JP2018146067A - Vacuum heat insulation structure - Google Patents

Vacuum heat insulation structure Download PDF

Info

Publication number
JP2018146067A
JP2018146067A JP2017043173A JP2017043173A JP2018146067A JP 2018146067 A JP2018146067 A JP 2018146067A JP 2017043173 A JP2017043173 A JP 2017043173A JP 2017043173 A JP2017043173 A JP 2017043173A JP 2018146067 A JP2018146067 A JP 2018146067A
Authority
JP
Japan
Prior art keywords
wall
spacer
wall portion
vacuum heat
exterior panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017043173A
Other languages
Japanese (ja)
Inventor
中村 雅之
Masayuki Nakamura
雅之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017043173A priority Critical patent/JP2018146067A/en
Publication of JP2018146067A publication Critical patent/JP2018146067A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vacuum heat insulation structure having heat insulation performance improved by reducing cross-sectional areas of spacers.SOLUTION: A vacuum heat insulation structure according to the present invention is a vacuum heat insulation structure 1 that comprises a first wall part 11, a second wall part 21, and a plurality of heat insulating spacers 30 arranged between the first wall part 11 and the second wall part 21. A space formed by the first wall part 11 and the second wall part 21 is sealed in a vacuum state. The spacers 30 each comprise a first curved part 31 of which a top part is in contact with the first wall part 11, a second curved part 32 of which a top part is in contact with the second wall part 21, and a shaft 33 arranged between the top part of the first curved part 31 and the top part of the second curved part 32 to connect the first curved part 31 and the second curved part 32.SELECTED DRAWING: Figure 3

Description

本発明は、真空断熱構造に関する。   The present invention relates to a vacuum heat insulating structure.

対向する第1壁部と第2壁部との間を密封して真空にすることで、壁部間を断熱する構造体が知られている。この壁部を薄くすれば構造体の軽量化が図れるが、壁内外の圧力差に耐えうる強度が得られなくなってしまう。そこで、第1壁部と第2壁部の間に球状のスペーサを均等に配置し、構造体の強度を上げる方法が知られている(特許文献1参照)。   There is known a structure that insulates between the wall portions by sealing the space between the first wall portion and the second wall portion facing each other to form a vacuum. If the wall portion is made thin, the structure can be reduced in weight, but the strength that can withstand the pressure difference between the inside and outside of the wall cannot be obtained. Therefore, a method is known in which spherical spacers are evenly arranged between the first wall portion and the second wall portion to increase the strength of the structure (see Patent Document 1).

特開2012−215292号公報JP 2012-215292 A

真空断熱構造体の壁部間にスペーサを設置すると、一方の壁部に加わった熱はスペーサとの接触部を介して他方の壁部に伝わるため、断熱性能が低下してしまう。特許文献1では、球状のスペーサを用いることで、第1壁部および第2壁部とスペーサとの接触面積を小さくする方法が提案されている。この発明によって、壁部とスペーサとの間で授受される熱量を抑えることができたが、球状のスペーサは中央の断面積が大きいために、一度スペーサへ伝わった熱は反対側へ速く流れてしまうという問題があった。   If a spacer is installed between the wall portions of the vacuum heat insulating structure, the heat applied to one wall portion is transferred to the other wall portion through the contact portion with the spacer, so that the heat insulating performance is deteriorated. Patent Document 1 proposes a method of reducing the contact area between the first wall portion and the second wall portion and the spacer by using a spherical spacer. Although the amount of heat transferred between the wall portion and the spacer can be suppressed by this invention, since the spherical spacer has a large cross-sectional area at the center, the heat once transmitted to the spacer flows quickly to the opposite side. There was a problem that.

本発明は、このような問題を解決するためになされたものであり、スペーサの横断面積を小さくすることで、断熱性能を向上させた真空断熱構造を提供するものである。   The present invention has been made to solve such problems, and provides a vacuum heat insulating structure with improved heat insulating performance by reducing the cross-sectional area of the spacer.

本発明にかかる真空断熱構造は、第1壁部と第2壁部と、前記第1壁部および前記第2壁部の間に配設された複数の断熱性のスペーサと、を備える真空断熱構造であって、前記第1壁部および前記第2壁部とでできる空間は真空となるように密封され、前記スペーサは、頂部が前記第1壁部に接触する第1湾曲部と、頂部が前記第2壁部に接触する第2湾曲部と、前記第1湾曲部の頂部と前記第2湾曲部の頂部の間に配置され、前記第1湾曲部と前記第2湾曲部をつなぐ軸と、を備えることを特徴としたものである。   A vacuum heat insulating structure according to the present invention includes a first wall portion, a second wall portion, and a plurality of heat insulating spacers disposed between the first wall portion and the second wall portion. The space formed by the first wall portion and the second wall portion is sealed so as to be a vacuum, and the spacer includes a first curved portion whose top portion contacts the first wall portion, and a top portion. Is disposed between the second bending portion that contacts the second wall portion, the top portion of the first bending portion, and the top portion of the second bending portion, and a shaft that connects the first bending portion and the second bending portion. It is characterized by providing these.

本発明により、スペーサの横断面積を小さくすることができ、断熱性能を向上させた真空断熱構造を提供することができる。   According to the present invention, it is possible to provide a vacuum heat insulating structure that can reduce the cross-sectional area of the spacer and improve the heat insulating performance.

真空断熱構造の構造を模式的に示す斜視図である。It is a perspective view which shows the structure of a vacuum heat insulation structure typically. 真空断熱構造の構成を模式的に示す分解図である。It is an exploded view which shows typically the structure of a vacuum heat insulation structure. 図1に示す真空断熱構造の切断線III−IIIにおける断面図である。It is sectional drawing in the cutting line III-III of the vacuum heat insulation structure shown in FIG. スペーサの構造を模式的に示す斜視図である。It is a perspective view which shows the structure of a spacer typically. 図4に示すスペーサの切断線V−Vにおける、軸の中心を通る断面図である。FIG. 5 is a cross-sectional view that passes through the center of the axis at the cutting line VV of the spacer shown in FIG. 開閉蓋を開いたときの位置決め部材の構造を模式的に示す拡大斜視図である。It is an expansion perspective view which shows typically the structure of the positioning member when an opening-and-closing lid is opened. 開閉蓋を閉じたときの位置決め部材の構造を模式的に示す拡大斜視図である。It is an expansion perspective view which shows typically the structure of the positioning member when an open / close lid is closed. スペーサの位置決めをする様子を模式的に示す拡大斜視図である。It is an expansion perspective view which shows typically a mode that a spacer is positioned.

以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載および図面は、適宜、簡略化されている。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. In addition, for clarity of explanation, the following description and drawings are simplified as appropriate.

まず図1、図2、および図3を参照して、本実施の形態にかかる真空断熱構造1について説明する。図1は真空断熱構造1の斜視図であり、図2は真空断熱構造1の分解図である。また図3は、図1に示す真空断熱構造1の切断線III−IIIにおける断面図である。   First, with reference to FIG. 1, FIG. 2, and FIG. 3, the vacuum heat insulation structure 1 concerning this Embodiment is demonstrated. FIG. 1 is a perspective view of the vacuum heat insulating structure 1, and FIG. 2 is an exploded view of the vacuum heat insulating structure 1. 3 is a cross-sectional view of the vacuum heat insulating structure 1 shown in FIG.

図2に示すように、真空断熱構造1は、対向配置された一対の第1外装パネル10と、第2外装パネル20と、これらの間に配設された多数のスペーサ30と、多数のスペーサ30の位置決めをする位置決め部材40と、からなる。第1外装パネル10と第2外装パネル20に閉じられた空間は真空引きされ、それぞれの間は断熱される。このとき、位置決め部材40によって平行に並べられた多数のスペーサ30が、第1外装パネル10と第2外装パネル20の、内外の圧力差による変形を防ぐ。
なお、以下の説明では、第1外装パネル10と第2外装パネル20を形式的に区別しているが、実際の生産および使用に関して、これらが区別されることはない。
As shown in FIG. 2, the vacuum heat insulating structure 1 includes a pair of first exterior panels 10, a second exterior panel 20, a plurality of spacers 30 disposed therebetween, and a plurality of spacers. And positioning member 40 for positioning 30. The space closed by the first exterior panel 10 and the second exterior panel 20 is evacuated, and the space between each is insulated. At this time, the large number of spacers 30 arranged in parallel by the positioning member 40 prevent the first exterior panel 10 and the second exterior panel 20 from being deformed due to the pressure difference between the inside and outside.
In the following description, the first exterior panel 10 and the second exterior panel 20 are formally distinguished, but they are not distinguished with respect to actual production and use.

第1外装パネル10は、第1壁部11と、第1壁部11の外周縁から屈曲された第1外面部12と、第1外面部12の端縁からフランジ状をなすように外向きに屈曲された第1接合部13と、を備える。第2外装パネル20は、第1外装パネル10の開口側(第1接合部13側)に配設される対称形状のもので、同様に第2壁部21と、第2外面部22と、第2接合部23と、を備える。   The first exterior panel 10 has a first wall portion 11, a first outer surface portion 12 bent from an outer peripheral edge of the first wall portion 11, and an outward direction so as to form a flange shape from an edge of the first outer surface portion 12. And a first joint portion 13 bent at the same time. The second exterior panel 20 has a symmetrical shape arranged on the opening side (the first joint portion 13 side) of the first exterior panel 10, and similarly, the second wall portion 21, the second outer surface portion 22, 2nd junction part 23 is provided.

図1に示すように、実施時において第1接合部13と第2接合部23は接合され、第1壁部11と第2壁部21は互いに平行に対向配置される。このようにして、第1外装パネル10と第2外装パネル20は真空断熱構造1の外枠を形成する。また、第1外装パネル10と第2外装パネル20は密封され、内側は真空とされる。このため、第1外装パネル10と第2外装パネル20は、目的の温度に応じた耐熱性をもち、リークを起こさない金属材料または耐熱樹脂で構成されるとよい。たとえば、それぞれ厚さ約0.5mmの薄肉ステンレス(SUS304等)で形成されてもよいし、異なる材質同士で形成されてもよい。また、第1外装パネル10と第2外装パネル20との間の熱伝導を抑えるために、第1接合部13と第2接合部23の当接される面積は小さくするとよい。さらに、輻射による熱伝導を抑えるために、第1外装パネル10と第2外装パネル20の内面に銅メッキや鏡面加工を施すと好ましい。   As shown in FIG. 1, the first joint portion 13 and the second joint portion 23 are joined at the time of implementation, and the first wall portion 11 and the second wall portion 21 are disposed to face each other in parallel. In this way, the first exterior panel 10 and the second exterior panel 20 form an outer frame of the vacuum heat insulating structure 1. Moreover, the 1st exterior panel 10 and the 2nd exterior panel 20 are sealed, and the inside is made into vacuum. For this reason, the 1st exterior panel 10 and the 2nd exterior panel 20 are good to be comprised with the metal material or heat resistant resin which has the heat resistance according to the target temperature, and does not cause a leak. For example, it may be formed of thin stainless steel (SUS304 or the like) having a thickness of about 0.5 mm, or may be formed of different materials. Moreover, in order to suppress the heat conduction between the first exterior panel 10 and the second exterior panel 20, the contact area of the first joint portion 13 and the second joint portion 23 is preferably small. Furthermore, in order to suppress heat conduction due to radiation, it is preferable to apply copper plating or mirror finish to the inner surfaces of the first exterior panel 10 and the second exterior panel 20.

また、真空断熱構造1には、製造の過程で内部を真空排気できるように、排気孔を設ける必要がある。
図2に示した例では、第1外装パネル10に排気部14が断面凸形状に突出するように形成されており、その排気部14は排気孔15を備えている。製造の過程において、第1接合部13と第2接合部23とを接合したのち、排気孔15から真空排気し密封することで、真空断熱構造1の内部を真空にすることができる。たとえば具体的には、排気孔15と排気装置とを、シール部材を介して接続し、真空断熱構造1の内部を真空排気したのち、排気部14の付け根の部分をシーム溶接により接合し、他の外周縁と同一になる位置で切断すればよい。あるいは、真空排気を行いながら、排気孔15に金属やガラスなどのロウ材を溶かし入れて封じてもよい。
なお、排気部14は第1外装パネル10に直接開口を形成するだけでもよいし、チップ管を接合してもよいし、真空バルブを備えた構造になっていてもよい。もちろん、排気部14は第2外装パネル20側に設けられていてもよい。
The vacuum heat insulating structure 1 needs to be provided with an exhaust hole so that the inside can be evacuated during the manufacturing process.
In the example shown in FIG. 2, the exhaust portion 14 is formed on the first exterior panel 10 so as to protrude in a convex cross section, and the exhaust portion 14 includes an exhaust hole 15. In the manufacturing process, after joining the first joint portion 13 and the second joint portion 23, the inside of the vacuum heat insulating structure 1 can be evacuated by evacuating and sealing from the exhaust hole 15. For example, specifically, the exhaust hole 15 and the exhaust device are connected via a seal member, the inside of the vacuum heat insulating structure 1 is evacuated, and then the base portion of the exhaust part 14 is joined by seam welding. What is necessary is just to cut | disconnect in the position which becomes the same with the outer periphery. Alternatively, a brazing material such as metal or glass may be melted and sealed in the exhaust hole 15 while evacuating.
In addition, the exhaust part 14 may just form an opening directly in the 1st exterior panel 10, may join a chip pipe | tube, and may be the structure provided with the vacuum valve. Of course, the exhaust part 14 may be provided on the second exterior panel 20 side.

ここで、図4および図5を用いてスペーサ30の構造を説明する。図4はスペーサ30の斜視図であり、図5は図4に示すスペーサ30の切断線V−Vにおける、軸の中心を通る断面図である。   Here, the structure of the spacer 30 will be described with reference to FIGS. 4 and 5. FIG. 4 is a perspective view of the spacer 30, and FIG. 5 is a cross-sectional view passing through the center of the axis along the cutting line VV of the spacer 30 shown in FIG. 4.

図4に示すように、スペーサ30は、第1湾曲部31と、第2湾曲部32と、軸33と、からなる。第1湾曲部31と第2湾曲部32は、いずれも略椀状に形成されており、互いに凸部を外側にして対向配置されている。軸33は円柱状の棒状部材であって、その一端は第1湾曲部31の頂部の内側に固定され、他端は第2湾曲部32の頂部の内側に固定されている。換言すると、軸33は、第1湾曲部31の頂部と第2湾曲部32の頂部の間に配置され、第1湾曲部31と第2湾曲部32をつないでいる。軸33の直径は、第1湾曲部31、第2湾曲部32の外径よりも小さくなっている。
第1湾曲部31と第2湾曲部32と軸33は、いずれも熱伝導度が低く硬質な材質で作られていると好ましく、たとえばジルコニア(ZrO)を用いて作られるとよい。このとき、スペーサ30は断熱材料により形成されているため、断熱性を有している。
なお、以下の説明では、第1湾曲部31と第2湾曲部32を形式的に区別しているが、実際の生産および使用に関して、これらが区別されることはない。また後述するように、第1湾曲部31と第2湾曲部32の頂部には大きな押圧がかかるため、頂部付近を厚くすると好ましい。
As shown in FIG. 4, the spacer 30 includes a first bending portion 31, a second bending portion 32, and a shaft 33. The first bending portion 31 and the second bending portion 32 are both formed in a substantially bowl shape, and are arranged to face each other with the convex portion outside. The shaft 33 is a cylindrical rod-shaped member, and one end thereof is fixed inside the top of the first bending portion 31 and the other end is fixed inside the top of the second bending portion 32. In other words, the shaft 33 is disposed between the top portion of the first bending portion 31 and the top portion of the second bending portion 32, and connects the first bending portion 31 and the second bending portion 32. The diameter of the shaft 33 is smaller than the outer diameters of the first bending portion 31 and the second bending portion 32.
The first bending portion 31, the second bending portion 32, and the shaft 33 are all preferably made of a hard material with low thermal conductivity, and may be made of, for example, zirconia (ZrO 2 ). At this time, since the spacer 30 is formed of a heat insulating material, it has heat insulating properties.
In addition, in the following description, although the 1st bending part 31 and the 2nd bending part 32 are distinguished formally, these are not distinguished regarding actual production and use. As will be described later, a large pressure is applied to the tops of the first bending portion 31 and the second bending portion 32, so it is preferable to increase the thickness near the top.

スペーサ30の高さhは、第1外装パネル10と第2外装パネル20を接合したときの、第1壁部11と第2壁部21の面間隔と同一、あるいは若干大きくなっている。実施時において、スペーサ30は、位置決め部材40によって互いに所定の間隔を隔てて分布する。複数のスペーサ30は、互いに平行に配置される。第1湾曲部31の頂部は第1壁部11に接触し、第2湾曲部32の頂部は第2壁部21に接触する。このとき軸33の向きは、第1壁部11および第2壁部21と垂直方向になる。   The height h of the spacer 30 is the same as or slightly larger than the surface interval between the first wall portion 11 and the second wall portion 21 when the first exterior panel 10 and the second exterior panel 20 are joined. At the time of implementation, the spacers 30 are distributed at predetermined intervals by the positioning member 40. The plurality of spacers 30 are arranged in parallel to each other. The top portion of the first bending portion 31 contacts the first wall portion 11, and the top portion of the second bending portion 32 contacts the second wall portion 21. At this time, the direction of the shaft 33 is perpendicular to the first wall portion 11 and the second wall portion 21.

真空断熱構造1の内部が陰圧状態になると、内外の圧力差によって第1壁部11と第2壁部21からスペーサ30に押圧がかかる。このとき、軸33が第1壁部11および第2壁部21と垂直に接しているため、押圧は軸33の長手方向にかかる。第1湾曲部31、第2湾曲部32、および軸33は硬質な材料で作られているため、圧縮されても耐える強度を有しており、押圧に抗うように第1壁部11と第2壁部21を内側から支えることができる。   When the inside of the vacuum heat insulating structure 1 is in a negative pressure state, the spacer 30 is pressed from the first wall portion 11 and the second wall portion 21 due to a pressure difference between the inside and the outside. At this time, since the shaft 33 is in perpendicular contact with the first wall portion 11 and the second wall portion 21, the pressing is applied in the longitudinal direction of the shaft 33. Since the first bending portion 31, the second bending portion 32, and the shaft 33 are made of a hard material, the first bending portion 31, the second bending portion 32, and the shaft 33 have strength to withstand even when compressed. The two wall portions 21 can be supported from the inside.

第1湾曲部31および第2湾曲部32は外面が略球面状であるから、第1壁部11および第2壁部21への応力を分散させつつ、それぞれとの接触面積を小さく抑えることができる。このため、第1壁部11から第1湾曲部31への熱伝導、および第2壁部21から第2湾曲部32への熱伝導を小さく抑えることができる。
さらに、第1湾曲部31と第2湾曲部32は、横断面積の小さな軸33によって隔てられているため、それぞれの間の伝熱も抑制できる。よって、球状のスペーサに比べて断熱性能を大きく向上することができる。
Since the outer surfaces of the first bending portion 31 and the second bending portion 32 are substantially spherical, it is possible to reduce the contact area with each of the first bending portion 31 and the second wall portion 21 while dispersing the stress to the first wall portion 11 and the second wall portion 21. it can. For this reason, the heat conduction from the 1st wall part 11 to the 1st bending part 31, and the heat conduction from the 2nd wall part 21 to the 2nd bending part 32 can be restrained small.
Furthermore, since the 1st bending part 31 and the 2nd bending part 32 are separated by the axis | shaft 33 with a small cross-sectional area, the heat transfer between each can also be suppressed. Therefore, the heat insulation performance can be greatly improved compared to the spherical spacer.

次に、図6および図7を用いて、位置決め部材40の構造を説明する。図6および図7は、位置決め部材40の構造を模式的に示す拡大斜視図である。   Next, the structure of the positioning member 40 is demonstrated using FIG. 6 and FIG. 6 and 7 are enlarged perspective views schematically showing the structure of the positioning member 40. FIG.

図6に示すように、位置決め部材40は、多数の矩形のスペーサ貫通孔42が所定の間隔を隔てて設けられたシート部材41と、各々のスペーサ貫通孔42の一辺に回動可能に備え付けられた開閉蓋43と、を備える。
以下、シート部材41と開閉蓋43が略直交になった状態を、開閉蓋43を開けた状態と呼び、シート部材41と開閉蓋43が平行になった状態を、開閉蓋43を閉じた状態と呼ぶ。すなわち、図6は開閉蓋43を開けたときの位置決め部材40の構造を模式的に示す拡大斜視図であり、図7は開閉蓋43を閉じたときの位置決め部材40の構造を模式的に示す拡大斜視図である。
As shown in FIG. 6, the positioning member 40 is provided with a sheet member 41 in which a large number of rectangular spacer through holes 42 are provided at predetermined intervals, and rotatably on one side of each spacer through hole 42. And an open / close lid 43.
Hereinafter, a state in which the sheet member 41 and the opening / closing lid 43 are substantially orthogonal is referred to as a state in which the opening / closing lid 43 is opened, and a state in which the sheet member 41 and the opening / closing lid 43 are parallel is a state in which the opening / closing lid 43 is closed. Call it. 6 is an enlarged perspective view schematically showing the structure of the positioning member 40 when the opening / closing lid 43 is opened, and FIG. 7 schematically shows the structure of the positioning member 40 when the opening / closing lid 43 is closed. It is an expansion perspective view.

シート部材41と開閉蓋43は、第1外装パネル10や第2外装パネル20と同様にステンレスや耐熱樹脂で形成されていてもよいが、輻射による熱伝導を抑えるために、銅板や鏡面をもった金属板で形成されると好ましい。シート部材41と開閉蓋43は、別々に作ったのちに接合させてもよいし、一枚の板を切り出して作ってもよい。   The sheet member 41 and the opening / closing lid 43 may be formed of stainless steel or heat-resistant resin, like the first exterior panel 10 and the second exterior panel 20, but have a copper plate or a mirror surface to suppress heat conduction due to radiation. Preferably, it is formed of a metal plate. The sheet member 41 and the opening / closing lid 43 may be made separately and then joined, or a single plate may be cut out.

スペーサ貫通孔42は、第1湾曲部31と第2湾曲部32が貫通できる大きさであって、図6に示すように、開閉蓋43が連結する辺と対向する辺の中心には、半円形の切欠部44aが備えられている。
一方、開閉蓋43は、スペーサ貫通孔42と同じ大きさの矩形のうち、一辺の中心に半円形の切欠部44bを備えた形状をしており、切欠部44bを設けた辺と対向する辺がシート部材41と連結している。ここで、切欠部44aと切欠部44bの内径は等しく、軸33の外径よりわずかに大きくなっている。
The spacer through hole 42 has a size that allows the first bending portion 31 and the second bending portion 32 to pass through, and as shown in FIG. A circular notch 44a is provided.
On the other hand, the open / close lid 43 has a shape having a semicircular cutout portion 44b at the center of one side out of a rectangle having the same size as the spacer through hole 42, and a side facing the side where the cutout portion 44b is provided. Is connected to the sheet member 41. Here, the inner diameters of the notch 44 a and the notch 44 b are equal and slightly larger than the outer diameter of the shaft 33.

図7に示すように、開閉蓋43を閉じたときは、切欠部44aと切欠部44bは互いに1つの円を形成するように向き合って、軸貫通孔44をなす。軸貫通孔44は2つの切欠部44a、44bからなる円であるから、軸貫通孔44の内径も、軸33の外径よりわずかに大きい。後述するように、この軸貫通孔44に軸33を貫通させることでスペーサ30を位置決めする。   As shown in FIG. 7, when the open / close lid 43 is closed, the cutout portion 44 a and the cutout portion 44 b face each other so as to form one circle, thereby forming the shaft through hole 44. Since the shaft through hole 44 is a circle composed of two notches 44 a and 44 b, the inner diameter of the shaft through hole 44 is slightly larger than the outer diameter of the shaft 33. As will be described later, the spacer 30 is positioned by passing the shaft 33 through the shaft through hole 44.

ここで、図8を用いて、スペーサ30が位置決め部材40によって位置決めされる様子を説明する。図8は、スペーサ30が位置決め部材40によって位置決めされる様子を模式的に示す拡大斜視図である。   Here, the manner in which the spacer 30 is positioned by the positioning member 40 will be described with reference to FIG. FIG. 8 is an enlarged perspective view schematically showing how the spacer 30 is positioned by the positioning member 40.

スペーサ30を位置決め部材40に挿入する様子を図8上部に示す。まず、開閉蓋43を開け、スペーサ30をスペーサ貫通孔42に挿入し、軸33を切欠部44aに沿ってあてがう。この状態で開閉蓋43を閉めると、図8下部に示すように軸貫通孔44が軸33を取り囲み、スペーサ30が位置決めされる。このようにして、スペーサ30を所定の間隔を隔てて配置することができる。このとき、第1壁部11および第2壁部21に掛かるスペーサ30からの押圧が均一になるように、スペーサ30は等間隔に配置すると好ましい。また、開閉蓋43は、スペーサ30の位置決めをしたのち閉めた状態で固定してもよい。
なお、この構成において、スペーサ30はシート部材41に対して軸33の長手方向に動くことができるが、実施時においてスペーサ30は第1壁部11と第2壁部21から押圧されるため、第1湾曲部31の頂部と第2湾曲部32の頂部はそれぞれ面一に揃えられる。
A state in which the spacer 30 is inserted into the positioning member 40 is shown in the upper part of FIG. First, the opening / closing lid 43 is opened, the spacer 30 is inserted into the spacer through hole 42, and the shaft 33 is applied along the notch 44a. When the opening / closing lid 43 is closed in this state, the shaft through hole 44 surrounds the shaft 33 as shown in the lower part of FIG. In this way, the spacers 30 can be arranged at a predetermined interval. At this time, it is preferable to arrange the spacers 30 at equal intervals so that the pressure from the spacers 30 applied to the first wall portion 11 and the second wall portion 21 is uniform. Further, the open / close lid 43 may be fixed in a closed state after the spacer 30 is positioned.
In this configuration, the spacer 30 can move in the longitudinal direction of the shaft 33 with respect to the sheet member 41. However, since the spacer 30 is pressed from the first wall portion 11 and the second wall portion 21 at the time of implementation, The top portion of the first bending portion 31 and the top portion of the second bending portion 32 are aligned with each other.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the spirit of the present invention.

たとえば、上記実施の形態では、第1壁部11と第2壁部21の形状を平面視矩形状に形成したが、三角形状や五角形以上の多角形状でもよいうえ、円形状としてもよく、その形状は希望に応じて変更が可能である。
また、真空断熱構造1として第1外装パネル10と第2外装パネル20の組み合わせを用いて説明したが、魔法瓶、真空二重管、真空二重ジャケット、真空容器などの真空構造体にも適用可能であり、同様の作用および効果を得ることができる。
For example, in the above-described embodiment, the shape of the first wall portion 11 and the second wall portion 21 is formed in a rectangular shape in plan view. However, the shape may be a triangular shape or a polygonal shape of a pentagon or more, or may be a circular shape. The shape can be changed as desired.
In addition, the vacuum insulation structure 1 has been described using the combination of the first exterior panel 10 and the second exterior panel 20, but can also be applied to vacuum structures such as a thermos, a vacuum double tube, a vacuum double jacket, and a vacuum vessel. Thus, similar actions and effects can be obtained.

1 真空断熱構造
10 第1外装パネル
11 第1壁部
12 第1外面部
13 第1接合部
14 排気部
15 排気孔
20 第2外装パネル
21 第2壁部
22 第2外面部
23 第2接合部
30 スペーサ
31 第1湾曲部
32 第2湾曲部
33 軸
40 位置決め部材
41 シート部材
42 スペーサ貫通孔
43 開閉蓋
44 軸貫通孔
44a、44b 切欠部
DESCRIPTION OF SYMBOLS 1 Vacuum heat insulation structure 10 1st exterior panel 11 1st wall part 12 1st outer surface part 13 1st junction part 14 Exhaust part 15 Exhaust hole 20 2nd exterior panel 21 2nd wall part 22 2nd outer surface part 23 2nd junction part 30 Spacer 31 First bending portion 32 Second bending portion 33 Shaft 40 Positioning member 41 Sheet member 42 Spacer through hole 43 Opening / closing lid 44 Shaft through holes 44a and 44b Notch

Claims (1)

第1壁部と第2壁部と、
前記第1壁部および前記第2壁部の間に配設された複数の断熱性のスペーサと、を備える真空断熱構造であって、
前記第1壁部および前記第2壁部とでできる空間は真空となるように密封され、
前記スペーサは、頂部が前記第1壁部に接触する第1湾曲部と、頂部が前記第2壁部に接触する第2湾曲部と、前記第1湾曲部の頂部と前記第2湾曲部の頂部の間に配置され、前記第1湾曲部と前記第2湾曲部をつなぐ軸と、を備えた、
真空断熱構造。
A first wall and a second wall;
A plurality of heat insulating spacers disposed between the first wall portion and the second wall portion, and a vacuum heat insulating structure comprising:
The space formed by the first wall and the second wall is sealed to be a vacuum,
The spacer includes a first bending portion whose top portion is in contact with the first wall portion, a second bending portion whose top portion is in contact with the second wall portion, a top portion of the first bending portion, and a second bending portion. A shaft disposed between the tops and connecting the first curved part and the second curved part;
Vacuum insulation structure.
JP2017043173A 2017-03-07 2017-03-07 Vacuum heat insulation structure Pending JP2018146067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017043173A JP2018146067A (en) 2017-03-07 2017-03-07 Vacuum heat insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017043173A JP2018146067A (en) 2017-03-07 2017-03-07 Vacuum heat insulation structure

Publications (1)

Publication Number Publication Date
JP2018146067A true JP2018146067A (en) 2018-09-20

Family

ID=63590949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017043173A Pending JP2018146067A (en) 2017-03-07 2017-03-07 Vacuum heat insulation structure

Country Status (1)

Country Link
JP (1) JP2018146067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288730B1 (en) * 2023-03-02 2023-06-08 和幸 前田 A vacuum insulation device and a method for manufacturing a vacuum insulation device.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288730B1 (en) * 2023-03-02 2023-06-08 和幸 前田 A vacuum insulation device and a method for manufacturing a vacuum insulation device.

Similar Documents

Publication Publication Date Title
US20210247153A1 (en) Vapor chamber with support structure and manufacturing method therefor
JP6029140B2 (en) Compression sealed airtight terminal
TW201403017A (en) Thinned heat conduction device with tube-less sealing structure and forming method thereof
JP5307700B2 (en) Vacuum insulation structure
JP2018146067A (en) Vacuum heat insulation structure
JP2005163848A (en) Method of manufacturing vacuum heat insulation material and method of manufacturing thermal insulation body
JP5129169B2 (en) Vacuum double structure and manufacturing method thereof
KR950019335A (en) Vacuum valve and manufacturing method
JP4285612B2 (en) Susceptor
US10731924B2 (en) Vapor chamber sealing method and structre using the same
TWI763967B (en) Vapor chamber
JP2012215293A (en) Vacuum heat insulation structure
JP4805466B2 (en) Method for manufacturing a heater plate provided with a sheath heater
JPS58157580A (en) Vacuum sealing of metallic vacuum bottle
JP4790499B2 (en) Vacuum structure
JP2009117486A (en) Susceptor
JP5969359B2 (en) Manufacturing method of vacuum insulation panel
JP2005127433A (en) Vacuum insulating panel
JPH051534A (en) Exhaust pipe
JP2012215292A (en) Vacuum heat insulation structure
KR101096732B1 (en) Method for producing heat bridge for SIVP
JP5222218B2 (en) CORE MATERIAL, CORE MATERIAL MANUFACTURING METHOD, AND VACUUM DOUBLE STRUCTURE USING CORE MATERIAL
JP4545172B2 (en) Vacuum valve
JP2002324655A (en) Manufacturing method of heating plate having sheath heater
JP2010135102A (en) Vacuum valve