JP2010104289A - Method for producing plant belonging to genus eucalyptus, plant belonging to genus eucalyptus, wood chip and pulp - Google Patents

Method for producing plant belonging to genus eucalyptus, plant belonging to genus eucalyptus, wood chip and pulp Download PDF

Info

Publication number
JP2010104289A
JP2010104289A JP2008279560A JP2008279560A JP2010104289A JP 2010104289 A JP2010104289 A JP 2010104289A JP 2008279560 A JP2008279560 A JP 2008279560A JP 2008279560 A JP2008279560 A JP 2008279560A JP 2010104289 A JP2010104289 A JP 2010104289A
Authority
JP
Japan
Prior art keywords
eucalyptus
pulp
yield
genus eucalyptus
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008279560A
Other languages
Japanese (ja)
Inventor
Shunji Omori
俊二 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2008279560A priority Critical patent/JP2010104289A/en
Publication of JP2010104289A publication Critical patent/JP2010104289A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/40Afforestation or reforestation

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for effectively producing plants belonging to the genus Eucalyptus having a high pulp yield for increasing the productivity of the pulp, especially the method of production suitable for business scale commercial afforestation, and also the Eucalyptus plants produced by the above production method, and wood tips and pulp, produced by using the plants belonging to the genus Eucalyptus. <P>SOLUTION: The method for producing the plants belonging to the genus Eucalyptus is provided by including a process of selecting the plants belonging to the genus Eucalyptus having the high pulp yield from officially approved woods of the plants belonging to the genus Eucalyptus and having a same tree age, a process of preparing clone seedlings by a cutting method from the selected plants belonging to the genus Eucalyptus and a process of planting the clone seedlings. The plants belonging to the genus Eucalyptus produced by the above method, the wood chips produced from the above plants and the pulp produced form the wood chips are also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はユーカリ・グロブルスに代表されるユーカリ属植物の生産方法とこの生産方法で生産されたユーカリ属植物とこのユーカリ属植物を用いて製造された木材チップ及びパルプに関する。   The present invention relates to a method for producing Eucalyptus plants represented by Eucalyptus globulus, Eucalyptus plants produced by this production method, and wood chips and pulp produced using the Eucalyptus plants.

ユーカリ属植物、特にユーカリ・グロブルスは、高い成長率、優れたパルプ化適性などから、パルプ化用のチップ材料として好適との評価を受けている。通常の樹木よりパルプ繊維を取り出すには、蒸解という操作が選択される。この操作は、加圧加熱下、木材チップを苛性ソーダ、硫化ソーダを主とする薬品と共に一定時間反応させ、これらの薬品に不溶なセルロースを抽出するものである。ところで、これらの反応を行う反応器は蒸解釜と称し、一定の容積を有する。パルプ製造における生産性は、この蒸解釜の容積によって決定される。蒸解釜には固定式と連続式とあるが、いずれのタイプでも生産性はその容積によって決定されることには違いがない。   Eucalyptus plants, particularly Eucalyptus globulus, have been evaluated as suitable as a chip material for pulping because of their high growth rate and excellent pulping ability. In order to extract pulp fibers from ordinary trees, an operation called cooking is selected. In this operation, under pressure and heating, wood chips are reacted with chemicals mainly composed of caustic soda and sodium sulfide for a certain period of time to extract cellulose insoluble in these chemicals. By the way, the reactor which performs these reactions is called a digester and has a certain volume. Productivity in pulp production is determined by the volume of this digester. There are two types of digesters, fixed type and continuous type, and there is no difference between which type of productivity is determined by its volume.

したがって、このパルプ製造の生産性を向上するために、容積一定の蒸解釜に投入された一定の木材チップからより多くのパルプを獲得しようとする努力がなされる。一定の投入木材チップより獲得されたパルプの割合をパルプ収率と言う。これは木材チップの性質により変化する。つまり、パルプ収率の低い木材チップではパルプ製造の生産性が低下する。このようなことから高いパルプ収率の得られる木材チップが望まれる。   Therefore, in order to improve the productivity of this pulp production, an effort is made to obtain more pulp from a certain wood chip put in a constant volume digester. The percentage of pulp obtained from a given input wood chip is called pulp yield. This varies with the nature of the wood chips. That is, with wood chips having a low pulp yield, the productivity of pulp production decreases. For these reasons, wood chips capable of obtaining a high pulp yield are desired.

ところで、ユーカリ属植物は、今日、商業用として事業的規模の植林によって生産されている。植林方法として一般的なのは、種子を使用した植林方法であるが、遺伝子の有する本質的なばらつきのために期待の効果を得ることが困難であった。そこで、目的の性質を有するクローン苗を生産して商業植林に利用する方法が行われている。   By the way, Eucalyptus plants are produced today by commercial plantations for commercial use. A common method for planting trees is a planting method using seeds, but it is difficult to obtain the expected effect due to the inherent variation of genes. Therefore, a method of producing a clonal seedling having a desired property and using it for commercial plantation has been carried out.

ユーカリ属植物の植林生産性を向上させようとする技術は、林木育種という技術分野で検討されてきていて、高生長樹を選抜し、これらの交雑を行って純系種を作り上げること、苗のクローン化等の技術が提案されている(例えば、非特許文献1参照)。つまり、選抜と交雑を通じて遺伝形質を増殖対象に付与するという技術である。しかしながら、この技術は、生長性、病虫害の抵抗性等という方向性から植林生産性のみを向上させようという技術であり、パルプ収率に着目したものはない。   The technology to improve plantation productivity of Eucalyptus plants has been studied in the technical field of forest tree breeding, selecting high-growth trees and crossing them to create pure-line species, seedling clones Techniques such as conversion have been proposed (see, for example, Non-Patent Document 1). In other words, it is a technique of imparting a genetic trait to a proliferation target through selection and hybridization. However, this technique is a technique for improving only afforestation productivity from the direction of growth, resistance to pests, and the like, and there is nothing that focuses on pulp yield.

一方、ユーカリ・グロブルスを対象として、その特性を改変としようとする試みも盛んである。もっとも古くから改変研究がなされているのは、樹木の主要構成成分であるリグニンの含有量を減少させることにより、セルロースの収率を上げようとする研究である。例えば、遺伝子組換え技術を利用して、リグニン生合成に関与している遺伝子を操作することでリグニン低含量樹木が作り出されている(例えば、非特許文献2参照)。また、最近では塩害で不毛の土地の有効利用を意図して耐塩性を付与する研究もあり、耐塩性遺伝子のみを導入した遺伝子組換えユーカリが作出されている(例えば、非特許文献3参照)。さらに、植林環境における環境ストレスとして問題になっている乾燥や酸性土壌を研究対象として、ユーカリ交雑種に乾燥ストレス耐性を与える効果が確認されている転写因子遺伝子と酸性土壌耐性を付与する効果が確認されているクエン酸合成酵素遺伝子を導入する研究がなされている(例えば、非特許文献4参照)。   On the other hand, there are many attempts to modify the characteristics of Eucalyptus globulus. The research that has been studied since the oldest is to increase the yield of cellulose by reducing the content of lignin, which is the main component of trees. For example, lignin low-content trees have been created by manipulating genes involved in lignin biosynthesis using genetic recombination technology (see, for example, Non-Patent Document 2). In addition, recently, there is a study for imparting salt tolerance with the intention of effective use of barren land due to salt damage, and a genetically modified eucalyptus in which only a salt tolerance gene is introduced has been created (for example, see Non-patent Document 3). . In addition, a study was conducted on dry and acidic soils, which are problematic as environmental stresses in afforestation environments. Studies have been made to introduce a citrate synthase gene that has been developed (see, for example, Non-Patent Document 4).

しかし、これらは遺伝子の改変という人為的な手法によっており、生物多様性の保持、安全性未確認遺伝子の自然環境への拡散という環境的な危険性を含んでいるため、現状で商業的に採用される手法ではない。また、リグニン含有量の低下、耐塩性、環境ストレス耐性といった特性のみに着目した技術である。   However, these are artificially used to modify genes and contain environmental risks such as preserving biodiversity and spreading unsafe genes into the natural environment. It is not a technique. In addition, this technique focuses only on characteristics such as a decrease in lignin content, salt resistance, and environmental stress resistance.

上述したように商業的には、高いパルプ収率のユーカリ属植物を生産することが有利であるが、既往の材木育種や遺伝子組換えという技術分野からパルプ収率に着目した研究はなされていない。
大庭喜八郎著、「林木育種学」、初版、文永堂出版、1991年9月30日、p.1〜156 「タバコ転写因子Ntlim1によるリグニン生合成の制御」、[online]、日本製紙グループ、[平成18年2月22日検索]、インターネット<URL:http://www.np-g.com/about/research/society/2001/publish_ja_035.html> 渡邊惠子、外1名、「遺伝子組換えユーカリの開発」、紙パ技協誌 紙パルプ技術協会、平成16年1月、第8巻、第1号、p.62〜66 河津哲、「環境ストレス耐性ユーカリの開発と産業植林」、紙パ技協誌 紙パルプ技術協会、平成16年1月、第8巻、第1号、p.55〜61
As mentioned above, it is advantageous to produce Eucalyptus plants with a high pulp yield commercially, but no research has been conducted focusing on the pulp yield from the technical fields of past timber breeding and genetic recombination. .
Written by Kihachiro Ohba, “Forestry Breeding”, first edition, Bunnendo Publishing, September 30, 1991, p. 1-156 “Control of lignin biosynthesis by tobacco transcription factor Ntlim1,” [online], Nippon Paper Group, [Search February 22, 2006], Internet <URL: http://www.np-g.com/about/ research / society / 2001 / publish_ja_035.html> Junko Watanabe, 1 other person, “Development of genetically modified eucalyptus”, Japan Paper Association, Pulp and Paper Technology Association, January 2004, Vol. 8, No. 1, p. 62-66 Satoshi Kawazu, “Development of Environmental Stress-Resistant Eucalyptus and Industrial Plantation”, Japan Paper Association, Pulp and Paper Technology Association, January 2004, Vol. 8, No. 1, p. 55-61

本発明の課題は、ユーカリ属植物の生産方法に関し、パルプ製造の生産性を高めるために、高いパルプ収率(以後、パルプ収率を「収率」と表記する)を有するユーカリ属植物を効果的に生産する方法を提供することである。特に、事業規模の商業的植林に適した生産方法を提供する。また、この生産方法で生産されたユーカリ属植物とこのユーカリ属植物を用いて製造された木材チップ及びパルプを提供する。   An object of the present invention relates to a method for producing Eucalyptus plants, and in order to increase the productivity of pulp production, the effect of Eucalyptus plants having a high pulp yield (hereinafter, the pulp yield is referred to as “yield”) is effective. Is to provide a production method. In particular, provide production methods suitable for commercial-scale commercial plantations. Also provided are Eucalyptus plants produced by this production method and wood chips and pulp produced using the Eucalyptus plants.

上記課題を解決するために鋭意検討した結果、(1)同一樹齢のユーカリ属植物の検定林から高パルプ収率のユーカリ属植物を選抜する工程、(2)選抜されたユーカリ属植物から挿し木法によりクローン苗を作製する工程、(3)クローン苗を植林する工程を含むユーカリ属植物の生産方法を見出した。また、この生産方法で生産されたユーカリ属植物とこのユーカリ属植物を用いて製造された木材チップ及びこの木材チップから製造されたパルプを見出した。   As a result of intensive studies to solve the above problems, (1) a step of selecting a eucalyptus plant having a high pulp yield from a certified eucalyptus plant of the same age, (2) a cutting method from the selected eucalyptus plant The production method of the Eucalyptus genus plant including the process of producing a clone seedling by (3) and the process of planting a clone seedling was discovered. Moreover, the eucalyptus genus plant produced by this production method, the wood chip manufactured using this eucalyptus plant, and the pulp manufactured from this wood chip | tip were discovered.

本発明の効果を説明する。これまでユーカリ属植物において、その収率については樹種毎に異なっていることは理解されていたが、樹種内のパルプ収率については理解されていなかった。本発明者は、このユーカリ属植物の個体毎における収率変化に着目し、天然種子から造成された同一樹齢の一斉林において、成林後に個体毎の収率のばらつきを調査する実験を行った。   The effect of the present invention will be described. Until now, in Eucalyptus plants, it was understood that the yield differs for each tree species, but the pulp yield in the tree species was not understood. The present inventor paid attention to the yield change of each plant of the genus Eucalyptus, and conducted an experiment to investigate the variation in yield of each plant after growing in the same-aged simultaneous forest constructed from natural seeds. .

この実験では、まず、天然種子から造成された同一樹齢の一斉林において、成林後に各個体から得られたチップ化材を収率測定に供する。収率は(蒸解処理後の未晒パルプパルプの絶乾重量/原料チップの絶乾重量)×100から算出される。この天然種子から造成した同一樹齢の一斉林の成林後における個体毎の収率は大きくばらついていて、例えば、ユーカリ・グロブルスの場合、約51.5%を平均値として分布をなしていた。次に、このばらつきを有する個体群からクローン苗を育成して植林し、成林後の収率を再調査した。この結果、親が低収率の個体からのクローンは低収率であり、高収率の個体からのクローンは高収率であることが明らかになった。   In this experiment, first, in a simultaneous forest of the same age, which is constructed from natural seeds, chipping materials obtained from each individual after the growth are used for yield measurement. The yield is calculated from (absolute dry weight of unbleached pulp pulp after cooking / absolute dry weight of raw material chips) × 100. The yield of each individual planted from the same-aged simultaneous forest constructed from natural seeds varied widely. For example, in the case of Eucalyptus globulus, the distribution was averaged at about 51.5%. Next, clonal seedlings were grown and planted from the population with this variation, and the yield after matured was re-examined. As a result, it was clarified that clones from individuals with a low parent yield were low, and clones from individuals with high yield were high.

ところで、クローンとして担持する遺伝的形質には、分枝性、樹形、葉茎樹皮などが知られている。また、クローン化することにより、これらの特性において等質性が発現することは理解されていた。しかし、収率についてはそれが遺伝的形質であるかどうか、これまでは理解されていなかったが、上述した実験によって、収率が遺伝的形質であることを本発明者は明らかにした。   By the way, branching, tree shape, leaf stem bark and the like are known as genetic traits carried as clones. In addition, it was understood that homogeneity is expressed in these characteristics by cloning. However, although it was not previously understood whether the yield is a genetic trait or not, the above-mentioned experiment revealed that the yield is a genetic trait.

なお、収率変化という現象は、植物の生長生理に起因すると考えられる。つまり、コケ類のように地表だけでなく茎によって地面から直立し、葉を立体的につけることで葉の数を増やし、太陽光を効率よく利用しようとする。この場合、葉を多くするには背を高くするとよいが、そうするとそれを支える支持体としての茎は強くなる必要があり、しかも高所の葉に光合成に必要な水と栄養分を送らなければならない。そこで、支持体としての役目と通路の役目を兼用するようになった茎は必然的に太く強くなる必要があり、その結果、太くなった茎と幹が樹体を支えるようになったのが樹木である。   In addition, it is thought that the phenomenon of a yield change originates in the growth physiology of a plant. In other words, like moss, it stands upright from the ground not only by the ground surface but also by stems, increases the number of leaves by attaching leaves in three dimensions, and tries to use sunlight efficiently. In this case, to increase the number of leaves, it is better to make them taller, but then the stems that support them need to be strong, and the high leaves must be fed with water and nutrients necessary for photosynthesis. . Therefore, the stem that has come to serve both as the support and the path must inevitably become thicker and stronger, and as a result, the thicker stem and trunk now support the tree. It is a tree.

幹のもう一つの役目である通路は、葉の光合成に不可欠な水を届けるとともに、葉で合成した代謝物を届ける必要があり、そのために通路と支持体の役割を果たす組織が発達した。この組織を維管束と呼ぶ。樹木を始め多くの植物は維管束植物で、この維管束部分が植物バイオマスの主体を形成している。この維管束は水を送る木部と代謝物を送る師部とに分かれており、いずれの細胞も樹皮の内側にある形成層で作られ、木部の細胞は形成層の内側に、師部の細胞は外側に形成される。この木部の細胞は一次細胞壁を形成後、二次細胞壁の形成が始まりリグニン化するにつれ、液胞が大きくなって内部が空洞化し、死滅した中空の細胞となる。つまり、樹木の個体は中空の細胞で形作られており、この細胞壁の厚みは個体毎に異なっている。この細胞壁の厚みが収率変化に影響を及ぼしていて、細胞壁の厚い個体では収率が高くなっていると考えられる。   Another function of the trunk, the passage, has to deliver the water essential for leaf photosynthesis and the delivery of metabolites synthesized in the leaf, which has led to the development of tissues that act as passages and supports. This tissue is called a vascular bundle. Many plants, including trees, are vascular plants, and this vascular part forms the main component of plant biomass. This vascular bundle is divided into a xylem that sends water and a phloem that sends metabolites, and each cell is made of a formation layer inside the bark, and the cells of the xylem are inside the formation layer, the phloem. Cells are formed on the outside. The cells of the xylem form a primary cell wall, and then, as the secondary cell wall begins to form and lignin, the vacuole becomes larger and the inside becomes hollow, resulting in a dead hollow cell. That is, an individual tree is formed of hollow cells, and the thickness of the cell wall varies from individual to individual. The thickness of the cell wall affects the yield change, and it is considered that the yield is high in individuals with thick cell walls.

このような自然現象の理解の上にたち、パルプ製造の工程を勘案した結果、希望の遺伝的形質を検索するにはまず天然種子からなる同一樹齢の一斉林を検定林として造成し、この検定林のパルプ収率の分布から選抜された収率の高いユーカリ属植物をクローン化して増殖することにより、個体間における遺伝的形質差異をクローン化によって収束することができ、収率を増加させることが可能である。つまり、天然種子の有する収率の個体毎のばらつきを利用し、高い収率を有する個体のみを増殖することができる。本発明によれば高収率のユーカリ属植物を効率よく生産でき、パルプ製造用途の植林として極めて重要である。   Based on this understanding of natural phenomena and considering the pulp production process, to search for the desired genetic traits, first, a simultaneous forest of natural seeds of the same age is established as a test forest, and this test is performed. By cloning and growing high-yield Eucalyptus plants selected from forest pulp yield distribution, genetic trait differences among individuals can be converged by cloning, and yield can be increased. Is possible. That is, it is possible to grow only individuals having a high yield by using the variation in yield of natural seeds for each individual. According to the present invention, a high-yield Eucalyptus plant can be produced efficiently and is extremely important as a plantation for pulp production.

なお、本発明は、収率の高い個体を選択的に植林に用いることによって、高収率木材チップの生産が達成できることを見出したものであるが、既往の天然林より成立するユーカリ林からは樹齢、樹種などの外乱因子の影響でこの効果を達成することができない。この効果は、同一樹齢のユーカリ属植物の一斉林から選抜された個体のユーカリ属植物から挿し木法により作製したクローン苗を植林することによって達成することができるものである。   In the present invention, it has been found that the production of high-yield wood chips can be achieved by selectively using high-yield individuals for planting, but from the eucalyptus forest established from the existing natural forest, This effect cannot be achieved due to the influence of disturbance factors such as tree age and tree species. This effect can be achieved by planting clone seedlings produced by cutting methods from Eucalyptus plants of individuals selected from a simultaneous forest of Eucalyptus plants of the same age.

<工程(1)>
工程(1)では、同一樹齢のユーカリ属植物の検定林から高パルプ収率のユーカリ属植物を選抜する。
<Step (1)>
In the step (1), Eucalyptus plants having a high pulp yield are selected from a test forest of Eucalyptus plants of the same age.

まず、天然種子から同一樹齢の一斉林を検定林として造成し、その個体毎の収率のばらつきを成林後に調査する。その方法は次のようである。まず苗を作製する。これには市販の種子を利用する。市販の種子は当該地域に一般的に販売されているもの等を使用でき、これを播種する。苗作製に当たっては、一般的に知られている培地は全て適用できる。例えば、バーミキュライト、ピートモス、松皮などである。播種後灌水を繰り返すことにより2週間程で発芽するので、これをほぼ7ヶ月ほど培養し植林可能な山出し苗とする。この間の施肥、灌水は一般的な方法による。   First, a simultaneous forest of the same age is constructed from natural seeds as a test forest, and the variation in yield of each individual is investigated after the forest is grown. The method is as follows. First, seedlings are prepared. For this, commercially available seeds are used. Commercially available seeds that are generally sold in the area can be used and sowed. In the preparation of seedlings, all generally known media can be applied. For example, vermiculite, peat moss and pine bark. Since germination takes place in about 2 weeks by repeating irrigation after sowing, this is cultured for about 7 months to form a mountain seedling that can be planted. Fertilization and irrigation during this period are in accordance with general methods.

次に、作製できた苗を植林地に植え付ける。植林地としては、均一な生育条件が得られるように土壌の分布が均一で平坦な土地を選択する。植え付けに当たって通常の植林効果が得られるように、除草、異物除去、耕耘などの地拵えを行う。植え付けは十分な土壌水分が確保される雨期に行う。植え付け後、窒素、燐、カリウムの3要素肥料を施肥する。施肥の時期、量は一般的な植林法に適用される方法でよい。植え付け後の作業は除草が主体となる。これは雑草の様子を観察し、適宜実施する。   Next, the produced seedling is planted in the plantation. As a plantation, a land with a uniform and flat soil distribution is selected so that uniform growth conditions can be obtained. In order to obtain a normal planting effect during planting, weeding, such as weeding, removing foreign matter, and plowing. Planting is done during the rainy season when sufficient soil moisture is secured. After planting, apply 3 elements fertilizer of nitrogen, phosphorus and potassium. The time and amount of fertilization may be a method applied to general afforestation methods. The main work after planting is weeding. This is done as appropriate by observing the state of weeds.

続いて、天然種子から造成された同一樹齢の検定林において、成林後に個体毎の収率のばらつきを調査する。検定林の複数の個体を根茎付近で伐採し、材の幹利用部分を取り出し、全幹を剥皮後チッパーにてチップ化する。チップ化材は完全に攪拌し、収率を測定する。収率は、実際に木材チップを蒸解し得られた未晒パルプを投入チップの比として求める。つまり、実測パルプ収率=未晒パルプの収率とし、(蒸解処理後の未晒パルプパルプの絶乾重量/原料チップの絶乾重量)×100から算出される。調査で得られた収率の分布から、高収率のユーカリ属植物を選抜し、工程(2)以降で増殖する。高収率のユーカリ属植物を選抜することは、間接的に植林単位面積当たりのバイオマス生産の効率向上、つまり、二酸化炭素固定化量の増加により地球温暖化防止に寄与するという効果をも生み出している。   Subsequently, in a certified forest of the same age, which is constructed from natural seeds, the variation in yield of each individual after the forest growth is investigated. Cut several individuals in the certified forest near the rhizomes, take out the trunk use part of the timber, and peel the whole trunk into chips with a chipper. The chip material is stirred thoroughly and the yield is measured. The yield is determined as the ratio of input chips to unbleached pulp obtained by actually digesting wood chips. That is, the measured pulp yield = the yield of unbleached pulp, and is calculated from (absolute dry weight of unbleached pulp pulp after cooking / absolute dry weight of raw material chips) × 100. From the yield distribution obtained in the survey, a high-yield Eucalyptus plant is selected and grown after step (2). The selection of high-yield Eucalyptus plants indirectly has the effect of improving the efficiency of biomass production per plantation unit area, that is, contributing to the prevention of global warming by increasing the amount of carbon dioxide immobilized. Yes.

<工程(2)>
工程(2)では、工程(1)で選抜されたユーカリ属植物から挿し木法によりクローン苗を作製する。まず、先に伐木した根茎より挿し木苗を得る。伐木は地表より15cm程のところで行う。挿し木苗を得ることを考慮して伐採は秋期から春期にかけて行う。以後、春期〜夏期の萌芽発生生長を待つ。まず、翌春になり萌芽が出て来始めたら好ましい挿し穂を得るために徒長枝などの整理を行う。
<Step (2)>
In the step (2), a cloned seedling is produced from the Eucalyptus plant selected in the step (1) by the cutting method. First, cut seedlings are obtained from the rhizomes that have been cut first. Fell trees at about 15cm from the surface. In consideration of obtaining cut seedlings, logging will be done from autumn to spring. After that, we wait for sprout growth from spring to summer. First, the next spring, when budding begins to come out, arrange edamae etc. in order to get a good cutting.

ユーカリ・グロブルスの場合、伐木からの萌芽、つまり、挿し穂材料は、特有の葉柄のない幼形葉である。ユーカリ・グロブルスの生態的な特徴として葉は生長に応じて変化する。植林後2〜3年の間は上記した幼形葉の状態で生育するが、以降その葉は葉柄を持ち、表裏で蒸散と光合成能力を有する成形葉へと逐次変化する。成形葉での挿し木は発根せずクローン化に不適なことから、本手順のように幼形葉を出葉させ、これを挿し木することによりクローン化を行う。次に、植林地より持ち帰った幼形葉からなる枝葉は1節に、対葉は半分に切除する。挿し穂軸の下部の両面2mmほどを切り開き、形成層を露出する。このようにして作製した挿し穂は、纏めて約1秒殺菌剤にてざっと殺菌する。ついで、挿し穂の挿し軸にホルモンを添付し、順次挿していく。   In the case of Eucalyptus globulus, the sprouting from the felled tree, that is, the cutting material, is a juvenile leaf without a specific petiole. As an ecological feature of Eucalyptus globulus, leaves change according to their growth. It grows in the state of the above-mentioned juvenile leaves for 2 to 3 years after planting, but thereafter the leaves have petioles, and gradually change into shaped leaves that have transpiration and photosynthetic ability on the front and back. Since cuttings with shaped leaves do not root and are not suitable for cloning, young leaves are extracted as in this procedure, and then cloned by cutting them. Next, the branches and leaves consisting of juvenile leaves brought back from the plantation are cut into one section and the opposite leaves are cut in half. Cut about 2 mm on both sides of the bottom of the inserted cob to expose the formation layer. The cuttings thus produced are collectively sterilized with a disinfectant for about 1 second. Next, attach hormones to the insertion axis of the cutting head and insert them sequentially.

発根を促進するために、挿し木後、温度25〜30℃、相対湿度75〜85%にて、温室で管理する。このため、日照を1.5〜2ヶ月付与する。温室は可動式の遮光ネットで覆う。このネットを開閉して日中の温度、湿度条件を調節する。夜間はほぼ外部環境に委ねる。   In order to promote rooting, the plant is managed in a greenhouse at a temperature of 25 to 30 ° C. and a relative humidity of 75 to 85% after cutting. For this reason, sunshine is given for 1.5 to 2 months. The greenhouse is covered with a movable shading net. Open and close this net to adjust daytime temperature and humidity conditions. Leave it to the outside environment almost at night.

発根温室にて発根後は(この間、ほぼ2ヶ月)、温室より出して馴化プロセスに移行する。挿し木後1.5ヶ月を経由したクローン苗で、地表部は約10cmである。施肥と灌水を行いながら、外気馴化と苗撫育を進める。この期間は、総合で約10ヶ月である。この期間を以下に示す3期間に分割し苗育成する。3期間における施肥は以下の通りである。   After rooting in the rooting greenhouse (approximately 2 months in the meantime), it goes out of the greenhouse and shifts to the acclimatization process. It is a clone seedling that has passed 1.5 months after cutting, and the surface part is about 10 cm. While fertilizing and irrigating, acclimate outside air and grow seedlings. This period is about 10 months in total. This period is divided into the following three periods to grow seedlings. Fertilization in the three periods is as follows.

(発根促進期間)
挿し木をしてから発根する迄の期間は一切の施肥を行わない。温度・湿度。日照等の環境整備を行う。
(Rooting promotion period)
No fertilizer is applied during the period from cutting to rooting. temperature humidity. Improve the environment such as sunshine.

(出芽期間)
発根した上で挿し木は自らの出芽を開始する。この時期に初期の施肥を行う。この間は、さらに十分な根の伸長を考慮する上で、燐値の高い(窒素:燐:カリウム=9:45:15)肥料を施す。
(Emergence period)
After rooting, the cuttings start budding themselves. Early fertilization is performed at this time. During this time, fertilizer having a high phosphorus value (nitrogen: phosphorus: potassium = 9: 45: 15) is applied in consideration of sufficient root elongation.

(山出し苗培養期間)
芽、葉、茎、根を有する植物体として完成したら、山出し苗に仕立て上げるための生長期間を設ける。この期間は葉、幹の生育を充実させるために、窒素値の高い肥料を与えていく。以上で、クローン苗が完成する。
(Mountain seedling culture period)
Once the plant has buds, leaves, stems, and roots, a long period of time is provided for tailoring the seedlings. During this period, fertilizers with high nitrogen levels are given to enhance leaf and stem growth. The cloned seedling is thus completed.

<工程(3)>
工程(3)では、工程(2)で得られたクローン苗を植林する。植林は、工程(1)で説明した方法で行うことができる。植林後、施肥、除草などの通常植林管理を行う。このようにして、選抜した高収率のクローン苗からの植林を行い、伐採、収穫するという操作により高収率のユーカリ属植物を収穫できる植林が可能になる。
<Step (3)>
In step (3), the cloned seedling obtained in step (2) is planted. Afforestation can be performed by the method described in the step (1). After planting, normal planting management such as fertilization and weeding is performed. In this way, afforestation from which a high-yield Eucalyptus genus plant can be harvested by an operation of planting from the selected high-yield clone seedling, cutting and harvesting becomes possible.

<チップ化>
チップ化は、蒸解に際し薬品を木材に均一に浸透させるために行う。装置は受刃と切削ナイフからなり木材はナイフに対して斜めに投入される。この切削操作により木材は厚み4〜10mm、幅25mm前後、つまり繊維方向の長さ15〜35mm程に切削される。切削角度は一般に30〜60°である。このチップ化の後にスクリーンを設けてチップサイズを調整する。
<Chip formation>
Chipping is performed in order to allow the chemicals to penetrate into the wood evenly during cooking. The device consists of a receiving blade and a cutting knife, and wood is thrown obliquely with respect to the knife. By this cutting operation, the wood is cut to a thickness of 4 to 10 mm and a width of about 25 mm, that is, a length of 15 to 35 mm in the fiber direction. The cutting angle is generally 30 to 60 °. After this chip formation, a screen is provided to adjust the chip size.

<パルプ化>
パルプ化法は各種あるが、ここでは蒸解釜を設けるクラフト法について記す。クラフト法は、パルプ廃液(黒液)から蒸解薬品の回収再使用を行うこと、及び、熱の回収利用を行うことが前提になっている。パルプ化は蒸解と呼ばれる反応を通じて行われる。蒸解は反応容器中にチップを投入し、一般に苛性ソーダと硫化ソーダとからなる白液という反応液にて木材チップ中のリグニンを溶出しセルロースを抽出する作業である。160〜180℃、2〜3時間の反応を行う。この反応後に分離したセルロースを取り出し洗浄してパルプ化がなされる。
<Pulping>
There are various pulping methods. Here, the kraft method in which a digester is provided will be described. The craft method is premised on the recovery and reuse of cooking chemicals from pulp waste liquid (black liquor) and the recovery and utilization of heat. Pulp is made through a reaction called cooking. The cooking is an operation in which chips are put into a reaction vessel and cellulose is extracted by eluting the lignin in the wood chips with a reaction liquid called white liquor generally consisting of caustic soda and sodium sulfide. The reaction is performed at 160 to 180 ° C. for 2 to 3 hours. The cellulose separated after the reaction is taken out and washed to be pulped.

以下、実施例により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

<工程(1)>
まず、市販のユーカリ・グロブルスの天然種子を粉砕した松皮の培地に播種した。一般に、市販の種子は遺伝子の改変或いは育種などの選抜、純化を経ていない。播種後、遮光ネットを備えた露地育苗床にて、朝、昼、夕の3回灌水を繰り返した。培地の乾燥状況を観察して、常に湿潤な状態に維持するように、灌水した。発芽まで遮光ネットを張り、間接日照とした。施肥は行わなかった。これにより、約2週間で発芽した。以後、これをほぼ7ヶ月培養し、植林可能な山出し苗とした。この間の施肥、灌水は一般的な方法によるが、本実施例では、以下に示す方法で行った。
<Step (1)>
First, commercially available natural seeds of Eucalyptus globulus were sown in a crushed pine bark medium. In general, commercially available seeds have not undergone selection or purification such as gene modification or breeding. After sowing, irrigation was repeated three times in the morning, noon, and evening in an outdoor nursery bed equipped with a light-shielding net. The dried state of the culture medium was observed, and watering was carried out so as to keep it always moist. A shading net was set up until germination and indirect sunshine was used. Fertilization was not performed. Thereby, it germinated in about 2 weeks. Thereafter, this was cultured for about 7 months to obtain a mountain seedling that could be planted. During this period, fertilization and irrigation are performed by a general method, but in this example, the method described below was performed.

(出芽促進期間)
種子が出芽を開始したら初期の施肥を行う。この間は十分な根の伸長を行わせるために、燐値の高い(窒素:燐:カリウム=9:45:15)肥料を施した。
(山出し苗培養期間)
芽、葉、茎、根を有する植物体として生長したら、山出し苗に仕立て上げるための生長期間を設ける。この期間は葉、幹の生育を充実させるために、窒素値の高い肥料(窒素:燐:カリウム=40:45:15)を与えた。この間の灌水は、一般的な方法によった。
(Emergence promotion period)
When the seeds start germination, the initial fertilization is performed. During this period, fertilizer having a high phosphorus value (nitrogen: phosphorus: potassium = 9: 45: 15) was applied to allow sufficient root elongation.
(Mountain seedling culture period)
After growing as a plant having buds, leaves, stems, and roots, a long-term growth period is provided for tailoring the seedlings. During this period, fertilizers with high nitrogen values (nitrogen: phosphorus: potassium = 40: 45: 15) were given to enhance the growth of leaves and stems. Irrigation during this period was performed according to a general method.

次に、山出し苗を植林地に植え付けた。植林地としては、均一な生育条件が得られるように、土壌の分布が均一で平坦な土地を選択した。植え付けに当たって、通常の植林効果が得られるように、除草、異物除去、耕耘などの地拵えを行った。植え付けは、十分な土壌水分が確保される雨期に行った。植え付けの面積は、一般的な方法でよいが、6mに1本の面積間隔で植え付けた。植え付け後、窒素、燐、カリウムの3要素肥料を施肥した。施肥の量は、一般的な植林方法に適用される量であればよく、本実施例では、3要素肥料で1本の植え付け当たり約150gとした。植え付け後、林地の状況をみて適宜除草を行った。 Next, seedlings were planted in the plantation. As a plantation, a land with a uniform and flat soil distribution was selected so that uniform growth conditions were obtained. In planting, we prepared ground such as weeding, removing foreign matter, and plowing so that a normal afforestation effect was obtained. Planting was done during the rainy season when sufficient soil moisture was secured. Although the planting area may be a general method, it was planted at an area interval of 6 m 2 . After planting, a three element fertilizer of nitrogen, phosphorus and potassium was applied. The amount of fertilizer may be an amount applied to a general afforestation method. In this example, the amount of fertilizer was about 150 g per plant with a three-element fertilizer. After planting, we weeded appropriately according to the condition of the forest.

このように、天然種子から同一樹齢の検定林を造成し、成林後、その個体毎の収率の値を調査する。一般的に、成林するには8〜12年ほど必要となるが、ここでは12年経過後に調査した。各個体は伐木され、剥皮後チッパーにてチップ化した。木材は、厚み4〜10mm、幅25mm前後、つまり、繊維方向の長さ15〜35mm程に切削した。切削角度は30〜60°であった。このチップ化後にスクリーンを設けて、チップサイズを調整した。   In this way, a test forest of the same age is constructed from natural seeds, and after the forest is grown, the yield value for each individual is investigated. Generally, it takes about 8 to 12 years to grow up, but here we investigated after 12 years. Each individual was cut down and chipped with a chipper after peeling. The wood was cut to a thickness of 4 to 10 mm and a width of about 25 mm, that is, a length of 15 to 35 mm in the fiber direction. The cutting angle was 30-60 °. After forming the chip, a screen was provided to adjust the chip size.

パルプ化は蒸解釜を設けるクラフト法で実施した。蒸解では、反応容器中にチップを投入し、苛性ソーダと硫化ソーダとからなる白液にて木材チップ中のリグニンを溶出しセルロースを抽出した。160〜180℃、2〜3時間の反応を行った。この反応後に分離したセルロースを取り出し、洗浄してパルプ化を行った。収率を算出したところ、表1に示すような分布を把握することができた。高収率の個体として、収率53.5〜54%の範囲に入る最高収率のユーカリ・グロブルスの個体を選抜した。   The pulping was carried out by the kraft method with a digester. In cooking, chips were put into a reaction vessel, and lignin in wood chips was eluted with white liquor composed of caustic soda and sodium sulfide to extract cellulose. The reaction was performed at 160 to 180 ° C. for 2 to 3 hours. The cellulose separated after this reaction was taken out, washed and pulped. When the yield was calculated, the distribution shown in Table 1 could be grasped. As a high-yield individual, a eucalyptus globulus individual with the highest yield falling within the range of 53.5 to 54% was selected.

Figure 2010104289
Figure 2010104289

<工程(2)>
収率を調査するのに使用した、最高収率の個体の根茎から挿し木によるクローン苗を得た方法を記載する。伐木は、地表より約15cmのところで行った。伐採は、秋期から春期にかけて行った。翌春になり萌芽が出て来始めたら、好ましい挿し穂を得るために、徒長枝などの整理を行った。この伐木からの萌芽は、ユーカリ・グロブルスに特有の葉柄のない幼形葉であり、これを挿し穂材料とした。
<Step (2)>
A method for obtaining a cloned seedling by cutting from the rhizome of the individual with the highest yield used to investigate the yield is described. The felling was about 15cm from the surface. Logging was done from autumn to spring. In the next spring, when budding began to appear, we arranged the long branches in order to get a good cutting. The sprouting from this felled tree is a young leaf without a petiole characteristic of Eucalyptus globulus, and this was used as a material for the ear.

植林地より持ち帰った枝葉は1節に、対葉は半分に切除した。挿し穂軸の下部の両面2mmほど切り開き、形成層を露出した。このようにして作製した挿し穂は、纏めて1秒ほど殺菌剤にてざっと殺菌した。ついで、挿し穂の挿し軸にホルモンを添付し、順次挿していった。   The branches and leaves brought back from the plantation were cut into one section and the opposite leaves were cut in half. About 2 mm on both sides of the lower part of the inserted cob was cut open to expose the formation layer. The cuttings thus prepared were roughly sterilized with a disinfectant for about 1 second. Next, a hormone was attached to the insertion axis of the cutting head, and inserted sequentially.

発根を得るために、挿し木後、温度25℃、相対湿度85%にて日照を1.5〜2ヶ月付与した。温室を利用し、可動式の遮光ネットで覆った。このネットを開閉して、日中の環境条件を調節した。夜間はほぼ外部環境に委ねた。温室にて発根を認め(この間、ほぼ2ヶ月)、温室より出して馴化プロセスに移行した。挿し木後約1.5ヶ月を経由したクローン苗で、地表部は約10cmであった。施肥と灌水を行いながら、外気馴化と苗撫育を進めた。この期間は総合で約10ヶ月であった。この期間を(発根促進期間)、(出芽期間)、(山出し苗培養期間)の3期間に分割し、苗育成を行った。施肥は、生長の各段階で内容を変えて実施した。   In order to obtain rooting, sunshine was applied for 1.5 to 2 months after cutting at a temperature of 25 ° C. and a relative humidity of 85%. Using a greenhouse, covered with a movable shading net. The net was opened and closed to adjust daytime environmental conditions. I left it to the outside environment almost at night. Rooting was observed in the greenhouse (almost 2 months in the meantime), and it went out of the greenhouse and shifted to the acclimatization process. A clone seedling passed about 1.5 months after cutting, and the surface part was about 10 cm. While fertilizing and irrigating, acclimation to the open air and seedling growth were promoted. The total period was about 10 months. This period was divided into three periods (rooting promotion period), (emergence period), and (mountain seedling culture period), and seedlings were grown. Fertilization was carried out with different contents at each stage of growth.

(発根促進期間)
挿し木をしてから発根する迄の期間は一切の施肥を行わなかった。温度・湿度・日照等の環境整備のみ行った。
(Rooting promotion period)
No fertilizer was applied during the period from cutting to rooting. Only environmental maintenance such as temperature, humidity, and sunshine was performed.

(出芽期間)
発根した上で挿し木は自らの出芽を開始した。さらに十分な根の伸長を促すために、この時期に、燐値の高い(窒素:燐:カリウム=9:45:15)肥料を施した。
(Emergence period)
After rooting, the cuttings started budding themselves. Furthermore, in order to promote sufficient root elongation, fertilizer having a high phosphorus value (nitrogen: phosphorus: potassium = 9: 45: 15) was applied at this time.

(山出し苗培養期間)
芽、葉、茎、根を有する植物体として完成したら、山出し苗に仕立て上げるための生長期間を設ける。この期間は葉、幹の生育を充実させるために、窒素値の高い肥料(窒素:燐:カリウム=40:45:15)を与えていった。
(Mountain seedling culture period)
Once the plant has buds, leaves, stems, and roots, a long period of time is provided for tailoring the seedlings. During this period, fertilizers with high nitrogen values (nitrogen: phosphorus: potassium = 40: 45: 15) were given to enhance the growth of leaves and stems.

以上のようにして、クローン苗を作成した。   A clone seedling was prepared as described above.

<工程(3)>
工程(2)で得られたクローン苗を植林した後、工程(1)と同様に、施肥、除草などの通常植林管理を行った。植林12年後に伐木し収率を高収率のユーカリ属植物を選抜したときと同様にして調査し、収率の分布を表2に示した。また、天然種子の同一樹齢林における収率分布である表1の結果(天然種子林)と高収率のクローン苗の同一樹齢林における収率分布である表2の結果(クローン林)を併せて、図1に示した。
<Step (3)>
After planting the cloned seedlings obtained in the step (2), normal planting management such as fertilization and weeding was performed in the same manner as in the step (1). Trees were cut 12 years after planting, and the yield was investigated in the same manner as when a high-yield Eucalyptus plant was selected, and the yield distribution is shown in Table 2. In addition, the results in Table 1 which are the yield distribution of natural seeds in the same age forest (natural seed forest) and the results in Table 2 which is the yield distribution in the same age forest of clone seedlings with high yield (clonal forest) are combined. This is shown in FIG.

Figure 2010104289
Figure 2010104289

工程(1)〜(3)を含む生産方法で得られたユーカリ属植物は高収率であることが確認された。   It was confirmed that the Eucalyptus plant obtained by the production method including the steps (1) to (3) has a high yield.

天然種子と高いパルプ収率のクローン苗とから得られた同一樹齢林における収率分布。Yield distribution in the same age forest obtained from natural seeds and clonal seedlings with high pulp yield.

Claims (4)

(1)同一樹齢のユーカリ属植物の検定林から高パルプ収率のユーカリ属植物を選抜する工程、(2)選抜されたユーカリ属植物から挿し木法によりクローン苗を作製する工程、(3)クローン苗を植林する工程を含むユーカリ属植物の生産方法。   (1) a step of selecting a eucalyptus plant having a high pulp yield from a test forest of Eucalyptus plants of the same age, (2) a step of producing a clone seedling from the selected eucalyptus plant by a cutting method, (3) a clone A method for producing Eucalyptus plants, including a step of planting seedlings. 請求項1記載の生産方法で生産されたユーカリ属植物。   A Eucalyptus plant produced by the production method according to claim 1. 請求項2記載のユーカリ属植物から製造された木材チップ。   A wood chip manufactured from the Eucalyptus plant according to claim 2. 請求項3記載の木材チップから製造されたパルプ。   A pulp produced from the wood chip according to claim 3.
JP2008279560A 2008-10-30 2008-10-30 Method for producing plant belonging to genus eucalyptus, plant belonging to genus eucalyptus, wood chip and pulp Pending JP2010104289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008279560A JP2010104289A (en) 2008-10-30 2008-10-30 Method for producing plant belonging to genus eucalyptus, plant belonging to genus eucalyptus, wood chip and pulp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008279560A JP2010104289A (en) 2008-10-30 2008-10-30 Method for producing plant belonging to genus eucalyptus, plant belonging to genus eucalyptus, wood chip and pulp

Publications (1)

Publication Number Publication Date
JP2010104289A true JP2010104289A (en) 2010-05-13

Family

ID=42294371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008279560A Pending JP2010104289A (en) 2008-10-30 2008-10-30 Method for producing plant belonging to genus eucalyptus, plant belonging to genus eucalyptus, wood chip and pulp

Country Status (1)

Country Link
JP (1) JP2010104289A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101254759B1 (en) 2013-01-03 2013-04-26 대한민국 Early selection method of fast growing tree with growing trait
JP2013172685A (en) * 2012-02-27 2013-09-05 Sumitomo Forestry Co Ltd Method of producing nursery tree cut and planted from forest tree
JP2020110141A (en) * 2019-01-11 2020-07-27 日本製紙株式会社 Production method of scion mother tree
JP7403413B2 (en) 2020-08-14 2023-12-22 日本製紙株式会社 Production method of Eucalyptus plants

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013172685A (en) * 2012-02-27 2013-09-05 Sumitomo Forestry Co Ltd Method of producing nursery tree cut and planted from forest tree
KR101254759B1 (en) 2013-01-03 2013-04-26 대한민국 Early selection method of fast growing tree with growing trait
JP2020110141A (en) * 2019-01-11 2020-07-27 日本製紙株式会社 Production method of scion mother tree
JP7292162B2 (en) 2019-01-11 2023-06-16 日本製紙株式会社 Production method of the mother tree
JP7403413B2 (en) 2020-08-14 2023-12-22 日本製紙株式会社 Production method of Eucalyptus plants

Similar Documents

Publication Publication Date Title
CN105075684A (en) Oil tea root grafting propagation method in autumn
Rédei et al. Clonal approaches to growing black locust (Robinia pseudoacacia) in Hungary: a review
JP2011234704A (en) Germination of seed of eucommia ulmoides, various fix planting of seedling and use of eucommia leaf
CN114946512B (en) Cultivation method for improving growth performance of garlic fruit plants
CN111788981A (en) Natural-imitated Chinese fir and firepower nanmu mixed forest construction method
CN109618911A (en) A kind of winter wheat strange land of simple and effective low cost adds for breeding method
CN101194570B (en) Sprout grafting method for fructus schizandrae
JP2010104289A (en) Method for producing plant belonging to genus eucalyptus, plant belonging to genus eucalyptus, wood chip and pulp
CN107232012B (en) Method for cultivating walnut and fruit material dual-purpose forest
JP2007236328A (en) Production method for eucalyptus plant with high volume-weight, eucalyptus plant, wood tip, and pulp
CN106234122A (en) A kind of oil tea high-survival rate cuttage breeding method
CN105230431A (en) Fast-growing tree species ultra-short cutting rotation cuttage forestation cultivation method
CN104996263A (en) Emeiwenchun tea tree cultivating method
CN106342555B (en) Method for breeding new species of natural hetero-alternating heterogeneous populus euphratica and populus griseus
CN102388737A (en) Acanthopanax giraldii Harms artificial cultivation method
CN110140606A (en) A kind of breeding method of passion fruit rootstock seedling
CN106234123A (en) A kind of oil tea high-survival rate cuttage and seedling culture method
WO2023151380A1 (en) Method for grafted seedlings of bud seedling stock of vernicia fordii
Kulkarni Eucalypt improvement at ITC
CN100391335C (en) Comprehensive producing method for forest and silk worm combined running
CN101313648A (en) Palm shaped aspidiaceae spore breeding method
CN105706897A (en) Corn-paddy rice distant hybirdization method
Sharma et al. Effect of planting dates on growth, flowering and seed production of garland chrysanthemum (Chrysanthemum coronarium)
JP2007222046A (en) Method for producing eucalyptus plant
Rockwood et al. Genetic improvement of Eucalyptus grandis for southern Florida