JP2010095774A - Method for producing surface-treated aluminum material for vacuum apparatus - Google Patents

Method for producing surface-treated aluminum material for vacuum apparatus Download PDF

Info

Publication number
JP2010095774A
JP2010095774A JP2008269559A JP2008269559A JP2010095774A JP 2010095774 A JP2010095774 A JP 2010095774A JP 2008269559 A JP2008269559 A JP 2008269559A JP 2008269559 A JP2008269559 A JP 2008269559A JP 2010095774 A JP2010095774 A JP 2010095774A
Authority
JP
Japan
Prior art keywords
electrolysis
stage
aluminum material
film
treated aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008269559A
Other languages
Japanese (ja)
Other versions
JP5397884B2 (en
Inventor
Keitaro Yamaguchi
恵太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2008269559A priority Critical patent/JP5397884B2/en
Publication of JP2010095774A publication Critical patent/JP2010095774A/en
Application granted granted Critical
Publication of JP5397884B2 publication Critical patent/JP5397884B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-treated aluminum material for a vacuum apparatus which has reduced defects in a film, and has excellent vacuum properties and corrosion resistance. <P>SOLUTION: In the method for producing the surface-treated aluminum material for the vacuum apparatus where a nonporous anodically oxidized film is formed on the surface of an aluminum material by electrolysis, the voltage to be applied upon the electrolysis is increased relatively at a high voltage increasing rate in the prestage and then increased relatively at a small voltage increasing rate in the poststage, while the voltage increasing rate in the prestage is controlled to 4.0 to 20.0 V/s, and the voltage increasing rate in the poststage is controlled to <4.0 V/s. Preferably, the period till within 20 s directly after the electrolysis (preferably, on and after 3 s directly after the electrolysis) is regarded as the prestage, and the time on and after that is regarded as the poststage. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、分子線エピタキシー装置、ドライエッチング装置、CVD装置、イオンプレーティング装置、プラズマCVD装置、スパッタリング装置のような真空機器用として好適な真空機器用表面処理アルミニウム材の製造方法に関するものであり、特に、加熱を受ける熱CVDのガス拡散板やチャンバー、バルブ類などに好適なものに関する。   The present invention relates to a method for producing a surface-treated aluminum material for vacuum equipment suitable for vacuum equipment such as molecular beam epitaxy equipment, dry etching equipment, CVD equipment, ion plating equipment, plasma CVD equipment, and sputtering equipment. In particular, the present invention relates to a thermal CVD gas diffusion plate, chamber, valves, etc. that are heated.

CVDなどの真空機器では、機器を構成する材料からガス放出があると真空特性を害するため、比較的ガス放出が少なく、また、軽量化を図ることができるアルミニウム材料が広く利用されている。ただし、アルミニウム材料は、真空機器で用いられる反応ガスなどによって腐食する問題があるため一般には、陽極酸化皮膜、特に無孔質陽極酸化皮膜(バリヤー型陽極酸化皮膜)を形成して耐食性を向上させている。該陽極酸化皮膜は、アルミニウム材料を電解質溶液中で電解処理することでアルミニウム材料表面に形成されている(例えば特許文献1参照)
特許第3152960号明細書
In vacuum equipment such as CVD, since the vacuum characteristics are damaged if gas is released from the material constituting the equipment, aluminum materials that are relatively low in gas emission and can be reduced in weight are widely used. However, since aluminum materials have a problem of corrosion due to reaction gases used in vacuum equipment, in general, an anodized film, particularly a non-porous anodized film (barrier type anodized film) is formed to improve corrosion resistance. ing. The anodized film is formed on the surface of the aluminum material by electrolytic treatment of the aluminum material in an electrolyte solution (see, for example, Patent Document 1).
Japanese Patent No. 3152960

ところで、最近では、半導体製造装置などにおいて、ICの集積度が高まり、部材から発生する異物の低減に対する要求が益々高まっている。無孔質陽極酸化皮膜は、電解により皮膜欠陥(皮膜の膨れ、局部的な破壊点)が形成される場合があった。無孔質陽極酸化皮膜は、一般的な陽極酸化皮膜に対し各段に耐食性に優れているものである。しかし、無孔質陽極酸化皮膜を形成する際にも、電解により皮膜欠陥(皮膜の膨れ、局部的な破壊点)が形成される場合があり、真空環境において異物を発生させたり、耐食性、真空特性を低下させるという問題を有している。   By the way, recently, in a semiconductor manufacturing apparatus or the like, the degree of integration of ICs has increased, and the demand for reducing foreign substances generated from members has been increasing. The nonporous anodic oxide film may have film defects (swelling of the film, local breaking points) formed by electrolysis. The nonporous anodic oxide film is excellent in corrosion resistance at each stage with respect to a general anodic oxide film. However, even when forming a nonporous anodic oxide film, film defects (swelling of the film, local breakage points) may be formed by electrolysis, generating foreign matter in a vacuum environment, corrosion resistance, vacuum It has a problem of deteriorating characteristics.

本発明は、上記事情を背景としてなされたものであり、皮膜の欠陥が少なくて異物(パーティクル)の発生が殆どなく、さらに、真空特性および耐食性に優れた真空機器用表面処理アルミニウム材を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a surface-treated aluminum material for vacuum equipment that has few defects in the film, hardly generates foreign matter (particles), and is excellent in vacuum characteristics and corrosion resistance. For the purpose.

すなわち、本発明の真空機器用表面処理アルミニウム材の製造方法のうち、第1の本発明は、アルミニウム材の表面に、電解によって無孔質陽極酸化皮膜を形成する真空機器用表面処理アルミニウム材の製造方法において、前記電解時の印加電圧を前段で相対的に大きい昇圧速度で増加させ、後段で相対的に小さい昇圧速度で増加させるものとし、前記前段での前記昇圧速度を4.0〜20.0V/秒、前記後段での前記昇圧速度を4.0V/秒未満とすることを特徴とする。   That is, the manufacturing method of the surface treatment aluminum material for vacuum equipment of this invention WHEREIN: 1st this invention is the surface treatment aluminum material for vacuum equipment which forms a nonporous anodized film by the electrolysis on the surface of an aluminum material. In the manufacturing method, the applied voltage at the time of electrolysis is increased at a relatively large boosting speed in the previous stage and increased at a relatively small boosting speed in the subsequent stage, and the boosting speed in the preceding stage is set to 4.0 to 20 0.0 V / sec, and the step-up speed in the latter stage is less than 4.0 V / sec.

無孔質陽極酸化皮膜は、付与された電圧に比例して成長する。皮膜はアルミニウム素地が酸化され成長するため、電解初期にできた皮膜が表面側になり、電解中期以降に形成された皮膜がアルミニウム素地側になるような形成過程を経る。真空特性及び耐食性には、皮膜表面層の性質が重要であり、この表面層は電解初期に形成される。
高い電圧上昇速度で電解処理を行うと、緻密で含水量の少ない皮膜が形成される。このため、前段での昇圧速度V1を相対的に大きくすることで、欠陥の少ない皮膜表面層が得られる。
一方、昇圧速度を大きくしたままで電解を継続すると、皮膜とアルミニウム基材の界面付近に熱が蓄積し、皮膜に空隙等の欠陥が形成し、電解液成分が取り込まれて真空特性や耐食性が低下する。このため、後段での昇圧速度V2を相対的に小さくすることが必要になる(V1>V2)。本発明により、上層が緻密で耐食性に優れ、かつ、下層も欠陥の無い優れた無孔質陽極酸化皮膜を形成できる。
The nonporous anodic oxide film grows in proportion to the applied voltage. Since the aluminum base is oxidized and grows, the film is formed so that the film formed in the initial stage of electrolysis becomes the surface side, and the film formed after the middle stage of electrolysis becomes the aluminum base side. The properties of the coating surface layer are important for vacuum characteristics and corrosion resistance, and this surface layer is formed in the initial stage of electrolysis.
When the electrolytic treatment is performed at a high voltage increase rate, a dense and low moisture content film is formed. For this reason, a film surface layer with few defects can be obtained by relatively increasing the pressure increase speed V1 in the previous stage.
On the other hand, if electrolysis is continued while increasing the pressure increase rate, heat accumulates near the interface between the film and the aluminum substrate, voids and other defects are formed in the film, and the electrolyte component is taken in, resulting in reduced vacuum characteristics and corrosion resistance. descend. For this reason, it is necessary to relatively reduce the boosting speed V2 in the subsequent stage (V1> V2). According to the present invention, an excellent nonporous anodic oxide film having a dense upper layer and excellent corrosion resistance and no defects in the lower layer can be formed.

上記前段での昇圧速度V1は、4.0〜20.0V/秒の範囲内とし、後段での昇圧速度V2を4.0V/秒未満とする。
前段での昇圧速度が4.0V/秒未満になると、緻密で含水量の少ない皮膜が形成され難くなる。一方、前段で20.0V/秒を超える昇圧速度で処理すると、皮膜の発熱が大きくなり過ぎて、皮膜内に空隙等の欠陥が形成されるようになる。なお、同様の理由で、前段での昇圧速度を5.0V/秒以上とするのが望ましく、また、18.0V/秒以下とするのが望ましい。
また、後段での昇圧速度が4.0V/秒以上になると、皮膜とアルミニウムの界面に蓄熱し、空隙等の皮膜欠陥が形成されやすくなる。同様の理由で、昇圧速度を2.5V/秒以下とするのが望ましい。なお、後段での昇圧速度をあまりに小さくすると、電解に長時間を要して効率的でないため、0.1V/秒以上の昇圧速度に設定するのが望ましい。
The boosting speed V1 at the preceding stage is in the range of 4.0 to 20.0 V / sec, and the boosting speed V2 at the succeeding stage is less than 4.0 V / sec.
When the pressure increase rate in the former stage is less than 4.0 V / sec, it is difficult to form a dense film with a low water content. On the other hand, when the treatment is performed at a pressure increase rate exceeding 20.0 V / sec in the previous stage, the heat generation of the film becomes too large, and defects such as voids are formed in the film. For the same reason, it is desirable that the boosting speed in the previous stage is 5.0 V / second or more, and 18.0 V / second or less.
Further, when the pressure increase rate at the latter stage is 4.0 V / second or more, heat is accumulated at the interface between the film and aluminum, and film defects such as voids are likely to be formed. For the same reason, it is desirable that the boosting speed is 2.5 V / second or less. It should be noted that if the subsequent boosting speed is too small, it takes a long time for electrolysis and is not efficient, so it is desirable to set the boosting speed to 0.1 V / second or more.

第2の本発明の真空機器用表面処理アルミニウム材の製造方法は、前記第1の本発明において、電解直後から20秒以内までを前記前段とし、それ以降を前記後段とすることを特徴とする。   The method for producing a surface-treated aluminum material for vacuum equipment according to the second aspect of the present invention is characterized in that, in the first aspect of the present invention, the first stage is within 20 seconds immediately after electrolysis, and the subsequent stage is the subsequent stage. .

昇圧速度を小さくする前段の時間を電解直後から20秒以内までとすることで、それ以降での皮膜欠陥の発生を効果的に回避することができる。前段の時間が20秒を越えると、上記のように皮膜に欠陥が生じやすくなる。このため、前段の時間を電解直後から20秒以内までとするのが望ましい。なお、前段の時間が20秒よりも短くて、20秒の時間内で後段が開始されるものであってもよい。
また、前段と後段とでは、それぞれ相対的に昇圧速度が大小の関係にあればよく、前段または後段の領域内で昇圧速度が多段に変化したり連続的に変化するものであってもよく、当然に一定の昇圧速度を維持するものであってもよい。
By setting the time before the decrease in the pressure increase rate within 20 seconds immediately after electrolysis, it is possible to effectively avoid the occurrence of film defects thereafter. If the previous time exceeds 20 seconds, the film tends to be defective as described above. For this reason, it is desirable that the time of the previous stage be within 20 seconds immediately after electrolysis. In addition, the time of the front | former stage may be shorter than 20 seconds, and a back | latter stage may be started within the time of 20 seconds.
In addition, it is sufficient that the boosting speed is relatively large in each of the front stage and the rear stage, and the boosting speed may change in multiple stages or continuously change in the area of the front stage or the rear stage. Of course, a constant boosting speed may be maintained.

第3の本発明の真空機器用表面処理アルミニウム材の製造方法は、前記第1の本発明において、電解直後から3秒以降、20秒以内までを前記前段とし、それ以降を前記後段とすることを特徴とする。   In the method for producing a surface-treated aluminum material for vacuum equipment according to the third aspect of the present invention, in the first aspect of the present invention, 3 seconds from immediately after electrolysis and 20 seconds or less are set as the preceding stage, and the subsequent stages are set as the subsequent stage. It is characterized by.

上記したように、前段の時間を電解直後から20秒以内までとするのが望ましいが、電解直後には、過渡的に電圧の変動が生じる場合があり、安定した昇圧状態になるのをまって前記昇圧速度の大小関係を判定するのが望ましい。したがって、電解直後から3秒以降を前記昇圧速度を有する前段領域とするのが望ましい。   As described above, it is desirable that the time of the previous stage be within 20 seconds from immediately after electrolysis, but voltage fluctuation may occur transiently immediately after electrolysis, so that a stable boosted state is stopped. It is desirable to determine the magnitude relationship between the boosting speeds. Therefore, it is desirable to set the pre-stage region having the above-mentioned pressure increase speed after 3 seconds immediately after electrolysis.

以上説明したように、本発明の真空機器用表面処理アルミニウム材の製造方法によれば、アルミニウム材の表面に、電解によって無孔質陽極酸化皮膜を形成する真空機器用表面処理アルミニウム材の製造方法において、前記電解時の印加電圧を前段で相対的に大きい昇圧速度で増加させ、後段で相対的に小さい昇圧速度で増加させるものとし、前記前段での前記昇圧速度を4.0〜20.0V/秒、前記後段での前記昇圧速度を4.0V/秒未満とするので、表層側が緻密で含水量が少なく、内層側も欠陥のない無孔質陽極酸化皮膜を形成することができ、異物の発生を防止するとともに優れた耐食性と真空特性とが得られる効果がある。   As described above, according to the method for producing a surface-treated aluminum material for vacuum equipment of the present invention, a method for producing a surface-treated aluminum material for vacuum equipment, in which a nonporous anodized film is formed by electrolysis on the surface of the aluminum material. , The applied voltage during the electrolysis is increased at a relatively large boosting speed in the previous stage and increased at a relatively small boosting speed in the subsequent stage, and the boosting speed in the preceding stage is set to 4.0 to 20.0 V. Since the pressure increase rate at the latter stage is less than 4.0 V / second, a non-porous anodic oxide film having a dense surface layer and a low water content and no defects on the inner layer side can be formed. In addition to preventing the occurrence of the above, there is an effect of obtaining excellent corrosion resistance and vacuum characteristics.

以下に、本発明の一実施形態を説明する。
基材となるアルミニウム材には、JIS5000系、6000系のアルミニウム合金を用いることができる。ただし、本発明としては基材となるアルミニウム材が特定の成分系に限定されるものではない。
該材料には必要に応じて均質化処理を施し、さらに、熱間圧延、冷間圧延等の加工を施す。また、材料を連続鋳造圧延することも可能である。本発明としてはこれら一連の工程が特に限定されるものではない。該アルミニウム材料には、洗浄、切削処理などを施した後、無孔質陽極酸化皮膜を生成する。
ここで、無孔質陽極酸化皮膜とは、皮膜が均一に形成された部位の断面観察において、皮膜表面からアルミ素地に向けて、規則的に形成される孔(通常開口部は1〜10nmで皮膜厚さに対して60%以上の深さを有する)が存在しないか、5%(表面から見た孔の総面積の比率)以下の無孔質な皮膜である。有孔率がゼロ%の無孔質な皮膜は、有孔率が数%の皮膜に対して、格段に耐食性に優れるのでより好ましい。
Hereinafter, an embodiment of the present invention will be described.
As the aluminum material used as the base material, JIS 5000 series and 6000 series aluminum alloys can be used. However, in the present invention, the aluminum material serving as the base material is not limited to a specific component system.
The material is subjected to a homogenization treatment as necessary, and further subjected to processing such as hot rolling and cold rolling. It is also possible to continuously cast and roll the material. In the present invention, these series of steps are not particularly limited. The aluminum material is subjected to cleaning, cutting treatment, etc., and then a nonporous anodic oxide film is formed.
Here, the nonporous anodic oxide film refers to pores that are regularly formed from the surface of the film to the aluminum substrate in the cross-sectional observation of the part where the film is uniformly formed (normally the opening is 1 to 10 nm). It is a nonporous film having a depth of 60% or more with respect to the film thickness, or 5% (ratio of the total area of the pores as viewed from the surface) or less. A non-porous film having a porosity of 0% is more preferable because it has much better corrosion resistance than a film having a porosity of several%.

無孔質陽極酸化皮膜の生成には、ホウ酸又はホウ酸アンモニウムを電解質として含む水溶液を用いるのが好ましい。これらの電解質を用いた皮膜生成では、孔が極めて形成され難いためであり、また、厚い膜形成に適している。電解に際しては、溶液濃度は1〜30質量%が望ましい。また、電解温度は50℃以上が耐クラック性から好ましく、皮膜の真空特性から上限は95℃(酸化膜が水和反応を開始)が好ましい。   An aqueous solution containing boric acid or ammonium borate as an electrolyte is preferably used for producing the nonporous anodic oxide film. This is because the formation of a film using these electrolytes is extremely difficult to form pores, and is suitable for forming a thick film. In electrolysis, the solution concentration is preferably 1 to 30% by mass. The electrolysis temperature is preferably 50 ° C. or more from the viewpoint of crack resistance, and the upper limit is preferably 95 ° C. (the oxide film starts a hydration reaction) from the vacuum characteristics of the film.

電解電圧は、上記したように好適には 電解直後(さらには好適には電解直後3秒以降)から20秒以内までを前段として相対的に大きい昇圧速度で増加させ、それ以降を後段として、相対的に小さい昇圧速度で増加させる。前段での昇圧速度は4.0〜20.0V/秒とし、後段での前記昇圧速度を4.0V/秒未満とする。
上記条件によって好適には300〜700nm厚で、耐食性、真空特性に優れる無孔質陽極酸化皮膜を形成することができる。なお、本発明としては無孔質陽極酸化皮膜の厚さが限定されるものではない。
As described above, the electrolysis voltage is preferably increased at a relatively high pressure increase rate immediately after electrolysis (and more preferably after 3 seconds immediately after electrolysis) to within 20 seconds at a relatively high pressure increase rate, and thereafter after the subsequent stage. Increase at a small boosting speed. The boosting speed in the former stage is 4.0 to 20.0 V / sec, and the boosting speed in the latter stage is less than 4.0 V / sec.
Depending on the above conditions, a nonporous anodic oxide film having a thickness of 300 to 700 nm and excellent corrosion resistance and vacuum characteristics can be formed. In the present invention, the thickness of the nonporous anodic oxide film is not limited.

以下に、本発明の実施例を説明する。
基材として、JIS5052アルミニウム合金(Fe0.38%、Si0.26%、Mn0.08%、Cr0.25%、Cu0.10%、Mg2.5%、残部Alと不可避不純物)からなる100mm長×100mm幅×7.0mm厚みの板材を用意し、厚み方向の両面の各1.0mmをフライスで切削加工した。次いで、アセトンでふき取り油分を除去した。
前処理として、まずは、中性から弱アルカリ性の脱脂剤による脱脂、又は、有機溶剤による油分除去を行った。次いで、5%苛性ソーダ、50℃で1分間エッチング処理し、10%硝酸、室温で3分間の中和処理を行った。
Examples of the present invention will be described below.
100mm length x 100mm made of JIS5052 aluminum alloy (Fe 0.38%, Si 0.26%, Mn 0.08%, Cr 0.25%, Cu 0.10%, Mg 2.5%, balance Al and inevitable impurities) as the base material A plate material having a width of 7.0 mm was prepared, and 1.0 mm on both sides in the thickness direction was cut with a mill. Then, the oil was wiped off with acetone.
As pretreatment, first, degreasing with a neutral to weak alkaline degreasing agent or oil removal with an organic solvent was performed. Subsequently, 5% caustic soda was etched at 50 ° C. for 1 minute, and 10% nitric acid was neutralized at room temperature for 3 minutes.

上記前処理を行った試料を表1に示す電解液中に浸漬し、対極をカーボンとして、プラスの直流電流を付与し、以下の条件で電解を行った。付与電流を調節して、表1および図1に示すように電圧の昇圧速度をコントロールした。   The sample subjected to the above pretreatment was immersed in the electrolytic solution shown in Table 1, a counter electrode was carbon, a positive direct current was applied, and electrolysis was performed under the following conditions. The applied current was adjusted to control the voltage boost rate as shown in Table 1 and FIG.

電解の終了した試料は、10分間水洗し100℃で乾燥した。
(評価方法)
耐食性評価
測定方法:CFプラズマ、500W、24時間照射後、500倍(視野は0.1mm×0.1mm)で任意の30箇所をSEM観察し、素地アルミニウムが観察された部位がゼロを◎、1〜5を○、6〜10を△、11以上を×とし、その結果を表1に示した。
真空特性評価
測定方法:供試材を300℃まで加熱した際のガス放出量(Pa・m)を測定した。
1Pa・m未満を◎、1〜10Pa・m以下を○、11〜19Pa・mを△、20Pa・m以上を×とし、その結果を表1に示した。
The sample after completion of electrolysis was washed with water for 10 minutes and dried at 100 ° C.
(Evaluation methods)
Corrosion resistance evaluation Measuring method: CF 4 plasma, 500 W, irradiation for 24 hours, SEM observation of arbitrary 30 locations at 500 times (field of view: 0.1 mm × 0.1 mm), and the site where the base aluminum was observed is zero , 1-5 are ◯, 6-10 are Δ, 11 or more are X, and the results are shown in Table 1.
Vacuum characteristic evaluation Measuring method: The amount of gas released (Pa · m) when the specimen was heated to 300 ° C was measured.
Less than 1 Pa · m was marked as ◎, 1 to 10 Pa · m or less as ◯, 11 to 19 Pa · m as Δ, and 20 Pa · m or more as x, and the results are shown in Table 1.

Figure 2010095774
Figure 2010095774

表1に示すように、前段と後段とで昇圧速度を適切に設定した本願発明法(実施例1〜7)では、真空特性、耐食性ともに優れた結果が得られた。一方、前段、後段のいずれかで本願発明の条件(昇圧速度)を満たしていないと、真空特性、耐食性ともに劣っていることが明らかになった。   As shown in Table 1, in the present invention method (Examples 1 to 7) in which the pressure increasing speed was appropriately set in the former stage and the latter stage, results excellent in both vacuum characteristics and corrosion resistance were obtained. On the other hand, it was revealed that both the vacuum characteristics and the corrosion resistance were inferior if the conditions (pressure increase rate) of the present invention were not satisfied in either the former stage or the latter stage.

本発明の各実施例および比較例における昇圧速度変化を示す図(a図)と、その一部拡大図(b図)である。It is the figure (a figure) which shows the pressure | voltage rise speed change in each Example and comparative example of this invention, and its one part enlarged view (b figure).

Claims (3)

アルミニウム材の表面に、電解によって無孔質陽極酸化皮膜を形成する真空機器用表面処理アルミニウム材の製造方法において、
前記電解時の印加電圧を前段で相対的に大きい昇圧速度で増加させ、後段で相対的に小さい昇圧速度で増加させるものとし、前記前段での前記昇圧速度を4.0〜20.0V/秒、前記後段での前記昇圧速度を4.0V/秒未満とすることを特徴とする真空機器用表面処理アルミニウム材の製造方法。
In the method for producing a surface-treated aluminum material for vacuum equipment, in which a nonporous anodic oxide film is formed by electrolysis on the surface of the aluminum material,
The applied voltage during the electrolysis is increased at a relatively large boosting speed in the previous stage and increased at a relatively small boosting speed in the subsequent stage, and the boosting speed in the preceding stage is set to 4.0 to 20.0 V / sec. The method for producing a surface-treated aluminum material for vacuum equipment, wherein the step-up pressure at the latter stage is less than 4.0 V / sec.
電解直後から20秒以内までを前記前段とし、それ以降を前記後段とすることを特徴とする請求項1記載の真空機器用表面処理アルミニウム材の製造方法。   2. The method for producing a surface-treated aluminum material for vacuum equipment according to claim 1, wherein the first stage is within 20 seconds immediately after electrolysis, and the subsequent stage is the subsequent stage. 電解直後から3秒以降、20秒以内までを前記前段とし、それ以降を前記後段とすることを特徴とする請求項1記載の真空機器用表面処理アルミニウム材の製造方法。   The method for producing a surface-treated aluminum material for vacuum equipment according to claim 1, wherein the first stage is from 3 seconds to 20 seconds immediately after electrolysis, and the subsequent stage is the subsequent stage.
JP2008269559A 2008-10-20 2008-10-20 Method for producing surface-treated aluminum material for vacuum equipment Active JP5397884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008269559A JP5397884B2 (en) 2008-10-20 2008-10-20 Method for producing surface-treated aluminum material for vacuum equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008269559A JP5397884B2 (en) 2008-10-20 2008-10-20 Method for producing surface-treated aluminum material for vacuum equipment

Publications (2)

Publication Number Publication Date
JP2010095774A true JP2010095774A (en) 2010-04-30
JP5397884B2 JP5397884B2 (en) 2014-01-22

Family

ID=42257658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008269559A Active JP5397884B2 (en) 2008-10-20 2008-10-20 Method for producing surface-treated aluminum material for vacuum equipment

Country Status (1)

Country Link
JP (1) JP5397884B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383584A1 (en) 2010-04-19 2011-11-02 Furuno Electric Company, Limited Method and device for detecting ultrasound wave, and method and device for detecting school of fish

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827189B1 (en) * 1968-06-19 1973-08-20
JPH0525694A (en) * 1991-07-15 1993-02-02 Mitsubishi Alum Co Ltd Production of aluminum or aluminum alloy for vacuum equipment
JPH08144088A (en) * 1994-11-16 1996-06-04 Kobe Steel Ltd Surface treatment of vacuum chamber member made of aluminium or aluminum alloy
JPH08260196A (en) * 1995-03-24 1996-10-08 Kobe Steel Ltd Surface treating method of vacuum chamber member made of al or al alloy
JP2008038237A (en) * 2006-08-10 2008-02-21 National Institute For Materials Science Method of manufacturing alumina porous structure
JP2008179884A (en) * 2006-12-28 2008-08-07 Tohoku Univ Metal member having metal oxide film and method of manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827189B1 (en) * 1968-06-19 1973-08-20
JPH0525694A (en) * 1991-07-15 1993-02-02 Mitsubishi Alum Co Ltd Production of aluminum or aluminum alloy for vacuum equipment
JPH08144088A (en) * 1994-11-16 1996-06-04 Kobe Steel Ltd Surface treatment of vacuum chamber member made of aluminium or aluminum alloy
JPH08260196A (en) * 1995-03-24 1996-10-08 Kobe Steel Ltd Surface treating method of vacuum chamber member made of al or al alloy
JP2008038237A (en) * 2006-08-10 2008-02-21 National Institute For Materials Science Method of manufacturing alumina porous structure
JP2008179884A (en) * 2006-12-28 2008-08-07 Tohoku Univ Metal member having metal oxide film and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383584A1 (en) 2010-04-19 2011-11-02 Furuno Electric Company, Limited Method and device for detecting ultrasound wave, and method and device for detecting school of fish

Also Published As

Publication number Publication date
JP5397884B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP4716779B2 (en) Corrosion-resistant treatment method for aluminum or aluminum alloy
RU2373306C2 (en) Method of multistage electrolyte-plasma polishing of products made of titanium and titanium alloys
TWI248991B (en) Aluminum alloy member superior in corrosion resistance and plasma resistance
WO2014017297A1 (en) Aluminum alloy having excellent anodic oxidation treatability, and anodic-oxidation-treated aluminum alloy member
JP5369083B2 (en) Surface-treated aluminum member having high withstand voltage and method for producing the same
KR101819918B1 (en) Method of Plasma electrolytic oxidation
JP5397884B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP5613125B2 (en) Method for producing aluminum anodic oxide film having high withstand voltage and excellent productivity
JP5352204B2 (en) Surface-treated aluminum material for vacuum equipment
JP5416436B2 (en) Aluminum alloy member excellent in crack resistance and corrosion resistance, method for confirming crack resistance and corrosion resistance of porous anodic oxide film, and conditions for forming porous anodic oxide film excellent in crack resistance and corrosion resistance Setting method
JP5370984B2 (en) Aluminum alloy material for vacuum equipment and manufacturing method thereof
JP2016020519A (en) Surface-treated aluminum material and production method thereof
JP2009084658A (en) Aluminum alloy foil for electrolytic capacitor
JP5334125B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP5438485B2 (en) Surface treatment member
JP2014065946A (en) Aluminum anode oxide coating
JP6254806B2 (en) Aluminum alloy rolled sheet for electrolytic treatment, electrolytic treated aluminum alloy rolled sheet and method for producing the same
JP4125521B2 (en) Aluminum foil for electrolytic capacitors
JP2009228132A (en) Surface treatment member for semiconductor-producing equipment, and method for production thereof
JP5419066B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP4587875B2 (en) Corrosion-resistant treatment method for aluminum or aluminum alloy
JP5352203B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
WO2023033120A1 (en) Aluminum member for semiconductor manufacturing devices and method for producing said aluminum member
JP2010209457A (en) Method of manufacturing surface treated member for semiconductor liquid crystal manufacturing apparatus
JP5014781B2 (en) Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131016

R150 Certificate of patent or registration of utility model

Ref document number: 5397884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250