JP2010103260A - Method of manufacturing semiconductor device for power control - Google Patents

Method of manufacturing semiconductor device for power control Download PDF

Info

Publication number
JP2010103260A
JP2010103260A JP2008272418A JP2008272418A JP2010103260A JP 2010103260 A JP2010103260 A JP 2010103260A JP 2008272418 A JP2008272418 A JP 2008272418A JP 2008272418 A JP2008272418 A JP 2008272418A JP 2010103260 A JP2010103260 A JP 2010103260A
Authority
JP
Japan
Prior art keywords
power control
semiconductor device
type silicon
type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008272418A
Other languages
Japanese (ja)
Inventor
Shingo Sato
慎吾 佐藤
Yasuhisa Omuro
泰久 大室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008272418A priority Critical patent/JP2010103260A/en
Publication of JP2010103260A publication Critical patent/JP2010103260A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device for power control of which a breakdown voltage is high but an on-resistance is low. <P>SOLUTION: An n-type silicon layer 12 is formed on an n<SP>+</SP>type silicon wafer 11w, and a plurality of trenches 13 are formed in the n-type silicon layer 12. On the inner surface of the trench 13, a non-doped layer 14 containing substantially no impurities is formed. Then a p-type silicon peeler 15 is formed inside the trench 13. After that, an MOS structure is formed at the upper part of the n-type silicon layer 12. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、電力制御用半導体装置の製造方法に関し、特に、スーパージャンクション構造を備えた電力制御用半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a power control semiconductor device, and more particularly to a method for manufacturing a power control semiconductor device having a super junction structure.

高い耐圧と低いオン抵抗とを両立させた電力制御用半導体装置として、n型の半導体層にp型の半導体ピラーを埋め込み、n型部分とp型部分とを交互に配列させたスーパージャンクション構造(以下、「SJ構造」ともいう)を持つ縦形MOSFET(Metal Oxide Semiconductor Field Effect Transistor:金属酸化物半導体電界効果トランジスタ)が知られている。SJ構造においては、n型部分とp型部分に含まれる不純物量を相互に等しくすることで、擬似的にノンドープ層を作り出して高耐圧を保持しつつ、不純物濃度が高いn型部分を介して電流を流すことにより、低いオン抵抗を実現することができる。   As a power control semiconductor device that achieves both high breakdown voltage and low on-resistance, a super junction structure in which p-type semiconductor pillars are embedded in an n-type semiconductor layer and n-type portions and p-type portions are alternately arranged ( Hereinafter, a vertical MOSFET (Metal Oxide Semiconductor Field Effect Transistor) having a “SJ structure” is known. In the SJ structure, by making the amounts of impurities contained in the n-type part and the p-type part equal to each other, a pseudo non-doped layer is created and a high breakdown voltage is maintained, and the n-type part has a high impurity concentration. By flowing a current, a low on-resistance can be realized.

このようなSJ構造のMOSFETを形成する方法の1つとして、n型の半導体基板上にn型の半導体層をエピタキシャル成長法によって成長させ、この半導体層に複数本のトレンチを形成し、トレンチ内にp型半導体材料をエピタキシャル成長させてp型の半導体ピラーを形成する方法がある(例えば、特許文献1参照。)。 As one of the methods for forming such an SJ-structure MOSFET, an n-type semiconductor layer is grown on an n + -type semiconductor substrate by an epitaxial growth method, and a plurality of trenches are formed in the semiconductor layer. There is a method of forming a p-type semiconductor pillar by epitaxially growing a p-type semiconductor material (see, for example, Patent Document 1).

しかしながら、この方法においては、トレンチ内にp型の半導体ピラーを形成した後、MOS構造を形成するための熱処理を行ったときに、p型の半導体ピラーに含まれるアクセプタとn型の半導体層に含まれるドナーとが相互に拡散してしまい、実効的な不純物濃度が低下してしまうという問題がある。p型の半導体ピラー及びn型の半導体層の実効的な不純物濃度が低下することにより、耐圧が低下し、また、n型の半導体層の実効的な不純物濃度が低下することにより、オン抵抗が増大してしまう。そして、この傾向は、半導体装置の微細化に伴い、より顕著になる。   However, in this method, after the p-type semiconductor pillar is formed in the trench and then heat treatment for forming the MOS structure is performed, the acceptor and the n-type semiconductor layer included in the p-type semiconductor pillar are formed. There is a problem that the contained impurity diffuses mutually and the effective impurity concentration decreases. By reducing the effective impurity concentration of the p-type semiconductor pillar and the n-type semiconductor layer, the breakdown voltage is reduced, and by reducing the effective impurity concentration of the n-type semiconductor layer, the on-resistance is reduced. It will increase. This tendency becomes more prominent with the miniaturization of semiconductor devices.

特開2007−235080号公報Japanese Patent Laid-Open No. 2007-235080

本発明の目的は、耐圧が高くオン抵抗が低い電力制御用半導体装置の製造方法を提供することである。   An object of the present invention is to provide a method for manufacturing a power control semiconductor device having a high breakdown voltage and a low on-resistance.

本発明の一態様によれば、第1導電型の半導体層に複数本のトレンチを形成する工程と、前記トレンチの側面上に、不純物が実質的に含まれていないノンドープ層を形成する工程と、前記トレンチの内部に第2導電型の半導体ピラーを形成する工程と、を備えたことを特徴とする電力制御用半導体装置の製造方法が提供される。   According to one aspect of the present invention, a step of forming a plurality of trenches in a first conductivity type semiconductor layer, and a step of forming a non-doped layer substantially free of impurities on a side surface of the trench, And a step of forming a second-conductivity-type semiconductor pillar inside the trench. A method for manufacturing a power control semiconductor device is provided.

本発明によれば、耐圧が高くオン抵抗が低い電力制御用半導体装置の製造方法を実現することができる。   According to the present invention, it is possible to realize a method for manufacturing a power control semiconductor device having a high breakdown voltage and a low on-resistance.

以下、本発明の実施形態について図面を参照しながら説明する。
先ず、本発明の第1の実施形態について説明する。
図1(a)及び(b)、図2(a)及び(b)は、本実施形態に係る電力制御用半導体装置の製造方法を例示する工程断面図である。
本実施形態に係る電力制御用半導体装置は、スーパージャンクション構造(SJ構造)と縦形のMOSFETが形成された半導体チップであり、例えば、耐圧が600Vの半導体チップである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, a first embodiment of the present invention will be described.
FIGS. 1A and 1B and FIGS. 2A and 2B are process cross-sectional views illustrating a method for manufacturing a power control semiconductor device according to this embodiment.
The power control semiconductor device according to the present embodiment is a semiconductor chip in which a super junction structure (SJ structure) and a vertical MOSFET are formed, for example, a semiconductor chip having a withstand voltage of 600V.

先ず、図1(a)に示すように、n型の単結晶シリコンからなるウェーハ11wを用意する。そして、ウェーハ11wの上面上にn型のシリコンをエピタキシャル成長させて、n型シリコン層12を形成する。n型シリコン層12にはドナー、例えば、リン(P)が含有されており、その濃度は例えば1×1015〜1×1016cm−3である。 First, as shown in FIG. 1A, a wafer 11w made of n + type single crystal silicon is prepared. Then, n-type silicon is epitaxially grown on the upper surface of the wafer 11w to form the n-type silicon layer 12. The n-type silicon layer 12 contains a donor, for example, phosphorus (P), and the concentration thereof is, for example, 1 × 10 15 to 1 × 10 16 cm −3 .

次に、n型シリコン層12の上面側からn型シリコン層12の途中まで、n型シリコン層12の上面に平行な一方向(以下、「ピラー方向」という)に延びるトレンチ13を複数本形成する。一例では、トレンチ13の幅は5μmとし、配列周期は8μmとし、深さは50μmとする。   Next, a plurality of trenches 13 extending in one direction parallel to the upper surface of the n-type silicon layer 12 (hereinafter referred to as “pillar direction”) from the upper surface side of the n-type silicon layer 12 to the middle of the n-type silicon layer 12 are formed. To do. In one example, the width of the trench 13 is 5 μm, the arrangement period is 8 μm, and the depth is 50 μm.

次に、図1(b)に示すように、n型シリコン層12の上面をシリコン酸化膜(図示せず)により覆った上で、CVD(Chemical Vapor Deposition:化学気相成長)を行い、トレンチ13の内面上に、不純物を添加していないシリコンをエピタキシャル成長させる。このCVDの条件は、例えば、原料をジクロロシラン(DCS)とし、温度を1000℃とする。これにより、トレンチ13の内面上に、不純物が実質的に含まれていないノンドープ層14が形成される。一例では、トレンチ13の側面上におけるノンドープ層14の膜厚は、0.5μmとする。   Next, as shown in FIG. 1B, after the upper surface of the n-type silicon layer 12 is covered with a silicon oxide film (not shown), CVD (Chemical Vapor Deposition) is performed to form a trench. Silicon on which no impurities are added is epitaxially grown on the inner surface of 13. The CVD conditions are, for example, that the raw material is dichlorosilane (DCS) and the temperature is 1000 ° C. As a result, a non-doped layer 14 substantially free of impurities is formed on the inner surface of the trench 13. In one example, the film thickness of the non-doped layer 14 on the side surface of the trench 13 is 0.5 μm.

次に、図2(a)に示すように、引き続きCVD法を行い、ドーパントとして例えばBを導入する。これにより、ノンドープ層14上において、アクセプタとして例えばボロン(B)が添加されたシリコンがエピタキシャル成長する。この結果、トレンチ13の内部にp型シリコンピラー15が形成される。その後、n型シリコン層12の上面をCMP(Chemical Mechanical Polishing:化学的機械研磨)により平坦化する。 Next, as shown in FIG. 2A, the CVD method is subsequently performed, and for example, B 2 H 6 is introduced as a dopant. Thereby, on the non-doped layer 14, for example, silicon to which boron (B) is added as an acceptor is epitaxially grown. As a result, the p-type silicon pillar 15 is formed inside the trench 13. Thereafter, the upper surface of the n-type silicon layer 12 is planarized by CMP (Chemical Mechanical Polishing).

次に、図2(b)に示すように、通常の方法により、p型シリコンピラー15の上端部に、ピラー方向に延びるストライプ状のp型のベース領域16を形成する。次に、ベース領域16の内部に、ピラー方向に延び相互に離隔した2本のn型のソース領域17(拡散領域)を形成し、ソース領域17間の領域に、ピラー方向に延びる1本のp型のコンタクト領域18を形成する。そして、n型シリコン層12上にゲート電極21及びゲート絶縁膜22を形成する。例えば、ゲート電極21はポリシリコンにより形成し、ゲート絶縁膜22はシリコン酸化物により形成する。これにより、ウェーハ11wの上面にMOS構造が作製される。このとき、このMOS構造の作製に伴い、ウェーハ11w全体が加熱され、各層の不純物が拡散する。この結果、n型シリコン層12内に含まれるリン(P)の一部とp型シリコンピラー15内に含まれるボロン(B)の一部がノンドープ層14(図2(a)参照)内に拡散し、ノンドープ層14が消失すると共に、pn接合面が形成される。 Next, as shown in FIG. 2B, a striped p-type base region 16 extending in the pillar direction is formed at the upper end of the p-type silicon pillar 15 by a normal method. Next, two n + -type source regions 17 (diffusion regions) extending in the pillar direction and spaced apart from each other are formed inside the base region 16, and one line extending in the pillar direction is formed between the source regions 17. The p + -type contact region 18 is formed. Then, a gate electrode 21 and a gate insulating film 22 are formed on the n-type silicon layer 12. For example, the gate electrode 21 is formed of polysilicon, and the gate insulating film 22 is formed of silicon oxide. Thereby, a MOS structure is formed on the upper surface of the wafer 11w. At this time, as the MOS structure is manufactured, the entire wafer 11w is heated, and impurities in each layer are diffused. As a result, a part of phosphorus (P) contained in the n-type silicon layer 12 and a part of boron (B) contained in the p-type silicon pillar 15 are in the non-doped layer 14 (see FIG. 2A). As a result of diffusion, the non-doped layer 14 disappears and a pn junction surface is formed.

次に、n型シリコン層12上に、ゲート電極21及びゲート絶縁膜22を覆い、ソース領域17に接続されるように、ソース電極23を形成する。一方、ウェーハ11wの下面上には、ウェーハ11wに接続されるようにドレイン電極24を形成する。ソース電極23及びドレイン電極24は例えば金属により形成する。その後、ウェーハ11wをダイシングし、複数のn型シリコン基板11に切り分ける。これにより、本実施形態に係る電力制御用半導体装置1が製造される。 Next, the source electrode 23 is formed on the n-type silicon layer 12 so as to cover the gate electrode 21 and the gate insulating film 22 and to be connected to the source region 17. On the other hand, a drain electrode 24 is formed on the lower surface of the wafer 11w so as to be connected to the wafer 11w. The source electrode 23 and the drain electrode 24 are made of metal, for example. Thereafter, the wafer 11 w is diced and cut into a plurality of n + type silicon substrates 11. Thereby, the power control semiconductor device 1 according to the present embodiment is manufactured.

このようにして製造された電力制御用半導体装置1においては、n型シリコン層12内において、p型シリコンピラー15と、n型シリコン層12におけるp型シリコンピラー15間の部分とが交互に配列されて、スーパージャンクション構造(SJ構造)が形成される。   In the power control semiconductor device 1 manufactured as described above, the p-type silicon pillars 15 and the portions between the p-type silicon pillars 15 in the n-type silicon layer 12 are alternately arranged in the n-type silicon layer 12. Thus, a super junction structure (SJ structure) is formed.

次に、本実施形態の作用効果について説明する。
図3は、横軸に位置をとり、縦軸に不純物濃度をとって、本実施形態に係る電力制御用半導体装置内における不純物濃度プロファイルを例示するグラフ図である。
なお、図3の横軸は、p型シリコンピラーの配列方向における位置を表している。また、図3の縦軸は、原点「0」を基準として、上側はアクセプタ(p型不純物)の濃度を表し、下側はドナー(n型不純物)の濃度を表している。後述する図5、図9、図11についても同様である。更に、図3に示す破線は図2(a)に示すA−A’線上のアクセプタ濃度及びドナー濃度を表し、一点鎖線は図2(b)に示すB−B’線上のアクセプタ濃度及びドナー濃度を表し、実線は図2(b)に示すB−B’線上の実効的な不純物濃度を表している。
Next, the effect of this embodiment is demonstrated.
FIG. 3 is a graph illustrating an impurity concentration profile in the power control semiconductor device according to the present embodiment, with the position on the horizontal axis and the impurity concentration on the vertical axis.
The horizontal axis in FIG. 3 represents the position in the arrangement direction of the p-type silicon pillars. The vertical axis of FIG. 3 represents the concentration of the acceptor (p-type impurity) on the upper side and the concentration of the donor (n-type impurity) on the lower side with respect to the origin “0”. The same applies to FIGS. 5, 9, and 11 to be described later. Further, the broken line shown in FIG. 3 represents the acceptor concentration and the donor concentration on the AA ′ line shown in FIG. 2A, and the alternate long and short dash line represents the acceptor concentration and the donor concentration on the BB ′ line shown in FIG. The solid line represents the effective impurity concentration on the line BB ′ shown in FIG.

図3に破線で示すように、不純物の拡散前、すなわち、図2(a)に示す工程においては、不純物濃度プロファイルは急峻であり、p型シリコンピラー15に含まれるアクセプタのピークと、n型シリコン層12に含まれるドナーのピークとは、ノンドープ層14を挟んで相互に離隔している。   As shown by a broken line in FIG. 3, before impurity diffusion, that is, in the step shown in FIG. 2A, the impurity concentration profile is steep, and the acceptor peak contained in the p-type silicon pillar 15 and the n-type The donor peaks contained in the silicon layer 12 are separated from each other across the non-doped layer 14.

そして、図3に一点鎖線で示すように、MOS構造の作製に伴う熱処理により、アクセプタ及びドナーはそれぞれ拡散し、ピークがブロードになる。しかしながら、拡散前におけるアクセプタ及びドナーのピークはノンドープ層14を挟んで相互に離隔していたため、それぞれがブロードになっても重なり合う領域は少なく、アクセプタの効果とドナーの効果との相殺は少ない。この結果、図3に実線で示すように、実効的なアクセプタ濃度及びドナー濃度を高く維持することができる。   Then, as indicated by the one-dot chain line in FIG. 3, the acceptor and the donor are diffused by the heat treatment accompanying the fabrication of the MOS structure, and the peak becomes broad. However, since the acceptor and donor peaks before diffusion are separated from each other with the non-doped layer 14 interposed therebetween, there are few overlapping regions even when each of them becomes broad, and there is little cancellation between the acceptor effect and the donor effect. As a result, as shown by a solid line in FIG. 3, the effective acceptor concentration and donor concentration can be kept high.

これにより、本実施形態に係る電力制御用半導体装置1においては、p型シリコンピラー15とn型シリコン層12との間のpn界面の不純物濃度プロファイルを急峻に保つことができるため、耐圧を高く維持することができる。また、n型シリコン層12における実効的なドナー濃度を高く維持することができるため、オン抵抗を低く保つことができる。更に、アクセプタとドナーの相殺を抑制することができるため、電力制御用半導体装置の微細化が容易になる。   Thereby, in the power control semiconductor device 1 according to the present embodiment, the impurity concentration profile at the pn interface between the p-type silicon pillar 15 and the n-type silicon layer 12 can be kept steep, so that the breakdown voltage is increased. Can be maintained. In addition, since the effective donor concentration in the n-type silicon layer 12 can be kept high, the on-resistance can be kept low. Furthermore, since cancellation of the acceptor and the donor can be suppressed, miniaturization of the power control semiconductor device is facilitated.

次に、本実施形態の比較例について説明する。
図4は、本比較例に係る電力制御用半導体装置の製造方法を例示する工程断面図であり、
図5は、横軸に位置をとり、縦軸に不純物濃度をとって、本比較例に係る電力制御用半導体装置内における不純物濃度プロファイルを例示するグラフ図である。
なお、図5に示す破線は図4に示すC−C’線上のアクセプタ濃度及びドナー濃度を表し、一点鎖線は拡散後のアクセプタ濃度及びドナー濃度をそれぞれ表し、実線は拡散後の実効的な不純物濃度を表している。
Next, a comparative example of this embodiment will be described.
FIG. 4 is a process cross-sectional view illustrating a method for manufacturing a power control semiconductor device according to this comparative example.
FIG. 5 is a graph illustrating the impurity concentration profile in the power control semiconductor device according to this comparative example, with the position on the horizontal axis and the impurity concentration on the vertical axis.
5 represents the acceptor concentration and the donor concentration on the CC ′ line shown in FIG. 4, the alternate long and short dash line represents the acceptor concentration and the donor concentration after diffusion, and the solid line represents an effective impurity after the diffusion. Represents the concentration.

本比較例においては、図1(a)に示すように、ウェーハ11w上に形成されたn型シリコン層12にトレンチ13を形成した後、図4に示すように、ノンドープ層14(図1(b)参照)を形成することなく、トレンチ13の内面上にp型のシリコンをエピタキシャル成長させて、トレンチ13内にp型シリコンピラー15を形成する。以後の製造方法は、前述の第1の実施形態と同様である。   In this comparative example, as shown in FIG. 1A, after forming the trench 13 in the n-type silicon layer 12 formed on the wafer 11w, as shown in FIG. 4, the non-doped layer 14 (FIG. Without forming b), p-type silicon is epitaxially grown on the inner surface of the trench 13 to form the p-type silicon pillar 15 in the trench 13. The subsequent manufacturing method is the same as that in the first embodiment.

図5に破線で示すように、本比較例においても、拡散前の不純物濃度プロファイルは急峻である。但し、ノンドープ層14(図1(b)参照)が設けられていないため、p型シリコンピラー15に含まれるアクセプタのピークと、n型シリコン層12に含まれるドナーのピークとは、相互に接している。   As indicated by a broken line in FIG. 5, the impurity concentration profile before diffusion is steep in this comparative example. However, since the non-doped layer 14 (see FIG. 1B) is not provided, the acceptor peak contained in the p-type silicon pillar 15 and the donor peak contained in the n-type silicon layer 12 are in contact with each other. ing.

そして、図5に一点鎖線で示すように、MOS構造の作製に伴う熱処理により、アクセプタ及びドナーはそれぞれ拡散し、ピークがブロードになる。これにより、アクセプタのピークとドナーのピークとが広い領域において重なり合い、アクセプタの効果とドナーの効果とが相殺される。この結果、図5に実線で示すように、p型シリコンピラー15における実効的なアクセプタ濃度及びn型シリコン層12における実効的なドナー濃度が減少するため、耐圧が低下する。また、n型シリコン層12における実効的なドナー濃度が減少することにより、オン抵抗が増加する。   Then, as shown by a one-dot chain line in FIG. 5, the acceptor and the donor are diffused by the heat treatment accompanying the fabrication of the MOS structure, and the peak becomes broad. Thereby, the acceptor peak and the donor peak overlap in a wide region, and the effect of the acceptor and the effect of the donor are offset. As a result, as shown by a solid line in FIG. 5, the effective acceptor concentration in the p-type silicon pillar 15 and the effective donor concentration in the n-type silicon layer 12 are reduced, so that the breakdown voltage is lowered. In addition, the on-resistance is increased by reducing the effective donor concentration in the n-type silicon layer 12.

次に、本発明の第2の実施形態について説明する。
図6(a)及び(b)、図7(a)及び(b)、図8(a)及び(b)は、本実施形態に係る電力制御用半導体装置の製造方法を例示する工程断面図である。
本実施形態に係る電力制御用半導体装置も、前述の第1の実施形態と同様に、SJ構造と縦形のMOSFETが形成された半導体チップである。
Next, a second embodiment of the present invention will be described.
FIGS. 6A and 6B, FIGS. 7A and 7B, and FIGS. 8A and 8B are process cross-sectional views illustrating a method for manufacturing a power control semiconductor device according to this embodiment. It is.
The power control semiconductor device according to the present embodiment is also a semiconductor chip in which an SJ structure and a vertical MOSFET are formed, as in the first embodiment.

先ず、図6(a)に示すように、n型の単結晶シリコンからなるウェーハ11wの上面上に、n型のシリコンをエピタキシャル成長させて、n型シリコン層32を形成する。n型シリコン層32のドナー濃度は、前述の第1の実施形態におけるn型シリコン層12(図1(a)参照)のドナー濃度よりも低い。次に、n型シリコン層32に、一方向に延びるトレンチ13を複数本形成する。 First, as shown in FIG. 6A, n type silicon layer 32 is formed by epitaxially growing n type silicon on the upper surface of wafer 11w made of n + type single crystal silicon. The donor concentration of the n -type silicon layer 32 is lower than the donor concentration of the n-type silicon layer 12 (see FIG. 1A) in the first embodiment described above. Next, a plurality of trenches 13 extending in one direction are formed in the n type silicon layer 32.

次に、図6(b)に示すように、トレンチ13の側面に対して、ドナー(n型不純物)を注入する。このドナーの注入は、n型シリコン層32の上面に垂直な方向に対して、トレンチ13の配列方向に例えば2.5〜3.5度傾斜した方向から行う。これにより、図7(a)に示すように、トレンチ13の側面にドナーが導入され、n型拡散層33が形成される。 Next, as shown in FIG. 6B, a donor (n-type impurity) is implanted into the side surface of the trench 13. The donor implantation is performed from a direction inclined by, for example, 2.5 to 3.5 degrees with respect to the arrangement direction of the trenches 13 with respect to the direction perpendicular to the upper surface of the n -type silicon layer 32. As a result, as shown in FIG. 7A, donors are introduced into the side surfaces of the trench 13 to form the n + -type diffusion layer 33.

次に、図7(b)に示すように、n型シリコン層32の上面をシリコン酸化膜(図示せず)により覆った上でCVDを行い、トレンチ13の内面上、すなわち、n型拡散層33上に、不純物を添加していないシリコンをエピタキシャル成長させる。これにより、n型拡散層33を覆うように、不純物が実質的に含まれていないノンドープ層14が形成される。 Next, as shown in FIG. 7B, the upper surface of the n -type silicon layer 32 is covered with a silicon oxide film (not shown), and then CVD is performed to form an n + -type on the inner surface of the trench 13. On the diffusion layer 33, silicon not doped with impurities is epitaxially grown. Thereby, the non-doped layer 14 substantially free of impurities is formed so as to cover the n + -type diffusion layer 33.

以後の製造方法は、前述の第1の実施形態と同様である。すなわち、図8(a)に示すように、ノンドープ層14上に、アクセプタとして例えばボロン(B)が添加されたシリコンがエピタキシャル成長させて、トレンチ13内にp型シリコンピラー15を埋設する。そして、CMPを行い、上面を平坦化する。次に、図8(b)に示すように、ベース領域16、ソース領域17、コンタクト領域18、ゲート電極21、ゲート絶縁膜22、ソース電極23及びドレイン電極24を形成する。これにより、電力用半導体装置2が製造される。本実施形態における上記以外の製造方法は、前述の第1の実施形態と同様である。   The subsequent manufacturing method is the same as that in the first embodiment. That is, as shown in FIG. 8A, silicon doped with, for example, boron (B) as an acceptor is epitaxially grown on the non-doped layer 14 to bury the p-type silicon pillar 15 in the trench 13. Then, CMP is performed to flatten the upper surface. Next, as shown in FIG. 8B, a base region 16, a source region 17, a contact region 18, a gate electrode 21, a gate insulating film 22, a source electrode 23, and a drain electrode 24 are formed. Thereby, the power semiconductor device 2 is manufactured. The manufacturing method other than the above in this embodiment is the same as that in the first embodiment.

次に、本実施形態の作用効果について説明する。
図9は、横軸に位置をとり、縦軸に不純物濃度をとって、本実施形態に係る電力制御用半導体装置内における不純物濃度プロファイルを例示するグラフ図である。
なお、図9に示す破線は図8(a)に示すD−D’線上のアクセプタ濃度及びドナー濃度を表し、一点鎖線は図8(b)に示すE−E’線上のアクセプタ濃度及びドナー濃度を表し、実線は図8(b)に示すE−E’線上の実効的な不純物濃度を表している。
Next, the effect of this embodiment is demonstrated.
FIG. 9 is a graph illustrating an impurity concentration profile in the power control semiconductor device according to this embodiment, with the position on the horizontal axis and the impurity concentration on the vertical axis.
9 represents the acceptor concentration and the donor concentration on the DD ′ line shown in FIG. 8A, and the alternate long and short dash line represents the acceptor concentration and the donor concentration on the EE ′ line shown in FIG. 8B. The solid line represents the effective impurity concentration on the line EE ′ shown in FIG.

図9に破線で示すように、不純物の拡散前、すなわち、図8(a)に示す工程においては、p型シリコンピラー15の配列方向に沿った不純物濃度プロファイルにおいて、p型シリコンピラー15に相当する位置にアクセプタのピークが存在し、n型拡散層33に相当する位置にドナーのピークが存在する。すなわち、1本のアクセプタのピークの両側にドナーのピークがそれぞれ形成される。また、拡散前の不純物濃度プロファイルは全体的に急峻であり、p型シリコンピラー15に含まれるアクセプタのピークと、n型拡散層33に含まれるドナーのピークとは、ノンドープ層14を挟んで相互に離隔している。 As shown by a broken line in FIG. 9, before impurity diffusion, that is, in the step shown in FIG. 8A, the impurity concentration profile along the arrangement direction of the p-type silicon pillar 15 corresponds to the p-type silicon pillar 15. The acceptor peak exists at a position corresponding to the n + -type diffusion layer 33, and the donor peak exists at a position corresponding to the n + -type diffusion layer 33. That is, donor peaks are formed on both sides of one acceptor peak. The impurity concentration profile before diffusion is generally steep, and the acceptor peak contained in the p-type silicon pillar 15 and the donor peak contained in the n + -type diffusion layer 33 sandwich the non-doped layer 14. They are separated from each other.

そして、本実施形態においても、前述の第1の実施形態と同様に、拡散前のアクセプタのピークとドナーのピークとが相互に離隔しているため、図9に一点鎖線で示すように、熱処理後においても、ピーク同士の重なり合いが少なく、アクセプタの効果とドナーの効果との相殺が少ない。これにより、図9に実線で示すように、実効的なアクセプタ濃度及びドナー濃度を高く維持することができる。この結果、本実施形態に係る電力制御用半導体装置2においても、耐圧を高く維持することができると共に、オン抵抗を低く保つことができる。   Also in this embodiment, since the acceptor peak and the donor peak before diffusion are separated from each other as in the first embodiment, the heat treatment is performed as shown by the one-dot chain line in FIG. Later, there is little overlap between peaks, and there is little cancellation between the acceptor effect and the donor effect. Thereby, as shown by a solid line in FIG. 9, the effective acceptor concentration and donor concentration can be maintained high. As a result, also in the power control semiconductor device 2 according to the present embodiment, the withstand voltage can be kept high and the on-resistance can be kept low.

また、本実施形態によれば、n型拡散層33を形成することにより、トレンチ13の側面に沿って電流経路を形成することができる。これにより、電力制御用半導体装置2のオン抵抗を低減することができる。更に、装置2の終端部の耐圧を確保するためには、終端部におけるエピタキシャル層の不純物濃度を低くすることが好ましいが、本実施形態においては、n型拡散層33を形成することにより、その分、n型シリコン層32の不純物濃度を低くすることができる。このため、セル部と終端部とでエピタキシャル層を作り分ける必要がなく、製造が容易である。 Further, according to the present embodiment, the current path can be formed along the side surface of the trench 13 by forming the n + -type diffusion layer 33. Thereby, the on-resistance of the power control semiconductor device 2 can be reduced. Furthermore, in order to ensure the breakdown voltage of the terminal portion of the device 2, it is preferable to lower the impurity concentration of the epitaxial layer in the terminal portion, but in this embodiment, by forming the n + -type diffusion layer 33, Accordingly, the impurity concentration of the n type silicon layer 32 can be lowered. For this reason, it is not necessary to make an epitaxial layer separately for the cell portion and the terminal portion, and the manufacturing is easy.

次に、第2の実施形態の変形例について説明する。
図10は、本変形例に係る電力制御用半導体装置の製造方法を例示する工程断面図であり、
図11は、横軸に位置をとり、縦軸に不純物濃度をとって、本変形例に係る電力制御用半導体装置内における不純物濃度プロファイルを例示するグラフ図である。
なお、図11に示す破線は不純物拡散前のアクセプタ濃度及びドナー濃度を表し、一点鎖線は拡散後のアクセプタ濃度及びドナー濃度を表し、実線は拡散後の実効的な不純物濃度を表している。
Next, a modification of the second embodiment will be described.
FIG. 10 is a process cross-sectional view illustrating a method for manufacturing a power control semiconductor device according to this variation.
FIG. 11 is a graph illustrating an impurity concentration profile in the power control semiconductor device according to this modification, with the position on the horizontal axis and the impurity concentration on the vertical axis.
In addition, the broken line shown in FIG. 11 represents the acceptor density | concentration and donor density | concentration before impurity diffusion, the dashed-dotted line represents the acceptor density | concentration and donor density | concentration after diffusion, and the continuous line represents the effective impurity density | concentration after diffusion.

先ず、図6(a)〜図7(a)に示す方法により、ウェーハ11wの上面上にn型シリコン層32を形成し、n型シリコン層32にトレンチ13を複数本形成する。そして、トレンチ13の側面に対してドナーを注入することにより、トレンチ13の側面にn型拡散層33を形成する。 First, an n -type silicon layer 32 is formed on the upper surface of the wafer 11 w and a plurality of trenches 13 are formed in the n -type silicon layer 32 by the method shown in FIGS. 6 (a) to 7 (a). Then, an n + -type diffusion layer 33 is formed on the side surface of the trench 13 by injecting a donor into the side surface of the trench 13.

次に、図10に示すように、熱処理を行う。これにより、n型拡散層33に含有されていたドナーの一部が、n型シリコン層32内に拡散する。以後の製造方法は、図7(b)〜図8(b)に示す方法と同様である。 Next, heat treatment is performed as shown in FIG. Thereby, a part of the donor contained in the n + -type diffusion layer 33 diffuses into the n -type silicon layer 32. The subsequent manufacturing method is the same as the method shown in FIGS. 7B to 8B.

図11に示すように、本変形例によれば、トレンチ13の側面にn型拡散層33を形成した後、熱処理を行うことにより、n型拡散層33に含まれていたドナーの一部がn型シリコン層32内に拡散する。これにより、ドナーのピークがトレンチ13から離隔する方向に移動する。そして、その後、トレンチ13内にp型シリコンピラー15を埋設することにより、ドナーのピークとアクセプタのピークとをより一層離隔させることができる。この結果、熱拡散後の実効的な不純物濃度を、より高く維持することができる。本変形例における上記以外の製造方法及び作用効果は、前述の第2の実施形態と同様である。 As shown in FIG. 11, according to this modified example, after forming the n + -type diffusion layer 33 on the side surfaces of the trenches 13, by heat treatment, n + -type diffusion layer of the donor that were included in the 33 one Part diffuses into the n -type silicon layer 32. As a result, the donor peak moves away from the trench 13. Then, by embedding the p-type silicon pillar 15 in the trench 13, the donor peak and the acceptor peak can be further separated. As a result, the effective impurity concentration after thermal diffusion can be maintained higher. The manufacturing method and operational effects other than those described above in the present modification are the same as those in the second embodiment described above.

以上、実施形態及びその変形例を参照して本発明を説明したが、本発明はこれらの実施形態及びその変形例に限定されるものではない。例えば、前述の各実施形態及びその変形例に対して、当業者が適宜、構成要素の追加、削除若しくは設計変更を行ったもの、又は、工程の追加、省略若しくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含有される。   As mentioned above, although this invention was demonstrated with reference to embodiment and its modification, this invention is not limited to these embodiment and its modification. For example, for each of the above-described embodiments and modifications thereof, a person skilled in the art appropriately added, deleted, or changed a design, or added a process, omitted, or changed a condition. As long as the gist of the present invention is provided, it is included in the scope of the present invention.

例えば、前述の各実施形態及びその変形例においては、第1の導電型をn型、第2の導電型をp型として説明したが、本発明は第1の導電型をp型、第2の導電型をn型としても実施可能である。また、n型シリコン基板11とn型シリコン層12との間に、不純物濃度がn型シリコン層12の不純物濃度よりも低いn型バッファ層を設けてもよい。更に、前述の各実施形態及びその変形例においては、プレナー型MOSゲート構造を持つ半導体チップを例に挙げて説明したが、本発明に係る半導体チップは、トレンチ型MOSゲート構造(UMOS構造)を用いても実施可能である。更にまた、前述の各実施形態及びその変形例においては、半導体としてシリコン(Si)を用いる例を示したが、半導体には例えば、シリコンカーバイト(SiC)若しくは窒化ガリウム(GaN)等の化合物半導体、又は、ダイアモンド等のワイドバンドギャップ半導体を用いることもできる。 For example, in each of the above-described embodiments and modifications thereof, the first conductivity type is described as n-type and the second conductivity type is defined as p-type. However, the present invention describes that the first conductivity type is p-type and second It is also possible to use n type conductivity. Further, an n -type buffer layer having an impurity concentration lower than that of the n-type silicon layer 12 may be provided between the n + -type silicon substrate 11 and the n-type silicon layer 12. Furthermore, in each of the above-described embodiments and modifications thereof, the semiconductor chip having a planar MOS gate structure has been described as an example. However, the semiconductor chip according to the present invention has a trench MOS gate structure (UMOS structure). It can be implemented even if it is used. Furthermore, in each of the above-described embodiments and modifications thereof, an example in which silicon (Si) is used as a semiconductor has been shown. For example, a compound semiconductor such as silicon carbide (SiC) or gallium nitride (GaN) is used as the semiconductor Alternatively, a wide band gap semiconductor such as diamond can be used.

(a)及び(b)は、本発明の第1の実施形態に係る電力制御用半導体装置の製造方法を例示する工程断面図である。(A) And (b) is process sectional drawing which illustrates the manufacturing method of the semiconductor device for electric power control which concerns on the 1st Embodiment of this invention. (a)及び(b)は、第1の実施形態に係る電力制御用半導体装置の製造方法を例示する工程断面図である。FIGS. 5A and 5B are process cross-sectional views illustrating the method for manufacturing the power control semiconductor device according to the first embodiment. FIGS. 横軸に位置をとり、縦軸に不純物濃度をとって、第1の実施形態に係る電力制御用半導体装置内における不純物濃度プロファイルを例示するグラフ図である。FIG. 6 is a graph illustrating an impurity concentration profile in the power control semiconductor device according to the first embodiment, with the horizontal axis representing the position and the vertical axis representing the impurity concentration. 第1の実施形態の比較例に係る電力制御用半導体装置の製造方法を例示する工程断面図である。11 is a process cross-sectional view illustrating a method for manufacturing the power control semiconductor device according to the comparative example of the first embodiment; FIG. 横軸に位置をとり、縦軸に不純物濃度をとって、比較例に係る電力制御用半導体装置内における不純物濃度プロファイルを例示するグラフ図である。FIG. 11 is a graph illustrating an impurity concentration profile in a power control semiconductor device according to a comparative example, with the position on the horizontal axis and the impurity concentration on the vertical axis. (a)及び(b)は、本発明の第2の実施形態に係る電力制御用半導体装置の製造方法を例示する工程断面図である。(A) And (b) is process sectional drawing which illustrates the manufacturing method of the semiconductor device for electric power control which concerns on the 2nd Embodiment of this invention. (a)及び(b)は、第2の実施形態に係る電力制御用半導体装置の製造方法を例示する工程断面図である。(A) And (b) is process sectional drawing which illustrates the manufacturing method of the semiconductor device for electric power control which concerns on 2nd Embodiment. (a)及び(b)は、第2の実施形態に係る電力制御用半導体装置の製造方法を例示する工程断面図である。(A) And (b) is process sectional drawing which illustrates the manufacturing method of the semiconductor device for electric power control which concerns on 2nd Embodiment. 横軸に位置をとり、縦軸に不純物濃度をとって、第2の実施形態に係る電力制御用半導体装置内における不純物濃度プロファイルを例示するグラフ図である。FIG. 10 is a graph illustrating an impurity concentration profile in the power control semiconductor device according to the second embodiment, with the position on the horizontal axis and the impurity concentration on the vertical axis. 第2の実施形態の変形例に係る電力制御用半導体装置の製造方法を例示する工程断面図である。FIG. 10 is a process cross-sectional view illustrating a method for manufacturing a power control semiconductor device according to a variation of the second embodiment. 横軸に位置をとり、縦軸に不純物濃度をとって、第2の実施形態の変形例に係る電力制御用半導体装置内における不純物濃度プロファイルを例示するグラフ図である。FIG. 10 is a graph illustrating an impurity concentration profile in a power control semiconductor device according to a modification of the second embodiment, with the horizontal axis representing the position and the vertical axis representing the impurity concentration.

符号の説明Explanation of symbols

1、2 電力制御用半導体装置、11 n型シリコン基板、11w ウェーハ、12 n型シリコン層、13 トレンチ、14 ノンドープ層、15 p型シリコンピラー、16 ベース領域、17 ソース領域、18 コンタクト領域、21 ゲート電極、22 ゲート絶縁膜、23 ソース電極、24 ドレイン電極、32 n型シリコン層、33 n型拡散層 1, 2 power control semiconductor device, 11 n + type silicon substrate, 11w wafer, 12 n type silicon layer, 13 trench, 14 non-doped layer, 15 p type silicon pillar, 16 base region, 17 source region, 18 contact region, 21 gate electrode, 22 gate insulating film, 23 source electrode, 24 drain electrode, 32 n type silicon layer, 33 n + type diffusion layer

Claims (5)

第1導電型の半導体層に複数本のトレンチを形成する工程と、
前記トレンチの側面上に、不純物が実質的に含まれていないノンドープ層を形成する工程と、
前記トレンチの内部に第2導電型の半導体ピラーを形成する工程と、
を備えたことを特徴とする電力制御用半導体装置の製造方法。
Forming a plurality of trenches in the first conductivity type semiconductor layer;
Forming a non-doped layer substantially free of impurities on the side surface of the trench;
Forming a second conductivity type semiconductor pillar inside the trench;
A method for manufacturing a power control semiconductor device, comprising:
前記ノンドープ層は、不純物を実質的に含まない半導体材料を前記トレンチの側面上にエピタキシャル成長させることにより形成することを特徴とする請求項1記載の電力制御用半導体装置の製造方法。   2. The method of manufacturing a power control semiconductor device according to claim 1, wherein the non-doped layer is formed by epitaxially growing a semiconductor material substantially free of impurities on a side surface of the trench. 前記ノンドープ層を形成する工程の前に、前記トレンチの側面に対して第1導電型不純物を注入する工程をさらに備えたことを特徴とする請求項1または2に記載の電力制御用半導体装置の製造方法。   3. The power control semiconductor device according to claim 1, further comprising a step of injecting a first conductivity type impurity into a side surface of the trench before the step of forming the non-doped layer. Production method. 前記第1導電型不純物を注入する工程と前記ノンドープ層を形成する工程との間に、注入された前記第1導電型不純物を拡散させる工程をさらに備えたことを特徴とする請求項3記載の電力制御用半導体装置の製造方法。   4. The method according to claim 3, further comprising a step of diffusing the implanted first conductivity type impurity between the step of implanting the first conductivity type impurity and the step of forming the non-doped layer. A method of manufacturing a power control semiconductor device. 前記半導体層は第1導電型の半導体基板上に形成されたものであり、
前記半導体ピラーの上端部に第2導電型の拡散領域を形成する工程と、
前記第2導電型の拡散領域の内部に第1導電型の拡散領域を形成する工程と、
前記半導体層上に制御電極を形成する工程と、
前記半導体基板の下面上に前記半導体基板に接続される第1の主電極を形成する工程と、
前記半導体層上に前記第1導電型の拡散領域に接続される第2の主電極を形成する工程と、
をさらに備えたことを特徴とする請求項1〜4のいずれか1つに記載の電力制御用半導体装置の製造方法。
The semiconductor layer is formed on a first conductivity type semiconductor substrate,
Forming a diffusion region of a second conductivity type at the upper end of the semiconductor pillar;
Forming a first conductivity type diffusion region inside the second conductivity type diffusion region;
Forming a control electrode on the semiconductor layer;
Forming a first main electrode connected to the semiconductor substrate on a lower surface of the semiconductor substrate;
Forming a second main electrode connected to the diffusion region of the first conductivity type on the semiconductor layer;
The method for manufacturing a power control semiconductor device according to claim 1, further comprising:
JP2008272418A 2008-10-22 2008-10-22 Method of manufacturing semiconductor device for power control Pending JP2010103260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008272418A JP2010103260A (en) 2008-10-22 2008-10-22 Method of manufacturing semiconductor device for power control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008272418A JP2010103260A (en) 2008-10-22 2008-10-22 Method of manufacturing semiconductor device for power control

Publications (1)

Publication Number Publication Date
JP2010103260A true JP2010103260A (en) 2010-05-06

Family

ID=42293665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008272418A Pending JP2010103260A (en) 2008-10-22 2008-10-22 Method of manufacturing semiconductor device for power control

Country Status (1)

Country Link
JP (1) JP2010103260A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064660A (en) * 2010-09-14 2012-03-29 Denso Corp Method of manufacturing semiconductor device
CN102403224A (en) * 2010-09-07 2012-04-04 上海华虹Nec电子有限公司 Manufacturing method for super-junction VDMOS (vertical diffused metal oxide semiconductor) with transverse P-I-N structure
JP2016213474A (en) * 2015-05-12 2016-12-15 インフィネオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG Processing of semiconductor wafer
JP2019165166A (en) * 2018-03-20 2019-09-26 株式会社デンソー Silicon carbide semiconductor device and method of manufacturing the same
WO2020021298A1 (en) * 2018-07-27 2020-01-30 日産自動車株式会社 Semiconductor device and manufacturing method therefor
CN111180522A (en) * 2018-11-09 2020-05-19 英飞凌科技奥地利有限公司 Semiconductor device having super junction and silicon-on-oxide layer
US11721732B2 (en) 2021-08-18 2023-08-08 Kabushiki Kaisha Toshiba Semiconductor device with control electrodes provided in trenches of different widths

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102403224A (en) * 2010-09-07 2012-04-04 上海华虹Nec电子有限公司 Manufacturing method for super-junction VDMOS (vertical diffused metal oxide semiconductor) with transverse P-I-N structure
JP2012064660A (en) * 2010-09-14 2012-03-29 Denso Corp Method of manufacturing semiconductor device
JP2016213474A (en) * 2015-05-12 2016-12-15 インフィネオン テクノロジーズ アクチエンゲゼルシャフトInfineon Technologies AG Processing of semiconductor wafer
US9859362B2 (en) 2015-05-12 2018-01-02 Infineon Technologies Austria Ag Processing a semiconductor wafer
JP2019165166A (en) * 2018-03-20 2019-09-26 株式会社デンソー Silicon carbide semiconductor device and method of manufacturing the same
JP7127315B2 (en) 2018-03-20 2022-08-30 株式会社デンソー Silicon carbide semiconductor device and manufacturing method thereof
WO2020021298A1 (en) * 2018-07-27 2020-01-30 日産自動車株式会社 Semiconductor device and manufacturing method therefor
JPWO2020021298A1 (en) * 2018-07-27 2021-08-19 日産自動車株式会社 Semiconductor devices and their manufacturing methods
CN111180522A (en) * 2018-11-09 2020-05-19 英飞凌科技奥地利有限公司 Semiconductor device having super junction and silicon-on-oxide layer
CN111180522B (en) * 2018-11-09 2024-10-18 英飞凌科技奥地利有限公司 Semiconductor device having superjunction and silicon-on-oxygen layer
US11721732B2 (en) 2021-08-18 2023-08-08 Kabushiki Kaisha Toshiba Semiconductor device with control electrodes provided in trenches of different widths

Similar Documents

Publication Publication Date Title
JP4825424B2 (en) Power semiconductor device
JP4068597B2 (en) Semiconductor device
WO2017145595A1 (en) Compound semiconductor device and production method for same
US20060216896A1 (en) Semiconductor device and method for manufacturing same
JP2017092368A (en) Semiconductor device and semiconductor device manufacturing method
JP5145694B2 (en) Manufacturing method of SiC semiconductor vertical MOSFET.
JP2011142269A (en) Manufacturing method of semiconductor device and semiconductor device
US9099342B2 (en) Transistor and method for manufacturing same
JP2014146666A (en) Semiconductor device
JP6189045B2 (en) Manufacturing method of semiconductor device
JP2011124464A (en) Semiconductor device and method for manufacturing the same
JP2010103260A (en) Method of manufacturing semiconductor device for power control
JP6651894B2 (en) Compound semiconductor device and method of manufacturing the same
JP2018022854A (en) Semiconductor device and semiconductor device manufacturing method
KR20160018322A (en) Method for manufacturing semiconductor device
TWI534910B (en) Method of manufacturing semiconductor device
JP5098293B2 (en) Insulated gate type semiconductor device using wide band gap semiconductor and manufacturing method thereof
JP2018206872A (en) Semiconductor device
JP6125568B2 (en) Optimization layer for semiconductors
JP2012195541A (en) Semiconductor substrate and method of manufacturing semiconductor device
JP2010045203A (en) Semiconductor chip and method of manufacturing the same
JP2023000187A (en) Semiconductor device and method for manufacturing the same
JP2012195394A (en) Method of manufacturing semiconductor device
JP7120886B2 (en) Method for manufacturing switching element
JP2010199424A (en) Semiconductor device, and manufacturing method of the same