JP2010100337A - Vacuum double structure and manufacturing method thereof - Google Patents

Vacuum double structure and manufacturing method thereof Download PDF

Info

Publication number
JP2010100337A
JP2010100337A JP2009011022A JP2009011022A JP2010100337A JP 2010100337 A JP2010100337 A JP 2010100337A JP 2009011022 A JP2009011022 A JP 2009011022A JP 2009011022 A JP2009011022 A JP 2009011022A JP 2010100337 A JP2010100337 A JP 2010100337A
Authority
JP
Japan
Prior art keywords
metal plate
core material
plastic deformation
container
inner container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009011022A
Other languages
Japanese (ja)
Other versions
JP5129169B2 (en
Inventor
Takeo Jinno
武男 神野
Takashi Tono
隆 東野
Toyohiko Takatsuki
豊彦 高槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zojirushi Corp
Original Assignee
Zojirushi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zojirushi Corp filed Critical Zojirushi Corp
Priority to JP2009011022A priority Critical patent/JP5129169B2/en
Publication of JP2010100337A publication Critical patent/JP2010100337A/en
Application granted granted Critical
Publication of JP5129169B2 publication Critical patent/JP5129169B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum double structure which is excellent in vibration resistance, and a method for manufacturing the vacuum double structure. <P>SOLUTION: In the vacuum double structure (a vacuum bottle 10) wherein an internal space 30 formed between first and second metal plate sections (an outer container 11 and an inner container 22) faced each other is formed by vacuum evacuation, a plastic deformation section 19 capable of plastically deforming is arranged on the first metal plate section 11 so as to lessen the volume of the internal space 30 by adding external force after performing vacuum evacuation, a core material 31 which has a low thermal conductivity and can be elastically deformed is arranged at a location extending in a direction crossed at a right angle to a deformation direction of the plastic deformation section 19 between the first metal plate section 11 and the second metal plate section 22, the core material 31 is brought into press contact with the first and second metal plate sections 11, 22 on the basis of deformation of the plastic deformation section 19, and the first and second metal plate sections 11, 22 are supported by the core material 31. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、魔法瓶、真空二重管、真空二重ジャケット、断熱タンクおよび断熱パネルなどの真空二重構造体およびその製造方法に関するものである。   The present invention relates to a vacuum double structure such as a thermos, a vacuum double tube, a vacuum double jacket, a heat insulation tank and a heat insulation panel, and a method for producing the same.

この種の真空二重構造体のうち、魔法瓶および断熱タンクは、内容器と外容器とを備え、これらを軸方向の一端に位置する口部で接合することにより内部空間を密封している(特許文献1参照)。また、真空二重管および真空二重ジャケットは、内筒と外筒とを備え、これらを両端の開口部で接合することにより内部空間を密閉している。さらに、断熱パネルは、略凹字形状をなす一対の金属板を備え、これらの縁を接合することにより内部空間を密閉している。そして、これらは、一対の金属板部の間に形成される内部空間を、真空排気することにより断熱性能が高められている。   Among this type of vacuum double structure, a thermos bottle and a heat insulating tank are provided with an inner container and an outer container, and the inner space is sealed by joining them at a mouth located at one end in the axial direction ( Patent Document 1). Moreover, the vacuum double tube and the vacuum double jacket are provided with an inner cylinder and an outer cylinder, and the interior space is sealed by joining them at the openings at both ends. Furthermore, the heat insulation panel includes a pair of metal plates having a substantially concave shape, and the inner space is sealed by joining these edges. And these have the heat insulation performance improved by evacuating the internal space formed between a pair of metal plate parts.

しかしながら、特許文献1の真空二重構造体は、外容器と内容器とを口部のみで接合しているため、振動が加えられると内容器が外容器内で移動する。なお、両端の開口部で接合する真空二重管および真空二重ジャケットは、その全長が長くなると、同様に振動が加えられると中間位置で内筒が外筒内で移動する。そのため、内容器または内筒が外容器または外筒に干渉し、異音を発するうえ、最悪の場合には外容器と内容器との接合部分または外筒と内筒との接合部分にリークが発生するという問題がある。   However, since the vacuum double structure of patent document 1 has joined the outer container and the inner container only by the opening | mouth part, when a vibration is added, an inner container will move in an outer container. In addition, when the full length of the vacuum double tube and the vacuum double jacket joined at the openings at both ends becomes longer, the inner cylinder moves in the outer cylinder at an intermediate position when vibration is similarly applied. For this reason, the inner container or the inner cylinder interferes with the outer container or the outer cylinder and generates an abnormal noise. In the worst case, there is a leak at the junction between the outer container and the inner container or between the outer cylinder and the inner cylinder. There is a problem that occurs.

また、断熱パネルは、一対の金属板の外周縁を接合し、これらの内部に熱伝導度が低く弾性変形可能なコア材(断熱材)を配設することにより、コア材で一対の金属板を支持する構成であるため、前記問題が生じることは殆どない。しかし、この断熱パネルは、コア材としてグラスウールなどの多数の繊維からなるものを使用している場合、このコア材による支持力が低下する場合がある。   In addition, the heat insulating panel joins the outer peripheral edges of a pair of metal plates, and a core material (heat insulating material) having low thermal conductivity and elastically deformable is disposed inside the pair of metal plates. Therefore, the above problem hardly occurs. However, in the case of using a heat insulating panel made of a large number of fibers such as glass wool as the core material, the support force by the core material may be reduced.

特公平3−54571号公報Japanese Patent Publication No. 3-54571

本発明は、従来の問題に鑑みてなされたもので、耐振性能が優れ、その状態を維持可能な真空二重構造体およびその製造方法を提供することを課題とするものである。   This invention is made | formed in view of the conventional problem, and makes it a subject to provide the vacuum double structure which is excellent in vibration-proof performance, and can maintain the state, and its manufacturing method.

前記課題を解決するため、本発明の第1の真空二重構造体は、対向する第1および第2金属板部の間に形成した内部空間を真空排気してなる真空二重構造体において、前記第1金属板部に、真空排気後に外力を加えることにより内部空間の容積が小さくなるように塑性変形可能な塑性変形部を設けるとともに、前記第1金属板部と第2金属板部との間の前記塑性変形部による変形方向に対して直交方向に延びる位置に、熱伝導度が低く弾性変形可能なコア材を配設し、前記塑性変形部の変形によりコア材を第1および第2金属板部で圧接し、これらをコア材で互いに支持させた構成としている。   In order to solve the above problems, a first vacuum double structure of the present invention is a vacuum double structure formed by evacuating an internal space formed between first and second metal plate portions facing each other. The first metal plate portion is provided with a plastically deformable portion that can be plastically deformed by applying an external force after evacuation to reduce the volume of the internal space, and the first metal plate portion and the second metal plate portion A core material having a low thermal conductivity and elastically deformable is disposed at a position extending in a direction orthogonal to the deformation direction by the plastic deformation portion between the first and second core materials by deformation of the plastic deformation portion. The metal plates are pressed against each other and are supported by a core material.

この真空二重構造体では、第1および第2金属板部の間にコア材を圧接し、該コア材によって第1および第2金属板部を互いに支持可能としているため、第1金属板部と第2金属板部とが相対的に移動することを防止できる。そのため、第1および第2金属板部が互いに干渉して異音を発生させたり、接合部分にリークを発生させたりすることを防止できる。しかも、真空排気後に塑性変形部に外力を加えて塑性変形させるため、この塑性変形部を塑性変形後の形状を考慮して形成することにより、商品毎の変形量を一定にすることができる。   In this vacuum double structure, since the core material is pressed between the first and second metal plate portions and the first and second metal plate portions can be supported by the core material, the first metal plate portion And the relative movement of the second metal plate portion can be prevented. Therefore, it is possible to prevent the first and second metal plate portions from interfering with each other to generate abnormal noise and to generate a leak at the joint portion. Moreover, since an external force is applied to the plastic deformation portion after evacuation to cause plastic deformation, the deformation amount for each product can be made constant by forming the plastic deformation portion in consideration of the shape after the plastic deformation.

この真空二重構造体では、前記第2金属板部におけるコア材の圧接位置に、前記塑性変形部の塑性変形によりコア材を介して押圧されると、その押圧力により弾性変形可能な弾性変形部を設けることが好ましい。このようにすれば、経時的にコア材が収縮して弾性的な支持力が低下しても、弾性変形部が弾性的に復元することにより、第1および第2金属板部の支持状態を確実に維持できる。   In this vacuum double structure, when it is pressed through the core material by the plastic deformation of the plastic deformation portion to the pressure contact position of the core material in the second metal plate portion, the elastic deformation is elastically deformable by the pressing force. It is preferable to provide a part. In this way, even if the core material shrinks over time and the elastic supporting force is reduced, the elastic deformation portion is elastically restored, so that the supporting state of the first and second metal plate portions is changed. Can be reliably maintained.

具体的には、前記第1金属板部は、一端に開口した第1口部を有する外容器であり、前記第2金属板部は、前記外容器の内部に所定の隙間をあけて配設され、一端に前記第1口部の内面に密封状態で接合される第2口部を有する内容器であり、前記塑性変形部を外容器の底に設けるとともに、前記コア材を外容器の底と内容器の底の間に配設したものである。
または、前記第1金属板部は、一端に開口した第2口部を有する内容器であり、前記第2金属板部は、前記内容器の外部に所定の隙間をあけて配設され、一端に前記第2口部の外面に密封状態で接合される第1口部を有する外容器であり、前記塑性変形部を内容器の底に設けるとともに、前記コア材を内容器の底と外容器の底の間に配設したものである。
Specifically, the first metal plate portion is an outer container having a first opening opened at one end, and the second metal plate portion is disposed with a predetermined gap inside the outer container. An inner container having a second mouth part sealed to the inner surface of the first mouth part at one end, the plastic deformation part being provided at the bottom of the outer container, and the core material being disposed at the bottom of the outer container. And the bottom of the inner container.
Alternatively, the first metal plate portion is an inner container having a second mouth portion opened at one end, and the second metal plate portion is disposed with a predetermined gap outside the inner container, An outer container having a first mouth part that is joined to the outer surface of the second mouth part in a sealed state, the plastic deformation part is provided at the bottom of the inner container, and the core material is disposed between the bottom of the inner container and the outer container. Between the bottom of the two.

また、本発明の第2の真空二重構造体は、対向する第1および第2金属板部の間に形成した内部空間を真空排気してなる真空二重構造体において、前記第1金属板部および第2金属板部に、真空排気後に外力を加えることにより内部空間の容積が小さくなるように塑性変形可能な塑性変形部を設けるとともに、前記第1金属板部と第2金属板部との間の前記塑性変形部による変形方向に対して直交方向に延びる位置に、熱伝導度が低く弾性変形可能なコア材を配設し、前記塑性変形部の変形によりコア材を第1および第2金属板部で圧接し、これらをコア材で互いに支持させた構成としている。
この第2の真空二重構造体では、第1の真空二重構造体と同様の作用および効果を得ることができる。
The second vacuum double structure of the present invention is the vacuum double structure formed by evacuating the internal space formed between the first and second metal plate portions facing each other. A plastic deformable portion that can be plastically deformed so that the volume of the internal space is reduced by applying an external force after evacuation to the first metal plate portion and the second metal plate portion, and the first metal plate portion and the second metal plate portion, A core material having a low thermal conductivity and elastically deformable is disposed at a position extending in a direction perpendicular to the deformation direction by the plastic deformation portion between the first and second core materials by the deformation of the plastic deformation portion. Two metal plate portions are pressed against each other, and these are supported by a core material.
In the second vacuum double structure, the same operations and effects as those of the first vacuum double structure can be obtained.

そして、第2の真空二重構造体は、前記第1金属板部は、一端に開口した第1口部を有する外容器であり、前記第2金属板部は、前記外容器の内部に所定の隙間をあけて配設され、一端に前記第1口部の内面に密封状態で接合される第2口部を有する内容器であり、前記塑性変形部を外容器および内容器の底に前記内部空間を隔ててそれぞれ設けるとともに、前記コア材を外容器の底と内容器の底の間に配設したものである。   In the second vacuum double structure, the first metal plate part is an outer container having a first opening opened at one end, and the second metal plate part is provided inside the outer container. And an inner container having a second mouth part sealed to the inner surface of the first mouth part at one end, and the plastic deformation part at the bottom of the outer container and the inner container. The core material is provided between the bottom of the outer container and the inner container.

また、これらの真空二重構造体は、前記第1金属板部または第2金属板部に、真空排気前のコア材を保持する保持部を設けることが好ましい。このようにすれば、製造時にコア材を位置決めできるため、作業性を向上できる。
この場合、前記保持部を、凹部または凸部により階段状をなすように形成することが好ましい。このようにすれば、経時的に振動が加えられることによるコア材の位置ズレを防止できるため、第1および第2金属板部の支持状態を確実に維持できる。
Moreover, it is preferable that these vacuum double structures provide the holding | maintenance part which hold | maintains the core material before vacuum exhaust in the said 1st metal plate part or the 2nd metal plate part. In this way, since the core material can be positioned at the time of manufacture, workability can be improved.
In this case, it is preferable that the holding portion is formed in a stepped shape by a concave portion or a convex portion. By doing so, it is possible to prevent the core material from being displaced due to the vibration applied over time, so that the supporting state of the first and second metal plate portions can be reliably maintained.

そして、この真空二重構造体の製造方法は、第1金属板部または第2金属板部に熱伝導度が低く弾性変形可能なコア材を配設し、前記第1金属板部に対して所定の隙間をあけて第2金属板部を配設して接合し、これら第1および第2金属板部間の内部空間内の空気を排気し、前記第1金属板部および第2金属板部の少なくとも一方に設けた塑性変形部に外力を加え、前記内部空間の容積が小さくなるように塑性変形部を塑性変形させることにより、前記コア材を第1金属板部と第2金属板部との間に圧接させ、コア材によって第1および第2金属板部を互いに支持させるものである。   And this vacuum double structure manufacturing method arrange | positions the core material which has low heat conductivity and can be elastically deformed in the 1st metal plate part or the 2nd metal plate part, and with respect to the said 1st metal plate part. A second metal plate portion is disposed and joined with a predetermined gap, air in the internal space between the first and second metal plate portions is exhausted, and the first metal plate portion and the second metal plate are exhausted. An external force is applied to the plastic deformation portion provided in at least one of the portions, and the plastic deformation portion is plastically deformed so that the volume of the internal space is reduced, whereby the core material is made to be the first metal plate portion and the second metal plate portion. And the first metal plate portion and the second metal plate portion are supported by the core material.

この製造方法では、前記第1金属板部は、一端に開口した第1口部を有する外容器であり、前記第2金属板部は、前記外容器の内部に所定の隙間をあけて配設され、一端に前記第1口部の内面に密封状態で接合される第2口部を有する内容器であり、前記外容器に設けた塑性変形部を、外側から押圧機により外力を加えて塑性変形させることが好ましい。
または、前記第1金属板部は、一端に開口した第2口部を有する内容器であり、前記第2金属板部は、前記内容器の外部に所定の隙間をあけて配設され、一端に前記第2口部の外面に密封状態で接合される第1口部を有する外容器であり、前記内容器に設けた塑性変形部を、該内容器内に流体供給機によって流体を供給することにより外力を加えて塑性変形させることが好ましい。
In this manufacturing method, the first metal plate portion is an outer container having a first opening opened at one end, and the second metal plate portion is disposed with a predetermined gap inside the outer container. And an inner container having a second mouth part sealed to the inner surface of the first mouth part at one end, and the plastic deformation part provided in the outer container is plasticized by applying an external force with a pressing machine from the outside. It is preferable to deform.
Alternatively, the first metal plate portion is an inner container having a second mouth portion opened at one end, and the second metal plate portion is disposed with a predetermined gap outside the inner container, An outer container having a first mouth part that is joined to the outer surface of the second mouth part in a sealed state, and a plastic deformation part provided in the inner container is supplied to the inner container by a fluid supplier. Therefore, it is preferable to apply an external force to cause plastic deformation.

本発明の真空二重構造体では、第1および第2金属板部の間にコア材を圧接して互いに支持可能としているため、これらが干渉して異音を発生させたり、接合部分にリークが発生することを防止できる。しかも、真空排気後に塑性変形部に外力を加えて塑性変形させるため、商品毎の変形量を一定にすることができる。   In the vacuum double structure according to the present invention, the core material is pressed between the first and second metal plate portions so that they can be supported with each other. Can be prevented. Moreover, since an external force is applied to the plastic deformation portion after the vacuum exhaust to cause plastic deformation, the amount of deformation for each product can be made constant.

また、コア材の圧接位置にコア材を介して押圧される押圧力により弾性変形可能な弾性変形部を設けているため、経時的にコア材が収縮して弾性的な支持力が低下しても、弾性変形部が弾性的に復元することにより、第1および第2金属板部の支持状態を確実に維持できる。   In addition, since an elastically deformable portion that can be elastically deformed by a pressing force pressed through the core material is provided at the pressure contact position of the core material, the core material contracts over time and the elastic support force decreases. However, the elastically deforming portion is elastically restored, so that the support state of the first and second metal plate portions can be reliably maintained.

本発明に係る第1実施形態の真空二重構造体である魔法瓶を示す断面図である。It is sectional drawing which shows the thermos which is the vacuum double structure of 1st Embodiment which concerns on this invention. 図1の魔法瓶の真空排気前の状態を示す断面図である。It is sectional drawing which shows the state before the vacuum exhaust of the thermos of FIG. 図2の魔法瓶の分解斜視図である。FIG. 3 is an exploded perspective view of the thermos of FIG. 2. 図1の魔法瓶の要部斜視図である。It is a principal part perspective view of the thermos of FIG. 第2実施形態の魔法瓶を示し、(A)は真空排気前の状態を示す断面図、(B)は真空排気後変形させた状態を示す断面図である。The thermos bottle of 2nd Embodiment is shown, (A) is sectional drawing which shows the state before evacuation, (B) is sectional drawing which shows the state deform | transformed after evacuation. 第3実施形態の魔法瓶を示し、(A)は真空排気前の状態を示す断面図、(B)は真空排気後変形させた状態を示す断面図である。The thermos bottle of 3rd Embodiment is shown, (A) is sectional drawing which shows the state before evacuation, (B) is sectional drawing which shows the state deform | transformed after evacuation. 第4実施形態の魔法瓶を示し、(A)は真空排気前の状態を示す断面図、(B)は真空排気後変形させた状態を示す断面図である。The thermos bottle of 4th Embodiment is shown, (A) is sectional drawing which shows the state before evacuation, (B) is sectional drawing which shows the state deform | transformed after evacuation. 第5実施形態の魔法瓶を示し、(A)は真空排気前の状態を示す断面図、(B)は真空排気後変形させた状態を示す断面図である。The thermos bottle of 5th Embodiment is shown, (A) is sectional drawing which shows the state before evacuation, (B) is sectional drawing which shows the state deform | transformed after evacuation. 第6実施形態の魔法瓶を示し、(A)は真空排気前の状態を示す断面図、(B)は真空排気後変形させた状態を示す断面図である。The thermos bottle of 6th Embodiment is shown, (A) is sectional drawing which shows the state before evacuation, (B) is sectional drawing which shows the state deform | transformed after evacuation. 第7実施形態の魔法瓶を示し、(A)は真空排気前の状態を示す断面図、(B)は真空排気後変形させた状態を示す断面図である。The thermos bottle of 7th Embodiment is shown, (A) is sectional drawing which shows the state before evacuation, (B) is sectional drawing which shows the state deform | transformed after evacuation. 第8実施形態の魔法瓶を示し、(A)は真空排気前の状態を示す断面図、(B)は真空排気後変形させた状態を示す断面図である。The thermos bottle of 8th Embodiment is shown, (A) is sectional drawing which shows the state before evacuation, (B) is sectional drawing which shows the state deform | transformed after evacuation. 第9実施形態の魔法瓶を示し、(A)は真空排気前の状態を示す断面図、(B)は真空排気後変形させた状態を示す断面図、(C)は塑性変形前の状態を示す要部断面図、(D)はコア材による支持力低下状態を示す要部断面図である。The thermos of 9th Embodiment is shown, (A) is sectional drawing which shows the state before evacuation, (B) is sectional drawing which shows the state deform | transformed after evacuation, (C) shows the state before plastic deformation. A principal part sectional view and (D) are principal part sectional views showing a supporting power fall state by a core material. 第10実施形態の魔法瓶を示し、(A)は真空排気前の状態を示す断面図、(B)は真空排気後変形させた状態を示す断面図である。The thermos bottle of 10th Embodiment is shown, (A) is sectional drawing which shows the state before evacuation, (B) is sectional drawing which shows the state deform | transformed after evacuation. 本発明の真空二重構造体の変形例である真空二重管を示し、(A)は真空排気前の状態を示す断面図、(B)は真空排気後変形させた状態を示す断面図である。The vacuum double tube which is a modification of the vacuum double structure of this invention is shown, (A) is sectional drawing which shows the state before evacuation, (B) is sectional drawing which shows the state deform | transformed after evacuation. is there. 本発明の真空二重構造体の他の変形例である断熱パネルを示し、(A)は真空排気前の状態を示す断面図、(B)は真空排気後変形させた状態を示す断面図である。The heat insulation panel which is the other modification of the vacuum double structure of this invention is shown, (A) is sectional drawing which shows the state before evacuation, (B) is sectional drawing which shows the state deform | transformed after evacuation. is there.

以下、本発明の実施の形態を図面に従って説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1実施形態に係る真空二重構造である魔法瓶10を示す。この魔法瓶10は、金属製の外容器11と内容器22とを備え、これらの間の内部空間30を真空排気している。この内部空間30には、輻射伝熱を防止するための銅またはアルミ等からなる金属箔(図示せず)と、発生したガスを吸着するためのゲッター(図示せず)とが配設されている。そして、本実施形態では、この内部空間30に、外容器11と内容器22とを互いに支持するためのコア材31を配設したものである。   FIG. 1 shows a thermos 10 having a vacuum double structure according to the first embodiment of the present invention. The thermos 10 includes a metal outer container 11 and an inner container 22 and evacuates an internal space 30 therebetween. The internal space 30 is provided with a metal foil (not shown) made of copper or aluminum for preventing radiant heat transfer and a getter (not shown) for adsorbing the generated gas. Yes. In this embodiment, a core material 31 for supporting the outer container 11 and the inner container 22 with each other is disposed in the inner space 30.

前記外容器11は、肉厚が0.2〜1.0mmのステンレス鋼板からなる両端開口の筒状をなす外側胴体12と、肉厚が0.2〜1.0mmのステンレス鋼板からなる外側底体17とからなる。   The outer container 11 includes an outer body 12 having a cylindrical shape with both end openings made of a stainless steel plate having a thickness of 0.2 to 1.0 mm, and an outer bottom made of a stainless steel plate having a thickness of 0.2 to 1.0 mm. It consists of a body 17.

前記外側胴体12には、図1中上側に位置する一端に、内部に連通する第1口部13が設けられている。具体的には、外側胴体12は、胴体本体部分と連続し直径が上向きに徐々に小さくなるように縮径した円錐筒部13aと、該円錐筒部13aの上端縁に連続した円筒部13bとを備え、この円筒部13bの先端開口部により第1口部13が構成されている。円筒部13bの下端には、図示しない樹脂製の肩体を位置決めするために、径方向外向きに膨出する膨出部14が周方向に所定間隔(90度)をもって設けられている。また、外側胴体12には、図1中下側に位置する他端に、第1口部13より開口面積が大きく、僅かに縮径した底取付部15が設けられている。さらに、筒状をなす胴体本体部分の上下端、即ち、円錐筒部13aおよび底取付部15との境界部分には、環状をなすように内向きに窪む陥没部16が設けられている。   The outer body 12 is provided with a first opening 13 communicating with the inside at one end located on the upper side in FIG. Specifically, the outer body 12 includes a conical cylinder part 13a that is continuous with the body part and has a diameter that is gradually reduced upward, and a cylindrical part 13b that is continuous with the upper end edge of the conical cylinder part 13a. The first opening 13 is constituted by the opening at the tip of the cylindrical portion 13b. A bulging portion 14 bulging outward in the radial direction is provided at a lower end of the cylindrical portion 13b at a predetermined interval (90 degrees) in order to position a resin shoulder (not shown). Further, the outer body 12 is provided with a bottom mounting portion 15 having an opening area larger than that of the first mouth portion 13 and slightly reduced in diameter at the other end located on the lower side in FIG. Further, the upper and lower ends of the cylindrical body main body portion, that is, the boundary portion between the conical cylinder portion 13a and the bottom mounting portion 15 are provided with recessed portions 16 that are recessed inward so as to form an annular shape.

前記外側底体17は、外側胴体12の底を閉塞するもので、外側胴体12の底取付部15の内径と略同一の外径の円板状をなし、底取付部15に内嵌して接合されている。外側底体17は、外周部に取付状態で内向きに窪む逆U字形状の縁部18を備えている。この外側底体17の縁部18内は、弾性限界(降伏)点を超えて変形するように外力を加えることにより内方(内部空間30内)に窪み、内部空間30の容積が小さくなるように塑性変形される塑性変形部19を構成する。この塑性変形部19は、縁部18に連続する円錐筒部19aと、該円錐筒部19aの端部に連続する円板部19bとからなる。本実施形態では、この塑性変形部19は、外力を加える前の状態では外向きに膨出(図2参照)した状態を維持する強度を有する。言い換えれば、後述する内部空間30の真空排気時に加わる吸引(排気)力(約1kg/cm)では、内向きに変形しない強度を有する。この円板部19bの中央には排気孔20が設けられ、この排気孔20の周囲にチップ管21が溶接により接合されている。なお、このチップ管21は、内部空間30を排気して真空にした後に封じ切られたもので、その端部は、縁部18の外端より突出しないように切断されている。 The outer bottom body 17 closes the bottom of the outer body 12, has a disk shape with an outer diameter substantially the same as the inner diameter of the bottom mounting portion 15 of the outer body 12, and is fitted into the bottom mounting portion 15. It is joined. The outer bottom body 17 includes an inverted U-shaped edge 18 that is recessed inwardly in an attached state on the outer peripheral portion. The inside of the edge 18 of the outer bottom body 17 is recessed inward (inside the internal space 30) by applying an external force so as to be deformed beyond the elastic limit (yield) point, so that the volume of the internal space 30 is reduced. The plastic deformation portion 19 that is plastically deformed is configured. The plastic deformation portion 19 includes a conical cylinder portion 19a continuous to the edge portion 18 and a disc portion 19b continuous to an end portion of the conical cylinder portion 19a. In this embodiment, this plastic deformation part 19 has the intensity | strength which maintains the state bulged outward (refer FIG. 2) in the state before applying external force. In other words, a suction (exhaust) force (about 1 kg / cm 2 ) applied during evacuation of the internal space 30 described later has a strength that does not deform inwardly. An exhaust hole 20 is provided in the center of the disc portion 19b, and a tip tube 21 is joined around the exhaust hole 20 by welding. The tip tube 21 is sealed after the internal space 30 is evacuated and evacuated, and its end is cut so as not to protrude from the outer end of the edge 18.

前記内容器22は、肉厚が0.2〜1.0mmのステンレス鋼板からなる両端開口の筒状をなす内側胴体23と、肉厚が0.2〜1.0mmのステンレス鋼板からなる内側底体26とからなり、外容器11の内部に所定の隙間をあけて配設されるものである。   The inner container 22 has an inner body 23 having a cylindrical shape with both end openings made of a stainless steel plate having a thickness of 0.2 to 1.0 mm, and an inner bottom made of a stainless steel plate having a thickness of 0.2 to 1.0 mm. The body 26 is disposed inside the outer container 11 with a predetermined gap.

前記内側胴体23は、外側胴体12に対して所定の隙間が形成されるように、外側胴体12の直径より小さい直径としたものである。この内側胴体23には、図1中上側に位置する一端に、内部に連通する第2口部24が設けられている。具体的には、内側胴体23は、胴体本体部分と連続し直径が上向きに徐々に小さくなるように縮径した円錐筒部24aと、該円錐筒部24aの上端縁に連続した円筒部24bとを備え、この円筒部24bの先端開口部により第2口部24が構成されている。この円筒部24bの上端の外径は、第1口部13の内径と略同一に形成されている。また、内側胴体23には、図1中下側に位置する他端に、第2口部24より開口面積が大きい底取付フランジ部25が設けられている。   The inner body 23 has a diameter smaller than that of the outer body 12 so that a predetermined gap is formed with respect to the outer body 12. The inner body 23 is provided with a second opening 24 communicating with the inside at one end located on the upper side in FIG. Specifically, the inner body 23 includes a conical cylinder part 24a that is continuous with the body part and has a diameter that is gradually reduced upward, and a cylindrical part 24b that is continuous with the upper edge of the conical cylinder part 24a. The second opening 24 is constituted by the opening at the tip of the cylindrical portion 24b. The outer diameter of the upper end of the cylindrical portion 24 b is formed substantially the same as the inner diameter of the first mouth portion 13. Further, the inner body 23 is provided with a bottom mounting flange portion 25 having an opening area larger than that of the second mouth portion 24 at the other end located on the lower side in FIG.

前記内側底体26は、内側胴体23の底を閉塞するもので、略半球状をなすように内向きに湾曲したものである。この内側底体26の外周縁には、湾曲部27を介して内側胴体23の本体部分と同一直径となるように筒部28が設けられている。この筒部28の上端には、底取付フランジ部25に重畳して接合されるフランジ部29が設けられている。   The inner bottom body 26 closes the bottom of the inner body 23 and is curved inward so as to form a substantially hemispherical shape. A cylindrical portion 28 is provided on the outer peripheral edge of the inner bottom body 26 through the curved portion 27 so as to have the same diameter as the main body portion of the inner body 23. A flange portion 29 is provided at the upper end of the cylindrical portion 28 so as to be overlapped and joined to the bottom mounting flange portion 25.

これら外容器11と内容器22とは、第1口部13の内側に第2口部24を位置させ、これらを非消耗のタングステンを電極として用いたTIG(Tungsten Inert Gas)溶接により密閉状態で固着(接合)されている。これにより、これらの外容器11と内容器22との間には、所定幅の内部空間30が形成される。   The outer container 11 and the inner container 22 are hermetically sealed by TIG (Tungsten Inert Gas) welding in which the second opening 24 is positioned inside the first opening 13 and these are used as non-consumable tungsten electrodes. It is fixed (joined). Thereby, an internal space 30 having a predetermined width is formed between the outer container 11 and the inner container 22.

前記コア材31は、熱伝導度が低く弾性変形が可能なもので、第1金属板部である外容器11と第2金属板部である内容器22との間において、塑性変形部19による変形方向に対して直交方向に延びる位置である外側底体17と内側底体26との間に配設されている。そして、外容器11の塑性変形部19が変形されると、対向する内容器22の内側底体26との間に圧接されることにより、これら外容器11と内容器22とを互いに支持する構成としている。なお、本実施形態では、密度が約100〜160kg/mで、塑性変形部19の変形後の密度が約220±30kg/mとなるグラスウールを使用している。 The core material 31 has low thermal conductivity and can be elastically deformed, and is formed by the plastic deformation portion 19 between the outer container 11 that is the first metal plate portion and the inner container 22 that is the second metal plate portion. It is disposed between the outer bottom body 17 and the inner bottom body 26 which are positions extending in a direction orthogonal to the deformation direction. When the plastic deformation portion 19 of the outer container 11 is deformed, the outer container 11 and the inner container 22 are mutually supported by being pressed against the inner bottom body 26 of the opposing inner container 22. It is said. In the present embodiment, a density of about 100~160kg / m 3, the density after deformation of the plastically deformable portion 19 is using glass wool of about 220 ± 30kg / m 3.

次に、前記魔法瓶10の製造方法について具体的に説明する。   Next, a method for manufacturing the thermos bottle 10 will be specifically described.

まず、内側胴体23の底取付フランジ部25に内側底体26のフランジ部29を接合した後、この内容器22に金属箔およびゲッターを配設する。そして、図2および図3に示すように、この状態の内容器22を、第2口部24を下側に位置させた状態で、第1口部13を下側に位置させた外容器11の外側胴体12内に挿入する。その後、内外に重畳した第2口部24と第1口部13とを溶接により接合した後、内側底体26上にコア材31を配設する。ついで、塑性変形部19が外向きに膨出した未変形状態の外側底体17を外側胴体12の開口端に内嵌し、溶接により接合する。   First, after the flange portion 29 of the inner bottom body 26 is joined to the bottom mounting flange portion 25 of the inner body 23, a metal foil and a getter are disposed in the inner container 22. As shown in FIGS. 2 and 3, the inner container 22 in this state is the outer container 11 in which the first mouth portion 13 is located on the lower side with the second mouth portion 24 located on the lower side. Is inserted into the outer body 12. Then, after joining the 2nd opening part 24 and the 1st opening part 13 which overlapped inside and outside by welding, the core material 31 is arrange | positioned on the inner bottom body 26. FIG. Next, the undeformed outer bottom body 17 in which the plastic deformation portion 19 bulges outward is fitted into the opening end of the outer body 12 and joined by welding.

このように組み立てた真空排気前の二重容器は、図2に示すように、外容器11と内容器22との間に十分な間隙の内部空間30が形成される。しかも、外容器11の外側底体17と内容器22の内側底体26との間には、これらを互いに支持するためのコア材31を配設しているが、このコア材31と外側底体17との間にも十分な間隙が形成されている。   As shown in FIG. 2, the double container before evacuation assembled in this way forms an internal space 30 with a sufficient gap between the outer container 11 and the inner container 22. In addition, a core material 31 is disposed between the outer bottom body 17 of the outer container 11 and the inner bottom body 26 of the inner container 22 so as to support them. A sufficient gap is also formed between the body 17.

この状態の二重容器は、外方に突出したチップ管21に排気装置が接続され、内部空間30内の空気を所定圧力まで真空引きしながら、ゲッターが活性化する温度まで加熱される。その後、チップ管21を封じ切って封止する。   The double container in this state is connected to the tip tube 21 protruding outward, and is heated to a temperature at which the getter is activated while evacuating the air in the internal space 30 to a predetermined pressure. Thereafter, the tip tube 21 is sealed and sealed.

最後に、プレス機などの押圧機によって外向きに膨出した塑性変形部19を、軸方向下向きである内部空間30に向けて押圧し、図4に示すように、塑性変形部19を内部空間30内に没入させる。これにより、図1に示すように、塑性変形部19が内向きに没入した状態に塑性変形する。また、外側底体17と内側底体26との間に位置するコア材31が、塑性変形部19の変形により外側底体17と内側底体26との間に圧接される。なお、この外力の負荷時には、第2口部24から内容器22内に支持用の治具を挿入し、該治具によって内容器22の内側底体26を支持することが好ましい。   Finally, the plastic deformation portion 19 bulging outward by a pressing machine such as a press is pressed toward the internal space 30 that is downward in the axial direction, and as shown in FIG. Immerse in 30. As a result, as shown in FIG. 1, the plastic deformation portion 19 is plastically deformed so as to be immersed inward. Further, the core material 31 positioned between the outer bottom body 17 and the inner bottom body 26 is pressed between the outer bottom body 17 and the inner bottom body 26 by the deformation of the plastic deformation portion 19. When this external force is applied, it is preferable to insert a supporting jig into the inner container 22 from the second opening 24 and to support the inner bottom body 26 of the inner container 22 with the jig.

そして、このように製造した魔法瓶10は、第1金属板部である外容器11の外側底体17と、第2金属板部である内容器22の内側底体26との間に、弾性変形が可能なコア材31が圧接されているため、このコア材31が外容器11および内容器22を互いに支持するように作用する。その結果、外容器11と内容器22とが相対的に移動することを防止できる。そのため、これら外容器11と内容器22とが互いに干渉して異音を発生させたり、接合部分である口部13,24にリークが発生することを防止できる。よって、魔法瓶10の耐振性能を向上できる。   And the thermos 10 manufactured in this way is elastically deformed between the outer bottom body 17 of the outer container 11 which is the first metal plate part and the inner bottom body 26 of the inner container 22 which is the second metal plate part. Therefore, the core material 31 acts to support the outer container 11 and the inner container 22 with each other. As a result, the outer container 11 and the inner container 22 can be prevented from relatively moving. For this reason, it is possible to prevent the outer container 11 and the inner container 22 from interfering with each other to generate abnormal noise and to prevent leaks from occurring in the mouth portions 13 and 24 that are joint portions. Therefore, the vibration resistance performance of the thermos 10 can be improved.

しかも、コア材31を圧接する塑性変形部19は、真空排気後に外力を加えて塑性変形させるため、排気時の通気路を十分に確保でき、排気作業を阻害することはない。また、塑性変形後の形状を考慮して塑性変形部19を形成することにより、商品毎の変形量を一定にすることができる。その結果、商品毎に外観が変わることを防止できるうえ、他の部材を組み付ける際の精度を向上できる。   Moreover, since the plastic deformation portion 19 that presses the core material 31 is plastically deformed by applying an external force after evacuation, a sufficient ventilation path can be secured during evacuation, and the evacuation operation is not hindered. In addition, by forming the plastic deformation portion 19 in consideration of the shape after plastic deformation, the amount of deformation for each product can be made constant. As a result, the appearance of each product can be prevented from changing, and the accuracy when assembling other members can be improved.

図5(A),(B)は第2実施形態の魔法瓶10を示す。この第2実施形態では、第2金属板部である内容器22の内側底体26に、真空排気前のコア材31を保持する保持部32を設けた点で、第1実施形態と相違している。なお、以下の実施形態では、上下を逆向きにした製造時の状態を図示している。   5A and 5B show the thermos bottle 10 of the second embodiment. This second embodiment is different from the first embodiment in that a holding portion 32 that holds the core material 31 before evacuation is provided on the inner bottom body 26 of the inner container 22 that is the second metal plate portion. ing. In the following embodiment, a state at the time of manufacture in which the top and bottom are reversed is illustrated.

具体的には、第2実施形態の内側底体26は、平坦な円板状をなし、その外周部から外向きに膨出するように湾曲部27が設けられている。これにより、この湾曲部27の中心側に、円形状をなすように内向きに窪んだ保持部32が形成される。   Specifically, the inner bottom body 26 of the second embodiment has a flat disk shape, and a curved portion 27 is provided so as to bulge outward from the outer peripheral portion thereof. As a result, a holding portion 32 that is recessed inward so as to form a circular shape is formed on the center side of the curved portion 27.

このように構成した第2実施形態では、第1実施形態と同様の作用および効果を得ることができるうえ、組立時に内側底体26に対してコア材31を位置決め保持させることができるため、作業性を向上することができる。   In the second embodiment configured as described above, the same operation and effect as in the first embodiment can be obtained, and the core material 31 can be positioned and held with respect to the inner bottom body 26 during assembly. Can be improved.

図6(A),(B)は第3実施形態の魔法瓶10を示す。この第3実施形態では、保持部32の構成を変更した点でのみ、第2実施形態と相違している。具体的には、第2実施形態では、円形状に窪むように保持部32を設けたのに対し、第3実施形態では、円形状に膨出するように保持部32を設けている。また、コア材31には、保持部32を挿入可能な保持孔33が設けられている。このように構成した第3実施形態では、第2実施形態と同様の作用および効果を得ることができる。   6A and 6B show a thermos bottle 10 according to the third embodiment. The third embodiment is different from the second embodiment only in that the configuration of the holding unit 32 is changed. Specifically, in the second embodiment, the holding portion 32 is provided so as to be recessed in a circular shape, whereas in the third embodiment, the holding portion 32 is provided so as to bulge into a circular shape. The core material 31 is provided with a holding hole 33 into which the holding portion 32 can be inserted. In the third embodiment configured as described above, the same operations and effects as those of the second embodiment can be obtained.

図7(A),(B)は第4実施形態の魔法瓶10を示す。この第4実施形態では、塑性変形部36の構成を変更した点で、各実施形態と相違している。具体的には、第4実施形態の外容器11は、別体の胴部35および肩部38からなる外側胴体34と、該外側胴体12の下端開口を閉塞する外側底体40とからなる構成としている。   7A and 7B show a thermos bottle 10 according to the fourth embodiment. The fourth embodiment is different from the respective embodiments in that the configuration of the plastic deformation portion 36 is changed. Specifically, the outer container 11 of the fourth embodiment includes an outer body 34 composed of a separate body part 35 and a shoulder part 38, and an outer bottom body 40 that closes the lower end opening of the outer body 12. It is said.

前記外側胴体34の胴部35は、肉厚が0.2〜1.0mmのステンレス鋼板からなり、軸方向に沿って波状をなす蛇腹形状に形成されている。そして、この胴部35の波状部分である山部および谷部は、軸方向に沿って収縮するように塑性変形される塑性変形部36を構成する。この胴部35の両端の開口部には、それぞれ径方向外向きに突出する取付フランジ部37a,37bが設けられている。   The body portion 35 of the outer body 34 is made of a stainless steel plate having a thickness of 0.2 to 1.0 mm, and is formed in a bellows shape having a wave shape along the axial direction. And the peak part and trough part which are the wave-like parts of this trunk | drum 35 comprise the plastic deformation part 36 deformed plastically so that it may shrink | contract along an axial direction. Mounting flanges 37a and 37b that project outward in the radial direction are provided at the openings at both ends of the body 35, respectively.

前記外側胴体34の肩部38は、第1実施形態の円錐筒部13aおよび円筒部13bを別体に形成したもので、肉厚が0.2〜1.0mmのステンレス鋼板からなる。具体的には、肩部38は、第1実施形態と同様の円錐筒部39aと円筒部39bとを備え、この円筒部39bの先端開口部により第1口部39が構成されている。そして、この肩部38の下端開口部には、取付フランジ部37aに接合されるフランジ部39cが設けられている。   The shoulder portion 38 of the outer body 34 is formed by separately forming the conical cylinder portion 13a and the cylindrical portion 13b of the first embodiment, and is made of a stainless steel plate having a thickness of 0.2 to 1.0 mm. Specifically, the shoulder portion 38 includes a conical cylinder portion 39a and a cylindrical portion 39b that are the same as those in the first embodiment, and the first opening 39 is configured by the tip opening portion of the cylindrical portion 39b. The lower end opening of the shoulder 38 is provided with a flange 39c that is joined to the mounting flange 37a.

第4実施形態の外側底体40は、外側胴体12の下端開口を閉塞するもので、塑性変形部36による変形方向である軸方向に対して直交方向に延びる円板状のものである。この外側底体40の外周縁には、湾曲部41を介して内側胴体23の本体部分と同一直径となるように筒部42が設けられている。この筒部42の上端には、取付フランジ部37bに重畳して接合されるフランジ部43が設けられている。   The outer bottom body 40 of the fourth embodiment closes the lower end opening of the outer body 12 and has a disk shape extending in a direction orthogonal to the axial direction that is the deformation direction by the plastic deformation portion 36. A cylindrical portion 42 is provided on the outer peripheral edge of the outer bottom body 40 via the curved portion 41 so as to have the same diameter as the main body portion of the inner body 23. A flange portion 43 is provided at the upper end of the cylindrical portion 42 so as to be overlapped and joined to the mounting flange portion 37b.

第4実施形態の内容器22は、内側底体26を外側底体40に対して平行に延びる円板状に形成した点でのみ、第1実施形態と相違している。   The inner container 22 of the fourth embodiment is different from the first embodiment only in that the inner bottom body 26 is formed in a disk shape extending in parallel to the outer bottom body 40.

このように構成した第4実施形態では、胴部35に対して肩部38を接合して外側胴体34を形成した状態で、胴部35の開口した取付フランジ部37bの側から、第1実施形態と同様に内容器22を配設し、互いの口部39,24を溶接により接合する。ついで、露出した内容器22の内側底体26上にコア材31を配設した後、外側胴体34に対して外側底体40を溶接により接合する。   In the fourth embodiment configured as described above, the shoulder portion 38 is joined to the body portion 35 to form the outer body 34, and the first embodiment is performed from the side of the mounting flange portion 37 b opened in the body portion 35. The inner container 22 is disposed similarly to the form, and the mouths 39 and 24 are joined to each other by welding. Next, after the core material 31 is disposed on the exposed inner bottom body 26 of the inner container 22, the outer bottom body 40 is joined to the outer body 34 by welding.

このように組み立てた真空排気前の二重容器は、図7(A)に示すように、外容器11と内容器22との間に十分な間隙の内部空間30が形成される。しかも、塑性変形部36が未変形状態のため、第1金属板部である外容器11の外側底体40と、第2金属板部である内容器22の内側底体26との間には、これらを互いに支持するためのコア材31を配設しているが、このコア材31と外側底体40との間にも十分な間隙が形成されている。   As shown in FIG. 7A, the double container before evacuation assembled in this way forms an internal space 30 with a sufficient gap between the outer container 11 and the inner container 22. And since the plastic deformation part 36 is an undeformed state, it is between the outer bottom body 40 of the outer container 11 which is a 1st metal plate part, and the inner bottom body 26 of the inner container 22 which is a 2nd metal plate part. The core material 31 for supporting these members is disposed, but a sufficient gap is also formed between the core material 31 and the outer bottom body 40.

その後、第1実施形態と同様に、外容器11と内容器22との間の内部空間30内の空気を真空排気しながら、ゲッターが活性化する温度まで加熱した後、チップ管21を封じ切って封止する。   Thereafter, as in the first embodiment, while the air in the inner space 30 between the outer container 11 and the inner container 22 is evacuated and heated to a temperature at which the getter is activated, the tip tube 21 is sealed off. And seal.

最後に、プレス機などの押圧機によって外容器11の外側底体40を軸方向に押圧するように外力を加える。これにより、図7(B)に示すように、波状の蛇腹形状をなす塑性変形部36が隣接する山部および谷部の間隔を狭める(収縮)ように塑性変形する。また、塑性変形部36の変形により外容器11の外側底体40と内容器22の内側底体26との間の内部空間30の容積(間隔)が小さくなる。その結果、これらの間に位置するコア材31が圧接される。   Finally, an external force is applied so as to press the outer bottom body 40 of the outer container 11 in the axial direction by a pressing machine such as a press machine. As a result, as shown in FIG. 7B, the plastic deformation portion 36 having a wavy bellows shape is plastically deformed so as to narrow (shrink) the interval between the adjacent peaks and valleys. Further, the volume (interval) of the internal space 30 between the outer bottom body 40 of the outer container 11 and the inner bottom body 26 of the inner container 22 is reduced by the deformation of the plastic deformation portion 36. As a result, the core material 31 located between them is pressed.

そして、このように製造した魔法瓶10は、第1実施形態と同様の作用および効果を得ることができる。なお、本実施形態では、胴部35全体にかけて塑性変形部36を形成する構成としたが、軸方向の一部のみに周方向に延びるように設ける構成としてもよい。   And the thermos 10 manufactured in this way can acquire the effect | action and effect similar to 1st Embodiment. In the present embodiment, the plastic deformation portion 36 is formed over the entire body portion 35. However, the plastic deformation portion 36 may be provided so as to extend in the circumferential direction only in a part in the axial direction.

図8(A),(B)は第5実施形態の魔法瓶10を示す。この第5実施形態では、第1実施形態と同様の外側胴体12に、塑性変形部19を形成する構成とした点で、各実施形態と相違している。   8A and 8B show a thermos bottle 10 according to the fifth embodiment. The fifth embodiment is different from the respective embodiments in that a plastic deformation portion 19 is formed on the outer body 12 similar to the first embodiment.

具体的には、第5実施形態では、外容器11の外側胴体12の下端開口の近傍に位置するように、未変形状態では円弧状をなすように外向きに膨出し、塑性変形状態では円弧状をなすように内向きに没入する塑性変形部19が、周方向に所定間隔(90度)をもって設けられている。   Specifically, in the fifth embodiment, in an undeformed state, it bulges outward so as to form an arc shape so as to be located near the lower end opening of the outer body 12 of the outer container 11, and in a plastically deformed state, it is a circle. Plastic deformation portions 19 that are inwardly immersed so as to form an arc shape are provided at a predetermined interval (90 degrees) in the circumferential direction.

また、第5実施形態の内容器22は、内側胴体23と内側底体26とを接合するフランジ部25,29の位置が、塑性変形部19の上方(図示では下方)に位置するように構成し、このフランジ部25,29をコア材31の載置部として使用できるように構成している。   Further, the inner container 22 of the fifth embodiment is configured such that the positions of the flange portions 25 and 29 that join the inner body 23 and the inner bottom body 26 are located above (lower in the drawing) the plastic deformation portion 19. The flange portions 25 and 29 are configured to be used as a placement portion for the core material 31.

このように構成した第5実施形態では、外側胴体12の下端開口部から内容器22を配設し、互いの口部13,24を溶接により接合する。ついで、外側胴体12と内側胴体23との間に位置するようにコア材31を配設した後、外側胴体12に対して外側底体17を溶接により接合する。   In 5th Embodiment comprised in this way, the inner container 22 is arrange | positioned from the lower end opening part of the outer side body 12, and the opening parts 13 and 24 are joined by welding. Next, after the core material 31 is disposed so as to be positioned between the outer body 12 and the inner body 23, the outer bottom body 17 is joined to the outer body 12 by welding.

このように組み立てた真空排気前の二重容器は、図8(A)に示すように、外容器11と内容器22との間に十分な間隙の内部空間30が形成される。しかも、コア材31の下方には、内容器22からフランジ部25,29が突出した状態をなすため、塑性変形部19に対するコア材31の位置決め精度も良好である。   As shown in FIG. 8A, the double container before evacuation assembled in this way forms an internal space 30 with a sufficient gap between the outer container 11 and the inner container 22. Moreover, since the flange portions 25 and 29 protrude from the inner container 22 below the core material 31, the positioning accuracy of the core material 31 with respect to the plastic deformation portion 19 is also good.

その後、第1実施形態と同様に、外容器11と内容器22との間の内部空間30内の空気を真空排気しながら、ゲッターが活性化する温度まで加熱した後、チップ管21を封じ切って封止する。   Thereafter, as in the first embodiment, while the air in the inner space 30 between the outer container 11 and the inner container 22 is evacuated and heated to a temperature at which the getter is activated, the tip tube 21 is sealed off. And seal.

最後に、プレス機などの押圧機によって外容器11の外側胴体12を径方向に押圧するように外力を加える。これにより、図8(B)に示すように、塑性変形部19が径方向内向きに没入するように塑性変形する。また、塑性変形部19の変形により、外容器11の外側胴体12と内容器22の内側胴体23との間の内部空間30の一部の容積(間隔)が小さくなる。その結果、これらの間に位置するコア材31が圧接され、第1実施形態と同様の作用および効果を得ることができる。   Finally, an external force is applied so as to press the outer body 12 of the outer container 11 in the radial direction by a pressing machine such as a press machine. As a result, as shown in FIG. 8B, the plastic deformation portion 19 is plastically deformed so as to be immersed radially inward. In addition, due to the deformation of the plastic deformation portion 19, a partial volume (interval) of the internal space 30 between the outer body 12 of the outer container 11 and the inner body 23 of the inner container 22 is reduced. As a result, the core material 31 positioned between them is pressed, and the same operation and effect as in the first embodiment can be obtained.

図9(A),(B)は第6実施形態の魔法瓶10を示す。この第6実施形態では、第1金属板部である外容器11の外側底体17に、真空排気前のコア材31を保持する保持部を設けた点で、各実施形態と相違している。具体的には、第6実施形態の外側底体17は、第1実施形態と同様に、外周部に逆U字形状の縁部18を備え、この縁部18内を塑性変形部19としている。そして、この塑性変形部19の塑性変形前の内部を、コア材31を保持する保持部とした点でのみ、第1実施形態と相違している。   9A and 9B show a thermos bottle 10 according to the sixth embodiment. The sixth embodiment is different from the respective embodiments in that a holding portion that holds the core material 31 before evacuation is provided on the outer bottom body 17 of the outer container 11 that is the first metal plate portion. . Specifically, as in the first embodiment, the outer bottom body 17 of the sixth embodiment includes an inverted U-shaped edge 18 on the outer peripheral portion, and the inside of the edge 18 serves as a plastic deformation portion 19. . And only the point which made the inside before this plastic deformation part of this plastic deformation part 19 the holding | maintenance part holding the core material 31 is different from 1st Embodiment.

このように構成した第6実施形態では、各実施形態と同様の作用および効果を得ることができるうえ、組立時に外側底体17に対してコア材31を位置決め保持させ、この状態で内容器22を接合した外側胴体12に配設することができるため、組付作業性を向上することができる。   In the sixth embodiment configured as described above, the same operations and effects as those of the respective embodiments can be obtained, and the core material 31 is positioned and held with respect to the outer bottom body 17 at the time of assembly. Since it can arrange | position to the outer side body 12 which joined | attached, assembly | attachment workability | operativity can be improved.

図10(A),(B)は第7実施形態の魔法瓶10を示す。この第7実施形態では、第3実施形態と同様に、保持部32を円形状に膨出するように設け、かつ、塑性変形部19を、外容器11の外側底体17の外周部に設けた点で、各実施形態と相違している。なお、本実施形態のコア材31には、第3実施形態に示す貫通した保持孔33の代わりに、円形状に窪む保持穴33’が形成されている。   10A and 10B show a thermos bottle 10 according to the seventh embodiment. In the seventh embodiment, similarly to the third embodiment, the holding portion 32 is provided so as to bulge in a circular shape, and the plastic deformation portion 19 is provided on the outer peripheral portion of the outer bottom body 17 of the outer container 11. This is different from each embodiment. In addition, in the core material 31 of the present embodiment, a holding hole 33 ′ that is recessed in a circular shape is formed instead of the penetrating holding hole 33 shown in the third embodiment.

具体的には、第7実施形態の外側底体17は、外側胴体12より小さい外径の円板状をなし、その外周部に円弧状に湾曲する湾曲部44を介して底取付部15に接合するための縁部18が形成されている。そして、本実施形態では、この湾曲部44に、周方向に所定間隔(90度)をもって塑性変形状態で円弧状をなすように内向きに没入する塑性変形部19が設けられている。この塑性変形部19は、押圧機によって径方向内向きに外力を加えることにより、塑性変形させることができる。または、軸方向に沿って内向きに外力を加えることにより塑性変形させることができる。または、湾曲部の中心に向けて斜めに外力を加えることにより塑性変形させることができる。そして、このように構成した第7実施形態では、各実施形態と同様の作用および効果を得ることができる。   Specifically, the outer bottom body 17 of the seventh embodiment has a disk shape with an outer diameter smaller than that of the outer body 12 and is attached to the bottom mounting portion 15 via a curved portion 44 that is curved in an arc shape on the outer peripheral portion thereof. An edge 18 for joining is formed. In the present embodiment, the bending portion 44 is provided with a plastic deformation portion 19 that immerses inward so as to form an arc shape in a plastic deformation state at a predetermined interval (90 degrees) in the circumferential direction. The plastic deformation portion 19 can be plastically deformed by applying an external force radially inward with a pressing machine. Alternatively, it can be plastically deformed by applying an external force inward along the axial direction. Alternatively, it can be plastically deformed by applying an external force obliquely toward the center of the curved portion. And in 7th Embodiment comprised in this way, the effect | action and effect similar to each embodiment can be acquired.

図11(A),(B)は第8実施形態の魔法瓶10を示す。この第8実施形態では、外容器11の外側底体17と内容器22の内側底体26との間にコア材31を配設し、このコア材31の保持部32A,32Bを、外側底体17と内側底体26の両方にそれぞれ設けた点で、各実施形態と大きく相違している。なお、コア材31には、第3実施形態と同様に、中心に位置するように保持孔33が設けられている。   FIGS. 11A and 11B show a thermos bottle 10 according to the eighth embodiment. In the eighth embodiment, the core material 31 is disposed between the outer bottom body 17 of the outer container 11 and the inner bottom body 26 of the inner container 22, and the holding portions 32A and 32B of the core material 31 are disposed on the outer bottom body. This is greatly different from each embodiment in that it is provided on both the body 17 and the inner bottom body 26. The core material 31 is provided with a holding hole 33 so as to be located at the center, as in the third embodiment.

具体的には、第8実施形態の外側底体17は、第1実施形態と同様に、外周部に縁部18を備え、その内部に外力を加えることにより内方に窪む塑性変形部19を設けたものである。そして、本実施形態では、この塑性変形部19の中央に位置する円板部19bに、内向きに凹字形状に窪む第1の保持部32Aが設けられている。この保持部32Aは、コア材31の保持孔33より小径のもので、その軸方向の寸法は、図11(A)に示すように、塑性変形部19の変形前の組付状態で、保持孔33内に進入可能で、かつ、図11(B)に示すように、塑性変形部19の変形後の状態で、内部空間30を隔てて対向する内側底体26に干渉しないように形成されている。そして、この保持部32Aの中央には、排気用のチップ管21を接合する排気孔20が設けられている。   Specifically, as in the first embodiment, the outer bottom body 17 of the eighth embodiment includes an edge portion 18 on the outer peripheral portion, and a plastic deformation portion 19 that is recessed inward by applying an external force to the inside thereof. Is provided. In the present embodiment, a first holding portion 32 </ b> A that is recessed inwardly in a concave shape is provided on the disc portion 19 b located at the center of the plastic deformation portion 19. This holding portion 32A has a smaller diameter than the holding hole 33 of the core material 31, and its axial dimension is held in an assembled state before the plastic deformation portion 19 is deformed, as shown in FIG. As shown in FIG. 11 (B), it is formed so as not to interfere with the inner bottom body 26 facing the inner space 30 in a state after the plastic deformation portion 19 is deformed. ing. An exhaust hole 20 for joining the exhaust tip tube 21 is provided in the center of the holding portion 32A.

また、第8実施形態の内側底体26は、外周部に位置する湾曲部27内に第2の保持部32Bを形成したものである。この保持部32Bは、階段状をなすように複数(本実施形態では3個)設けた同心円状の凹部32a,32b,32cからなる。外周部に位置する凹部32aは、湾曲部27との境界に形成される段部と、水平方向に延びる平坦部とを備えている。中間に位置する凹部32bは、凹部32aとの境界に形成される垂直段部と、水平方向に延びる平坦部とを備えている。内部(中央)に位置する凹部32cは、凹部32bとの境界に形成される垂直段部と、水平方向に延びる平坦部とを備えている。この凹部32cは、第1の保持部32Aの外径より大きい直径で形成されている。   Further, the inner bottom body 26 of the eighth embodiment is obtained by forming the second holding portion 32B in the curved portion 27 located on the outer peripheral portion. The holding portion 32B includes concentric concave portions 32a, 32b, and 32c provided in a plurality (three in this embodiment) so as to form a step shape. The recessed part 32a located in an outer peripheral part is provided with the step part formed in the boundary with the curved part 27, and the flat part extended in a horizontal direction. The recess 32b located in the middle includes a vertical step formed at the boundary with the recess 32a and a flat portion extending in the horizontal direction. The concave portion 32c located inside (center) includes a vertical step portion formed at the boundary with the concave portion 32b and a flat portion extending in the horizontal direction. The concave portion 32c is formed with a diameter larger than the outer diameter of the first holding portion 32A.

このように構成した第8実施形態では、第2実施形態と同様の作用および効果を得ることができる。しかも、第8実施形態では、組付時において、外側胴体12に外側底体17を組み付ける前の状態では、内部に配設した内容器22の第2の保持部32Bによって配設するコア材31を位置決めできる。この状態で、外側胴体12に外側底体17を組み付けると、コア材31を外側底体17の第1の保持部32Aで確実に位置決めできる。そのため、組立作業性の向上を図ることができる。   In the eighth embodiment configured as described above, the same operations and effects as those of the second embodiment can be obtained. Moreover, in the eighth embodiment, at the time of assembly, the core material 31 disposed by the second holding portion 32B of the inner container 22 disposed inside is in a state before the outer bottom body 17 is assembled to the outer body 12. Can be positioned. In this state, when the outer bottom body 17 is assembled to the outer body 12, the core material 31 can be reliably positioned by the first holding portion 32 </ b> A of the outer bottom body 17. Therefore, the assembly workability can be improved.

また、内部空間30を真空排気するとともに、塑性変形部19を塑性変形させた状態では、図11(B)に示すように、コア材31を圧縮することにより階段状をなす保持部32Bの各凹部32a〜32cに密着する。しかも、本実施形態では、外側底体17の保持部32Aにより、コア材31を中心部でも位置決めできる。そのため、使用により経時的に振動が加えられても、コア材31が位置ズレすることを防止できる。よって、外容器11および内容器22の支持状態を確実に維持できる。   Further, in a state where the internal space 30 is evacuated and the plastic deformation portion 19 is plastically deformed, as shown in FIG. 11B, each of the holding portions 32B having a stepped shape is formed by compressing the core material 31. The recesses 32a to 32c are in close contact with each other. In addition, in the present embodiment, the core material 31 can be positioned even in the central portion by the holding portion 32 </ b> A of the outer bottom body 17. Therefore, even if vibration is applied over time due to use, the core material 31 can be prevented from being displaced. Therefore, the support state of the outer container 11 and the inner container 22 can be reliably maintained.

このように、第1から第8実施形態の魔法瓶10は、外容器11を第1金属板部とし、内容器22を第2金属板部とした真空二重構造体である。そして、外容器11に塑性変形部19を設け、この塑性変形部19の変形方向に対して直交方向に延びる位置にコア材31を配設し、このコア材31を塑性変形部19の変形により圧接する構成としている。そのなかでも、第2,3,6,7実施形態では、外容器11および/または内容器22の底に、真空排気前のコア材を保持する保持部32,32A,32Bを設けている。しかしながら、本発明はこれらの実施形態の構成に限定されず、種々の変更が可能である。   Thus, the thermos 10 of the first to eighth embodiments is a vacuum double structure in which the outer container 11 is the first metal plate part and the inner container 22 is the second metal plate part. Then, the outer container 11 is provided with a plastic deformation portion 19, a core material 31 is disposed at a position extending in a direction orthogonal to the deformation direction of the plastic deformation portion 19, and the core material 31 is deformed by the deformation of the plastic deformation portion 19. It is configured to be in pressure contact. Among them, in the second, third, sixth, and seventh embodiments, holding portions 32, 32 </ b> A, and 32 </ b> B that hold the core material before evacuation are provided on the bottom of the outer container 11 and / or the inner container 22. However, the present invention is not limited to the configurations of these embodiments, and various modifications can be made.

例えば、第6実施形態では、塑性変形部19の塑性変形前の内部をコア材31の保持部としたが、第8実施形態のように内部空間30に向けて突出する保持部32Aを設ける構成としてもよい。また、外側底体17に形成する保持部は、第8実施形態の保持部32Bのように、階段状に形成する構成としてもよい。さらに、この階段状をなす保持部32Bは、複数の凹部32a〜32cからなる構成の代わりに、複数の凸部からなる構成としてもよい。勿論、第8実施形態では、外側底体17には保持部32Aを設けることなく、内側底体26にのみ階段状をなす保持部32Bを形成する構成としてもよい。   For example, in the sixth embodiment, the inside of the plastic deformation portion 19 before the plastic deformation is used as the holding portion of the core material 31, but the holding portion 32A that protrudes toward the internal space 30 is provided as in the eighth embodiment. It is good. Further, the holding portion formed on the outer bottom body 17 may be configured to be stepped like the holding portion 32B of the eighth embodiment. Further, the stepped holding portion 32B may be configured with a plurality of convex portions instead of the configuration including the plurality of concave portions 32a to 32c. Of course, in the eighth embodiment, the outer bottom body 17 may not be provided with the holding portion 32A, but the holding portion 32B having a step shape only on the inner bottom body 26 may be formed.

しかも、前記実施形態では、第1金属板部を外容器11とし、第2金属板部を内容器22として、外容器11に塑性変形部19を形成したが、内容器22を第1金属板部として塑性変形部19を形成する構成としてもよい。以下に、塑性変形部を内容器22に設ける構成について具体的に説明する。   Moreover, in the above embodiment, the first metal plate portion is the outer container 11, the second metal plate portion is the inner container 22, and the plastic deformation portion 19 is formed in the outer container 11, but the inner container 22 is the first metal plate. It is good also as a structure which forms the plastic deformation part 19 as a part. Below, the structure which provides a plastic deformation part in the inner container 22 is demonstrated concretely.

図12は第9実施形態の魔法瓶10を示す。この第9実施形態では、塑性変形部46を内容器22の内側底体26に形成するとともに、内部空間30を隔てて対向する外側底体17を弾性変形部45とした点で、各実施形態と相違している。   FIG. 12 shows a thermos bottle 10 according to the ninth embodiment. In the ninth embodiment, the plastic deformation portion 46 is formed on the inner bottom body 26 of the inner container 22, and the outer bottom body 17 facing the inner space 30 is used as the elastic deformation portion 45. Is different.

具体的には、第9実施形態の外側底体17は、外周部に取付状態で内向きに窪む逆U字形状の縁部18を備えている。この外側底体17の縁部18内は、後述する内側底体26の塑性変形部46の塑性変形によりコア材31を介して押圧されると、その押圧力により弾性変形する弾性変形部45を構成する。この弾性変形部45は、円錐筒状をなすように内方に窪む円錐筒部45aと、該円錐筒部45aの端部に連続する円板部45bとからなる。この円板部45bの中央には、各実施形態と同様に排気孔20が設けられ、この排気孔20の周囲にチップ管21が接合されている。本実施形態の弾性変形部45は、弾性限界点を超えて変形しないように、コア材31を介して塑性変形部46の変形により押圧される構成としている。言い換えれば、この弾性変形部45は、コア材31の圧縮率と、塑性変形後の塑性変形部46との間の間隔設定により構成される。さらに、本実施形態では、外側底体17を、肉厚が0.15〜0.9mm未満のステンレス鋼板で形成することにより、縁部18内の領域の弾性を向上している。   Specifically, the outer bottom body 17 of the ninth embodiment includes an inverted U-shaped edge 18 that is recessed inward in an attached state on the outer peripheral portion. The inside of the edge 18 of the outer bottom body 17 has an elastic deformation portion 45 that is elastically deformed by the pressing force when pressed through the core material 31 by plastic deformation of a plastic deformation portion 46 of the inner bottom body 26 described later. Constitute. The elastic deformation portion 45 includes a conical cylinder portion 45a that is recessed inward to form a conical cylinder shape, and a disc portion 45b that is continuous with an end portion of the conical cylinder portion 45a. The exhaust hole 20 is provided in the center of the disc portion 45b as in the embodiments, and the tip tube 21 is joined around the exhaust hole 20. The elastic deformation part 45 of the present embodiment is configured to be pressed by the deformation of the plastic deformation part 46 via the core material 31 so as not to be deformed beyond the elastic limit point. In other words, the elastic deformation portion 45 is configured by setting a space between the compression rate of the core material 31 and the plastic deformation portion 46 after plastic deformation. Furthermore, in this embodiment, the elasticity of the area | region in the edge part 18 is improved by forming the outer side bottom body 17 with the stainless steel plate whose thickness is less than 0.15-0.9 mm.

第9実施形態の内側底体26は、第1実施形態と同様に内側胴体23に接合するためのフランジ部29および筒部28を備えている。そして、この筒部28の内部である底を、外力を加えることにより内部空間30内に窪み、内部空間30の容積が小さくなるように塑性変形する塑性変形部46としたものである。この塑性変形部46は、筒部28に連続する円錐筒部46aと、該円錐筒部46aの端部に連続する円板部46bとからなる。この塑性変形部46は、外力を加える前の状態、即ち、内部空間30の真空排気時に加わる吸引では内向きに没入(図12(A)参照)した状態を維持する強度を有する。本実施形態では、この内側底体26を、外側底体17より肉厚が厚い0.2〜1.0mmのステンレス鋼板で形成することにより、強度を確保している。また、この塑性変形部46は、真空排気前のコア材31を保持する保持部を構成する。   The inner bottom body 26 of the ninth embodiment includes a flange portion 29 and a tube portion 28 for joining to the inner body 23 as in the first embodiment. And the bottom which is the inside of this cylinder part 28 is made into the plastic deformation part 46 which is dented in the internal space 30 by applying external force, and plastically deforms so that the volume of the internal space 30 may become small. The plastic deformation portion 46 includes a conical tube portion 46a continuous to the tube portion 28 and a disc portion 46b continuous to an end portion of the conical tube portion 46a. The plastic deformation portion 46 has a strength to maintain a state before applying an external force, that is, a state in which the inner space 30 is immersed inward (see FIG. 12A) in suction applied when the internal space 30 is evacuated. In the present embodiment, the inner bottom body 26 is formed of a stainless steel plate having a thickness of 0.2 to 1.0 mm that is thicker than the outer bottom body 17 to ensure strength. Further, the plastic deformation portion 46 constitutes a holding portion that holds the core material 31 before being evacuated.

このように構成した第9実施形態の魔法瓶10は、第1実施形態と同様にして外側胴体12、外側底体17、内側胴体23、内側底体26およびコア材31が配設および接合され、これにより、図12(A)に示すように、真空排気前の二重容器が組み立てられる。この二重容器は、外容器11と内容器22との間に十分な間隙の内部空間30が形成されている。しかも、第2金属板部である外容器11の外側底体40と、第1金属板部である内容器22の内側底体26との間には、これらを互いに支持するためのコア材31を配設しているが、塑性変形部46が未変形状態であるため、コア材31と外側底体40との間にも十分な間隙が形成されている。   In the thermos bottle 10 of the ninth embodiment configured as described above, the outer body 12, the outer bottom body 17, the inner body 23, the inner bottom body 26, and the core material 31 are disposed and joined in the same manner as in the first embodiment. Thereby, as shown to FIG. 12 (A), the double container before vacuum exhaust is assembled. In this double container, an internal space 30 having a sufficient gap is formed between the outer container 11 and the inner container 22. Moreover, between the outer bottom body 40 of the outer container 11 that is the second metal plate portion and the inner bottom body 26 of the inner container 22 that is the first metal plate portion, the core material 31 for supporting them mutually. However, since the plastic deformation portion 46 is in an undeformed state, a sufficient gap is also formed between the core material 31 and the outer bottom body 40.

そして、外容器11と内容器22との間の内部空間30内の空気を真空排気しながら、ゲッターが活性化する温度まで加熱した後、チップ管21を封じ切って封止する。この際、本実施形態のコア材31は、多数の繊維からなるグラスウールを使用しているため、図12(A)に示す真空排気前の厚さT1と、図12(C)に示す真空排気後の厚さT1とは同一である。   Then, while the air in the internal space 30 between the outer container 11 and the inner container 22 is evacuated and heated to a temperature at which the getter is activated, the tip tube 21 is sealed and sealed. At this time, since the core material 31 of the present embodiment uses glass wool made of a large number of fibers, the thickness T1 before evacuation shown in FIG. 12A and the evacuation shown in FIG. The later thickness T1 is the same.

その後、内容器22に設けた塑性変形部46に外力を加えて塑性変形させる。この際、本実施形態の塑性変形部46は、内容器22の内部から外向きの外力を加えることにより、塑性変形させるものである。そのため、内容器22内に流体を注入可能な流体供給機(図示せず)により、外力を加える構成としている。   Thereafter, an external force is applied to the plastic deformation portion 46 provided in the inner container 22 to cause plastic deformation. At this time, the plastic deformation portion 46 of the present embodiment is plastically deformed by applying an outward external force from the inside of the inner container 22. Therefore, an external force is applied by a fluid feeder (not shown) capable of injecting fluid into the inner container 22.

ここで、流体供給機としては、第2口部24に対して密閉状態で接続可能な接続部を有し、この接続部を第2口部24に接続した状態で、流体である液体を所定圧力で注入可能なコンプレッサを具備するものである。なお、液体の代わりに気体を供給する構成としてもよいうえ、気液を混合した流体を供給する構成としてもよい。   Here, the fluid supply machine has a connection part that can be connected to the second port part 24 in a sealed state, and in a state in which the connection part is connected to the second port part 24, a liquid that is a fluid is predetermined. It is equipped with a compressor that can be injected by pressure. In addition, it is good also as a structure which supplies gas instead of a liquid, and it is good also as a structure which supplies the fluid which mixed the gas-liquid.

このようにして内容器22内に流体を供給することにより外力を加えて塑性変形部46を塑性変形させると、図12(B)に示すように、各実施形態と同様に、塑性変形部46は予め設計した通りの変形量で、外方(内部空間30内)に膨出し、両底体17,26間の内部空間30の容積(間隔)が小さくなる。これにより、密度が約100〜160kg/mのコア材31が、塑性変形部46と弾性変形部45との間に密度が約220±30kg/mとなるように圧接される。その結果、各実施形態と同様に、コア材31で内外の容器11,22を互いに支持し、異音を発生やリークの発生を防止できる。 When the plastic deformation portion 46 is plastically deformed by applying an external force by supplying the fluid into the inner container 22 in this way, as shown in FIG. 12B, the plastic deformation portion 46 is the same as in each embodiment. Is the amount of deformation as designed in advance and bulges outward (inside the internal space 30), reducing the volume (interval) of the internal space 30 between the bottom bodies 17, 26. Thus, the core material 31 of a density of about 100~160kg / m 3 is pressed such that the density is about 220 ± 30kg / m 3 between the plastically deformed portion 46 and the elastic deformation section 45. As a result, as in the embodiments, the inner and outer containers 11 and 22 are supported by the core material 31 and abnormal noise and leakage can be prevented.

また、本実施形態では、第2金属板部である外容器11におけるコア材31の圧接位置、即ち、内容器22の塑性変形部46の対向位置に、弾性変形可能な弾性変形部45を設けている。そのため、前記塑性変形部46の塑性変形によりコア材31が圧接されると、コア材31を介して弾性変形部45が外向きに弾性変形する。そのため、この弾性変形部45の弾性変形により、外側底体17の組付誤差や、塑性変形部46の変形誤差を吸収することが可能である。なお、この状態でのコア材31の厚さT2は、塑性変形前の厚さT1より小さい(T2<T1)。   Further, in the present embodiment, the elastically deformable elastic deformation portion 45 is provided at the pressure contact position of the core material 31 in the outer container 11 which is the second metal plate portion, that is, the position facing the plastic deformation portion 46 of the inner container 22. ing. Therefore, when the core material 31 is pressed by plastic deformation of the plastic deformation portion 46, the elastic deformation portion 45 is elastically deformed outward via the core material 31. Therefore, the elastic deformation of the elastic deformation portion 45 can absorb the assembly error of the outer bottom body 17 and the deformation error of the plastic deformation portion 46. In this state, the thickness T2 of the core material 31 is smaller than the thickness T1 before plastic deformation (T2 <T1).

一方、本実施形態のコア材31は多数の繊維が絡み合ってなるものであるため、使用により振動が加えられると、交差状態であった繊維同士が平行状態になることがある。この場合、コア材31の弾性的な支持力、即ち、厚さT3が小さくなる(T3<T2)ことがある。しかし、本実施形態では、外容器11におけるコア材31の圧接位置には、弾性変形部45を設けているため、図12(D)に示すように、コア材31の厚さT3が小さくなった場合には、弾性変形部45が弾性的に復元することにより、コア材31の圧接状態を維持することができる。その結果、コア材31による内外の容器11,22の支持状態を確実に維持できる。   On the other hand, since the core material 31 of the present embodiment is formed by intertwining a large number of fibers, when vibration is applied by use, the fibers that are in an intersecting state may be in a parallel state. In this case, the elastic supporting force of the core material 31, that is, the thickness T3 may be reduced (T3 <T2). However, in this embodiment, since the elastic deformation part 45 is provided in the press-contact position of the core material 31 in the outer container 11, as shown in FIG.12 (D), thickness T3 of the core material 31 becomes small. In this case, the elastic deformation portion 45 is elastically restored, so that the pressure contact state of the core material 31 can be maintained. As a result, the support state of the inner and outer containers 11 and 22 by the core material 31 can be reliably maintained.

なお、この第9実施形態の魔法瓶10は、第6実施形態のように、塑性変形部46をコア材31の保持部として構成させたが、第2,第3および第8実施形態のように、外側底体17(弾性変形部45)および/または内側底体26(塑性変形部46)に、専用の保持部32,32A,32Bを設ける構成とすることもできる。また、第9実施形態では、塑性変形部46を内側底体26に設けたが、第5実施形態の塑性変形部19のように、内側胴体23に設ける構成としてもよい。この場合、筒状をなす外側胴体12と、塑性変形後の塑性変形部との間隔を調整することにより、外側胴体12を弾性変形部として構成させることができる。   The thermos bottle 10 of the ninth embodiment has the plastic deformation portion 46 configured as a holding portion for the core material 31 as in the sixth embodiment, but as in the second, third, and eighth embodiments. Alternatively, the holding portions 32, 32A, and 32B for exclusive use may be provided on the outer bottom body 17 (elastic deformation portion 45) and / or the inner bottom body 26 (plastic deformation portion 46). In the ninth embodiment, the plastic deformation portion 46 is provided in the inner bottom body 26. However, the plastic deformation portion 19 may be provided in the inner body 23 like the plastic deformation portion 19 in the fifth embodiment. In this case, the outer body 12 can be configured as an elastic deformation part by adjusting the distance between the cylindrical outer body 12 and the plastic deformation part after plastic deformation.

また、第1〜第9実施形態では、外容器11および内容器22のうち一方(第1金属板部)にのみ塑性変形部19,36,46を設ける構成としたが、両方に塑性変形部を設ける構成としてもよい。以下に、塑性変形部を両方の容器11,22に設ける構成について具体的に説明する。   In the first to ninth embodiments, the plastic deformation portions 19, 36, and 46 are provided only on one (first metal plate portion) of the outer container 11 and the inner container 22. It is good also as a structure which provides. Below, the structure which provides a plastic deformation part in both the containers 11 and 22 is demonstrated concretely.

図13(A),(B)は第10実施形態の魔法瓶10を示す。この第10実施形態では、第1実施形態に示す外容器11(外側底体17)と、第9実施形態に示す内容器22(内側底体26)とを用いて構成したものである。   13A and 13B show the thermos bottle 10 of the tenth embodiment. In the tenth embodiment, the outer container 11 (outer bottom body 17) shown in the first embodiment and the inner container 22 (inner bottom body 26) shown in the ninth embodiment are used.

このように構成した第10実施形態の魔法瓶10は、第1実施形態と同様にして外側胴体12、外側底体17、内側胴体23、内側底体26およびコア材31が配設および接合され、これにより、図13(A)に示すように、真空排気前の二重容器が組み立てられる。この二重容器は、外容器11と内容器22との間に十分な間隙の内部空間30が形成されている。しかも、両方の容器11,22の底体17,26に、それぞれ塑性変形部19,46を設けているため、これらの間にはコア材31を配設しているが、極めて大きな間隙が形成されている。   In the thermos bottle 10 of the tenth embodiment configured as described above, the outer body 12, the outer bottom body 17, the inner body 23, the inner bottom body 26, and the core material 31 are disposed and joined in the same manner as in the first embodiment. Thereby, as shown to FIG. 13 (A), the double container before vacuum exhaust is assembled. In this double container, an internal space 30 having a sufficient gap is formed between the outer container 11 and the inner container 22. Moreover, since the plastic deformation portions 19 and 46 are provided in the bottom bodies 17 and 26 of both the containers 11 and 22, respectively, the core material 31 is disposed between them, but an extremely large gap is formed. Has been.

そして、外容器11と内容器22との間の内部空間30内の空気を真空排気しながら、ゲッターが活性化する温度まで加熱した後、チップ管21を封じ切って封止すると、内外の両方から外力を付加することにより、塑性変形部19,46をそれぞれ変形させる。なお、外容器11の塑性変形部19は押圧機により外力を付加し、内容器22の塑性変形部46は流体供給機により外力を付加する。これらは、同時に行ってもよいうえ、個別に行ってもよい。個別に行う場合には、その順番も制限されることはない。   Then, after evacuating the air in the internal space 30 between the outer container 11 and the inner container 22 and heating to a temperature at which the getter is activated, the chip tube 21 is sealed and sealed, both inside and outside The plastic deformation portions 19 and 46 are respectively deformed by applying an external force from the above. In addition, the plastic deformation part 19 of the outer container 11 applies external force with a pressing machine, and the plastic deformation part 46 of the inner container 22 applies external force with a fluid supply machine. These may be performed simultaneously or individually. When performed individually, the order is not limited.

このようにして一対の塑性変形部19,46を塑性変形させた魔法瓶10は、各実施形態と同様に、コア材31が外容器11(塑性変形部19)と内容器22(塑性変形部46)との間に圧接される。そのため、コア材31で内外の容器11,22を互いに支持し、異音を発生やリークの発生を防止できる。   In the thermos bottle 10 in which the pair of plastic deformation portions 19 and 46 are plastically deformed in this manner, the core material 31 is composed of the outer container 11 (plastic deformation portion 19) and the inner container 22 (plastic deformation portion 46), as in each embodiment. ). For this reason, the inner and outer containers 11 and 22 are supported by the core material 31, and abnormal noise and leakage can be prevented.

なお、この第10実施形態では、塑性変形部19,46を内部空間30を隔てて対向する位置に設けたが、対向しない異なる位置に設けてもよい。また、塑性変形部46をコア材31の保持部として構成させたが、外側底体17(弾性変形部45)および/または内側底体26(塑性変形部46)に、専用の保持部32,32A,32Bを設ける構成としてもよい。   In addition, in this 10th Embodiment, although the plastic deformation parts 19 and 46 were provided in the position which opposes across the internal space 30, you may provide in the different position which does not oppose. In addition, the plastic deformation portion 46 is configured as a holding portion of the core material 31, but the exclusive holding portion 32, the outer bottom body 17 (elastic deformation portion 45) and / or the inner bottom body 26 (plastic deformation portion 46). It is good also as a structure which provides 32A and 32B.

このように、本発明は、外容器11および/または内容器22に塑性変形部19,36,46を設け、真空排気後に外力を加えて変形させることにより、コア材31を圧接し、コア材31で両容器11,22を支持させることができるものである。そして、塑性変形部19,36,46の形成位置および対応するコア材31の配設位置は、塑性変形部19,36,46の変形方向に対して直交方向に延びるようにコア材31を配設すれば、希望に応じて変更が可能である。   As described above, according to the present invention, the core material 31 is pressure-contacted by providing the outer container 11 and / or the inner container 22 with the plastic deformation portions 19, 36, 46 and deforming them by applying an external force after evacuation. 31 can support both containers 11 and 22. The core material 31 is arranged so that the formation positions of the plastic deformation portions 19, 36, 46 and the arrangement positions of the corresponding core materials 31 extend in a direction perpendicular to the deformation direction of the plastic deformation portions 19, 36, 46. Once set, it can be changed as desired.

なお、本発明の真空二重構造体およびその製造方法は、前記実施形態の構成に限定されるものではなく、種々の変更が可能である。   In addition, the vacuum double structure of this invention and its manufacturing method are not limited to the structure of the said embodiment, A various change is possible.

例えば、前記実施形態では、本発明の塑性変形部19,36,46を設ける真空二重構造体として魔法瓶10を例に挙げて説明したが、車両のエンジンの通水経路、または、給湯機から蛇口に至る通水経路に介設する断熱タンクでも同様に適用可能であり、同様の作用および効果を得ることができる。   For example, in the above-described embodiment, the thermos 10 is described as an example of the vacuum double structure provided with the plastic deformation portions 19, 36, 46 of the present invention. However, from the water passage of the vehicle engine or the water heater The present invention can be similarly applied to a heat insulating tank interposed in a water passage leading to a faucet, and similar actions and effects can be obtained.

また、第5実施形態の構成は、底体17,26が無くてもよい。そのため、本発明の塑性変形部を設ける構成は二重容器に限られず、真空二重管や真空二重ジャケットなどの筒状をなす二重筒にも適用可能である。図14(A),(B)に本発明の構成を真空二重管50に適用した例を示す。この真空二重管50は、外筒51と内筒52とを備え、これらを両端の開口部で接合部材53などによって接合することにより内部空間54を密閉したものである。この真空二重管50は、外筒51と内筒52との直径が均一であるため、その間にコア材55を圧縮状態で配設することはできない。しかし、本発明では、例えば図示のように外筒51の所定箇所に周方向に所定間隔をもって塑性変形部56を形成することにより、外筒51と内筒52の間にコア材55を圧縮状態で配設できる。その結果、このコア材55で外筒51と内筒52とを支持することができるため、長尺な真空二重管50であっても、中間部分で外筒51と内筒52とが干渉し、接合部分にリークが発生することを防止できる。   Moreover, the structure of 5th Embodiment does not need the bottom bodies 17 and 26. FIG. Therefore, the structure which provides the plastic deformation part of this invention is not restricted to a double container, It is applicable also to double cylinders which make cylinder shapes, such as a vacuum double tube and a vacuum double jacket. 14A and 14B show an example in which the configuration of the present invention is applied to a vacuum double tube 50. FIG. The vacuum double tube 50 includes an outer cylinder 51 and an inner cylinder 52, and the inner space 54 is hermetically sealed by joining them with joint members 53 and the like at openings at both ends. In this vacuum double tube 50, since the diameters of the outer cylinder 51 and the inner cylinder 52 are uniform, the core material 55 cannot be disposed in a compressed state therebetween. However, in the present invention, the core material 55 is compressed between the outer cylinder 51 and the inner cylinder 52 by, for example, forming plastic deformation portions 56 at predetermined intervals in the circumferential direction at predetermined positions of the outer cylinder 51 as shown in the figure. Can be arranged. As a result, since the outer cylinder 51 and the inner cylinder 52 can be supported by the core material 55, the outer cylinder 51 and the inner cylinder 52 interfere with each other even in the long vacuum double pipe 50. In addition, it is possible to prevent a leak from occurring at the joint portion.

さらに、本発明の塑性変形部を設ける構成は、断熱パネルにも適用可能である。図15(A),(B)に本発明の構成を断熱パネル60に適用した例を示す。この断熱パネル60は、略凹字形状をなす一対の金属板61A,61Bを備え、これらの外周縁を接合したものである。これら金属板61A,61Bの間には、コア材62が配設されている。そして、図示のように、各金属板61A,61Bに塑性変形部63,63を設け、これらによりコア材62を圧縮状態で配置する。このようにすれば、各実施形態と同様の作用および効果を得ることができる。しかも、塑性変形部62を設けた面が断熱対象物に接触するように配置することにより、断熱対象物に対する断熱パネル60の接触面積を少なくすることができるため、伝熱を低減でき、断熱性能を向上できる。また、断熱対象物と塑性変形部63との間に断熱空間が形成されるため、更に断熱性能を向上できる。   Furthermore, the structure which provides the plastic deformation part of this invention is applicable also to a heat insulation panel. 15A and 15B show an example in which the configuration of the present invention is applied to a heat insulating panel 60. FIG. This heat insulation panel 60 is provided with a pair of metal plates 61A and 61B having a substantially concave shape, and these outer peripheral edges are joined. A core material 62 is disposed between the metal plates 61A and 61B. Then, as shown in the figure, plastic deformation parts 63 and 63 are provided on the metal plates 61A and 61B, respectively, and the core material 62 is arranged in a compressed state. In this way, the same operations and effects as those of the embodiments can be obtained. Moreover, since the contact area of the heat insulation panel 60 with respect to the heat insulation object can be reduced by arranging the surface provided with the plastic deformation portion 62 so as to contact the heat insulation object, heat transfer can be reduced and heat insulation performance can be reduced. Can be improved. Moreover, since a heat insulation space is formed between the heat insulation object and the plastic deformation part 63, heat insulation performance can be further improved.

10…魔法瓶(真空二重構造体)
11…外容器(第1金属板部)
12,34…外側胴体
13…第1口部
17…外側底体
19,36…塑性変形部
20…排気孔
21…チップ管
22…内容器(第2金属板部)
23…内側胴体
24…第2口部
26…内側底体
30…内部空間
31…コア材
32…保持部
10 ... Thermos (vacuum double structure)
11 ... Outer container (first metal plate part)
DESCRIPTION OF SYMBOLS 12, 34 ... Outer side body 13 ... 1st opening part 17 ... Outer bottom body 19, 36 ... Plastic deformation part 20 ... Exhaust hole 21 ... Tip pipe | tube 22 ... Inner container (2nd metal plate part)
23 ... Inner body 24 ... Second mouth part 26 ... Inner bottom body 30 ... Inner space 31 ... Core material 32 ... Holding part

Claims (11)

対向する第1および第2金属板部の間に形成した内部空間を真空排気してなる真空二重構造体において、
前記第1金属板部に、真空排気後に外力を加えることにより内部空間の容積が小さくなるように塑性変形可能な塑性変形部を設けるとともに、
前記第1金属板部と第2金属板部との間の前記塑性変形部による変形方向に対して直交方向に延びる位置に、熱伝導度が低く弾性変形可能なコア材を配設し、
前記塑性変形部の変形によりコア材を第1および第2金属板部で圧接し、これらをコア材で互いに支持させたことを特徴とする真空二重構造体。
In the vacuum double structure formed by evacuating the internal space formed between the first and second metal plate portions facing each other,
The first metal plate portion is provided with a plastic deformation portion that can be plastically deformed so that the volume of the internal space is reduced by applying an external force after evacuation,
A core material having low thermal conductivity and elastically deformable is disposed at a position extending in a direction orthogonal to a deformation direction by the plastic deformation portion between the first metal plate portion and the second metal plate portion;
A vacuum double structure characterized in that the core material is pressed by the first and second metal plate portions by deformation of the plastic deformation portion, and these are supported by the core material.
前記第2金属板部におけるコア材の圧接位置に、前記塑性変形部の塑性変形によりコア材を介して押圧されると、その押圧力により弾性変形可能な弾性変形部を設けたことを特徴とする請求項1に記載の真空二重構造体。   An elastically deformable portion that is elastically deformable by the pressing force when pressed through the core material by plastic deformation of the plastically deformable portion is provided at a pressure contact position of the core material in the second metal plate portion. The vacuum double structure according to claim 1. 前記第1金属板部は、一端に開口した第1口部を有する外容器であり、
前記第2金属板部は、前記外容器の内部に所定の隙間をあけて配設され、一端に前記第1口部の内面に密封状態で接合される第2口部を有する内容器であり、
前記塑性変形部を外容器の底に設けるとともに、前記コア材を外容器の底と内容器の底の間に配設したことを特徴とする請求項1または請求項2に記載の真空二重構造体。
The first metal plate part is an outer container having a first mouth part opened at one end,
The second metal plate part is an inner container that is disposed inside the outer container with a predetermined gap and has a second mouth part sealed at one end to the inner surface of the first mouth part. ,
3. The vacuum double according to claim 1, wherein the plastic deformation portion is provided on a bottom of the outer container, and the core material is disposed between the bottom of the outer container and the bottom of the inner container. Structure.
前記第1金属板部は、一端に開口した第2口部を有する内容器であり、
前記第2金属板部は、前記内容器の外部に所定の隙間をあけて配設され、一端に前記第2口部の外面に密封状態で接合される第1口部を有する外容器であり、
前記塑性変形部を内容器の底に設けるとともに、前記コア材を内容器の底と外容器の底の間に配設したことを特徴とする請求項1または請求項2に記載の真空二重構造体。
The first metal plate part is an inner container having a second mouth part opened at one end,
The second metal plate part is an outer container that is disposed outside the inner container with a predetermined gap and has a first mouth part that is joined to the outer surface of the second mouth part in a sealed state at one end. ,
3. The vacuum double according to claim 1, wherein the plastic deformation portion is provided at the bottom of the inner container, and the core material is disposed between the bottom of the inner container and the bottom of the outer container. Structure.
対向する第1および第2金属板部の間に形成した内部空間を真空排気してなる真空二重構造体において、
前記第1金属板部および第2金属板部に、真空排気後に外力を加えることにより内部空間の容積が小さくなるように塑性変形可能な塑性変形部を設けるとともに、
前記第1金属板部と第2金属板部との間の前記塑性変形部による変形方向に対して直交方向に延びる位置に、熱伝導度が低く弾性変形可能なコア材を配設し、
前記塑性変形部の変形によりコア材を第1および第2金属板部で圧接し、これらをコア材で互いに支持させたことを特徴とする真空二重構造体。
In the vacuum double structure formed by evacuating the internal space formed between the first and second metal plate portions facing each other,
Providing the first metal plate portion and the second metal plate portion with a plastically deformable portion that can be plastically deformed so as to reduce the volume of the internal space by applying an external force after evacuation;
A core material having low thermal conductivity and elastically deformable is disposed at a position extending in a direction orthogonal to a deformation direction by the plastic deformation portion between the first metal plate portion and the second metal plate portion;
A vacuum double structure characterized in that the core material is pressed by the first and second metal plate portions by deformation of the plastic deformation portion, and these are supported by the core material.
前記第1金属板部は、一端に開口した第1口部を有する外容器であり、
前記第2金属板部は、前記外容器の内部に所定の隙間をあけて配設され、一端に前記第1口部の内面に密封状態で接合される第2口部を有する内容器であり、
前記塑性変形部を外容器および内容器の底に前記内部空間を隔ててそれぞれ設けるとともに、前記コア材を外容器の底と内容器の底の間に配設したことを特徴とする請求項5に記載の真空二重構造体。
The first metal plate part is an outer container having a first mouth part opened at one end,
The second metal plate part is an inner container that is disposed inside the outer container with a predetermined gap and has a second mouth part sealed at one end to the inner surface of the first mouth part. ,
6. The plastic deformation portion is provided on the bottom of the outer container and the inner container with the inner space being spaced apart, and the core material is disposed between the bottom of the outer container and the inner container. 2. A vacuum double structure according to 1.
前記第1金属板部または第2金属板部に、真空排気前のコア材を保持する保持部を設けたことを特徴とする請求項1乃至請求項5のいずれか1項に記載の真空二重構造体。   6. The vacuum 2 according to claim 1, wherein the first metal plate portion or the second metal plate portion is provided with a holding portion that holds a core material before evacuation. Heavy structure. 前記保持部を、凹部または凸部により階段状をなすように形成したことを特徴とする請求項7に記載の真空二重構造体。   The vacuum double structure according to claim 7, wherein the holding portion is formed in a stepped shape by a concave portion or a convex portion. 第1金属板部または第2金属板部に熱伝導度が低く弾性変形可能なコア材を配設し、
前記第1金属板部に対して所定の隙間をあけて第2金属板部を配設して接合し、
これら第1および第2金属板部間の内部空間内の空気を排気し、
前記第1金属板部および第2金属板部の少なくとも一方に設けた塑性変形部に外力を加え、前記内部空間の容積が小さくなるように塑性変形部を塑性変形させることにより、前記コア材を第1金属板部と第2金属板部との間に圧接させ、コア材によって第1および第2金属板部を互いに支持させる
ことを特徴とする真空二重構造体の製造方法。
A core material having low thermal conductivity and elastically deformable is disposed on the first metal plate portion or the second metal plate portion,
A second metal plate portion is disposed and bonded to the first metal plate portion with a predetermined gap,
Exhausting the air in the internal space between the first and second metal plate portions;
By applying an external force to the plastic deformation portion provided on at least one of the first metal plate portion and the second metal plate portion and plastically deforming the plastic deformation portion so that the volume of the internal space is reduced, the core material is A method for producing a vacuum double structure, wherein the first metal plate portion and the second metal plate portion are pressed against each other and the first and second metal plate portions are supported by a core material.
前記第1金属板部は、一端に開口した第1口部を有する外容器であり、
前記第2金属板部は、前記外容器の内部に所定の隙間をあけて配設され、一端に前記第1口部の内面に密封状態で接合される第2口部を有する内容器であり、
前記外容器に設けた塑性変形部を、外側から押圧機により外力を加えて塑性変形させることを特徴とする請求項9に記載の真空二重構造体の製造方法。
The first metal plate part is an outer container having a first mouth part opened at one end,
The second metal plate part is an inner container that is disposed inside the outer container with a predetermined gap and has a second mouth part sealed at one end to the inner surface of the first mouth part. ,
The method for producing a vacuum double structure according to claim 9, wherein the plastic deformation portion provided in the outer container is plastically deformed by applying an external force from the outside with a pressing machine.
前記第1金属板部は、一端に開口した第2口部を有する内容器であり、
前記第2金属板部は、前記内容器の外部に所定の隙間をあけて配設され、一端に前記第2口部の外面に密封状態で接合される第1口部を有する外容器であり、
前記内容器に設けた塑性変形部を、該内容器内に流体供給機によって流体を供給することにより外力を加えて塑性変形させることを特徴とする請求項9に記載の真空二重構造体の製造方法。
The first metal plate part is an inner container having a second mouth part opened at one end,
The second metal plate part is an outer container that is disposed outside the inner container with a predetermined gap and has a first mouth part that is joined to the outer surface of the second mouth part in a sealed state at one end. ,
10. The vacuum double structure according to claim 9, wherein the plastic deformation portion provided in the inner container is plastically deformed by applying an external force by supplying a fluid into the inner container by a fluid supplier. Production method.
JP2009011022A 2008-09-29 2009-01-21 Vacuum double structure and manufacturing method thereof Expired - Fee Related JP5129169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009011022A JP5129169B2 (en) 2008-09-29 2009-01-21 Vacuum double structure and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008250400 2008-09-29
JP2008250400 2008-09-29
JP2009011022A JP5129169B2 (en) 2008-09-29 2009-01-21 Vacuum double structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010100337A true JP2010100337A (en) 2010-05-06
JP5129169B2 JP5129169B2 (en) 2013-01-23

Family

ID=42291347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009011022A Expired - Fee Related JP5129169B2 (en) 2008-09-29 2009-01-21 Vacuum double structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5129169B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444272C2 (en) * 2010-02-05 2012-03-10 Веденичев Константин Валентинович Vessel with double walls and vacuum between them
KR20130143503A (en) * 2012-06-21 2013-12-31 가부시키가이샤 재팬 페일 Composite container with an inner reservoir, and dispensing device
JP2015012951A (en) * 2013-07-04 2015-01-22 株式会社長井技研 Method and apparatus for manufacturing member for double container
JP2018126529A (en) * 2018-03-12 2018-08-16 象印マホービン株式会社 Beverage container
JP2018130329A (en) * 2017-02-15 2018-08-23 象印マホービン株式会社 Double container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459662A (en) * 1977-10-20 1979-05-14 Nippon Oxygen Co Ltd Preparation of thermos in metal
JPH08336469A (en) * 1996-07-12 1996-12-24 Zojirushi Corp Vacuum double vessel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459662A (en) * 1977-10-20 1979-05-14 Nippon Oxygen Co Ltd Preparation of thermos in metal
JPH08336469A (en) * 1996-07-12 1996-12-24 Zojirushi Corp Vacuum double vessel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444272C2 (en) * 2010-02-05 2012-03-10 Веденичев Константин Валентинович Vessel with double walls and vacuum between them
KR20130143503A (en) * 2012-06-21 2013-12-31 가부시키가이샤 재팬 페일 Composite container with an inner reservoir, and dispensing device
JP2014024603A (en) * 2012-06-21 2014-02-06 Japan Pail Corp Inner bag composite container and distribution apparatus
KR101949752B1 (en) * 2012-06-21 2019-02-19 가부시키가이샤 재팬 페일 Composite container with an inner reservoir, and dispensing device
JP2015012951A (en) * 2013-07-04 2015-01-22 株式会社長井技研 Method and apparatus for manufacturing member for double container
JP2018130329A (en) * 2017-02-15 2018-08-23 象印マホービン株式会社 Double container
JP2018126529A (en) * 2018-03-12 2018-08-16 象印マホービン株式会社 Beverage container

Also Published As

Publication number Publication date
JP5129169B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5129169B2 (en) Vacuum double structure and manufacturing method thereof
JP5355403B2 (en) Vacuum insulating panel and manufacturing method thereof
WO2012117682A1 (en) Structure for tank dome flange section
JP6046044B2 (en) Tool set and method for manufacturing a metal liner
JP2010508635A (en) Ultrasonic metal welding technology and batteries manufactured using such technology
CN107825046A (en) The welding tooling and welding method of thin-wall corrugated tube thin slice
JPH01260270A (en) Hermetically sealed container and manufacture thereof
WO2019102983A1 (en) Metal diaphragm damper and manufacturing method for same
JP4175821B2 (en) Vacuum insulation panel
US8505183B2 (en) Method for sealing edges of vapor chamber
JP5969359B2 (en) Manufacturing method of vacuum insulation panel
JP4805466B2 (en) Method for manufacturing a heater plate provided with a sheath heater
JP4790499B2 (en) Vacuum structure
JP2012215293A (en) Vacuum heat insulation structure
JP4856385B2 (en) Insulated container and manufacturing method thereof
JP5222218B2 (en) CORE MATERIAL, CORE MATERIAL MANUFACTURING METHOD, AND VACUUM DOUBLE STRUCTURE USING CORE MATERIAL
JP4175905B2 (en) Vacuum insulation panel
JP4689590B2 (en) Vacuum double structure manufacturing method, exhaust device, and vacuum double structure
JP2018146067A (en) Vacuum heat insulation structure
JPH11287578A (en) Manufacture of flat plate type heat pipe
WO2021106932A1 (en) Power element and expansion valve using same
JP7113578B1 (en) Insulation device for pipes and vessels
JP4606950B2 (en) Vacuum double structure
JPH10238865A (en) Electric hot water heater
KR101558291B1 (en) Riveting method and rivet sealing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Ref document number: 5129169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees