JP2010093212A - Surface mounting method - Google Patents

Surface mounting method Download PDF

Info

Publication number
JP2010093212A
JP2010093212A JP2008264536A JP2008264536A JP2010093212A JP 2010093212 A JP2010093212 A JP 2010093212A JP 2008264536 A JP2008264536 A JP 2008264536A JP 2008264536 A JP2008264536 A JP 2008264536A JP 2010093212 A JP2010093212 A JP 2010093212A
Authority
JP
Japan
Prior art keywords
mounting
mark
substrate
marks
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008264536A
Other languages
Japanese (ja)
Other versions
JP5160368B2 (en
Inventor
Genichiro Awano
元一郎 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juki Corp
Original Assignee
Juki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juki Corp filed Critical Juki Corp
Priority to JP2008264536A priority Critical patent/JP5160368B2/en
Publication of JP2010093212A publication Critical patent/JP2010093212A/en
Application granted granted Critical
Publication of JP5160368B2 publication Critical patent/JP5160368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To highly accurately correct a mounting displacement of an electronic component caused by inclination of an attraction nozzle mounted on a mounting head. <P>SOLUTION: A substrate recognition camera recognizes a mark on an arbitrary straight line in a jig substrate where a plurality marks are arranged and formed on straight lines arranged longitudinally and laterally at predetermined intervals, and stores recognition shift amounts in X direction and in Y direction of each mark. There are extracted marks of respective 2 points where differences of the recognition shift amounts are maximum in respective X and Y directions, and an electronic component is actually mounted at mounting scheduling positions respectively set in the vicinity of the marks of the 4 points. The mark corresponding to each electronic component is captured by the substrate recognition camera in the same field, and acquires shift amounts of mounting the electronic component referring the mark from an image. Further, obtaining the maximum difference value of recognition shift amounts in X direction and in Y direction with respect to the marks of respective 2 points by the substrate recognition camera, and taking as a coefficient a ratio between the foregoing difference and the difference of the corresponding mounting shift amount, the coefficient is multiplied by each mark recognition shift amount on the foregoing straight line to estimate the mounting shift amount. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、表面実装方法、特に基板に対する電子部品の搭載精度を向上する際に適用して好適な表面実装方法に関する。   The present invention relates to a surface mounting method, and more particularly to a surface mounting method suitable for application when improving the mounting accuracy of electronic components on a substrate.

一般に、表面実装装置においては、搭載ヘッドに装着されている吸着ノズルで吸着保持した電子部品を、該搭載ヘッドをXYロボットにより移動させ、所定の搭載領域に位置決めされている基板上の目標位置に搭載することが行なわれている。   In general, in a surface mounting apparatus, an electronic component sucked and held by a suction nozzle mounted on a mounting head is moved by an XY robot to a target position on a substrate positioned in a predetermined mounting area. It is carried out.

このように搭載ヘッドをXY方向に移動させるXYロボットには、搭載ヘッドをX方向に案内するX軸ビームの歪みやたわみに加えて、該XビームをY方向に案内するY軸ガイドレールの歪みやたわみによる直線性の崩れが、電子部品を基板全面に均一に搭載することを妨げる誤差要因になっている。   In this way, in an XY robot that moves the mounting head in the XY direction, in addition to distortion and deflection of the X-axis beam that guides the mounting head in the X direction, distortion of the Y-axis guide rail that guides the X beam in the Y direction. The collapse of linearity due to bending or bending is an error factor that prevents the electronic components from being uniformly mounted on the entire surface of the substrate.

このような要因による誤差を、表面実装装置自体で補正する従来の技術としては、例えば特許文献1には、複数のマークを記したダミー基板を所定位置に位置決めした状態で搭載ヘッドに備えられている基板マークを検出するためのCCDカメラ等の基板認識カメラによって撮像し、撮像された画像上のマーク位置と理論上のマーク位置との誤差から、XYロボットの誤差量を得て補正量とする方法が提案されている。   As a conventional technique for correcting an error due to such factors by the surface mounting apparatus itself, for example, in Patent Document 1, a mounting head is provided with a dummy substrate having a plurality of marks positioned at predetermined positions. The image is picked up by a substrate recognition camera such as a CCD camera for detecting the substrate mark, and the error amount of the XY robot is obtained from the error between the mark position on the picked-up image and the theoretical mark position, and is used as the correction amount. A method has been proposed.

又、特許文献2には、搭載領域の全域に複数のマークが設けられたガラス治具基板を位置決めし、該ガラス治具基板に対して搭載ヘッドを用いて電子部品の搭載を実際に行ない、搭載された電子部品とマークを基板認識カメラにより同時に撮像して補正量を取得する方法が提案されている。   In Patent Document 2, a glass jig substrate provided with a plurality of marks is positioned over the entire mounting region, and electronic components are actually mounted on the glass jig substrate using a mounting head. A method has been proposed in which a mounted electronic component and a mark are simultaneously imaged by a substrate recognition camera to acquire a correction amount.

ところが、通常、XYロボットの歪みやたわみは、XY方向への平面的な誤差を生じるだけではない。搭載ヘッドに装着されている吸着ノズルは、理想的にはどのXY座標においても常に基板平面に対しては垂直の関係を保つようにすることが望ましいが、XYロボットの歪みやたわみによって、座標毎に基板平面に対する垂直関係に狂いが生じ、傾斜していることがある。   However, the distortion and deflection of the XY robot usually do not only cause a planar error in the XY direction. Ideally, it is desirable that the suction nozzle mounted on the mounting head always maintain a perpendicular relationship with respect to the substrate plane at any XY coordinate. In some cases, the vertical relationship with respect to the substrate plane is distorted and tilted.

このような垂直方向からの傾斜成分が吸着ノズルに存在すると、基板認識カメラにより観察される目標座標からの理論上のずれ量と、同目標座標に電子部品を実際に搭載した場合の搭載ずれ量が一致しない誤差要因となるため、前記特許文献1のように単に基板認識カメラで観察されたマークのずれ量だけで補正したのでは、搭載位置に対する高精度な補正が保証されないという問題があった。   If such a tilt component from the vertical direction exists in the suction nozzle, the theoretical deviation from the target coordinates observed by the board recognition camera and the mounting deviation when the electronic component is actually mounted on the target coordinates Therefore, if correction is performed only by the amount of mark deviation observed by the substrate recognition camera as in Patent Document 1, high-accuracy correction for the mounting position cannot be guaranteed. .

そのために、特許文献2のように、ガラス治具基板の全面に実際に電子部品を搭載し、搭載した電子部品を基板認識カメラで観察することにより、搭載位置に対する精度の高い補正量を取得する方法が必要となっている。   Therefore, as in Patent Document 2, an electronic component is actually mounted on the entire surface of the glass jig substrate, and the mounted electronic component is observed with a substrate recognition camera, thereby obtaining a highly accurate correction amount for the mounting position. A method is needed.

特開2001−136000号公報JP 2001-136000 A 特開2001−244696号公報JP 2001-244696 A

しかしながら、前記特許文献2に開示されている方法には、電子部品をガラス治具基板の全面に実際に搭載し、その電子部品の全てを基板認識カメラにより順次撮像する必要があるため、搭載に使用する電子部品を大量に用意する必要がある上に、データの取得に時間がかかるという問題があった。   However, in the method disclosed in Patent Document 2, it is necessary to actually mount the electronic components on the entire surface of the glass jig substrate and sequentially image all of the electronic components with the substrate recognition camera. There is a problem that it is necessary to prepare a large number of electronic components to be used and it takes time to acquire data.

本発明は、前記従来の問題点を解決するべくなされたもので、搭載ヘッドに装着されている吸着ノズルの傾斜に起因する誤差を含む電子部品の搭載位置ずれ量を、大量の電子部品を用意することなく、従って短時間で補正データを取得することができる上に、精度の高い補正を実現することができる表面実装方法を提供することを課題とする。   The present invention has been made to solve the above-mentioned conventional problems, and a large amount of electronic components is prepared for the amount of mounting position displacement of electronic components including errors caused by the inclination of the suction nozzle mounted on the mounting head. Accordingly, it is an object of the present invention to provide a surface mounting method capable of acquiring correction data in a short time and realizing high-precision correction.

本発明は、下端部に吸着ノズルが装着可能なノズル可動部と共に、下方を撮像する基板認識カメラを有する搭載ヘッドをXY移動させ、該吸着ノズルに吸着された電子部品を、搭載領域に位置決めされている基板上に搭載する表面実装方法において、複数マークが縦横に所定の間隔を隔てた直線上に配列形成されている治具基板を、前記搭載領域に位置決めした状態で、任意の一直線上のマークを基板認識カメラにより認識し、各マークについて得られたX方向、Y方向の認識ずれ量を記憶するステップと、得られた認識ずれ量の差がX方向、Y方向それぞれについて最大となる各2点の計4点のマークを抽出し、当該4点のマークの近傍にそれぞれ設定した搭載予定位置に実際に電子部品を搭載すると共に、搭載された各電子部品と対応するマークを同一視野内でそれぞれ基板認識カメラにより撮像し、撮像された画像に基づいてマークを基準とする電子部品の搭載ずれ量を取得するステップと、X方向、Y方向について取得された前記各2点のマークに関する認識ずれ量の差の最大値と、対応する前記搭載ずれ量の差との比を係数として求めるステップと、求められた係数を、前記一直線上の各マークについて記憶されている認識ずれ量に乗算し、該直線上の搭載ずれ量を推定するステップと、推定された搭載ずれ量に基づいて搭載位置を補正して電子部品を基板上に搭載するステップと、を有することにより、前記課題を解決したものである。   The present invention moves the mounting head having a substrate recognition camera that images the lower side together with a nozzle movable portion to which a suction nozzle can be attached at the lower end, and positions the electronic component sucked by the suction nozzle in the mounting region. In a surface mounting method for mounting on a substrate, a jig substrate in which a plurality of marks are arranged on a straight line at predetermined intervals in the vertical and horizontal directions is positioned on the mounting region, and is on an arbitrary straight line. The step of recognizing the mark by the substrate recognition camera and storing the recognized deviation amount in the X direction and the Y direction obtained for each mark, and the difference between the obtained recognition deviation amounts for each of the X direction and the Y direction are maximized. A total of four marks of two points are extracted, electronic components are actually mounted at the respective mounting positions set in the vicinity of the four marks, and corresponding to each mounted electronic component. Each of the marks is picked up by the board recognition camera within the same field of view, and a mounting deviation amount of the electronic component with reference to the mark is obtained based on the picked up images, and each of the two obtained in the X direction and the Y direction. A step of obtaining, as a coefficient, a ratio between a maximum difference in recognition deviation amount relating to a point mark and a corresponding difference in mounting deviation amount, and the obtained coefficient is stored for each mark on the straight line. By multiplying the amount of deviation and estimating the amount of mounting deviation on the straight line, and correcting the mounting position based on the estimated amount of mounting deviation and mounting the electronic component on the board, The problem is solved.

本発明においては、前記任意の一直線が、X方向及びY方向の各一直線であるようにしてもよい。   In the present invention, the arbitrary straight line may be a straight line in each of the X direction and the Y direction.

本発明によれば、治具基板に格子上に配列形成されているマークの1列(任意の一直線上のマーク)について基板認識カメラにより認識ずれ量を求め、その中の4つのマークに対してのみ実際に電子部品を搭載し、その搭載ずれ量のみに基づいて、該列に対する係数を求め、それ以外のマークについては該係数を認識ずれ量に乗算して求めるようにしたので、該列の全てのマークについてノズル軸の傾斜を考慮した精度の高い搭載ずれ量を推定することができる。このように1つの直線上のマークについて搭載ずれ量を求めることにより、例えばX方向について対応する位置に対する精度の高い補正が実現でき、該直線と直交する一直線上のマークについて同様に処理することにより、Y方向について対応する位置に対する精度の高い補正が実現できる。従って、全てのマークに対して実際に電子部品を実装して各マーク毎の補正量を取得する場合に比べて、少ない部品点数で済むことから、短時間でデータを取得することができる上に、高精度の補正ができる。   According to the present invention, a recognition deviation amount is obtained by a substrate recognition camera for one row of marks (arbitrary straight line marks) arranged on a lattice on a jig substrate, and the four marks among them are obtained. Only the electronic component is actually mounted, and the coefficient for the column is obtained based only on the mounting deviation amount, and the other marks are obtained by multiplying the recognition deviation amount by the coefficient. It is possible to estimate the mounting displacement amount with high accuracy in consideration of the inclination of the nozzle axis for all the marks. Thus, by obtaining the mounting displacement amount for a mark on one straight line, for example, a highly accurate correction for the corresponding position in the X direction can be realized, and the mark on a straight line orthogonal to the straight line is processed in the same manner. , High-accuracy correction for the corresponding position in the Y direction can be realized. Therefore, compared to the case where the electronic components are actually mounted on all the marks and the correction amount for each mark is acquired, the number of components can be reduced, so that data can be acquired in a short time. , High-precision correction.

以下、図面を参照して、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る一実施形態の表面実装装置を模式的に示す概略平面図である。   FIG. 1 is a schematic plan view schematically showing a surface mounting apparatus according to an embodiment of the present invention.

この表面実装装置では、搭載ヘッド10が、XYロボットを構成するX軸ビーム12によりX方向(横方向)に案内移動されると共に、該X軸ビーム12と一体で左右のY軸ガイドレール14によりY方向(縦方向)に案内移動されるようになっている。   In this surface mounting apparatus, the mounting head 10 is guided and moved in the X direction (lateral direction) by the X axis beam 12 constituting the XY robot, and is integrated with the X axis beam 12 by the left and right Y axis guide rails 14. It is guided and moved in the Y direction (vertical direction).

又、この表面実装装置では、フロント側部品供給部16及びリア側部品供給部18からなるフィーダにそれぞれ供給される電子部品を、搭載ヘッド10により保持した後、搭載領域に位置決めされている基板S上の目標位置に搭載する。   Further, in this surface mounting apparatus, the electronic components respectively supplied to the feeder composed of the front-side component supply unit 16 and the rear-side component supply unit 18 are held by the mounting head 10 and then positioned in the mounting region. Mount at the target position above.

図2には、図1における搭載ヘッド10を正面から見た状態を拡大して示す。この搭載ヘッド10には、図示されているように複数のヘッド可動部20が配設され、それぞれ下端部に装着される吸着ノズル22により電子部品Pを吸着保持したり、リリースしたりするための電磁弁、該吸着ノズル22を上下動させるためのZ軸サーボモータ及び吸着ノズル22を回転させるためのθ軸サーボモータを備えている。   FIG. 2 shows an enlarged view of the mounting head 10 in FIG. 1 as viewed from the front. The mounting head 10 is provided with a plurality of head movable parts 20 as shown in the figure, and each of the electronic parts P is sucked and held by a suction nozzle 22 attached to the lower end of the mounting head 10 or released. An electromagnetic valve, a Z-axis servo motor for moving the suction nozzle 22 up and down, and a θ-axis servo motor for rotating the suction nozzle 22 are provided.

又、この搭載ヘッド10には、レーザを照射した際の遮光幅によりノズル中心に対する部品吸着位置のずれを検出する機能を有する部品認識装置24が備えられている。   Further, the mounting head 10 is provided with a component recognition device 24 having a function of detecting a shift of the component suction position with respect to the center of the nozzle based on a light shielding width when the laser is irradiated.

又、この搭載ヘッド10には、CCDカメラからなる基板認識カメラ26が備えられ、この基板認識カメラ26によって位置決めされている基板S上の基準マーク(図示せず)を認識することができる共に、後述する治具基板のマークを認識することができるようになっている。   The mounting head 10 is provided with a substrate recognition camera 26 formed of a CCD camera, and can recognize a reference mark (not shown) on the substrate S positioned by the substrate recognition camera 26. A mark on a jig substrate, which will be described later, can be recognized.

更に、この搭載ヘッド10では、前記フロント側部品供給部16、リア側部品供給部18から電子部品Pを吸着し、基板Sの目標搭載位置に移動する間に、前記部品認識装置24によって吸着した電子部品Pのノズル中心からのずれ量や角度ずれを認識することが可能であり、搭載ヘッド10は移動中に認識したこれらXY及びθのずれ量をノズル可動部20により補正し、基板S上の目標位置に電子部品Pを搭載するようになっている。   Further, in the mounting head 10, the electronic component P is sucked from the front-side component supply unit 16 and the rear-side component supply unit 18, and is picked up by the component recognition device 24 while moving to the target mounting position of the substrate S. It is possible to recognize a deviation amount and an angular deviation of the electronic component P from the center of the nozzle, and the mounting head 10 corrects the deviation amounts of XY and θ recognized during the movement by the nozzle movable unit 20, so The electronic component P is mounted at the target position.

図3は、本実施形態において使用される治具基板30を模式的に示した平面図であり、該治具基板30はガラスでできた基板の縦横に、基板認識カメラ26で認識可能な複数のマークMが一定間隔の直線上に配列形成されている。   FIG. 3 is a plan view schematically showing a jig substrate 30 used in the present embodiment. The jig substrate 30 is a plurality of glass substrates that can be recognized by the substrate recognition camera 26 vertically and horizontally. The marks M are arranged on a straight line with a constant interval.

本実施形態においては、前記図1に示した基板Sが位置決めされている搭載領域に、該基板Sの代わりに図3に示した治具基板30を、マークMの配列方向とXY方向を合せて位置決めする。   In the present embodiment, the jig substrate 30 shown in FIG. 3 is placed in place of the substrate S in the mounting area where the substrate S shown in FIG. Position.

そして、この治具基板30に配列形成されている多数のマークMにおける任意の横方向(もしくは縦方向)一列(直線上)のマークMを基板認識カメラ26で認識し、各々の理論座標に対するカメラによる認識ずれ量、即ちXYロボットに起因するずれ量を補正値として記憶すると共に、得られたずれ量の中から、X方向ずれ量の差が最大となる2点と、Y方向ずれ量の差が最大となる2点の、計4点のマークを抽出する。   An arbitrary horizontal (or vertical) line M (on a straight line) of the marks M arranged on the jig substrate 30 is recognized by the substrate recognition camera 26, and a camera corresponding to each theoretical coordinate. Is stored as a correction value, and the difference between the two points where the difference in the X direction deviation amount is the maximum and the difference in the Y direction deviation amount. Extract a total of four marks, two of which are the maximum.

次いで、抽出された4点のマーク近傍に電子部品Pを実際に搭載し、搭載された電子部品Pの理論座標からのずれ量を、該電子部品PとマークMとを基板認識カメラ26により同一視野内に撮像して認識する。本来であれば、マーク中心を目標位置に電子部品Pを搭載するべきであるが、マークM上に搭載すると該マークMと搭載された電子部品Pとの位置関係を画像上で把握することができなくなるため、対象のマークMに対して一定距離だけ離れた位置関係にあるマークMの近傍の理論座標(搭載予定位置)上に搭載する。   Next, the electronic component P is actually mounted in the vicinity of the four extracted marks, and the amount of deviation from the theoretical coordinates of the mounted electronic component P is the same between the electronic component P and the mark M by the board recognition camera 26. Recognize by imaging in the field of view. Originally, the electronic component P should be mounted with the mark center at the target position. However, when mounted on the mark M, the positional relationship between the mark M and the mounted electronic component P can be grasped on the image. Since it cannot be performed, it is mounted on the theoretical coordinates (scheduled mounting position) in the vicinity of the mark M which is in a positional relationship with respect to the target mark M by a certain distance.

このように基板認識カメラ26による認識ずれ量の差が最大となったマークMの近傍座標へ電子部品Pを搭載した際の搭載ずれ量を求め、後述する(1)式に示すように(搭載ずれ量の差/認識ずれ量の差の最大値)の比を係数として算出し、算出された係数を横一列(もしくは縦一列)の直線上の基板認識カメラ26による各認識ずれ量に乗算することにより、代表4点のマークに対する認識結果から横一列(もしくは縦一列)の搭載補正量を推定し、生産時に基板上に電子部品Pを搭載する際の補正に反映させるようにする。   In this way, the mounting displacement amount when the electronic component P is mounted on the coordinates near the mark M where the difference in the recognition displacement amount by the substrate recognition camera 26 is maximized is obtained, and as shown in the following formula (1) (mounting) The ratio of the difference in deviation amount / the maximum difference in recognition deviation amount is calculated as a coefficient, and the calculated coefficient is multiplied by each recognition deviation amount by the substrate recognition camera 26 on a straight line (or vertical line). Thus, the mounting correction amount in one horizontal row (or one vertical row) is estimated from the recognition results for the four representative marks, and is reflected in the correction when mounting the electronic component P on the board during production.

以下、本実施形態について、具体例を挙げて詳細に説明する。   Hereinafter, the present embodiment will be described in detail with specific examples.

ここでは、X方向を代表させ、横一列の直線上に対する補正量の算出方法について説明する。   Here, a method for calculating a correction amount for a horizontal line will be described with the X direction as a representative.

まず補正データの取得方法について、前記図3に示した治具基板30における任意の横一列のマークを基板認識カメラ26により画像認識し、各々の認識結果から得られたn個の理論座標からの認識ずれ量:(dXccd[0],dYccd[0]),(dXccd[1],dYccd[1])..(dXccd[n-1],dYccd[n-1])を、XYロボットによる位置ずれに対する補正値として記憶する。なお、各ずれ量の添字ccdは基板認識カメラ26によるマークMのみの認識を意味する。   First, with respect to a method for obtaining correction data, an arbitrary horizontal row of marks on the jig substrate 30 shown in FIG. 3 is image-recognized by the substrate recognition camera 26, and the n-th theoretical coordinate obtained from each recognition result is obtained. Recognition deviation amount: (dXccd [0], dYccd [0]), (dXccd [1], dYccd [1]) .. (dXccd [n-1], dYccd [n-1]) It is stored as a correction value for deviation. Note that the subscript ccd of each deviation amount means that the substrate recognition camera 26 recognizes only the mark M.

図4には、マーク認識イメージを模式的に示す。1つマークMの中心(理論座標)に基板認識カメラ26の中心(図中ccd認識中心)が一致するようにXYロボットにより搭載ヘッド10を移動させ、停止させた際の両中心間の差が、ここで言う認識ずれ量である。   FIG. 4 schematically shows a mark recognition image. When the mounting head 10 is moved and stopped by the XY robot so that the center (the ccd recognition center in the figure) of the substrate recognition camera 26 coincides with the center (theoretical coordinates) of one mark M, there is a difference between the centers. This is the amount of recognition deviation referred to here.

次に、記憶したn個のずれ量から、+側に最もずれたマークMと、−側に最もずれたマークMを、X方向、Y方向のそれぞれに対して抽出する。図5には、X方向一列のマークMについて、Y方向を例とした認識ずれ量と、その最大値、最小値の関係のグラフイメージを示す。図示は省略するが、同列のマークMについてX方向のずれ量も同様に得られる。   Next, from the stored n shift amounts, the mark M most shifted to the + side and the mark M most shifted to the − side are extracted in the X direction and the Y direction, respectively. FIG. 5 shows a graph image of the relationship between the recognition deviation amount and the maximum value and the minimum value of the mark M in a row in the X direction, taking the Y direction as an example. Although illustration is omitted, the amount of deviation in the X direction is similarly obtained for the mark M in the same row.

これにより、X方向について認識ずれ量の差が最大となる2点(dXccdMax, dXccdMin)、Y方向について認識ずれ量の差が最大となる2点(dYccdMax, dYccdMin)の、計4点のマークMが抽出される事になる。前記図5には、Y方向に対してのみ併記する。   As a result, a total of four marks M, that is, two points (dXccdMax, dXccdMin) where the difference in recognition deviation amount is maximum in the X direction and two points (dYccdMax, dYccdMin) where the difference in recognition deviation amount is maximum in the Y direction. Will be extracted. In FIG. 5, only the Y direction is shown.

以上の方法により抽出された4点のマークMに対し、基板認識カメラ26が同一視野内で撮像可能な一定距離だけ離れた搭載予定位置(理論座標)に電子部品Pを実際に搭載し、今度は基板認識カメラ26により、各マークMの中心から搭載された電子部品Pの中心までの距離を認識し、理論上の搭載座標(マーク中心から(X,Y)の搭載予定位置)と実際に電子部品Pが搭載された位置(マーク中心から(X+X’,Y+Y’)の実際搭載位置)とのずれ量(X’,Y’)を取得する。この場合の1つのマークMに対する部品認識のイメージを図6に模式的に示す。   With respect to the four marks M extracted by the above method, the electronic component P is actually mounted at a planned mounting position (theoretical coordinates) separated by a certain distance that the board recognition camera 26 can image within the same field of view. Recognizes the distance from the center of each mark M to the center of the mounted electronic component P by the board recognition camera 26, and the actual mounting coordinates (scheduled mounting position of (X, Y) from the mark center) and actually The deviation amount (X ′, Y ′) from the position where the electronic component P is mounted (the actual mounting position of (X + X ′, Y + Y ′) from the mark center) is acquired. An image of component recognition for one mark M in this case is schematically shown in FIG.

得られたずれ量から、X方向用の2点の認識結果からはX’に相当するX方向搭載ずれ量:dXheadMax、dXheadMinを、Y方向用の2点の認識結果からはY’に相当するY方向搭載ずれ量:dYheadMax、dYheadMinを記憶する。前記図5には、Y方向を例としたマーク中心の理論座標を基準とした搭載ずれ量のグラフイメージを併せて示す。   From the obtained deviation amounts, the X direction mounting deviation amounts: dXheadMax and dXheadMin corresponding to X ′ from the two point recognition results for the X direction correspond to Y ′ from the two point recognition results for the Y direction. Y direction mounting deviation amount: dYheadMax and dYheadMin are stored. FIG. 5 also shows a graph image of the mounting deviation amount with reference to the theoretical coordinates of the mark center taking the Y direction as an example.

次に取得された補正データの利用方法であるが、前記の方法で抽出された、X方向とY方向について最大、最小の各2点からなる計4点の結果を利用して、基板認識カメラ26による認識ずれ量の差の最大値と、この2点に対応する前記搭載ずれ量の差の比を次式で計算し、係数Kyを求める。   Next, a method for using the acquired correction data is described. The substrate recognition camera uses the result of a total of four points each consisting of two points maximum and minimum in the X and Y directions extracted by the above method. The coefficient Ky is obtained by calculating the ratio between the maximum difference in the recognition deviation amount due to No. 26 and the difference in the mounting deviation amount corresponding to these two points by the following equation.

Ky=(dYheadMax − dYheadMin)/(dYccdMax − dYccdMin) ・・・(1)     Ky = (dYheadMax−dYheadMin) / (dYccdMax−dYccdMin) (1)

そして、算出された係数Kyを最初に横一列分のデータとして保管しておいたn個の理論座標からのずれ量に掛け算する事により、搭載ずれ量に対する横一列分の補正値を算出する。図7には、Y方向を例として算出された前記図5に対応するずれ量のグラフイメージを示す。ここでは簡略化のため、1ノズル可動部分についての方法を記載したが、係数は表面実装装置が有するノズル可動部20の個数分取得する必要がある。   Then, the calculated coefficient Ky is first multiplied by the amount of deviation from the n theoretical coordinates stored as data for one horizontal row, thereby calculating a correction value for one horizontal row with respect to the mounting deviation amount. FIG. 7 shows a graph image of the shift amount corresponding to FIG. 5 calculated using the Y direction as an example. Here, for the sake of simplification, the method for one nozzle movable part has been described, but the coefficients need to be obtained for the number of nozzle movable parts 20 included in the surface mounting apparatus.

また、同一の方法を治具基板のY方向の任意の縦一列分(直線上)のマークMに対して適用すれば、Y方向に対する同様の補正値を取得することができる。   Further, if the same method is applied to marks M in an arbitrary vertical line (on a straight line) in the Y direction of the jig substrate, a similar correction value for the Y direction can be obtained.

従って、X方向及びY方向の任意の一直線上についてそれぞれ同様に係数を求めることにより、搭載領域全体に対する電子部品Pの搭載位置を正確に補正することが可能となる。   Therefore, the mounting position of the electronic component P with respect to the entire mounting area can be accurately corrected by obtaining the coefficients in the same manner on any one straight line in the X direction and the Y direction.

又、認識ずれ量の差が最大となるマークのみから搭載ずれ量を取得するようにしたので、係数の計算精度を上げることができる。   In addition, since the mounting deviation amount is obtained only from the mark having the largest difference in recognition deviation amount, the coefficient calculation accuracy can be improved.

以上詳述したように本実施形態によれば、以下の効果が得られる。   As described above in detail, according to the present embodiment, the following effects can be obtained.

(1)X軸ビーム12のねじれやたわみに対し、基板認識カメラ26による認識ずれ量と、実搭載による搭載ずれ量の2種類を取得することにより、XYロボットによるずれ量とノズル可動部の倒れ(垂直方向に対する傾斜)によるずれ量との両者の差を正しく補正することが可能となる。 (1) By obtaining two types of displacements of recognition by the substrate recognition camera 26 and mounting displacements due to actual mounting with respect to torsion and deflection of the X-axis beam 12, displacements by the XY robot and tilting of the nozzle movable part are obtained. It is possible to correctly correct the difference between the two and the deviation amount due to (tilt with respect to the vertical direction).

(2)搭載によるずれ量を、基板認識カメラ26による認識ずれ量の差が最大となるポイントにのみ電子部品Pを搭載し、基板認識カメラ26による認識ずれ量の差の最大値と、対応する搭載ずれ量の差の比を係数として求め、それを一直線上の他の認識ずれ量に掛ける事によって、該直線方向の搭載によるずれ量を推定する仕組みを設けた事により、データ取得のための搭載に使用する部品数を削減することができ、従って補正用データの取得時間を削減することができる。 (2) The amount of deviation due to mounting corresponds to the maximum value of the difference in recognition deviation amount by the board recognition camera 26 by mounting the electronic component P only at the point where the difference in recognition deviation amount by the board recognition camera 26 is maximized. By obtaining the ratio of difference in mounting deviation as a coefficient and multiplying it by other recognized deviation amount on a straight line, a mechanism for estimating the deviation amount due to mounting in the straight line direction is provided. The number of parts used for mounting can be reduced, and therefore the time for acquiring correction data can be reduced.

本発明に係る一実施形態の表面実装装置を模式的に示す概略平面図1 is a schematic plan view schematically showing a surface mounting apparatus according to an embodiment of the present invention. 本実施形態の表面実装装置が備えている搭載ヘッドを模式的に示す概略正面図The schematic front view which shows typically the mounting head with which the surface mounting apparatus of this embodiment is provided. 本実施形態に適用される治具基板を模式的に示す平面図The top view which shows typically the jig | tool board | substrate applied to this embodiment. 基板認識カメラによるマーク認識の画像イメージを示す説明図Explanatory drawing showing the image of mark recognition by the board recognition camera 直線上に配列されたマークと基板認識カメラによる認識ずれ量の関係のイメージを示す説明図Explanatory drawing which shows the image of the relationship between the mark arranged on the straight line and the amount of recognition deviation by the substrate recognition camera 基板認識カメラにより実搭載部品とマークを同一画像上で認識している画像イメージを示す説明図Explanatory drawing which shows the image image which recognizes the actual mounted component and the mark on the same image by the board recognition camera 電子部品の搭載位置のずれ量の係数による推定イメージを示す説明図Explanatory drawing which shows the estimation image by the coefficient of deviation amount of the mounting position of electronic parts

符号の説明Explanation of symbols

10…搭載ヘッド
12…X軸ビーム
14…Y軸ガイドレール
16…フロント側部品供給部
18…リア側部品供給部
20…ヘッド可動部
22…吸着ノズル
24…部品認識装置
26…基板認識カメラ
30…治具基板
M…マーク
P…電子部品
S…基板
DESCRIPTION OF SYMBOLS 10 ... Mount head 12 ... X-axis beam 14 ... Y-axis guide rail 16 ... Front side component supply part 18 ... Rear side component supply part 20 ... Head movable part 22 ... Adsorption nozzle 24 ... Component recognition apparatus 26 ... Board recognition camera 30 ... Jig board M ... Mark P ... Electronic component S ... Board

Claims (2)

下端部に吸着ノズルが装着可能なノズル可動部と共に、下方を撮像する基板認識カメラを有する搭載ヘッドをXY移動させ、該吸着ノズルに吸着された電子部品を、搭載領域に位置決めされている基板上に搭載する表面実装方法において、
複数マークが縦横に所定の間隔を隔てた直線上に配列形成されている治具基板を、前記搭載領域に位置決めした状態で、任意の一直線上のマークを基板認識カメラにより認識し、各マークについて得られたX方向、Y方向の認識ずれ量を記憶するステップと、
得られた認識ずれ量の差がX方向、Y方向それぞれについて最大となる各2点の計4点のマークを抽出し、当該4点のマークの近傍にそれぞれ設定した搭載予定位置に実際に電子部品を搭載すると共に、搭載された各電子部品と対応するマークを同一視野内でそれぞれ基板認識カメラにより撮像し、撮像された画像に基づいてマークを基準とする電子部品の搭載ずれ量を取得するステップと、
X方向、Y方向について取得された前記各2点のマークに関する認識ずれ量の差の最大値と、対応する前記搭載ずれ量の差との比を係数として求めるステップと、
求められた係数を、前記一直線上の各マークについて記憶されている認識ずれ量に乗算し、該直線上の搭載ずれ量を推定するステップと、
推定された搭載ずれ量に基づいて搭載位置を補正して電子部品を基板上に搭載するステップと、を有することを特徴とする表面実装方法。
A mounting head having a substrate recognition camera that images the lower side is moved XY together with a nozzle movable portion to which a suction nozzle can be mounted at the lower end, and the electronic component sucked by the suction nozzle is positioned on the substrate that is positioned in the mounting region. In the surface mounting method to be mounted on
With a jig substrate in which a plurality of marks are arranged on a straight line at predetermined intervals in the vertical and horizontal directions, a mark on an arbitrary straight line is recognized by the substrate recognition camera while being positioned in the mounting area. Storing the obtained recognition deviation amount in the X and Y directions;
A total of four marks are extracted, each having two points where the difference in the amount of recognition deviation obtained is maximum in each of the X and Y directions, and the electrons are actually placed at the planned mounting positions set in the vicinity of the four marks. In addition to mounting components, marks corresponding to each mounted electronic component are captured by the substrate recognition camera within the same field of view, and the mounting displacement amount of the electronic component with reference to the mark is acquired based on the captured image Steps,
Obtaining as a coefficient the ratio between the maximum difference between the recognized deviation amounts for the two marks acquired in the X direction and the Y direction and the corresponding difference between the mounting deviation amounts;
Multiplying the obtained coefficient by the recognized deviation amount stored for each mark on the straight line to estimate the mounting deviation amount on the straight line;
And mounting the electronic component on the substrate by correcting the mounting position based on the estimated mounting deviation amount.
前記任意の一直線が、X方向及びY方向の各一直線であることを特徴とする請求項1に記載の表面実装方法。   The surface mounting method according to claim 1, wherein the arbitrary straight line is a straight line in each of the X direction and the Y direction.
JP2008264536A 2008-10-10 2008-10-10 Surface mounting method Active JP5160368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008264536A JP5160368B2 (en) 2008-10-10 2008-10-10 Surface mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008264536A JP5160368B2 (en) 2008-10-10 2008-10-10 Surface mounting method

Publications (2)

Publication Number Publication Date
JP2010093212A true JP2010093212A (en) 2010-04-22
JP5160368B2 JP5160368B2 (en) 2013-03-13

Family

ID=42255632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008264536A Active JP5160368B2 (en) 2008-10-10 2008-10-10 Surface mounting method

Country Status (1)

Country Link
JP (1) JP5160368B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092272A (en) * 2015-11-11 2017-05-25 パナソニックIpマネジメント株式会社 Electronic component mounting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307300A (en) * 1996-05-13 1997-11-28 Taiyo Yuden Co Ltd Method for correcting parts loading position
JPH11274799A (en) * 1998-03-19 1999-10-08 Sanyo Electric Co Ltd Electronic components mounting apparatus
JP2003028615A (en) * 2001-07-13 2003-01-29 Sony Corp Method, apparatus and reference jig for correction of coordinates
JP2003162308A (en) * 2001-11-28 2003-06-06 Matsushita Electric Ind Co Ltd Positioning method and positioning system for working device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307300A (en) * 1996-05-13 1997-11-28 Taiyo Yuden Co Ltd Method for correcting parts loading position
JPH11274799A (en) * 1998-03-19 1999-10-08 Sanyo Electric Co Ltd Electronic components mounting apparatus
JP2003028615A (en) * 2001-07-13 2003-01-29 Sony Corp Method, apparatus and reference jig for correction of coordinates
JP2003162308A (en) * 2001-11-28 2003-06-06 Matsushita Electric Ind Co Ltd Positioning method and positioning system for working device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092272A (en) * 2015-11-11 2017-05-25 パナソニックIpマネジメント株式会社 Electronic component mounting device

Also Published As

Publication number Publication date
JP5160368B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
US20090252400A1 (en) Method for mounting electronic component
KR101472434B1 (en) Electronic component mounting apparatus and mounting position correction data creating method
JP4587877B2 (en) Component mounting equipment
JP5779386B2 (en) Electrical component mounting machine
JPWO2019044816A1 (en) Device and method for linearly moving a first moving body and a second moving body with respect to an object
KR101352061B1 (en) X-ray position measuring apparatus, position measuring method of x-ray position measuring apparatus and position measuring program of x-ray position measuring apparatus
WO2014174598A1 (en) Component mounting device, mounting head, and control device
KR20210148350A (en) An apparatus for manufacturing a semiconductor device, and a method for manufacturing a semiconductor device
JP5545737B2 (en) Component mounter and image processing method
KR20210145808A (en) Bonding device and bonding head movement compensation method
JP4648964B2 (en) Mark recognition system, mark recognition method, and surface mounter
WO2019021365A1 (en) Component-mounting device
JP5160368B2 (en) Surface mounting method
JP4860366B2 (en) Surface mount equipment
JP6849547B2 (en) Eccentricity correction method for parts holder
KR102094728B1 (en) Drawing device, exposure drawing device, drawing method, and recording medium whereon program is stored
WO2014188564A1 (en) Component mounting device
JP5975785B2 (en) Drawing apparatus, exposure drawing apparatus, program, and drawing method
JP2010238974A (en) Mounting apparatus and mounting method for electronic component
JP7319264B2 (en) Control method, electronic component mounting device
JP2017157765A (en) Calibration method for control data and component mounting apparatus
WO2023157134A1 (en) Component mounting device
JP7253905B2 (en) Mounting device and mounting method
JP2006080468A (en) Component mounting position correction method and component mounting device
JP2000353899A (en) Mounting method of electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R150 Certificate of patent or registration of utility model

Ref document number: 5160368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3