JP2010100445A - 水素発生剤及びそれを用いた水素発生方法 - Google Patents

水素発生剤及びそれを用いた水素発生方法 Download PDF

Info

Publication number
JP2010100445A
JP2010100445A JP2008270796A JP2008270796A JP2010100445A JP 2010100445 A JP2010100445 A JP 2010100445A JP 2008270796 A JP2008270796 A JP 2008270796A JP 2008270796 A JP2008270796 A JP 2008270796A JP 2010100445 A JP2010100445 A JP 2010100445A
Authority
JP
Japan
Prior art keywords
hydrogen
lithium
hydrogen generating
water
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008270796A
Other languages
English (en)
Inventor
Katsuhiro Nakamura
克弘 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IOX KK
Iox KK
Original Assignee
IOX KK
Iox KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IOX KK, Iox KK filed Critical IOX KK
Priority to JP2008270796A priority Critical patent/JP2010100445A/ja
Publication of JP2010100445A publication Critical patent/JP2010100445A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】水と反応させることにより水素を発生させる水素発生剤の原理を維持しつつ、常温でも安定して効率的に水素を発生させることができる、従来技術の問題を改善した水素発生剤及びそれを用いた水素発生方法を提供する。
【解決手段】アルミニウム、マグネシウム及び亜鉛からなる群から選択される少なくとも1種とリチウムとを含有するリチウム合金であることを特徴とする水素発生剤及びそれを用いた水素発生方法。
【選択図】図1

Description

本発明は、水と反応させることにより水素を効率的に発生させる水素発生剤及びそれを用いた水素発生方法に関する。このような水素発生剤及び水素発生方法は、燃料電池やガスクロマトグラフィーに水素を供給する手段、更には水素を要する研究用途に水素を供給する手段として有用である。
従来、水と反応させることにより水素を発生させる水素発生剤としてはアルミニウムが知られており、具体的にはアルミニウムを水中で切削加工して新生表面を生成しつつ水と反応させて水素を発生させることが知られている(特許文献1)。
しかしながら、この方法では、アルミニウムの新生表面が逐次生成するため、水とアルミニウムの反応速度を制御するのが困難である。また、この方法では、外部から加熱を行わないと反応が不十分となるため、加熱制御が困難という問題もある。
また、アルミニウム粉末に亜鉛粉末又は鉄粉末を混合し、その混合粉末に水を供給して水素を発生させる方法も知られている(特許文献2)。特許文献2には、亜鉛粉末又は鉄粉末を混合することにより、水とアルミニウムの見かけの反応速度を高め、アルミニウム粉末単独よりも効率的に水素を発生させることができると記載されている。
しかしながら、この方法でも、効率的に水素を発生させるには外部加熱が必要である。
また、常温で安定的に水素を生成させる水素発生剤として、アルミニウム粉末と酸化アルミニウム粉末を含み、アルミニウム粉末と酸化カルシウム粉末の合計を100重量%としてアルミニウム粉末の配合比が85重量%以下である水素発生剤が知られている(特許文献3)。そして、特許文献3には、アルミニウム粉末としては、粒度分布が50〜150μmのものが好ましいと記載されている。
しかしながら、この水素発生剤は、酸化カルシウムを含有するため、水との反応により酸化カルシウムが水酸化カルシウムとなって副生する。そのため、水素にカルシウムイオンが混在するため燃料電池にそのまま供給するには不適である。これは、生成した水素にカルシウムイオンが混在することで燃料電池の固体電解質に作用してプロトン伝導機能を阻害するおそれがあるからである。
よって、常温で効率的に水素を発生させることができ、しかも不純物を含まない水素を発生させることができる水素発生剤及びそれを用いた水素発生方法が望まれている。
特開2001−31401号公報 特開2002−104801号公報 特開2004−231466号公報
本発明は、水と反応させることにより水素を発生させる水素発生剤の原理を維持しつつ、常温でも安定して効率的に水素を発生させることができる、従来技術の問題を改善した水素発生剤及びそれを用いた水素発生方法を提供することを目的とする。
本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、水との反応性が極めて高く単独では取扱いが困難な金属リチウムを特定の合金として用いる場合には、安全性が格段に高まり、水との反応を制御でき、上記目的を達成できる水素発生剤となることを見出し、本発明を完成するに至った。
即ち、本発明は下記の水素発生剤及び水素発生方法に関する。
1.アルミニウム、マグネシウム及び亜鉛からなる群から選択される少なくとも1種とリチウムとを含有するリチウム合金であることを特徴とする水素発生剤。
2.前記リチウム合金は水素化物である、上記項1に記載の水素発生剤。
3.前記リチウム合金は板状、棒状又は粒子状である、上記項1又は2に記載の水素発生剤。
4.上記項1〜3のいずれかに記載の水素発生剤と水とを反応させることにより水素を発生させる水素発生方法。
5.前記発生させた水素をフィルタリングすることにより不純物を除去して純水素を得る、上記項4に記載の水素発生方法。
6.燃料電池に供給する水素を得るための、上記項4又は5に記載の水素発生方法。
7.水素を必要とする実験又は校正を必要をするセンサー若しくは測定機器に供給する水素を得るための、上記項4又は5に記載の水素発生方法。

以下、本発明の水素発生剤及び水素発生方法について詳細に説明する。
水素発生剤
本発明の水素発生剤は、アルミニウム、マグネシウム及び亜鉛からなる群から選択される少なくとも1種とリチウムとを含有するリチウム合金であることを特徴とする。金属リチウムは水との反応性が極めて高く単独では取扱いが困難であるが、上記リチウム合金として用いることにより安全性が格段に高まり、水との反応を制御できる。そのため、上記リチウム合金と水とを反応させることにより、常温でも安定して効率的に水素が得られる。
上記リチウム合金の組成は、アルミニウム、マグネシウム及び亜鉛の少なくとも1種を合金成分として含むリチウム合金であれば限定的ではないが、リチウム合金中のリチウム含有量は25〜70at%が好ましく、30〜60at%がより好ましい。
上記リチウム合金は、水素化物である場合には水素発生量が増える。水素化物としては、例えば、水素化リチウムアルミニウム、水素化リチウムマグネシウム、水素化リチウム亜鉛等が挙げられる。水素化物中の水素含有量は限定的ではないが、20〜60at%が好ましく、30〜50at%がより好ましい。
上記リチウム合金の組成は、2元合金状態図又は3元合金状態図に記載されている組成が利用できる。これらのリチウム合金の製造方法は限定されず、例えば、アルミニウム、マグネシウム、亜鉛等の金属箔とリチウム箔とを不活性雰囲気又は水素雰囲気下で圧着・加熱して合金化させることにより製造する。
上記リチウム合金を水素発生剤として用いる際の上記リチウム合金の形状は限定的ではないが、例えば、板状、棒状、粉末状等が挙げられる。
粉末状で用いる場合の平均粒子径は限定されないが、数十μm〜数mm程度が好ましく、100〜300μm程度がより好ましい。
板状又は棒状で用いる場合の厚さは数ミリ以下が好ましく、0.5〜2mm程度がより好ましい。粉末を圧密化して形成する場合は、水素発生剤を収容し水素を発生させる容器の形状や大きさに応じて適宜設定できる。成形手段は限定されないが、公知の成形手段により所望の形状に圧密化して形成する場合には、水素発生効率を下げない成形体の密度や形態を考慮する必要がある。
水素発生方法
本発明の水素発生方法は、上記本発明の水素発生剤と水とを反応させることにより水素を発生させる。水素発生剤と水とを反応させる方法は、例えば、水素発生剤を水に浸漬する方法が挙げられる。本発明の水素発生方法では、浸漬させる水は常温でよく、外部加熱しなくても効率的に水素を発生させることができる。
好ましい実施態様では、水素化リチウムアルミニウムからなる水素発生剤5gを20mlの水に浸漬することにより1.5〜2.5Lもの水素を発生させることができる。また、1gの水素化リチウムアルミニウムからなる水素発生剤当たり10〜15ml/分の水素発生量となり、50分程度安定した速度で水素が発生する。このとき、浸漬する水の外部加熱は必要ない。反応が進むに従って、反応熱で水温が上昇するため、反応速度が減少することなく持続する。
本発明の水素発生方法により得られる水素は、水分(僅かにリチウム合金成分を含む)以外の不純物を実質的に含まない。そのため、必要に応じて、リチウム合金成分を含んだ水分をフィルタリング(水分除去膜と活性炭やゼオライト等の吸着剤)することにより、高純度の水素が得られる。この高純度の水素は、例えば、携帯電子機器の燃料電池に供給した場合に固体電解質のプロトン伝導機能を阻害し難いため有利である。
例えば、携帯電子機器の燃料電池に水素を供給する場合には、密閉容器に本発明の水素発生剤を充填し(必要に応じて脱脂綿や不織布で水素発生剤を挟み込んでもよい)、水に浸漬して水素を発生させ、必要に応じてフィルタリングし、得られた水素を燃料電池に供給する。その他、僅かな水素を必要とする実験や水素による校正が必要なセンサーや測定機器、例えば、ガスクロマトグラフィーに水素を供給する手段にも利用できる。
本発明の水素発生剤は、アルミニウム、マグネシウム及び亜鉛からなる群から選択される少なくとも1種とリチウムとを含有するリチウム合金であることを特徴とする。金属リチウムは水との反応性が極めて高く単独では取扱いが困難であるが、上記リチウム合金として用いることにより安全性が格段に高まり、水との反応を制御できる。そのため、上記リチウム合金と水とを反応させることにより、常温でも安定して効率的に水素が得られる。
発生する水素は、水分に僅かに含まれるリチウム合金成分以外の不純物を実質的に含まないため、必要に応じて水分をフィルタリングすることにより高純度の水素を供給することができる。このような水素は、燃料電池の固体電解質のプロトン伝導機能を阻害し難いため、燃料電池に好適に供給できる。また、ガスクロマトグラフィーなどの測定機器やセンサーに供給することもできる。
以下に実施例を示して本発明を具体的に説明する。但し本発明は実施例に限定されない。
実施例1
アルミニウム箔とリチウム箔とを不活性雰囲気中で圧着・加熱して合金化し、粉砕した。得られたリチウムアルミニウム合金粉末の粒子径は75〜250μmであった。このリチウムアルミニウム合金粉末の組成は、LiAlであり、モル比1:1であった。
上記リチウムアルミニウム合金粉末3gを20mlの水に浸漬して水素を発生させた。発生した水素をチューブで取り出し、水上置換法により採取しながら、マスフロメータで発生量を測定した。経時的な水素発生量の変化を図1に示す。
図1の結果から明らかなように、常温で安定して効率的に水素が発生している。
実施例1の水素発生実験における経時的な水素発生量の変化を示す図である。

Claims (7)

  1. アルミニウム、マグネシウム及び亜鉛からなる群から選択される少なくとも1種とリチウムとを含有するリチウム合金であることを特徴とする水素発生剤。
  2. 前記リチウム合金は水素化物である、請求項1に記載の水素発生剤。
  3. 前記リチウム合金は板状、棒状又は粒子状である、請求項1又は2に記載の水素発生剤。
  4. 請求項1〜3のいずれかに記載の水素発生剤と水とを反応させることにより水素を発生させる水素発生方法。
  5. 前記発生させた水素をフィルタリングすることにより不純物を除去して純水素を得る、請求項4に記載の水素発生方法。
  6. 燃料電池に供給する水素を得るための、請求項4又は5に記載の水素発生方法。
  7. 水素を必要とする実験又は校正を必要をするセンサー若しくは測定機器に供給する水素を得るための、請求項4又は5に記載の水素発生方法。
JP2008270796A 2008-10-21 2008-10-21 水素発生剤及びそれを用いた水素発生方法 Pending JP2010100445A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008270796A JP2010100445A (ja) 2008-10-21 2008-10-21 水素発生剤及びそれを用いた水素発生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270796A JP2010100445A (ja) 2008-10-21 2008-10-21 水素発生剤及びそれを用いた水素発生方法

Publications (1)

Publication Number Publication Date
JP2010100445A true JP2010100445A (ja) 2010-05-06

Family

ID=42291443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270796A Pending JP2010100445A (ja) 2008-10-21 2008-10-21 水素発生剤及びそれを用いた水素発生方法

Country Status (1)

Country Link
JP (1) JP2010100445A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104007A1 (ja) * 2014-12-22 2016-06-30 国立大学法人京都大学 水素製造装置及び水素発生容器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104007A1 (ja) * 2014-12-22 2016-06-30 国立大学法人京都大学 水素製造装置及び水素発生容器

Similar Documents

Publication Publication Date Title
Huang et al. Preparation of Al-Ga-In-Sn-Bi quinary alloy and its hydrogen production via water splitting
Wang et al. Study on catalytic effect and mechanism of MOF (MOF= ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium
Christian et al. Core–shell strategy leading to high reversible hydrogen storage capacity for NaBH4
Shang et al. Mechanical alloying and electronic simulations of (MgH2+ M) systems (M= Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage
Liu et al. Hydrogen desorption properties of the MgH2–AlH3 composites
Chen et al. Research of hydrogen generation by the reaction of Al-based materials with water
Kumar et al. High performance FeTi–3.1 mass% V alloy for on board hydrogen storage solution
JP2006306700A5 (ja) 水素発生材料、水素製造用カートリッジ、水素製造装置、水素の製造方法および燃料電池システム
Kumar et al. Morphological effects of Nb2O5 on Mg–MgH2 system for thermal energy storage application
Chen et al. Hydrogen generation by splitting water with Al–Li alloys
Sofianos et al. Novel synthesis of porous aluminium and its application in hydrogen storage
Chen et al. Synthesis and characterization of nanocrystalline Mg2CoH5 obtained by mechanical alloying
JP2016204177A (ja) 水素発生方法及び水素発生装置
JP2010006673A (ja) 水素発生剤
JP2007326731A (ja) 水素製造方法
JP2003012301A (ja) 水素ガス生成用組成物、水素ガス生成方法、水素ガス生成装置及び発電機
CN103789573B (zh) 一种Zr基Laves相储氢合金及其制备方法
Song et al. Synthesis of a Mg-based alloy with a hydrogen-storage capacity of over 7 wt% by adding a polymer CMC via transformation-involving milling
JP2010100445A (ja) 水素発生剤及びそれを用いた水素発生方法
JP4853810B2 (ja) 水素貯蔵材料およびその製造方法
TWI321158B (ja)
Kodera et al. Hydrogen storage Mg2Ni alloy produced by induction field activated combustion synthesis
Anik et al. Electrochemical hydrogen storage performance of Mg–Ti–Zr–Ni alloys
Song et al. Improvement of hydrogen-storage properties of MgH 2 by addition of Ni and Ti via reactive mechanical grinding and a rate-controlling step in its dehydriding reaction
Ourane et al. The new ternary intermetallic NdNiMg5: Hydrogen sorption properties and more