things. Therefore, it is practiced to subject the water-cooled holes 2 to an annealing treatment to lower the hardness and to make it difficult for cracking to occur. Moreover, it is also possible to lower the hardness around the water cooling hole 2 by utilizing the tempering treatment applied after the quenching treatment. When the die casting mold 1 is used, the region on the bottom surface 4 side of the water cooling hole 2 is exposed to a high temperature as compared with the inlet 6 side. For this reason, although it is desirable to lower the hardness on the bottom 4 side of the water cooling hole 2, the hardness on the inlet 6 side does not have to be reduced so much. Then, the heat treatment process which can be applied to said annealing process and tempering process for achieving this hardness distribution is demonstrated below.

図2は、本発明の実施形態に係るダイカスト金型1の熱処理工程を行う際の模式図である。図2に示すように、ダイカスト金型1の水冷孔2に管10を挿入する。この管10の末端は、過熱蒸気発生装置11に接続されている。この管10の先端から水冷孔2の底面4に向けて過熱蒸気を送り込む。すると、過熱蒸気により少なくとも底面4が温められ、底面4を含むダイカスト金型1の孔面3が軟化される。最深の位置Aの硬さH1が、水冷孔2の入口6の硬さH2よりも低くされている。   FIG. 2: is a schematic diagram at the time of performing the heat treatment process of the die-cast metal mold 1 which concerns on embodiment of this invention. As shown in FIG. 2, the pipe 10 is inserted into the water cooling hole 2 of the die casting mold 1. The end of the pipe 10 is connected to the superheated steam generator 11. Superheated steam is fed from the end of the pipe 10 toward the bottom 4 of the water cooling hole 2. Then, at least the bottom surface 4 is heated by the superheated steam, and the hole surface 3 of the die casting mold 1 including the bottom surface 4 is softened. The hardness H1 of the deepest position A is lower than the hardness H2 of the inlet 6 of the water cooling hole 2.

過熱蒸気は、例えば、およそ1200℃にも達する程の高温の水蒸気である。過熱蒸気は、空気に比べて単位体積当たりの熱容量が大きく、また、熱伝導性に優れている。このため、管10から噴き出された過熱蒸気が底面4に接触すると、過熱蒸気の持つ熱量はすぐに底面4に伝わり底面4を素早く軟化温度にまで加熱することができる。このように、管10の先端から底面4に向けて過熱蒸気を送り込むことにより、底面4の温度を上げやすく、底面4の熱処理を確実に行うことができる。   Superheated steam is, for example, steam that is as high as about 1200 ° C. Superheated steam has a larger heat capacity per unit volume than air, and is excellent in thermal conductivity. For this reason, when the superheated steam jetted out of the pipe 10 contacts the bottom surface 4, the heat amount of the superheated steam is immediately transmitted to the bottom surface 4 and the bottom surface 4 can be quickly heated to the softening temperature. Thus, by feeding the superheated steam from the tip of the tube 10 toward the bottom surface 4, the temperature of the bottom surface 4 can be easily raised, and the heat treatment of the bottom surface 4 can be reliably performed.

ところで、上述した特許文献1に記載の高周波熱処理装置は、加熱源が周囲の空気を加熱し、加熱された空気を介して金型が加熱される。特許文献1の空気に比べて、本実施形態の過熱蒸気は非常に高い熱伝導性を有する。
本実施形態によれば、このように高い熱伝導性を有する過熱蒸気が移動しながら孔面3に接し、孔面3の極表層を狙って目標温度まで速やかに加熱する。金型内部の深い領域まで高温にせず、表層を狙って高温にすることができる。このため、本実施形態の熱処理工程は、金型全体の硬度は下げずに水冷孔2の孔面3付近の硬度のみを下げたいという要求に極めて好都合である。また本実施形態の熱処理工程は、金型内部の深い領域まで加熱しないので、表層のみを短時間で目標温度に加熱して軟化することができる点でも優れている。
また、上述した特許文献1に記載の高周波熱処理装置では、底面4を効率的に加熱することができない。したがって、どうしても底面4の硬さを下げることが難しい。しかし本実施形態によれば、まず過熱蒸気が底面4に吹き付けられるため、底面4の硬さH1を簡単にかつ優先的に下げることができる。
By the way, in the induction heat treatment apparatus described in Patent Document 1 described above, the heating source heats the surrounding air, and the mold is heated via the heated air. Compared to the air of Patent Document 1, the superheated vapor of the present embodiment has very high thermal conductivity.
According to the present embodiment, the superheated steam having high thermal conductivity moves in contact with the hole surface 3 while moving, and aims at the extreme surface layer of the hole surface 3 to be rapidly heated to the target temperature. It is possible to target the surface layer to a high temperature without raising the temperature to the deep region inside the mold. For this reason, the heat treatment process of the present embodiment is extremely favorable to the requirement that only the hardness in the vicinity of the hole surface 3 of the water-cooled hole 2 be reduced without reducing the hardness of the entire mold. Moreover, since the heat treatment process of this embodiment does not heat to the deep area | region inside a metal mold | die, it is excellent also at the point which can heat and soften only surface layer to target temperature in a short time.
Moreover, in the high frequency heat-treatment apparatus of the patent document 1 mentioned above, the bottom face 4 can not be heated efficiently. Therefore, it is difficult to reduce the hardness of the bottom 4 by any means. However, according to the present embodiment, since the superheated steam is first sprayed to the bottom surface 4, the hardness H1 of the bottom surface 4 can be easily and preferentially lowered.

次に、熱処理の好ましい態様について詳しく説明する。図3は、水冷孔2の内部に管10を挿入した様子を示す断面図である。図3に示すように、管10の先端から水冷孔2の底面4の最深の位置Aとの距離がhとなるように、水冷孔2に管10を挿入する。この距離hは、水冷孔2の直径(内径)Dと管10の直径(外径)dを使って、下記式(1)を満たす位置に管10の先端を保持して熱処理工程を行う。
0.5×(D−d)/2 ≦ h ≦ 1.5×(D−d)/2 式(1)
Next, the preferable aspect of heat processing is demonstrated in detail. FIG. 3 is a cross-sectional view showing how the pipe 10 is inserted into the water cooling hole 2. As shown in FIG. 3, the pipe 10 is inserted into the water cooling hole 2 so that the distance from the tip of the pipe 10 to the deepest position A of the bottom surface 4 of the water cooling hole 2 is h. The heat treatment process is performed by holding the tip of the pipe 10 at a position where the distance h satisfies the following equation (1) using the diameter (inner diameter) D of the water cooling hole 2 and the diameter (outer diameter) d of the pipe 10.
0.5 × (D−d) /2≦h≦1.5× (D−d) / 2 Formula (1)

底面4に向かって管10から吹き出された過熱蒸気は、底面4にぶつかった後に側面5に向かって流れ、側面5に沿って入口6に向かって流れる。ここで、管10と底面4との離間距離hが、管10の外面と水冷孔2の側面5との間の距離(D−d)/2と近い大きさであることが好ましい。そこで上記式(1)を満たせば、管10から底面4に向かって流れる過熱蒸気の流路の断面積が、側面5に沿って流れる過熱蒸気の流路の断面積に近くなる。このため、過熱蒸気の流れが妨げられにくく、底面4に向かった過熱蒸気が側面5に沿って流れやすくなる。これにより、側面5も効率的に過熱蒸気によって温められ、側面5の広い範囲を熱処理しやすくなる。このため、水冷孔2の底面4から側面5に至る領域を均一に加熱しやすく、この領域を確実に熱処理することができる。
式(1)において、hは、好ましくは「0.7×(D−d)/2以上」であり、より好ましくは「0.8×(D−d)/2以上」である。また、hは、好ましくは「1.3×(D−d)/2以下」であり、より好ましくは「1.2×(D−d)/2以下」である。
Superheated steam blown out of the pipe 10 toward the bottom surface 4 collides with the bottom surface 4 and then flows toward the side surface 5 and flows along the side surface 5 toward the inlet 6. Here, the distance h between the tube 10 and the bottom surface 4 is preferably close to the distance (D−d) / 2 between the outer surface of the tube 10 and the side surface 5 of the water-cooled hole 2. Then, if the above equation (1) is satisfied, the cross-sectional area of the flow path of the superheated steam flowing from the pipe 10 toward the bottom surface 4 becomes close to the cross-sectional area of the flow path of the superheated steam flowing along the side surface 5. For this reason, the flow of the overheated steam is less likely to be impeded, and the overheated steam directed to the bottom surface 4 can easily flow along the side surface 5. Thereby, the side surface 5 is also efficiently warmed by the superheated steam, and a wide range of the side surface 5 is easily heat treated. For this reason, it is easy to heat uniformly the area | region from the bottom face 4 of the water-cooling hole 2 to the side surface 5, and it can heat-process this area | region reliably.
In Formula (1), h is preferably “0.7 × (D−d) / 2 or more”, more preferably “0.8 × (D−d) / 2 or more”. H is preferably “1.3 × (D−d) / 2 or less”, more preferably “1.2 × (D−d) / 2 or less”.

なお、上述した距離hの調整は、図2に示したダイカスト金型1の上部に取り付けた調整機構20により行うことができる。調整機構20は、過熱蒸気を流す管10を支持する支持部21と、水冷孔2の中心軸線Axの方向に延びる第一調整ボルト22と、水冷孔2の径方向に延びる第二調整ボルト23とを有している。第一調整ボルト22をねじ込むことにより、支持部21とダイカスト金型1の上面1bとの距離を調整可能とされている。これにより、支持部21と、支持部21により支持された管10を水冷孔2の中心軸線Ax方向に変位させることができる。つまり、第一調整ボルト22により距離hを調整することができる。
なお、第二調整ボルト23により、管10の水冷孔2内部の径方向の位置を調整することができる。
The adjustment of the distance h described above can be performed by the adjustment mechanism 20 attached to the upper part of the die casting mold 1 shown in FIG. The adjusting mechanism 20 includes a support 21 for supporting the pipe 10 through which the superheated steam flows, a first adjusting bolt 22 extending in the direction of the central axis Ax of the water cooling hole 2, and a second adjusting bolt 23 extending in the radial direction of the water cooling hole 2. And. By screwing in the first adjustment bolt 22, the distance between the support portion 21 and the upper surface 1b of the die casting mold 1 can be adjusted. Thus, the support portion 21 and the tube 10 supported by the support portion 21 can be displaced in the direction of the central axis Ax of the water cooling hole 2. That is, the distance h can be adjusted by the first adjustment bolt 22.
The radial position of the inside of the water cooling hole 2 of the pipe 10 can be adjusted by the second adjusting bolt 23.

図3に戻り、管10の先端は円錐台形状であることが好ましい。
水冷孔2はドリルで側面5を形成したときに、その底面4にドリル先端部の形状跡である隅(コーナー)が残る。そこで本実施形態において、この隅をなくして割れを生じ難くするために、底面4が半球状となるようにアール加工して水冷孔2を形成している。
管10の先端が円錐台形状であると、このようにして加工された半球状の底面4に対応した形状となりやすく、管10の先端と底面4との距離を広い範囲に亘って均一に保ちやすい。このため、過熱蒸気の流路の断面積を一定にしやすく、過熱蒸気の流れを妨げにくい。これにより、過熱蒸気を底面4から側面5に亘って円滑に流すことができ、底面4から側面5に亘る広い範囲を効率的に熱処理できる。
Returning to FIG. 3, the tip of the tube 10 is preferably frusto-conical in shape.
When the side surface 5 is formed by a drill, the water cooling hole 2 has a corner which is a trace of the shape of the tip of the drill on the bottom surface 4 thereof. So, in this embodiment, in order to eliminate this corner and to make it hard to produce a crack, round processing is carried out so that bottom 4 may become hemispherical shape, and water cooling hole 2 is formed.
If the tip of the tube 10 is frusto-conical, the shape easily corresponds to the hemispherical bottom surface 4 thus processed, and the distance between the tip of the tube 10 and the bottom surface 4 is uniformly maintained over a wide range Cheap. For this reason, it is easy to make the cross-sectional area of the flow path of a superheated steam constant, and it is hard to disturb the flow of superheated steam. Thereby, the superheated steam can be smoothly flowed from the bottom surface 4 to the side surface 5, and the wide range from the bottom surface 4 to the side surface 5 can be heat-treated efficiently.

また、このアール加工をした後の水冷孔2の底面4の形状は、水冷孔2の内径をDとしたときに、底面4の中央からおおよそD/2の高さの位置を球の中心とした半球状となる。このため、底面4の最深の位置からD/2の高さ位置付近の側面5には、側面5を形成するときのドリルで形成された面と、アール加工する際に形成された面との境界7が位置する。ドリルの刃先の形状精度、アール加工する際の刃物の刃先の形状寸法などに起因して、この境界7に段差が生じることがある。このような段差も、ダイカスト金型1の割れの原因となる場合がある。
しかし本実施形態によれば、底面4から側面5に亘る広い範囲を効率的に熱処理して硬度を下げることができるため、段差が生じている場合であっても割れにくいダイカスト金型1を提供できる。
Further, the shape of the bottom surface 4 of the water cooling hole 2 after this round processing is, assuming that the inner diameter of the water cooling hole 2 is D, a position at a height of approximately D / 2 from the center of the bottom surface 4 Become hemispherical. Therefore, between the deepest position of the bottom surface 4 and the side surface 5 near the height position of D / 2, the surface formed by the drill when forming the side surface 5 and the surface formed when rounding Boundary 7 is located. A step may be generated at the boundary 7 due to the shape accuracy of the drill tip, the shape of the cutting edge of the cutting tool at the time of rounding, and the like. Such a step may also be a cause of cracking of the die casting mold 1.
However, according to the present embodiment, since the hardness can be reduced by efficiently heat treating a wide range from the bottom surface 4 to the side surface 5, the die-casting die 1 that is resistant to cracking even when a step is produced is provided. it can.

なお、上述の説明では、水冷孔がダイカスト金型の上面に開口する例を説明したが、これに限られない。水冷孔はダイカスト金型の側面や下面に開口していてもよい。   In the above description, although the example in which the water cooling hole is opened on the upper surface of the die casting mold has been described, the present invention is not limited thereto. The water cooling hole may be opened on the side surface or the lower surface of the die casting mold.

<φ15の実施例>
次に、本発明の実施例について説明する。図4は、実施例に係る製造方法で加工するダイカスト金型のテストピースの各部の寸法を示している。図4に示すように、本実施形態のテストピースは、縦100mm、横100mm、高さ150mmの直方体の鋼材である。テストピースの上面の中央に、直径Dが15mm、深さが120mmの水冷孔が開口している。水冷孔は、入口から深さ112.5mmまでの領域が円柱形状であり、深さ112.5mmから120mmまでの領域が半球状である。テストピースは、JIS−G−4404の規格鋼種SKD61の鋼材からなる。そして、1020℃からの焼入れ処理と、これに続く600℃での焼戻し処理とによって、Cスケールのロックウェル硬さで、45HRCの狙い硬さに調整されている。
<Example of φ 15>
Next, examples of the present invention will be described. FIG. 4 shows the dimensions of each part of the test piece of the die casting mold processed by the manufacturing method according to the embodiment. As shown in FIG. 4, the test piece of the present embodiment is a rectangular steel material 100 mm long, 100 mm wide, and 150 mm high. In the center of the upper surface of the test piece, a water-cooled hole having a diameter D of 15 mm and a depth of 120 mm is opened. The water-cooled hole has a cylindrical shape in a region from the inlet to a depth of 112.5 mm and a hemispherical region in a depth of 112.5 mm to 120 mm. The test piece is made of a steel material of JIS-G-4404 standard steel type SKD61. And, by the quenching treatment from 1020 ° C. and the tempering treatment at 600 ° C. following this, the target hardness of 45 HRC is adjusted with Rockwell hardness of C scale.

水冷孔の最深の位置Aから高さ2mmの位置(距離h=2mm)に、管の先端が位置するように、外径dが12mmの管を水冷孔に挿入した。過熱水蒸気発生装置にて1200℃の過熱水蒸気を発生させ、管を介して水冷孔の内部に供給した。管の先端から水冷孔の底面に向けて過熱水蒸気を送り込み、底面を加熱して軟化させた。過熱水蒸気の供給を1時間30分続けた。過熱水蒸気発生装置として、TOKUDEN UPSS−D20(登録商標)を用いた。   A tube having an outer diameter d of 12 mm was inserted into the water-cooled hole so that the tip of the tube was positioned at a position 2 mm in height (distance h = 2 mm) from the deepest position A of the water-cooled hole. Superheated steam at 1200 ° C. was generated by a superheated steam generator, and was supplied to the inside of the water-cooling hole through a pipe. Superheated steam was fed from the tip of the tube toward the bottom of the water-cooled hole to heat and soften the bottom. The superheated steam supply was continued for 1 hour and 30 minutes. As a superheated steam generator, TOKUDEN UPSS-D20 (registered trademark) was used.

図4に示すように、テストピースに第一温度測定点a1〜第五温度測定点a5を設定し、各測定点に熱電対を設置して、水冷孔に管を介して過熱水蒸気を送り込んでからの温度変化を測定した。
第一温度測定点a1は、水冷孔の最深の位置Aから7.5mm(つまり、D/2)上方の円柱状領域と半球状領域との境界の高さ位置で、水冷孔の中心軸線Axに対して直交する方向に孔面から10mm金型の内部に入った位置に設けられている。
第二温度測定点a2は、水冷孔の中心軸線Ax上で、水冷孔の最深の位置Aから5mm下方の金型内部に設けられている。
第三温度測定点a3は、水冷孔の中心軸線Ax上で、水冷孔の最深の位置Aから25mm下方の金型内部に設けられている。
第四温度測定点a4は、水冷孔の最深の位置Aの孔面の表面上に設けられている。
第五温度測定点a5は、水冷孔の最深の位置Aから7.5mm上方の円柱状領域と半球状領域との境界の高さ位置で、水冷孔の中心軸線Axに対して直交する方向に孔面から5mm金型の内部に入った位置に設けられている。
As shown in FIG. 4, the first temperature measurement point a1 to the fifth temperature measurement point a5 are set on the test piece, thermocouples are installed at each measurement point, and the superheated steam is sent to the water cooling hole through the pipe. The temperature change from was measured.
The first temperature measurement point a1 is the height position of the boundary between the cylindrical region and the hemispherical region 7.5 mm (that is, D / 2) above the deepest position A of the water cooling hole, and the central axis Ax of the water cooling hole It is provided at a position which enters the inside of the 10 mm mold from the hole surface in the direction orthogonal to the above.
The second temperature measurement point a2 is provided on the central axis Ax of the water cooling hole and inside the mold 5 mm below the deepest position A of the water cooling hole.
The third temperature measurement point a3 is provided on the central axis line Ax of the water cooling hole, inside the mold 25 mm below the deepest position A of the water cooling hole.
The fourth temperature measurement point a4 is provided on the surface of the hole surface at the deepest position A of the water-cooled hole.
The fifth temperature measurement point a5 is the height position of the boundary between the cylindrical area and the hemispherical area 7.5 mm above the deepest position A of the water cooling hole, in the direction orthogonal to the central axis Ax of the water cooling hole It is provided at a position that enters the inside of the 5 mm mold from the hole surface.

過熱水蒸気を供給した際の、各温度測定点で測定された温度履歴を図5に示す。
第四温度測定点a4の温度履歴から分かるように、過熱水蒸気の吹き付けを開始してすぐに、水冷孔の底面の表面温度が900℃近くに上昇する。さらに吹き付け開始から30分後に1000℃程度に達し、その後は1時間30分まで1000℃が維持されている。
第二温度測定点a2および第五温度測定点a5は同様の温度履歴を示した。第二温度測定点a2および第五温度測定点a5のいずれも、吹き付け開始から30分後に550℃程度まで上昇し、1時間後に600℃程度に達する。その後は1時間30分まで600℃が維持されている。
第一温度測定点a1においては、吹き付け開始から30分後に500℃程度まで上昇し、1時間後に570℃程度に達する。その後は1時間30分まで570℃が維持されている。
第三温度測定点a3においては、吹き付け開始から30分後に470℃程度まで上昇し、1時間後に525℃程度に達する。その後は1時間30分まで525℃が維持されている。
The temperature history measured at each temperature measurement point when superheated steam is supplied is shown in FIG.
As can be seen from the temperature history of the fourth temperature measurement point a4, the surface temperature of the bottom of the water-cooled hole rises to near 900 ° C. immediately after the spray of the superheated steam is started. Further, the temperature reaches about 1000 ° C. 30 minutes after the start of spraying, and thereafter the temperature is maintained at 1000 ° C. for 1 hour and 30 minutes.
The second temperature measurement point a2 and the fifth temperature measurement point a5 showed similar temperature histories. Both the second temperature measurement point a2 and the fifth temperature measurement point a5 rise to about 550 ° C. 30 minutes after the start of spraying and reach about 600 ° C. one hour later. After that, the temperature is maintained at 600 ° C. for one hour and thirty minutes.
At the first temperature measurement point a1, the temperature rises to about 500 ° C. 30 minutes after the start of spraying, and reaches about 570 ° C. after 1 hour. After that, 570 ° C. is maintained for 1 hour and 30 minutes.
At the third temperature measurement point a3, the temperature rises to about 470 ° C. 30 minutes after the start of spraying and reaches about 525 ° C. after 1 hour. After that, 525 ° C. is maintained for 1 hour and 30 minutes.

SKD61製のテストピースの今回の焼戻し温度は約600℃である。この焼戻し温度を大きく超えて加熱された第四温度測定点a4は軟化されたと推測される。また、焼き戻し温度に達しなかった第一温度測定点a1、第三温度測定点a3は軟化しなかったものと推測される。   The tempering temperature of the test piece made of SKD 61 is about 600.degree. It is presumed that the fourth temperature measurement point a4 heated far beyond the tempering temperature is softened. Moreover, it is estimated that the 1st temperature measurement point a1 which did not reach tempering temperature, and the 3rd temperature measurement point a3 did not soften.

そこで、過熱水蒸気の吹き付けをして得られたテストピースに図6に黒点で示した複数の位置を設定し、これらの位置について硬さを測定した。図6の(a)は水冷孔の中心軸線Axに沿った断面図であり、図6の(b)は水冷孔の中心軸線Axに直交する面の断面図である。
図6の(a)に示すように、水冷孔の底面の最深の位置Aから上方へ7.5mm(円柱状領域と半球状領域の境界)に位置する断面Bの硬さ、水冷孔の底面の最深の位置Aから上方へ15mmに位置する断面Cの硬さ、水冷孔の底面の最深の位置Aから上方へ120mmに位置する面E(テストピースの上面1b)の硬さを測定した。これにより、水冷孔の底面からの高さ方向における硬さの変化を確認する。
それぞれの高さ位置における面B,C,Eにおいて、図6の(b)に示すように、周方向に互いの離間距離が等しい8つの軸線に沿って、それぞれ水冷孔の孔面表面から2mm、4mm、6mm、10mm離間した位置の硬さを測定した。これにより、水冷孔の周方向の硬さの変化、および、水冷孔の孔面からの離間距離に応じた硬さの変化を確認する。
以上のように設定した合計96(3×8×4)点の位置の硬さの測定結果を図7〜図9に示す。
Therefore, a plurality of positions indicated by black dots in FIG. 6 were set on the test piece obtained by spraying superheated steam, and the hardness was measured at these positions. (A) of FIG. 6 is a cross-sectional view along the central axis Ax of the water cooling hole, and (b) of FIG. 6 is a cross-sectional view of a plane orthogonal to the central axis Ax of the water cooling hole.
As shown in FIG. 6A, the hardness of the cross section B located 7.5 mm upward (the boundary between the cylindrical area and the hemispherical area) from the deepest position A of the bottom of the water-cooled hole, the bottom of the water-cooled hole The hardness of the cross section C located 15 mm upward from the deepest position A of the above, and the hardness of the surface E (upper surface 1 b of the test piece) located 120 mm upward from the deepest position A of the bottom of the water-cooled hole were measured. Thereby, the change of the hardness in the height direction from the bottom of the water cooling hole is confirmed.
In the planes B, C and E at each height position, as shown in FIG. 6 (b), along the eight axes equally spaced from each other in the circumferential direction, each 2 mm from the hole surface of the water-cooled hole The hardness was measured at positions separated by 4 mm, 6 mm and 10 mm. Thereby, the change of the hardness of the water cooling hole in the circumferential direction and the change of the hardness according to the separation distance from the hole surface of the water cooling hole are confirmed.
The measurement result of the hardness of the position of the total 96 (3x8x4) points set as mentioned above is shown in FIGS.

図7は、水冷孔の底面の最深の位置Aから上方へ7.5mm(つまり、D/2)に位置する断面Bにおける硬さを示すレーダーチャートである。図8は、水冷孔の底面の最深の位置Aから上方へ15mmに位置する断面Cにおける硬さを示すレーダーチャートである。図9は、テストピースの上面Eにおける硬さを示すレーダーチャートである。水冷孔の孔面からの離間距離が等しい測定点の硬さを示す点を結ぶ線で示している。なお、図7〜9の縦軸の硬さは、Aスケールのロックウェル硬さHRAで示している。   FIG. 7 is a radar chart showing the hardness of the cross section B located 7.5 mm (that is, D / 2) upward from the deepest position A of the bottom surface of the water-cooled hole. FIG. 8 is a radar chart showing the hardness of the cross section C located 15 mm upward from the deepest position A of the bottom surface of the water-cooled hole. FIG. 9 is a radar chart showing the hardness of the top surface E of the test piece. It shows by a line connecting points showing the hardness of the measurement point where the separation distance from the hole surface of the water cooling hole is equal. In addition, hardness of the vertical axis | shaft of FIGS. 7-9 is shown by Rockwell hardness HRA of A scale.

図7と図8に示すように、水冷孔に過熱水蒸気を供給することにより、水冷孔の近傍の領域が軟化することが確認できた。テストピースの狙い硬さである45HRC(HRAに換算して、約73HRA)に対して、水冷孔の孔面から6mm未満の領域の硬さが低下した。
また図7と図8より、水冷孔の孔面から離れるほど硬くなっていく傾向が読み取れる。つまり、離間距離が最も短い2mmの位置の硬さはおよそ69HRAであり、これをHRCに換算すると約37HRCである。これに対し、離間距離が4mmの位置の硬さはおよそ71HRA(約41HRC)、離間距離が6mmの位置の硬さはおよそ72HRA(約43HRC)、離間距離が10mmの位置の硬さはおよそ73HRA(約45HRC)であった。
As shown in FIGS. 7 and 8, it was confirmed that the region in the vicinity of the water cooling holes was softened by supplying the superheated steam to the water cooling holes. The hardness of the region less than 6 mm from the hole surface of the water-cooled hole decreased with respect to the target hardness of 45 HRC (about 73 HRA in terms of HRA) of the test piece.
Further, from FIGS. 7 and 8, it is possible to read the tendency of becoming harder as it goes away from the water cooling hole surface. That is, the hardness at the position of 2 mm at which the separation distance is shortest is about 69 HRA, which is about 37 HRC when converted to HRC. On the other hand, the hardness at a distance of 4 mm is about 71 HRA (about 41 HRC), the hardness at a distance of 6 mm is about 72 HRA (about 43 HRC), and the hardness at a distance of 10 mm is about 73 HRA (About 45 HRC).

図7と図8とを比較すると、水冷孔の孔面からの距離が等しくても、図7の断面Bは図8の断面Cよりも硬さが小さいことが読み取れる。断面Bは断面Cより、過熱水蒸気が吹き付けられる水冷孔の底面からの距離が近い。過熱水蒸気の供給中に断面Bは断面Cよりも高温となっている。このため、断面Bは断面Cよりも軟化が進み、軟らかくなったものと考えられる。
さらに、図9に示すように、水冷孔の底面から遠く離れた水冷孔の入口付近では、もはや過熱水蒸気の供給によっても温度が焼戻し温度付近まで上昇せず、軟化しなかったことが読み取れる。
Comparing FIG. 7 with FIG. 8, it can be read that the cross section B of FIG. 7 is smaller in hardness than the cross section C of FIG. 8 even if the distance from the hole surface of the water cooling hole is equal. The cross section B is closer to the cross section C from the bottom surface of the water-cooled hole to which the superheated steam is blown. During the supply of the superheated steam, the cross section B is at a higher temperature than the cross section C. For this reason, it is considered that the cross section B becomes softer and softer than the cross section C.
Furthermore, as shown in FIG. 9, it can be read that the temperature no longer rises to near the tempering temperature even by the supply of the superheated steam near the entrance of the water cooling hole far from the bottom of the water cooling hole and does not soften.

図7と図8からは、孔面の表面から10mm離れると軟化していないことが読み取れる。断面B,Cは、過熱水蒸気が吹き付けられる底面から比較的近い位置にある。しかし、孔面の表面から10mm離れた領域は焼戻し温度に達することなく、軟化しなかった。また、図7と図8より、水冷孔の孔面の表面から4mm程度離れると、軟化はするものの、軟化しにくくなることが確認できる。   It can be read from FIGS. 7 and 8 that the sheet is not softened at a distance of 10 mm from the surface of the hole surface. The cross sections B and C are relatively close to the bottom surface on which the superheated steam is sprayed. However, the region 10 mm away from the surface of the hole surface did not soften without reaching the tempering temperature. Further, from FIGS. 7 and 8, it can be confirmed that although it softens when it is separated by about 4 mm from the surface of the hole surface of the water-cooled hole, it becomes difficult to soften.

次に、水冷孔の底面からの離間距離に応じた硬度の変化を評価した。図10に示すように、方向s〜方向uについて、水冷孔の底面からの離間距離に応じた硬度を測定した。
方向s:水冷孔の底面の最深の位置Aから下方に向かう方向について複数の点で硬さを測定した。
方向t:半球状領域の球の中心Oから水冷孔の中心軸線Axに対して45°をなす方向について複数の点で硬さを測定した。
方向u:半球状領域の球の中心Oから水冷孔の中心軸線Axに対して45°をなす方向について複数の点で硬さを測定した。方向uは、方向tに対して、水冷孔の中心軸線Ax回りに180°離れた位置にある。
Next, the change of the hardness according to the separation distance from the bottom of the water cooling hole was evaluated. As shown in FIG. 10, the hardness according to the separation distance from the bottom of the water-cooled hole was measured in the direction s to the direction u.
Direction s: The hardness was measured at a plurality of points in the direction from the deepest position A of the bottom of the water-cooled hole to the lower side.
Direction t: The hardness was measured at a plurality of points in the direction of 45 ° from the center O of the sphere in the hemispherical region to the central axis Ax of the water-cooled hole.
Direction u: The hardness was measured at a plurality of points in the direction of 45 ° from the center O of the sphere in the hemispherical region to the central axis Ax of the water-cooled hole. The direction u is at a position 180 ° away from the central axis Ax of the water-cooled hole with respect to the direction t.

図11に、水冷孔の底面からの離間距離に応じた硬度の変化を示す。なお、図11の縦軸の硬さはHRCで示している。図11に示すように、水冷孔の底面の最深の位置Aの硬さは約30HRCであり、テストピースの狙い硬さである45HRCに対して大きく軟化していた。そして、方向s〜uのいずれの方向の点についても底面から離れるにしたがって硬くなる傾向を有する。特に底面から4mmも離れると軟化しにくくなることが読み取れ、離間距離が5mmの位置では、もはやテストピースの狙い硬さである45HRCと同等である。一方で、離間距離が0〜2mmの範囲では硬さが大きく低化していることが読み取れる。   FIG. 11 shows the change in hardness according to the distance from the bottom of the water-cooled hole. The hardness on the vertical axis in FIG. 11 is indicated by HRC. As shown in FIG. 11, the hardness at the deepest position A at the bottom of the water-cooled hole was about 30 HRC, which was largely softened with respect to the target hardness of 45 HRC of the test piece. And it has a tendency to become hard as it leaves from a bottom also about the point of which direction of directions s-u. In particular, it can be read that it becomes difficult to soften as far as 4 mm from the bottom, and at a position of 5 mm apart, it is no longer equivalent to the target hardness of 45 HRC of the test piece. On the other hand, it can be read that the hardness is greatly reduced in the range of the separation distance of 0 to 2 mm.

また、図11に示すように、方向s〜uはほぼ同様の硬さを示している。したがって、水冷孔の半球状領域においては、過熱水蒸気による熱が均等に広がり、水冷孔の半球状領域は均等に軟化が進んでいる。もっとも、管から噴き出される過熱水蒸気が最初にぶつかる半球状頂点に相当する領域は、高温になりやすく最も軟化が進むことがわかる。   Further, as shown in FIG. 11, the directions s to u have substantially the same hardness. Therefore, in the hemispherical region of the water cooling hole, the heat from the superheated steam spreads evenly, and the hemispherical region of the water cooling hole is uniformly softened. However, it turns out that the area | region corresponded to the hemispherical peak which the superheated steam which blew off from a pipe | tube first collides tends to be high temperature, and softening progresses most.

図12は、以上のような硬さの測定に基づき、金型内部の領域において入口硬さの95%以下の硬さ(つまり、45HRCに対して、42.75HRC以下)となる領域(以降、軟化領域SFと呼ぶ)を示した模式図である。
底面の最深の位置Aから水冷孔の径方向と直角する方向における軟化領域SFの厚みをD1と呼ぶ。底面の最深の位置Aから高さD/2の位置の側面から水冷孔の径方向における軟化領域SFの厚みをD2と呼ぶ。すると、図12に示すように、厚みD1は厚みD2より小さい。
水冷孔の底面から底に向かう方向には成形面が設けられているため、この方向には軟化部を大きく形成したくない。本実施例のように、厚みD1が厚みD2より小さいと、軟化領域SFを水冷孔の周囲に大きく形成しつつ、成形面の近傍の硬さを維持しやすい。
なお、D1、D2に関する上記の「厚み」とは、水冷孔の孔面に対して垂直な方向に延びる寸法を言う。図12の水冷孔の場合、D1の厚みが定義される方向とD2の厚みが定義される方向とは直交している。
FIG. 12 shows an area (hereinafter referred to as “42.75 HRC or less for 45 HRC”) that is 95% or less of the inlet hardness in the area inside the mold based on the measurement of hardness as described above FIG. 6 is a schematic view showing a softened region SF).
The thickness of the softened region SF in the direction perpendicular to the radial direction of the water-cooled hole from the deepest position A of the bottom surface is called D1. The thickness of the softened area SF in the radial direction of the water-cooled hole from the side surface at the position of height D / 2 from the deepest position A of the bottom surface is called D2. Then, as shown in FIG. 12, the thickness D1 is smaller than the thickness D2.
Since the molding surface is provided in the direction from the bottom to the bottom of the water-cooled hole, it is not desirable to form a large softening portion in this direction. If the thickness D1 is smaller than the thickness D2 as in the present embodiment, the hardness in the vicinity of the molding surface can be easily maintained while forming the softening region SF largely around the water-cooled hole.
In addition, said "thickness" regarding D1 and D2 says the dimension extended in the direction perpendicular | vertical with respect to the hole surface of a water-cooling hole. In the case of the water-cooled hole of FIG. 12, the direction in which the thickness of D1 is defined is orthogonal to the direction in which the thickness of D2 is defined.

図13は、ダイカスト金型の各部の硬さを示す図である。
本実施例において、水冷孔の孔面のうち、底面の最深の位置Aから高さD(D=水冷孔の直径)の位置までの領域の硬さH3(該領域の平均の硬さ)が、入口硬さH2よりも低い。
図6に示したように、断面Cは底面の最深の位置Aから高さDの位置の断面である。断面Cの硬さを示す図8より、底面の最深の位置Aから高さDの位置の孔面(離間距離0mm)の硬さは67HRA(約33HRC)未満となることが読み取れる。また、図7と図8とを合わせて参照すると、高さDよりも位置Aに近い領域の硬さは、高さDにおける硬さよりも低くなることが読み取れる。したがって、底面の最深の位置Aから高さDの位置までの領域の硬さH3は、67HRA(約33HRC)未満となることが読み取れる。
一方で、図9は入口硬さH2を示している。図9より、入口硬さH2は73HRAと読み取れ、これは約45HRC(テストピースの狙い硬さ)である。
したがって本実施例において、硬さH3は硬さH2よりも低くなっている。水冷孔の底面と側面のそれぞれの硬さが入口硬さH2より下げられているため、水冷孔の周囲から割れが生じにくいダイカスト金型を提供できる。
FIG. 13 is a diagram showing the hardness of each part of the die casting mold.
In the present embodiment, the hardness H3 (average hardness of the region) of the region from the deepest position A of the bottom surface to the position of height D (D = diameter of water-cooled hole) in the hole surface of the water-cooled hole is , Lower than the inlet hardness H2.
As shown in FIG. 6, the cross section C is a cross section from the deepest position A to the height D of the bottom surface. From FIG. 8 showing the hardness of the cross section C, it can be read that the hardness of the hole surface (separation distance 0 mm) from the deepest position A to the height D of the bottom surface is less than 67 HRA (about 33 HRC). Further, referring to FIG. 7 and FIG. 8 together, it can be read that the hardness of the region closer to the position A than the height D is lower than the hardness at the height D. Therefore, it can be read that the hardness H3 of the region from the deepest position A of the bottom to the position of the height D is less than 67 HRA (about 33 HRC).
On the other hand, FIG. 9 shows the inlet hardness H2. From FIG. 9, the inlet hardness H2 is read as 73 HRA, which is about 45 HRC (target hardness of the test piece).
Therefore, in the present embodiment, the hardness H3 is lower than the hardness H2. Since the hardness of each of the bottom and the side of the water-cooled hole is lower than the inlet hardness H2, it is possible to provide a die-cast mold in which cracking is unlikely to occur from the periphery of the water-cooled hole.

本実施例において、半球状領域の球の中心Oから水冷孔の中心軸線Axの方向に金型内部に向かって1mm入った位置の金型内部の硬さH12が、Cスケールのロックウェル硬さHRCで比較したときに、入口硬さH2の95%より低い。
硬さH12は、図10の方向sに沿った硬さの変化を示す図11から読み取ることができる。図11のsの線において、離間距離1mmの位置の硬さはおよそ40HRCである。入口硬さH2である73HRAはおよそ45HRCに相当する。入口硬さH2の95%は42.75HRCである。したがって本実施例において、H12<0.95×H2が成立している。そして、これについては、上記の硬さH12が、入口の硬さH2の90%の硬さ(40.5HRC)よりも低くなっており、水冷孔の割れの抑制に更に効果的である。なお、半球状領域の球の中心Oから水冷孔の中心軸線Axに対して45°をなす方向に金型内部に向かって1mm入った位置の金型内部の硬さも、入口硬さH2の95%より低くなっている。そして更には、90%より低くなっている。水冷孔の底面に向かって吹き付けられた過熱蒸気により、管の直下のみならず底面の最深の位置Aから高さD/2の位置の孔面についても軟化される。
In the present embodiment, the hardness H12 inside the mold at a position 1 mm toward the inside of the mold in the direction of the central axis Ax of the water-cooled hole from the center O of the sphere in the hemispherical region is the Rockwell hardness of C scale. Lower than 95% of the inlet hardness H2 when compared by HRC.
The hardness H12 can be read from FIG. 11, which shows the change in hardness along the direction s of FIG. In the line of s of FIG. 11, the hardness of the position of 1 mm of separation distance is about 40 HRC. The inlet hardness H2, 73 HRA, corresponds to approximately 45 HRC. 95% of the inlet hardness H2 is 42.75 HRC. Therefore, in the present embodiment, H12 <0.95 × H2 is established. And about this, said hardness H12 is lower than 90% hardness (40.5 HRC) of inlet hardness H2, and it is further effective in suppression of the crack of a water-cooled hole. In addition, the hardness inside the mold at a position 1 mm toward the inside of the mold in the direction forming 45 ° with respect to the center axis Ax of the water cooling hole from the center O of the sphere in the hemispherical region also has an inlet hardness H2 of 95 It is lower than%. And furthermore, it is lower than 90%. The superheated steam sprayed toward the bottom surface of the water-cooled hole softens the surface of the hole not only directly below the pipe but also from the deepest position A to the height D / 2 of the bottom surface.

本実施例において、底面の最深の位置Aから金型内部に向かって、水冷孔の軸方向に5mm入った位置の金型内部の硬さH15が、Cスケールのロックウェル硬さHRCで比較したときに、入口硬さH2の95%より高い。
図11のsの線において、離間距離5mmの点より、硬さH15はおよそ45HRCである。一方で、73HRAである入口硬さH2の95%は約42.75HRCである。したがって、本実施例においてH15>0.95×H2が成立している。そして、これについては、上記の硬さH15が、入口の硬さH2の97%の硬さ(43.65HRC)よりも高くなっており、成形面の硬さの維持に更に効果的である。
成形面には所定の硬さが求められる。本実施例とは異なり、熱処理により軟化する領域が大きく、底面の最深の位置から5mmより離れた領域まで軟らかくなってしまうと、軟化が金型の成形面にまで及んでしまうことがある。すると、水冷孔を成形面の近くまで設けることが難しくなってしまう。この点において、本発明に関する過熱蒸気を利用した軟化熱処理であれば、特に水冷孔の底面において金型内部が軟化する熱影響部を浅くできるので、上記の軟化領域SFの厚みを小さくすることが可能である。また、逆に熱処理により軟化する領域が小さく、十分に軟らかくなっている領域が1mmより浅いと、水冷孔に近い領域で軟らかくなっていない領域に割れが生じやすくなってしまう。
In this example, the hardness H15 inside the mold at a position 5 mm in the axial direction of the water-cooled hole from the deepest position A on the bottom to the inside of the mold was compared with the Rockwell hardness HRC of the C scale. When the inlet hardness H2 higher than 95%.
In the line of s of FIG. 11, the hardness H15 is about 45 HRC from the point of 5 mm of separation distances. On the other hand, 95% of the inlet hardness H2, which is 73 HRA, is about 42.75 HRC. Therefore, in the present embodiment, H15> 0.95 × H2 holds. And about this, above-mentioned hardness H15 is higher than the hardness (43.65HRC) of 97% of hardness H2 of entrance, and is still more effective in maintenance of hardness of a molding surface.
The molding surface is required to have a predetermined hardness. Unlike the present embodiment, if the region softened by heat treatment is large and the region far from 5 mm from the deepest position on the bottom surface is softened, the softening may extend to the molding surface of the mold. As a result, it becomes difficult to provide the water cooling holes close to the molding surface. In this point, in the case of the softening heat treatment using the superheated steam according to the present invention, the heat-affected zone where the inside of the mold softens can be made shallow particularly at the bottom of the water cooling hole, so It is possible. On the contrary, if the area softened by heat treatment is small and the area softened sufficiently is shallower than 1 mm, cracking tends to occur in the area not softened in the area close to the water-cooled hole.

本実施例において、底面の最深の位置Aから高さD/2(水冷孔の半球状領域と円柱状領域の境界)の位置の水冷孔の側面から金型内部に向かって水冷孔の径方向に3mm入った位置の金型内部の硬さH33が、Cスケールのロックウェル硬さHRCで比較したときに、入口の硬さH2の95%より低い。
硬さH33は、図6における断面Bの硬さを示す図7から読み取れる。図7より、硬さH33は、2mmと4mmの線の間のおよそ70HRAであり、換算すると約39HRCである。一方で、入口の硬さH2は約45HRCであり、H2の95%は約42.75HRCである。本実施例において、H33<0.95×H2が成立している。そして、これについては、上記の硬さH33が、入口の硬さH2の90%の硬さ(40.5HRC)よりも低くなっており、水冷孔の割れの抑制に更に効果的である。
In this embodiment, the radial direction of the water cooling hole from the side of the water cooling hole from the deepest position A of the bottom to the height D / 2 (the boundary between the hemispherical region and the cylindrical region of the water cooling hole) The hardness H33 inside the mold at a position 3 mm in diameter is lower than 95% of the hardness H2 at the entrance when compared with Rockwell hardness HRC of C scale.
The hardness H33 can be read from FIG. 7 showing the hardness of the cross section B in FIG. From FIG. 7, the hardness H33 is approximately 70 HRA between the 2 mm and 4 mm lines, or approximately 39 HRC in terms of conversion. On the other hand, the hardness H2 at the inlet is about 45 HRC, and 95% of H2 is about 42.75 HRC. In the present embodiment, H33 <0.95 × H2 is established. And about this, said hardness H33 is lower than the hardness (40.5 HRC) of 90% of hardness H2 of inlet hardness, and it is further effective in suppression of the crack of a water-cooled hole.

本実施例において、底面の最深の位置Aから高さD/2(水冷孔の半球状領域と円柱状領域の境界)の位置の水冷孔の側面から金型内部に向かって水冷孔の径方向に7mm入った位置の金型内部の硬さH37が、Cスケールのロックウェル硬さHRCで比較したときに、入口の硬さH2の95%より高い。
硬さH37は、図6における断面Bの硬さを示す図7から読み取れる。図7より、硬さH37は、6mmと10mmの線の間のおよそ72.5HRAであり、換算すると約44HRCである。一方で、入口の硬さH2の95%は約42.75HRCである。本実施例において、H37>0.95×H2が成立している。そして、これについては、上記の硬さH37が、入口の硬さH2の97%の硬さ(43.65HRC)よりも高くなっており、金型自体の硬さの維持に更に効果的である。
水冷孔から7mmより離れた領域まで軟化させてしまうと金型自体の硬さを低下させてしまうおそれがある。また、軟らかくなっている領域が3mmより浅いと、水冷孔に近い領域で軟らかくなっていない領域に割れが生じやすくなってしまう。
In this embodiment, the radial direction of the water cooling hole from the side of the water cooling hole from the deepest position A of the bottom to the height D / 2 (the boundary between the hemispherical region and the cylindrical region of the water cooling hole) The hardness H37 inside the mold at a position of 7 mm is higher than 95% of the hardness H2 at the entrance when compared with Rockwell hardness HRC of C scale.
The hardness H37 can be read from FIG. 7 showing the hardness of the cross section B in FIG. From FIG. 7, the hardness H37 is approximately 72.5 HRA between the 6 mm and 10 mm lines, or approximately 44 HRC. On the other hand, 95% of the hardness H2 of the inlet is about 42.75 HRC. In the present embodiment, H37> 0.95 × H2 is established. And about this, above-mentioned hardness H37 is higher than 97% hardness (43.65 HRC) of entrance hardness H2, and it is further effective in maintenance of mold itself's hardness. .
If it is softened to a region separated by more than 7 mm from the water-cooled hole, the hardness of the mold itself may be reduced. In addition, if the softened area is shallower than 3 mm, cracking is likely to occur in the area not softened in the area close to the water-cooled hole.

<φ20の実施例>
次に、上述したφ15を設けたテストピースと同じ大きさのテストピースに、直径Dが20mm、深さが120mmの水冷孔を形成し、同様に過熱水蒸気を水冷孔の底面に吹き付けた。φ20のテストピースについても、上述したφ15のテストピースと同様に温度履歴、硬さを測定した。水冷孔の最深の位置Aから高さ3mmの位置(距離h=3mm)に、管の先端が位置するように、外径dが15mmの管を水冷孔に挿入した。
<Example of φ 20>
Next, a water-cooled hole having a diameter D of 20 mm and a depth of 120 mm was formed in a test piece of the same size as the above-described test piece provided with φ15, and similarly superheated steam was sprayed on the bottom of the water-cooled hole. The temperature history and hardness of the φ20 test piece were also measured in the same manner as the φ15 test piece described above. A tube with an outer diameter d of 15 mm was inserted into the water-cooled hole so that the tip of the tube was located at a position 3 mm in height from the deepest position A of the water-cooled hole (distance h = 3 mm).

図14に示すように、テストピースに第一温度測定点b1〜第五温度測定点b5を設定し、各測定点に熱電対を設置して、水冷孔に管を介して過熱水蒸気を送り込んでからの温度変化を測定した。
第一温度測定点b1は、水冷孔の最深の位置Aから10mm(つまり、D/2)上方の円柱状領域と半球状領域との境界の高さ位置で、水冷孔の中心軸線Axに対して直交する方向に孔面から10mm金型の内部に入った位置に設けられている。
第二温度測定点b2は、水冷孔の中心軸線Ax上で、水冷孔の最深の位置Aから5mm下方の金型内部に設けられている。
第三温度測定点b3は、水冷孔の中心軸線Ax上で、水冷孔の最深の位置Aから25mm下方の金型内部に設けられている。
第四温度測定点b4は、水冷孔の最深の位置Aの孔面の表面上に設けられている。
第五温度測定点b5は、水冷孔の最深の位置Aから10mm上方の円柱状領域と半球状領域との境界の高さ位置で、水冷孔の中心軸線Axに対して直交する方向に孔面から5mm金型の内部に入った位置に設けられている。
As shown in FIG. 14, the first temperature measurement point b1 to the fifth temperature measurement point b5 are set on the test piece, thermocouples are installed at each measurement point, and the superheated steam is sent to the water cooling hole through the pipe. The temperature change from was measured.
The first temperature measurement point b1 is the height position of the boundary between the cylindrical region and the hemispherical region 10 mm (that is, D / 2) above the deepest position A of the water cooling hole, relative to the central axis Ax of the water cooling hole It is provided at a position entering the inside of the 10 mm mold from the hole surface in the orthogonal direction.
The second temperature measurement point b2 is provided inside the mold 5 mm below the deepest position A of the water-cooled hole on the central axis Ax of the water-cooled hole.
The third temperature measurement point b3 is provided inside the mold 25 mm below the deepest position A of the water cooling hole on the central axis Ax of the water cooling hole.
The fourth temperature measurement point b4 is provided on the surface of the hole surface at the deepest position A of the water-cooled hole.
The fifth temperature measurement point b5 is a hole surface in the direction orthogonal to the central axis Ax of the water cooling hole at the height position of the boundary between the cylindrical region and the hemispherical region 10 mm above the deepest position A of the water cooling hole It is provided in the position which entered into the inside of the 5 mm mold.

図15は、図5と同様の温度履歴を示すグラフである。図15に示すように、図5のφ15のテストピースの温度履歴と同様の温度履歴となった。第一温度測定点b1、第二温度測定点b2、第五温度測定点b5でほぼ同じ温度履歴となった。これは、φ15の水冷孔に比べて水冷孔の直径が大きくなったため、水冷孔の底面から側面に過熱水蒸気が流れ込みやすくなり、側面の温度が上がりやすくなり第一温度測定点の温度が高まったものと思われる。   FIG. 15 is a graph showing the same temperature history as FIG. As shown in FIG. 15, the temperature history was the same as the temperature history of the φ15 test piece of FIG. Almost the same temperature history is obtained at the first temperature measurement point b1, the second temperature measurement point b2, and the fifth temperature measurement point b5. This is because the diameter of the water-cooling hole is larger than that of the water-cooling hole of φ15, so the superheated steam easily flows from the bottom to the side of the water-cooling hole, the temperature on the side easily rises, and the temperature at the first temperature measurement point increases It seems to be.

図16は、図7と同様の硬さのばらつきを示すレーダーチャートである。図17は、図8と同様の硬さのばらつきを示すレーダーチャートである。図18は、図9と同様の硬さのばらつきを示すレーダーチャートである。図16は、水冷孔の底面の最深の位置Aから上方へ10mm(円柱状領域と半球状領域の境界)に位置する断面における硬さのばらつきを示す。図17は、水冷孔の底面の最深の位置Aから上方へ20mmに位置する断面における硬さのばらつきを示す。図18は、テストピースの上面の硬さのばらつきを示す。
図19は、図11と同様の水冷孔の孔面からの離間距離と硬さの関係を示すグラフである。
図16〜図19を図7〜図9、図11と比較すると、φ20の水冷孔が形成されたテストピースにおいてもφ15の水冷孔が形成されたテストピースと同様に軟化されていることが確認できた。
FIG. 16 is a radar chart showing the variation in hardness similar to FIG. FIG. 17 is a radar chart showing the variation in hardness similar to FIG. FIG. 18 is a radar chart showing the variation in hardness similar to FIG. FIG. 16 shows the dispersion of hardness in the cross section located 10 mm (the boundary between the cylindrical area and the hemispherical area) upward from the deepest position A of the bottom surface of the water-cooled hole. FIG. 17 shows the dispersion of hardness in the cross section located 20 mm upward from the deepest position A of the bottom surface of the water-cooled hole. FIG. 18 shows the variation in hardness of the top surface of the test piece.
FIG. 19 is a graph showing the relationship between the distance from the hole surface of the water-cooled hole and the hardness as in FIG.
Comparing FIG. 16 to FIG. 19 with FIG. 7 to FIG. 9 and FIG. 11, it is confirmed that the test piece in which the water cooling hole of .phi. 20 is formed is softened similarly to the test piece in which the water cooling hole of .phi. did it.

本出願は、2016年11月22日出願の日本特許出願(特願2016-226449)に基づくものであり、その内容はここに参照として取り込まれる。   This application is based on Japanese Patent Application (No. 2016-226449) filed on November 22, 2016, the contents of which are incorporated herein by reference.

本発明によれば、水冷孔の底面を含む領域に確実に軟化熱処理を施すことができるダイカスト金型の製造方法およびダイカスト金型が提供される。   According to the present invention, a method of manufacturing a die casting mold and a die casting mold capable of reliably performing a softening heat treatment on a region including the bottom surface of a water-cooled hole are provided.

1 ダイカスト金型
2 水冷孔
3 孔面
4 底面
5 側面
6 入口
7 (半球状領域と円柱状領域の)境界
10 管
Reference Signs List 1 die casting mold 2 water cooling hole 3 hole surface 4 bottom surface 5 side surface 6 inlet 7 boundary 10 (of hemispherical region and cylindrical region)

Claims (12)

内径Dの有底の水冷孔が設けられたダイカスト金型の製造方法であって、
前記水冷孔をなす孔面は、前記水冷孔の底をなす底面と、前記底面から入口に向かって延びる側面を有し、
前記水冷孔に挿入した外径dの管の先端から前記底面に向けて過熱蒸気を送り込み、前記底面を加熱して軟化させる熱処理工程を有する、ダイカスト金型の製造方法。
A method of manufacturing a die-casting die provided with a bottomed water-cooled hole of inner diameter D, comprising:
The hole surface forming the water cooling hole has a bottom surface forming a bottom of the water cooling hole and a side surface extending from the bottom surface toward the inlet,
A method for manufacturing a die casting mold, comprising a heat treatment step of sending superheated steam from the tip of a tube of an outer diameter d inserted into the water cooling hole toward the bottom to heat and soften the bottom.
前記管の先端と前記底面の最深の位置との離間距離をhと定義したとき、
0.5×(D−d)/2 ≦ h ≦ 1.5×(D−d)/2
となる位置に前記管の先端を保持して前記熱処理工程を行う、請求項1に記載のダイカスト金型の製造方法。
When the separation distance between the tip of the pipe and the deepest position of the bottom is defined as h,
0.5 × (D−d) /2≦h≦1.5× (D−d) / 2
The method for manufacturing a die casting mold according to claim 1, wherein the heat treatment step is performed by holding the tip of the pipe at the position where
前記管の先端が円錐台形状である、請求項1に記載のダイカスト金型の製造方法。   The method for manufacturing a die-casting mold according to claim 1, wherein a tip of the pipe has a truncated cone shape. 前記底面が略半球状となるように加工して前記水冷孔を形成する、請求項1に記載のダイカスト金型の製造方法。   The manufacturing method of the die-cast metal mold | die of Claim 1 which processes so that the said bottom face may become substantially hemispherical shape, and forms the said water-cooled hole. 内径Dの有底の水冷孔が設けられたダイカスト金型であって、
前記水冷孔をなす孔面は、前記水冷孔の底をなす底面と、前記底面から入口に向かって延びる側面を有し、
前記底面の最深の位置の硬さH1が、前記水冷孔の入口の入口硬さH2よりも低い、ダイカスト金型。
A die-casting die provided with a bottomed water-cooling hole of inner diameter D,
The hole surface forming the water cooling hole has a bottom surface forming a bottom of the water cooling hole and a side surface extending from the bottom surface toward the inlet,
The die-casting die whose hardness H1 of the deepest position of the said bottom face is lower than the entrance hardness H2 of the entrance of the water cooling hole.
前記孔面のうち、前記底面の最深の位置から高さDの位置までの領域の硬さH3が、前記入口硬さH2より低い、請求項5に記載のダイカスト金型。   The die-casting mold according to claim 5, wherein hardness H3 of a region from the deepest position of the bottom surface to the position of height D among the hole surfaces is lower than the entrance hardness H2. 前記底面の最深の位置から金型内部に向かって、前記水冷孔の径方向と直角の方向に1mm入った位置の金型内部の硬さH12が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口硬さH2の95%より低い、請求項5に記載のダイカスト金型。   The hardness H12 inside the mold at a position 1 mm in the direction perpendicular to the radial direction of the water-cooled hole from the deepest position of the bottom toward the inside of the mold was compared with the Rockwell hardness HRC of the C scale. The die-casting mold according to claim 5, wherein sometimes the inlet hardness H2 is less than 95%. 前記底面の最深の位置から金型内部に向かって、前記水冷孔の径方向と直角の方向に5mm入った位置の金型内部の硬さH15が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口硬さH2の95%より高い、請求項5に記載のダイカスト金型。   The hardness H15 inside the mold at a position 5 mm in the direction perpendicular to the radial direction of the water-cooled hole from the deepest position of the bottom toward the inside of the mold was compared with the Rockwell hardness HRC of C scale. 6. The die-casting mold according to claim 5, wherein when the inlet hardness H2 is higher than 95%. 前記底面の最深の位置から高さD/2の位置の前記側面から金型内部に向かって前記水冷孔の径方向に3mm入った位置の金型内部の硬さH33が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口の硬さH2の95%より低い、請求項5に記載のダイカスト金型。   The hardness H33 inside the mold at a position 3 mm in the radial direction of the water-cooled hole from the side at the position of height D / 2 from the deepest position of the bottom to the inside of the mold is C scale Rockwell The die-casting mold according to claim 5, which is lower than 95% of the hardness H2 of the inlet when compared with the hardness HRC. 前記底面の最深の位置から高さD/2の位置の前記側面から金型内部に向かって前記水冷孔の径方向に7mm入った位置の金型内部の硬さH37が、Cスケールのロックウェル硬さHRCで比較したときに、前記入口の硬さH2の95%より高い、請求項5に記載のダイカスト金型。   The hardness H37 inside the mold at a position 7 mm in the radial direction of the water-cooled hole from the side at the height D / 2 from the deepest position of the bottom to the inside of the mold is C scale Rockwell The die-casting mold according to claim 5, which is higher than 95% of the hardness H2 of the inlet when compared with the hardness HRC. 金型内部の領域において、Cスケールのロックウェル硬さHRCで比較したときに、前記入口硬さH2の95%以下となっている領域を軟化領域と呼び、
前記底面の最深の位置から前記水冷孔の径方向と直角する方向における前記軟化領域の厚みをD1と呼び、
前記底面の最深の位置から高さD/2の位置の前記側面から前記水冷孔の径方向における前記軟化領域の厚みをD2と呼ぶとき、
前記厚みD1が前記厚みD2より小さい、請求項5に記載のダイカスト金型。
In the area inside the mold, when compared with Rockwell hardness HRC of C scale, the area which is 95% or less of the inlet hardness H2 is called a softening area,
The thickness of the softened region in the direction perpendicular to the radial direction of the water-cooled hole from the deepest position of the bottom surface is called D1.
When the thickness of the softened region in the radial direction of the water-cooled hole is referred to as D2 from the side surface at the position of height D / 2 from the deepest position of the bottom surface,
The die-casting mold according to claim 5, wherein the thickness D1 is smaller than the thickness D2.
前記底面が略半球状である、請求項5に記載のダイカスト金型。
The die-casting mold according to claim 5, wherein the bottom surface is substantially hemispherical.
JP2018552609A 2016-11-22 2017-11-22 Die-casting mold manufacturing method and die-casting mold Active JP6754844B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016226449 2016-11-22
JP2016226449 2016-11-22
PCT/JP2017/041951 WO2018097165A1 (en) 2016-11-22 2017-11-22 Method for manufacturing die-casting die, and die-casting die

Publications (2)

Publication Number Publication Date
JPWO2018097165A1 true JPWO2018097165A1 (en) 2019-07-25
JP6754844B2 JP6754844B2 (en) 2020-09-16

Family

ID=62196230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018552609A Active JP6754844B2 (en) 2016-11-22 2017-11-22 Die-casting mold manufacturing method and die-casting mold

Country Status (3)

Country Link
JP (1) JP6754844B2 (en)
CN (1) CN110072650A (en)
WO (1) WO2018097165A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198316B1 (en) * 2021-07-27 2022-12-28 パンチ工業株式会社 Die casting mold parts and method for manufacturing die casting mold parts

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3017889B2 (en) * 1992-09-11 2000-03-13 日立金属株式会社 Manufacturing method of die casting mold having water cooling hole
JP2948047B2 (en) * 1993-03-29 1999-09-13 日立金属株式会社 Manufacturing method of die casting mold having water cooling hole
JPH06285608A (en) * 1993-04-08 1994-10-11 Hitachi Metals Ltd Die for die casting having water cooling hole and its manufacture
JPH06322444A (en) * 1993-05-10 1994-11-22 Hitachi Metals Ltd Method of heat treatment of die cast die having water cooling hole
JP3164259B2 (en) * 1993-05-10 2001-05-08 日立金属株式会社 Die casting mold having water cooling hole and method of manufacturing the same
JPH06315754A (en) * 1993-05-11 1994-11-15 Hitachi Metals Ltd Production of die having water cooling hole
JPH0831557A (en) * 1994-07-20 1996-02-02 Daido Steel Co Ltd Die, and high frequency heat treatment and heat treatment apparatus used for die
JPH09182948A (en) * 1995-12-27 1997-07-15 Hitachi Metals Ltd Die and its quenching
JPH10286647A (en) * 1997-04-15 1998-10-27 Hitachi Metals Ltd Forming tool having hardness difference
JP2006136921A (en) * 2004-11-12 2006-06-01 Daido Steel Co Ltd Die-casting mold, and heat treatment method thereof

Also Published As

Publication number Publication date
CN110072650A (en) 2019-07-30
JP6754844B2 (en) 2020-09-16
WO2018097165A1 (en) 2018-05-31

Similar Documents

Publication Publication Date Title
KR100971219B1 (en) Yoke manufacturing method
JP2014533608A (en) Method and forming tool for hot forming and press-hardening a thin steel plate workpiece, particularly a galvanized thin steel plate workpiece
CN104827245A (en) Forging process of bearing ring
JP2006346751A (en) Hot forming method and press therefor
JP2005205416A (en) Hot press-forming method and hot press-forming die
CN106216577A (en) A kind of Forging Technology of long component of rod category
JPWO2018097165A1 (en) Die casting mold manufacturing method and die casting mold
US20160101456A1 (en) Method and device for producing a shaped component
JP5443843B2 (en) Method for producing forged steel roll for cold rolling
KR102233206B1 (en) Metal parts manufacturing method and metal parts manufacturing apparatus
JP2010105888A (en) Device for feeding molten glass and apparatus for producing glass molding
CN206483951U (en) A kind of valve hot-forging die
JPH06315753A (en) Die for die casting having water cooling hole and production thereof
JP2016108592A (en) Apparatus and method for manufacturing hardening steel material, and heat three-dimensional processing apparatus
JP5768663B2 (en) Hot shearing method
CN105648169A (en) Heat treatment process of sprue bush and sprue bush
JP6583714B2 (en) Induction hardening method
JP4515310B2 (en) Hardening method for cylindrical surface
JP6603747B2 (en) Lance nozzle
CN109967553A (en) A kind of forming method of the dome head with extension pipe
CN106350641A (en) Heat treatment method for improving service life of cold-working mold
KR102224344B1 (en) Method and apparatus for manufacturing hardened steel parts
JP2019508252A (en) Method and apparatus for manufacturing hardened steel parts
JP6744416B2 (en) Method and apparatus for producing hardened steel parts
KR101632183B1 (en) Method for manufacturing lance nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190305

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R150 Certificate of patent or registration of utility model

Ref document number: 6754844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350