JP2010101989A - ディスプレイ装置 - Google Patents

ディスプレイ装置 Download PDF

Info

Publication number
JP2010101989A
JP2010101989A JP2008271695A JP2008271695A JP2010101989A JP 2010101989 A JP2010101989 A JP 2010101989A JP 2008271695 A JP2008271695 A JP 2008271695A JP 2008271695 A JP2008271695 A JP 2008271695A JP 2010101989 A JP2010101989 A JP 2010101989A
Authority
JP
Japan
Prior art keywords
light
light guide
display device
color
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008271695A
Other languages
English (en)
Inventor
Narumasa Yamagishi
成多 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008271695A priority Critical patent/JP2010101989A/ja
Publication of JP2010101989A publication Critical patent/JP2010101989A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

【課題】バックライト用光源にLED等の固体光源を用いた、液晶パネル等の透過型変調素子によるディスプレイ装置において、光源からの光を効率よく用いることで消費電力を最小限に抑えることが可能となるディスプレイ装置を提供することを目的とする。
【解決手段】LED光源100、101、102から出射された光は、光源側導光板103内を全反射を繰り返して進み、フレネルレンズ105に入射したのち、平行光となって画像表示部側導光板106に入射し、出射開口面106aと背面106bの間で全反射が繰り返される内に、導光板106内のくさび状の凹部106cの45度の傾斜を持つ斜面106dで全反射せしめられ、出射開口面106aから出射される。
【選択図】図1

Description

本発明はバックライト装置を備えた透過型変調素子によるディスプレイ装置、特にバックライト用光源にLED等の固体光源を用いたディスプレイ装置に関する。
従来、バックライト装置を備えた液晶パネル等の透過型変調素子によるディスプレイ装置は、バックライト用光源に白色光を発する冷陰極管(FLC)を用いていた。
透過型変調素子である液晶パネルは、色信号毎に異なる波長帯の光を透過し、他の波長帯の光は吸収するカラーフィルターを備えている。液晶パネルは多数の画素開口が2次元的に配列されており、各開口を透過する光を変調することで画像表示を行っている。
近年、バックライト用光源として、小型のものは白色のLED(light emitting diode)、大型のものはR(赤)、G(緑)、B(青)の各色光を発するLEDを用いたものが商品化されている。
前者は小型化が可能なためモバイル機器搭載用として用いられ、後者は従来の冷陰極管のものよりも色再現性が優れた点を訴求点として、モニター用途やテレビ、プロジェクタ用途に用いられている。
従来の透過型変調素子では、前述の様に透過すべき波長帯の光のみを透過するが、他の光を吸収し最終的には熱になる。即ち、光源に投入される電力のおよそ2/3はロスされていることとなる。特にバックライト光源に冷陰極管に比べて発光効率の劣るLEDを使用する場合にはその改善が求められている。
この課題を鑑み、特許文献1に示す画像表示装置が提案されている。この例では、白色光を発する光源からの光を導光板で導いた後、回折格子で色毎に分離した光を、2枚のマイクロレンズアレイを通して、多数の画素開口が2次元的に配列された画素表示素子のR、G、B毎の各色に相当する開口に光を導くとしている。
また、ここにある2枚のマイクロレンズによる導光原理は特許文献2で提案されているものである。
特開平11−258604号公報 特開昭58−134627号公報
上記特許文献1に示される構成では、光路を通る光もあると思われるが、先に述べた白色光をカラーフィルターで色選択するものに比べて必ずしも発光効率が改善されるとは言えない。
その理由は、光源の発光スペクトルが連続成分を持つ場合、回折格子で分離すると虹色に色分離されるが、その位置は画像表示素子のR、G、Bの開口(同間隔)位置とは必ずしも一致せず、また、導光板から回折格子に入射する光は拡散光、あるいはそれに近い光であるから、マイクロレンズで画素開口上に集光しきれず漏れ光となり、隣の画素に入射し混色し、目的の色分離は得られないためである。
本発明は、上記課題を解決するもので、バックライト用光源にLED等の固体光源を用いた、液晶パネル等の透過型変調素子によるディスプレイ装置において、光源からの光を効率よく用いることで消費電力を最小限に抑えることが可能となるディスプレイ装置を提供することを目的とする。
本発明にかかるディスプレイ装置は、色毎に独立して透過する光量を制御可能な開口が多数2次元に配列された画像表示素子と、凸レンズの作用を持つマイクロレンズを表裏1対として多数2次元的に配置して成る色分離光学系と、異なる色光毎に主光線を異なる角度で前記色分離光学系へ導光入射せしめる照明光学系と、異なる色光を発する各色用光源で構成される光源部とからなり、前記照明光学系は前記色分離光学系の入射側背面に配置された第1の導光部と、前記光源部に近接する側の第2の導光部とからなり、前記第1の導光部と前記第2の導光部間には、前記第2の導光部からの光の進行方向に対し直交する方向において前記第1の導光部の断面を見た際の長手方向について前記主光線を平行化するテレセントリック光学系が配置されてなることを特徴として構成される。
また、前記光源部からの出射光光路上において、前記第2の導光部に入射する際に、各色光毎にレンズ作用を有する光学素子が設けられていることを特徴としても構成出来る。この光学素子は光線高の高い光線について収差を利用して光線密度を上げるFθレンズの機能を有している、あるいは前記各色用光源出射面と前記第2の導光部間には、前記各色用光源からの配光特性を改善する光拡散素子が配置されていることを特徴として構成される。
前記各色用光源のうち、システム光軸上にない光源は、出射光がシステム光軸側に寄るように傾けて配置されるように構成される。
前記各色用光源は、複数の発光部が近接して配置されていることが望ましく、また、同一発光色の光源が複数近接して配置、構成されて成るようにしてもよい。
前記画像表示素子の各開口には、変調する色光のみを選択透過できるフィルターが備えられていることが望ましい。
また、前記第1の導光部と前記第2の導光部間に配置された前記テレセントリック光学系は、フレネルレンズであることが望ましく、前記第1の導光部と前記第2の導光部間に配置されたテレセントリック光学系は、光の進行方向に対し直交する方向において、前記光源までの距離と同等の長さの焦点距離を有する光学素子であることを特徴として構成できる。
また、前記第1の導光部および第2の導光部は、それぞれ矩形の平板形状を有し、前記第2の導光部の1端面側に前記光源部が配置され、前記光源部側端面と対向する端面側にテレセントリック光学系を挟んで前記第1の導光部が前記第2の導光部と平面的に並べて配置されてなる。
また、前記第1の導光部および第2の導光部は、それぞれ矩形の平板形状を有し、前記第2の導光部の1端面側に前記光源部が配置され、前記第1の導光部が前記第2の導光部と空気間隔を隔て平行に重ねて配置されてもよい。
第1の導光部および第2の導光部は、それぞれ所定の厚さを有し、前記第2の導光部の厚さは、前記第1の導光部の厚さよりも厚く設定されたことを特徴としても構成される。
また、前記第1の導光部または前記第2の導光部の端部に、光路を折り返す斜面を有する三角断面形状のプリズムが配置されていることを特徴としても構成される。
また、前記第1の導光部は光の入射側端部に光路を折り返す斜面を有していることを特徴として構成される。
また、前記テレセントリック光学系出射部に前記プリズムが近接配置されていることを特徴とする。
さらに、重ねて配置された前記第1の導光部と第2の導光部間には遮光材料が配置されていることを特徴として構成してもよい。
また、前記第1の導光部は端面から入射した光のうち、前記画像表示素子の色光に対応する開口のうち同一の色光を扱う開口の配列方向に相当する方向では反射し、進行方向を略90度変更されるよう構成され、かつ、画像表示素子の色光に対応する開口のうち同一の色光を扱う開口の配列方向に直交する方向では、光の進行に作用を与えない構成を有している。
また、前記各色用光源は、類似の配光特性を有していることが望ましい。
また、前記各色用光源からの出射角を制御するためのスリットが、前記第2の導光部の光源側端面からシステム光軸と平行に設けられていることを特徴として構成されている。
また、前記各色用光源は、発光ダイオード(LED)であることを特徴として構成出来る。さらには、その表面にフォトニック結晶層を備えてなることで構成することが望ましい。
また、前記第1の導光部と前記画像表示素子間には、λ/4板、反射型偏光板が備えられており、前記反射型偏光板が透過する光の偏光方向が、前記画像表示素子が変調に用いる光の偏光方向と一致することを特徴として構成される、あるいは、前記テレセントリック光学系と前記第1の導光部の間にPBS(偏光ビームスプリッタ)が配置されており、前記テレセントリック光学系から出射された光は前記PBSに入射、そのうちP偏光成分は前記PBSの第1の反射面を透過し前記第1の導光部に入射、S偏光成分は前記第1の反射面で反射され、前記第1の反射面と平行に設けられた第2の反射面で反射され、前記第1の導光部との間に設けられたλ/2板に入射して偏光方向を90°変換された後、前記第1の導光部に入射するよう構成されてなる。
または、前記プリズムと前記第1の導光部の間にPBSが配置されており、前記プリズムから出射された光は前記PBSに入射、そのうちS偏光成分は前記PBSの第1の反射面で反射されて前記第1の導光部端面に入射、P偏光成分は前記第1の反射面を透過し、前記第1の反射面と平行に設けられた第2の反射面で反射され、前記第1の導光部との間に設けられたλ/2板に入射して偏光方向を90°変換された後、前記第1の導光部に入射するよう構成されている。
または、前記各色用光源と前記第2の導光部の間にPBSが色毎に配置されており、前記PBSに対しP偏光成分は透過し前記第2の導光部に入射、前記PBSに対しS偏光成分は反射されたのち、前記PBS反射面と平行に設けられた反射面で反射され、前記第2の導光部に入射する。
しかも、前記PBSと前記第2の導光部の間にはλ/2板が設けられており、前記λ/2板を透過する光は偏光方向を90°変換されるよう構成されていることを特徴とする。
さらには、前記PBSの入射面および反射面と直交する面においても平滑な面が形成されており、全反射可能である構成とする。
また、前記各色用光源は、レーザー光源と光拡散手段とからなることを特徴として構成でき、この光拡散手段はDOE素子であることで構成できる。
本発明によれば、バックライト用光源にLED等の固体光源を用いた、液晶パネル等の透過型変調素子によるディスプレイ装置において、光源からの光を効率よく用いることで消費電力を最小限に抑えることが可能となる。これによって、白色光源からの光に対しカラーフィルターで色表示する従来装置に対し、理想的には約3倍の光利用効率が実現できる。
それと同時に、液晶パネル等の透過型変調素子によるディスプレイ装置に求められる「薄型」の本質的効果を合わせて実現することができる。
以下、本発明にかかるディスプレイ装置の実施の形態について、図1〜図15を用いて説明する。
(実施の形態1)
図1は本発明の第1の実施の形態によるディスプレイ装置の全体構成図で、図1(a)は断面図、図1(b)は平面図である。図2は画像表示部側導光板の詳細図で、図2(a)は断面図、図2(b)は斜視図である。図3は液晶表示部周辺の構成断面図である。
図において、ディスプレイ装置には、光源として、赤(R)、緑(G)、青(B)光を発するLED光源100、101、102が配置されている。
LED光源100、101、102の発光側前面にわずかな間隙を持って、板状で矩形の光源側導光板103の1端面が近接して配置されている。
光源側導光板103の光源側端面と対向する端面側には画像表示部側導光板106が端面同士を向かい合わせるように平面的に並べて配置されるとともに、光源側導光板103と画像表示部側導光板106の間にはフレネルレンズ105が配置されている。
そして、画像表示部側導光板106に平面的に重なるように、画像表示部111が配置されている。
また、107はシステム光軸、108は有効表示領域である。
なお、システム光軸とは、光学システムを構成する光源やレンズ等の光学部品を通る主光線が形成する軸のことを指す。また、有効表示領域108は画像表示面に相当する領域を示す。
光源側導光板103と画像表示部側導光板106の材料は、樹脂あるいはガラスといった高屈折率材料から形成されている。
以上のように構成された本実施の形態のディスプレイ装置について、以下、その動作を説明する。
LED光源100、101、102から出射された光のうち、光源側導光板103の、光の進行方向に対し直交する方向の断面の短辺方向の光は、導光板内を全反射を繰り返して進み、光源側導光板103の上記断面の長辺方向の光は導光板内で反射されることなく進行し、光源側導光板103の端面103aに設けられたフレネルレンズ105に入射する。
このフレネルレンズ105は、LED光源100、101、102のうち、中央に配置されるLED光源101の発光面までの距離に相当する焦点距離を有している。よって、LED光源101から出射された光は、図1(b)に示すように、フレネルレンズ105に入射したのち、平行光となって画像表示部側導光板106に入射する。
また、LED光源100から出射された光は、フレネルレンズ105の光軸から偏芯した位置に配置されていることになるので、フレネルレンズ105から出射される際は、LED光源101からの光同様平行光にはなるが、LED光源101から出射された光とは異なった角度の入射角を持つ関係となる。
LED光源102についても、LED光源101を通るシステム光軸107に対し偏芯した位置にあることから、LED光源100に対する作用と同様のことが言える。
なお、ここでシステム光軸とは、光学システムを構成する光源やレンズ等の光学部品を通る主光線が形成する軸のことを指す。
すなわち、フレネルレンズ105は、LED光源100、101、102からの出射光に対しテレセントリック光学系となっている。
ただし、上記フレネルレンズ105の作用は、LED光源100、101、102から出射された光のうち、光源側導光板103の断面長辺方向の光に対する作用であり、光源側導光板103の断面短辺方向の光は、導光板内を全反射を繰り返して進んでフレネルレンズ105に至るが、フレネルレンズ105の作用を受けることなく、画像表示部側導光板106に入射する。
これらの光は、光源側導光板103内を全反射を繰り返して進み、フレネルレンズ105出射後は大きな角度で発散するので、フレネルレンズ105と画像表示部側導光板106は最小限の空気間隔を持って配置される。
また、同様の理由から、画像表示部側導光板106の板厚を光源側導光板103の板厚よりも厚く設定することが望ましい。
即ち、フレネルレンズ105は、通常レンズでいうと、導光板出射端面103aの長手方向に曲率(R)を持ち、導光板出射端面103aの短辺方向にパワーを持たないバイコニックレンズ(あるいはシリンドリカルレンズとも言う)である。
ここでフレネルレンズとしたのは、先に述べた様に、画像表示部側導光板106との空気間隔を最小限にして、かつ、上記導光板出射端面103aの長辺方向のテレセントリック性を維持することから採用されている。
画像表示部側導光板106は、図2に示すように、画像表示素子の同じ色信号で駆動される画素の配列方向において、開口面積が画像表示部111の有効面積を包括する出射開口面106aと、出射開口面106aと対向する背面106bとを有し、背面106bにはくさび状の凹部106cが設けられている。
画像表示部側導光板106に入射した光は、出射開口面106aと背面106bの間で全反射が繰り返される内に、くさび状の凹部106cの45度の傾斜を持つ斜面106dで全反射せしめられ、出射開口面106aから出射される。
このくさび状の凹部106cは、図2に示すように、導光板断面の長手方向にパワーを持たない形状となっていて、背面106b上に離散的に設けられている。
本発明において、画像表示部側導光板106に求められる機能は、図1(a)の画像表示部111の方向には90度光路を変更しながらも、図1(b)に示す平面方向、即ち画像表示部の色分離方向については影響を与えない(各色光の入射角の違いを維持できる)ことが求められる。
よって、入射光の強度分布によっては、45度の傾斜を持つ斜面106dの角度を場所によって最適化する、凹部106cの配置を部分的に密にする、あるいは疎にするということも必要になると考えられる。
画像表示部111は、図3に示すように、画像表示部側導光板106の出射開口面106aからの光の入射側から、マイクロレンズアレイ112、入射側偏光板113、液晶パネルユニット114、出射側偏光板115、拡散層116の順に重ねられるように構成されている。
マイクロレンズアレイ112は、入射側、出射側に対になって、凸レンズの作用を持つ多数のマイクロレンズが備えられている。マイクロレンズは、液晶パネルユニット114の表示画素のうち、R、G、Bの組に対応する数だけ2次元的に配列されている。
このうち、出射側マイクロレンズ112bは、入射側マイクロレンズ112aの主点位置に焦点位置を持つように設定されており、入射側マイクロレンズ112aは、出射側マイクロレンズ112bと合成した系において、焦点位置が液晶パネルユニット114の画素開口部に相当するように設計されている。
このマイクロレンズアレイ112によって、LED光源100、101、102からの光は、液晶パネルユニット114の画素開口部(図示せず)に集光する。これは画素開口部にLED光源の発光体像を形成することを意味する。
即ち、青色光源の発光体像は青の色信号によって制御される画素開口部に、緑色光源の発光体像は緑の色信号によって制御される画素開口部に、赤色光源の発光体像は赤の色信号によって制御される画素開口部に形成されるように設定されている。
ただし、画像表示部側導光板106から出射される光は、画像表示素子の異なる色光を表示する画素方向については色毎に制御された光になっているが、同一色を表示する画素方向については分離制御されていないので、画素開口部に形成される光源像はこの方向については制御できず、連続した線状の像となる。
よって、マイクロレンズアレイ112を形成する入射側マイクロレンズ112aと、出射側マイクロレンズ112bを形成する各レンズは、2次元方向でパワーを持つ必要はなく、図4の斜視図に示すように、液晶パネルユニット114の同一の色によって制御される画素開口方向にはパワーを持たない、かまぼこ状の形状のマイクロレンチキュラーレンズの集合体で形成することが出来る。
なお、球状レンズで形成することも出来るが、液晶パネルユニット114の同一の色によって制御される画素開口方向にはその光学的パワーの必要性はない。
図3に示すように、マイクロレンズアレイ112から出射された光は入射側偏光板113に入射する。入射側偏光板113に入射した光のうち、偏光板の透過軸と同じ偏光方向の光は透過し、吸収軸方向の光は吸収される。
入射側偏光板113を透過した光は、画像表示素子である液晶パネルユニット114に入射する。
液晶パネルユニット114は、現在市場に供給されている一般的な液晶パネルであり、R、G、B、3種の色信号別に独立制御可能な多数の画素が2次元的に配列されて成っている。
入射した光は、液晶層119を透過した後、カラーフィルター層120、ブラックマトリックス開口部121を透過し、出射側偏光板115に至る。
出射側偏光板115は、入射側偏光板113と90度捻りの方向にその偏光軸を備えている。従って、液晶層119で偏光方向を90度捻られた光は、出射側偏光板115を透過する。
この透過光は、保持材料に周辺と屈折率の異なるビーズ材料が練り込まれた拡散層116により、観察者に対して広い視野角を提供できる。
この拡散層は、表面を荒らした磨りガラス状のものでも代用できるが、前述の構成とすることで、外光を観察者側に返すことなく、装置内部側に外光を導き偏光板で吸収することから、外光を受けても画質を損なうことがない。
このように構成することで、LED光源からの各波長の光を、各色光に合わせた信号により駆動される画像表示素子の画素に導けることから、従来の白色光からカラー表示をする構成に対し、約3倍の発光の高効率化を望むことが出来る。
なお、ここでは液晶パネルユニット114にカラーフィルター層120を設けたが、理想的に色分離が出来れば、その必要はないことは言うまでもない。
カラーフィルター層120がなければ、コストのみならず透過率も向上することは明らかである。
この構成では、導光板の光進行方向に対して直交する断面で見たときに、長辺方向では導光板内で反射無く画像表示素子にまで到達するので、LED光源100、101、102は同じ配光特性を持つことが望ましい。これが大きく崩れると、画像表示素子上のホワイトバランスが大きく変わってしまう可能性がある。
また、同じ理由から、ある色光を発するLED光源の発光チップを複数近接させて、あたかも1チップのように扱う構成も取ることが出来る。このようにすることで、チップ1つ1つのバラツキに左右されず、平均的な特性を得ることが期待できる。
また、一般にLED光源は非常に広い配光角を持つので、LED光源と光源側導光板103間はほとんど間隙を待たせないことが望ましい。あるいは、LED発光チップ上にフォトニック層を形成することで、配光角を正面に重心を持つようにして、光源側導光板103への入射効率を向上させることが出来る。
(実施の形態2)
本発明の第2の実施の形態によるディスプレイ装置の全体構成平面図を図5に示す。図において、実施の形態1と同じものは同一の符号を付し、説明を省略する。実施の形態1と異なるところは、実施の形態1では、LED光源100、101、102を光源側導光板103端面に一直線に配置したが、図5に示すように、システム光軸107上の光源101は、システム光軸107に沿って光源側導光板103の入射面に対向して配置するが、LED光源100、102は、出射光が画像表示素子中心部の方向に入射するよう、図の通り傾けて配置するようにした点である。
このようにすることで、画像表示素子上の各色光の照度バランスが取りやすくなり、色ムラの抑制が可能となる。
(実施の形態3)
本発明の第3の実施の形態によるディスプレイ装置の画像表示部の全体構成断面図を図6に示す。図において、実施の形態1と同じものは同一の符号を付し、説明を省略する。
前述の各実施の形態において、画像表示素子である液晶パネルは、扱える光の偏光方向は1方向なので、自然光を発するLED光源を用いたこれらの構成では、その要素だけで半分の効率となってしまい損失が大きい。
本実施の形態の図6の構成では、画像表示部側導光板106の出射開口面106a側にλ/4板122、反射型偏光板123が配置されている。この反射型偏光板123の透過軸は画像表示部111の入射側偏光板113の透過軸と合っていることは言うまでもない。
この構成では、画像表示部側導光板106を出射した光は、λ/4板122を経て画像表示部111に入射する。反射型偏光板123に反射された光は直線偏光であるが、λ/4板122を透過して円偏光になり、導光板内で反射され、再度λ/4板122に入射するときには、反射により反対回転の円偏光となって戻る。この光はλ/4板122を透過することで、反射型偏光板123を透過する偏光光となる。
よって、反射型偏光板123を経て画像表示部111に入射することが可能となる。
よって、LED光源からの自然光を、偏光方向に関わらず有効に用いることが出来る。
(実施の形態4)
本発明の第4の実施の形態によるディスプレイ装置の全体構成断面図を図7に示す。図において、実施の形態1と同じものは同一の符号を付し、説明を省略する。
本実施の形態も、実施の形態3と同様、LED光源からの自然光を、偏光方向に関わらず有効に用いることが出来るようにするものである。
この構成においては、フレネルレンズ105と画像表示部側導光板106の間に、偏光ビームスプリッター(PBS)124、λ/2板127が設けられている。
フレネルレンズ105を透過した光は、偏光ビームスプリッター124に入射する。入射した光は、斜めに設けられた偏光分離膜125に入射する。
この偏光分離膜125で、P偏光構成分はここを透過し、画像表示部側導光板106に入射することで、画像表示部に至る。
偏光分離膜125で、S偏光構成分は反射されて、偏光分離膜125と平行に配置された反射面124aで折り返され、画像表示部側導光板106の手前に設けられたλ/2板127で、偏光方向を90度回転される。この後、画像表示部側導光板106に入射する。
このようにして、LED光源からの光は、偏光分離膜125に対しP偏光の光に揃えられる。
この偏光方向が入射側偏光板113の透過軸方向と一致していれば、LED光源からの光を有効利用できる。
但し、偏光方向が不一致な場合は、入射側偏光板113に入射するまでの光路上にλ/2板を設けて、偏光方向を合致させることが必要なことは言うまでもない。
また、本実施の形態の構成をとった場合、画像表示部側導光板106の厚さは、光源側導光板103の厚さのおよそ2倍有ることが望ましい。
(実施の形態5)
本発明の第5の実施の形態によるディスプレイ装置の部分構成図を図8に示す。
前述の各実施の形態では光源をLED光源としたが、図8に示すように、光源をレーザー光源に拡散手段を加えた形でも応用できる。
ここでは、赤、緑、青の各色用のレーザー128、129、130の光路上、光源側導光板103近傍に、それぞれDOE(回折光学素子)131、132、133を配置しても同様の効果を得ることが出来る。
レーザーを光源とする場合には、出力光は偏光性を有しているので、その振動方向と画像表示部111の入射側偏光板113の透過軸を合わせることで、入射側偏光板113で吸収される光を最小限にして効率向上を図ることが出来ることは言うまでもない。
(実施の形態6)
本発明の第6の実施の形態によるディスプレイ装置の全体構成図を図9に示す。図9(a)は断面図、図9(b)は平面図である。
図において、ディスプレイ装置には、光源として、赤、緑、青光を発するLED光源100、101、102が配置されている。
LED光源100、101、102の発光側前面に、わずかな間隙を持って光源側導光板103に、各色光の光路上に独立配置された凹レンズ134、135、136がそれぞれ近接して配置されている。
この凹レンズにより、LED光源からの光は短い距離で広い面積を照明することが可能となり、照明部の小型化が可能となる。
また、この凹レンズ134、135、136の際から、凹レンズの幅に合わせて光源側導光板103内部に複数のスリット137が設けられている。
光源側導光板103に入射した光は、このスリット137によりLED光源からの光の最大広がり角を制御することが出来る。
さらに、スリット137の断面を黒色処理すれば迷光処理が可能となる。
また、光源側導光板103は画像表示部側導光板106に重ねられるように配置されており、光源側導光板103の端面に設けられたフレネルレンズ105と、画像表示部側導光板106の端面との間に、図に示すような、直角三角形の断面の三角柱形状を有する第1の折り返しプリズム138と第2の折り返しプリズム139が設けられている。
また、重ねて配置した2つの導光板間には迷光を遮断するための遮光板142が設けられている。
光源側導光板103に入射した光のうち、光源側導光板103の断面の短辺方向については導光板内を全反射を繰り返して進み、光源側導光板103の断面長辺方向の光は導光板内で反射されることなく進行し、光源側導光板103の端面103aに設けられたフレネルレンズ105に入射する。
このフレネルレンズ105は、LED光源101の発光面までの距離に相当する焦点距離を有している。
よって、LED光源101の中心から出射された光は、図9(b)に示すように、フレネルレンズ105に入射したのち、平行光となって第1の折り返しプリズム138に入射する。
第1の折り返しプリズム138は、図のように、斜面138aを有しており、入射光を全反射して光路を変更する。入射光の反射面である斜面138aへの入射角が全反射角に満たない光が多い場合には、斜面138aにミラー形成が可能なことは言うまでもない。
第1の折り返しプリズム138を抜けた光は、わずかな間隙を介して第2の折り返しプリズム139に入射する。第2の折り返しプリズム139も、図のように、斜面139aを有しており、入射光を全反射して光路を変更する。
第2の折り返しプリズム139で折り返された光は、間隙を経て画像表示部側導光板106に入射する。この後の構成、作用は他の実施の形態と同様であり、説明は省略する。
このようにして、2つの導光板間に折り返し部を設けることにより、装置全体を小型化しながらも、固体光源を用いた高効率画像表示装置を提供できる。
上述の説明において折り返しプリズム138、139の前後において間隙を設けたが、これが無くとも構成可能なことは言うまでもないが、一部の光が従来の折り返し無しの場合と異なる光路を通る(例えば斜面138aを経ずに第2の折り返しプリズム139に入射する光路)場合、折り返さない場合に比較して画像表示素子に入射する入射角が異なると予想されるが、これが許容できるものであることが望ましい。
また、本実施の形態では、LED光源前面に配置する光学素子を凹レンズとしたが、図10の光源部の別例構成図に示すように、光学素子をFθレンズ143、144、145とすれば、各光源からの光のうち周辺の光の密度を高くし、周辺光の低下を抑える構成を取ることが出来る。
あるいは、図11の光源部の別例構成図のように、マイクロプリズムや拡散材を練り込んだ材料等で構成可能な拡散板146、147、148を設けることによっても、周辺光量を補うことが可能である。この時の拡散方向は、特に導光板入射面長手方向とすることが望ましい。
光の折り返し方法については前述の形態のみならず、図12の折り返し部別例構成図に示すように、画像表示部側導光板106の端面に、第1の折り返しプリズム138に対向して斜面106dを設ける、あるいは、第1の折り返しプリズム138と第2の折り返しプリズム139、さらに画像表示部側導光板106とを一体化して、境界での反射ロスを抑えることも可能である。
(実施の形態7)
本発明の第7の実施の形態によるディスプレイ装置の全体構成断面図を図13に示す。
図13に示すように、実施の形態6と同様、光源側導光板103は画像表示部側導光板106に重ねられるように配置されており、光源側導光板103の端面に設けられたフレネルレンズ105と、画像表示部側導光板106の端面との間に第1の折り返しプリズム138が設けられているが、実施の形態6と異なるところは、第2の折り返しプリズム139の代りに偏光ビームスプリッター(PBS)149とした点である。
図において、第1の折り返しプリズム138を抜けた光は、偏光ビームスプリッター149に入射する。入射した光は、斜めに設けられた偏光分離膜150に入射する。
この偏光分離膜150でS偏光構成分が反射され、画像表示部側導光板106に入射し、画像表示部111に至る。偏光分離膜150をP偏光構成分は透過して、偏光分離膜150と平行に配置された反射面149aで折り返され、画像表示部側導光板106の手前に設けられたλ/2板151で偏光方向を90度回転される。この後、画像表示部側導光板106に入射する。
このようにして、LED光源からの光は、偏光分離膜150に対しS偏光の光に揃えられる。この偏光方向が入射側偏光板113の透過軸方向と一致していれば、LED光源からの光を有効利用できる。
但し、偏光方向が不一致な場合は、入射側偏光板113に入射するまでの光路上にλ/2板を設けて、偏光方向を合致させることが必要なことは言うまでもない。
また、本実施の形態では、λ/2板151をP偏光側に設けたが、S偏光側(PBS反射光路)に設けても同様な効果が得られることは言うまでもない。
このとき、画像表示部側導光板106の厚さは、光源側導光板103の厚さのおよそ2倍有ることが望ましい。
(実施の形態8)
本発明の第8の実施の形態によるディスプレイ装置の部分構成図を図14に示す。
他の実施の形態と異なるところは、図14に示すように、各色光を発する光源毎に出射面に近接して偏光ビームスプリッター(PBS)153、157、161が設けられている点である。
図において、偏光ビームスプリッター153、157、161に入射した各色光は、斜めに設けられた偏光分離膜154、158、162に入射する。この偏光分離膜154、158、162でP偏光構成分はここを透過し、光源側導光板103に入射し、画像表示部に至る。
偏光分離膜154、158、162でS偏光構成分は反射され、λ/2板155、159、163で偏光方向を90度変換された後、各偏光分離膜と平行に配置された反射面156、160、164で折り返され、光源側導光板103に入射する。
このようにして、LED光源からの光は偏光分離膜に対しP偏光の光に揃えられる。この偏光方向が入射側偏光板113の透過軸方向と一致していれば、LED光源からの光を有効利用できる。但し、偏光方向が不一致な場合は、入射側偏光板113に入射するまでの光路上にλ/2板を設けて、偏光方向を合致させることが必要なことは言うまでもない。
この光源直後に偏光ビームスプリッターを配置する構成は他の実施の形態にも応用可能である。また、この際に前記偏光ビームスプリッター153、157、161と反射面156、160、164を形成するプリズム部の偏光分離膜面、反射面と直交する面(導光板短辺方向)においてもその面は平滑に仕上げられており、全反射可能になっていることで光源からの広がりが有る光も周囲に漏らすことなく伝搬する事が可能となる。
なお、本実施の形態でも光源をLED光源としたが、図15の光源部の別例構成図に示すように、光源をレーザー光源に拡散手段を加えた形でも応用できる。
ここでは、赤、緑、青の各色用のレーザー128、129、130の光路上の光源側導光板近傍に、それぞれDOE(回折光学素子)131、132、133を配置し、同様の効果を得ることが出来る。
レーザーを光源とする場合には、出力光は偏光性を有しているので、その振動方向と画像表示部111の入射側偏光板113の透過軸を合わせることで、入射側偏光板113で吸収される光を最小限にして効率向上を図ることが出来ることは言うまでもない。
以上のように、本発明のディスプレイ装置は、光源からの光を効率よく用いることで消費電力を最小限に抑えることが可能となり、特に、冷陰極管に比べて発光効率の劣るLEDをバックライト用光源として使用するディスプレイ装置に有用である。
本発明の第1の実施の形態によるディスプレイ装置の全体構成図 同ディスプレイ装置の画像表示部側導光板の詳細図 同ディスプレイ装置の液晶表示部周辺の構成断面図 同ディスプレイ装置のマイクロレンチキュラーレンズの集合体の斜視図 本発明の第2の実施の形態によるディスプレイ装置の全体構成平面図 本発明の第3の実施の形態によるディスプレイ装置の画像表示部の全体構成断面図 本発明の第4の実施の形態によるディスプレイ装置の全体構成断面図 本発明の第5の実施の形態によるディスプレイ装置の部分構成図 本発明の第6の実施の形態によるディスプレイ装置の全体構成図 同ディスプレイ装置の光源部別例構成図 同ディスプレイ装置の光源部別例構成図 同ディスプレイ装置の折り返し部別例構成図 本発明の第7の実施の形態によるディスプレイ装置の全体構成断面図 本発明の第8の実施の形態によるディスプレイ装置の部分構成図 同ディスプレイ装置の光源部別例構成図
符号の説明
100、101、102 LED光源
103 光源側導光板
103a 端面
105 フレネルレンズ
106 画像表示部側導光板
106a 出射開口面
106b 背面
106c 凹部
106d 斜面
107 システム光軸
108 有効表示領域
111 画像表示部
112 マイクロレンズアレイ
112a 入射側マイクロレンズ
112b 出射側マイクロレンズ
113 入射側偏光板
114 液晶パネルユニット
115 出射側偏光板
116 拡散層
119 液晶層
120 カラーフィルター層
121 ブラックマトリックス開口部
122、127、151、155、159、163 λ/2板
123 反射型偏光板
124、149、153、157、161 偏光ビームスプリッター
124a、149a、156、160、164 反射面
125、150、154、158、162 偏光分離膜
128、129、130 レーザー
131、132、133 DOE
134、135、136 凹レンズ
137 スリット
138 第1の折り返しプリズム
138a、139a 斜面
139 第2の折り返しプリズム
142 遮光材
143、144、145 Fθレンズ
146、147、148 拡散板

Claims (32)

  1. 色毎に独立して透過する光量を制御可能な開口が多数2次元に配列された画像表示素子と、凸レンズの作用を持つマイクロレンズを表裏1対として多数2次元的に配置して成る色分離光学系と、異なる色光毎に主光線を異なる角度で前記色分離光学系へ導光入射せしめる照明光学系と、異なる色光を発する各色用光源で構成される光源部とからなり、
    前記照明光学系は前記色分離光学系の入射側背面に配置された第1の導光部と、前記光源部に近接する第2の導光部とからなり、前記第1の導光部と前記第2の導光部間には、前記第2の導光部からの光の進行方向に対し直交する方向において前記第1の導光部の断面を見た際の長手方向について前記主光線を平行化するテレセントリック光学系が配置されてなることを特徴とするディスプレイ装置。
  2. 前記光源部からの出射光光路上において、前記第2の導光部に入射する際に、各色光毎にレンズ作用を有する光学素子が設けられていることを特徴とする請求項1記載のディスプレイ装置。
  3. 前記光学素子は光線高の高い光線について収差を利用して光線密度を上げるFθレンズの機能を有していることを特徴とする請求項2記載のディスプレイ装置。
  4. 前記各色用光源出射面と前記第2の導光部間には、前記各色用光源からの配光特性を改善する光拡散素子が配置されていることを特徴とする請求項1記載のディスプレイ装置。
  5. 前記各色用光源のうち、システム光軸上にない光源は、出射光がシステム光軸側に寄るように傾けて配置されていることを特徴とする請求項1記載のディスプレイ装置。
  6. 前記各色用光源は、複数の発光部が近接して配置されてなることを特徴とする請求項1記載のディスプレイ装置。
  7. 各色光用光源は、同一発光色の光源が複数近接して配置、構成されて成ることを特長とする請求項6記載のディスプレイ装置。
  8. 前記画像表示素子の各開口には、変調する色光のみを選択透過できるフィルターが備えられていることを特徴とする請求項1記載のディスプレイ装置。
  9. 前記第1の導光部と前記第2の導光部間に配置された前記テレセントリック光学系は、フレネルレンズであることを特徴とする請求項1記載のディスプレイ装置。
  10. 前記フレネルレンズは、出射方向に曲率を持ち、出射方向と直交する方向にパワーを持たないバイコニックレンズであることを特徴とする請求項9記載の照明装置。
  11. 前記第1の導光部と前記第2の導光部間に配置された前記テレセントリック光学系は、光の進行方向に対し直交する方向において、前記光源までの距離と同等の長さの焦点距離を有する光学素子であることを特徴とする請求項1記載のディスプレイ装置。
  12. 前記第1の導光部および第2の導光部は、それぞれ矩形の平板形状を有し、前記第2の導光部の1端面側に前記光源部が配置され、前記光源部側端面と対向する端面側にテレセントリック光学系を挟んで前記第1の導光部が前記第2の導光部と平面的に並べて配置されてなる請求項1記載のディスプレイ装置。
  13. 前記第1の導光部および第2の導光部は、それぞれ矩形の平板形状を有し、前記第2の導光部の1端面側に前記光源部が配置され、前記第1の導光部が前記第2の導光部と空気間隔を隔て平行に重ねて配置されてなる請求項1記載のディスプレイ装置。
  14. 第1の導光部および第2の導光部は、それぞれ所定の厚さを有し、前記第2の導光部の厚さは、前記第1の導光部の厚さよりも厚く設定されたことを特徴とする請求項12または13記載のディスプレイ装置。
  15. 前記第1の導光部または前記第2の導光部の端部に、光路を折り返す斜面を有する三角断面形状のプリズムが配置されていることを特徴とする請求項13記載のディスプレイ装置。
  16. 前記第1の導光部は、光の入射側端部に光路を折り返す斜面を有していることを特徴とする請求項13記載のディスプレイ装置。
  17. 前記テレセントリック光学系出射部に前記プリズムが近接配置されていることを特徴とする請求項15記載のディスプレイ装置。
  18. 重ねて配置された前記第1の導光部と第2の導光部間には遮光材料が配置されていることを特徴とする請求項13記載のディスプレイ装置。
  19. 前記第1の導光部は、端面から入射した光のうち、前記画像表示素子の色光に対応する開口のうち同一の色光を扱う開口の配列方向に相当する方向では反射し、進行方向を略90度変更することを特徴とする請求項1記載のディスプレイ装置。
  20. 前記第1の導光部は、端面から入射した光のうち、前記画像表示素子の色光に対応する開口のうち同一の色光を扱う開口の配列方向に直交する方向では、光の進行に作用を与えない構成を有していることを特徴とする請求項1記載のディスプレイ装置。
  21. 前記各色用光源は、類似の配光特性を有していることを特徴とする請求項1記載のディスプレイ装置。
  22. 前記各色用光源からの出射角を制御するためのスリットが、前記第2の導光部の光源側端面からシステム光軸と平行に設けられていることを特徴とする請求項1記載のディスプレイ装置。
  23. 前記各色用光源は、発光ダイオード(LED)であることを特徴とする請求項1記載のディスプレイ装置。
  24. 前記各色用光源は、その表面にフォトニック結晶層を備えてなることを特徴とする請求項23記載のディスプレイ装置。
  25. 前記第1の導光部と前記画像表示素子間には、λ/4板、反射型偏光板が備えられており、前記反射型偏光板が透過する光の偏光方向が、前記画像表示素子が変調に用いる光の偏光方向と一致することを特徴とする請求項1記載のディスプレイ装置。
  26. 前記テレセントリック光学系と前記第1の導光部の間にPBS(偏光ビームスプリッタ)が配置されており、前記テレセントリック光学系から出射された光は前記PBSに入射、そのうちP偏光成分は前記PBSの第1の反射面を透過し前記第1の導光部に入射、S偏光成分は前記第1の反射面で反射され、前記第1の反射面と平行に設けられた第2の反射面で反射され、前記第1の導光部との間に設けられたλ/2板に入射して偏光方向を90°変換された後、前記第1の導光部に入射するよう構成されていることを特徴とする請求項12記載のディスプレイ装置。
  27. 前記プリズムと前記第1の導光部の間にPBSが配置されており、前記プリズムから出射された光は前記PBSに入射、そのうちS偏光成分は前記PBSの第1の反射面で反射されて前記第1の導光部端面に入射、P偏光成分は前記第1の反射面を透過し、前記第1の反射面と平行に設けられた第2の反射面で反射され、前記第1の導光部との間に設けられたλ/2板に入射して偏光方向を90°変換された後、前記第1の導光部に入射するよう構成されていることを特徴とする請求項17記載のディスプレイ装置。
  28. 前記各色用光源と前記第2の導光部の間にPBSが色毎に配置されており、前記PBSに対しP偏光成分は透過し前記第2の導光部に入射、前記第2のPBSに対しS偏光成分は反射されたのち、前記PBS反射面と平行に設けられた反射面で反射され、前記第2の導光部に入射することを特徴とする請求項1記載のディスプレイ装置。
  29. 前記PBSと前記第2の導光部の間にはλ/2板が設けられており、前記λ/2板を透過する光は偏光方向を90°変換されるよう構成されていることを特徴とする請求項28記載のディスプレイ装置。
  30. 前記PBSの入射面および反射面と直交する面においても平滑な面が形成されており、全反射可能であることを特徴とする請求項28記載のディスプレイ装置。
  31. 前記各色用光源は、レーザー光源と光拡散手段とからなることを特徴とする請求項1記載のディスプレイ装置。
  32. 前記光拡散手段は、DOE素子であることを特徴とする請求項31記載のディスプレイ装置。
JP2008271695A 2008-10-22 2008-10-22 ディスプレイ装置 Pending JP2010101989A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271695A JP2010101989A (ja) 2008-10-22 2008-10-22 ディスプレイ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271695A JP2010101989A (ja) 2008-10-22 2008-10-22 ディスプレイ装置

Publications (1)

Publication Number Publication Date
JP2010101989A true JP2010101989A (ja) 2010-05-06

Family

ID=42292710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271695A Pending JP2010101989A (ja) 2008-10-22 2008-10-22 ディスプレイ装置

Country Status (1)

Country Link
JP (1) JP2010101989A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161811A1 (ja) * 2012-04-27 2013-10-31 三菱電機株式会社 面光源装置及び液晶表示装置
JP5367185B2 (ja) * 2011-01-21 2013-12-11 三菱電機株式会社 面光源装置及び液晶表示装置
JP2014002347A (ja) * 2012-05-25 2014-01-09 Mitsubishi Electric Corp 液晶表示装置
JP2014007541A (ja) * 2012-06-25 2014-01-16 Kyocera Document Solutions Inc 導光体、画像読取装置及びこれを備えた画像形成装置
JP2022515401A (ja) * 2018-12-21 2022-02-18 杭州奇塑科技有限公司 人間の目の視覚残像を利用した一方向ガラス
CN115407558A (zh) * 2022-08-30 2022-11-29 苏州华星光电技术有限公司 一种显示装置以及电子设备

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5367185B2 (ja) * 2011-01-21 2013-12-11 三菱電機株式会社 面光源装置及び液晶表示装置
KR101509368B1 (ko) * 2011-01-21 2015-04-07 미쓰비시덴키 가부시키가이샤 면광원 장치 및 액정 표시 장치
US8998474B2 (en) 2011-01-21 2015-04-07 Mitsubishi Electric Corporation Surface light source device and liquid crystal display apparatus
WO2013161811A1 (ja) * 2012-04-27 2013-10-31 三菱電機株式会社 面光源装置及び液晶表示装置
JPWO2013161811A1 (ja) * 2012-04-27 2015-12-24 三菱電機株式会社 光路変更素子、面光源装置及び液晶表示装置
JP2014002347A (ja) * 2012-05-25 2014-01-09 Mitsubishi Electric Corp 液晶表示装置
JP2014007541A (ja) * 2012-06-25 2014-01-16 Kyocera Document Solutions Inc 導光体、画像読取装置及びこれを備えた画像形成装置
JP2022515401A (ja) * 2018-12-21 2022-02-18 杭州奇塑科技有限公司 人間の目の視覚残像を利用した一方向ガラス
JP7153406B2 (ja) 2018-12-21 2022-10-14 杭州奇塑科技有限公司 人間の目の視覚残像を利用した一方向ガラス
CN115407558A (zh) * 2022-08-30 2022-11-29 苏州华星光电技术有限公司 一种显示装置以及电子设备

Similar Documents

Publication Publication Date Title
JP4550721B2 (ja) 照明ユニット及びこれを採用した画像投射装置
JP4477571B2 (ja) 照明ユニット及びこれを採用した画像投射装置
US8562152B2 (en) Collimator lens unit with aspheric surfaces for imparting a luminous flux density distribution
WO2010061699A1 (ja) 薄型バックライトシステムおよびこれを用いた液晶表示装置
JP2006505830A (ja) プロジェクタシステムのための照明装置
US20060139575A1 (en) Optical collection and distribution system and method
US7648244B2 (en) Illuminating unit and projection-type image display apparatus employing the same
KR100619043B1 (ko) 조명유니트 및 이를 채용한 화상투사장치
US9016865B2 (en) Illumination device and projection type display device using the same
WO2019071951A1 (zh) 复眼透镜组及投影装置
KR101723888B1 (ko) 조명 장치 및 프로젝터
JP5355961B2 (ja) 投写型映像表示装置
JP7434808B2 (ja) 光源装置及び画像投射装置
US10564531B2 (en) Light source device and projector
US10564534B2 (en) Light source apparatus and projector
JP2010101989A (ja) ディスプレイ装置
US20210080629A1 (en) Light source module
JP4622925B2 (ja) 照明装置及びプロジェクタ
US20090161076A1 (en) Projection apparatus
CN114563906B (zh) 光源光学系统,光源单元,光源装置以及图像显示装置
WO2011021304A1 (ja) 照明装置とそれを用いた投射型表示装置
TWI418918B (zh) 照明模組及投影裝置
JP5200337B2 (ja) ディスプレイ装置
US10495963B2 (en) Light source device and projection display apparatus
JP2008070769A (ja) 光源ユニット、照明装置およびプロジェクタ装置