JP2010092830A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010092830A
JP2010092830A JP2009029322A JP2009029322A JP2010092830A JP 2010092830 A JP2010092830 A JP 2010092830A JP 2009029322 A JP2009029322 A JP 2009029322A JP 2009029322 A JP2009029322 A JP 2009029322A JP 2010092830 A JP2010092830 A JP 2010092830A
Authority
JP
Japan
Prior art keywords
secondary battery
mass
electrolyte secondary
nonaqueous electrolyte
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009029322A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hasegawa
和弘 長谷川
Shun Nomura
峻 野村
Katsuaki Takahashi
勝昭 高橋
Hiroyuki Fujimoto
洋行 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009029322A priority Critical patent/JP2010092830A/en
Publication of JP2010092830A publication Critical patent/JP2010092830A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a nonaqueous electrolyte secondary battery with high capacity and excellent in cycle characteristics, by improving an anode active material and nonaqueous electrolyte solution for using the nonaqueous electrolyte secondary battery. <P>SOLUTION: In the nonaqueous electrolyte secondary battery equipped with a cathode 11 containing a cathode active material capable of absorbing/emitting lithium ions, an anode 12 containing an anode active material capable of absorbing/emitting lithium ions, and nonaqueous electrolyte solution, the anode active material is processed with the use of a first material consisting of a graphite material and a second material of a complex body having a graphite material and silicon or silicon compound with amorphous carbon material coated and ratio of silicon in the complex body to be 17 mass% or more and 30 mass% or less, a ratio of the second material in the anode active material is made to be 5 mass% or more and 13 mass% or less, and also, cyclic carbonate derivative containing fluorine atom is added into the nonaqueous electrolyte solution. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオンを吸蔵・放出可能な正極活物質を含む正極と、リチウムイオンを吸蔵・放出可能な負極活物質を含む負極と、非水電解液とを備えた非水電解質二次電池に係り、特に、負極活物質と非水電解液とを改良し、高容量であってサイクル特性が大きく向上された非水電解質二次電池が得られるようにした点に特徴を有するものである。   The present invention relates to a non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, and a non-aqueous electrolyte. In particular, the present invention is characterized in that a negative electrode active material and a non-aqueous electrolyte solution are improved to obtain a non-aqueous electrolyte secondary battery having a high capacity and greatly improved cycle characteristics. .

近年、携帯電子機器や電力貯蔵用等の電源として、非水電解液を用い、リチウムイオンを正極と負極との間で移動させて、充放電を行うようにした非水電解質二次電池が利用されている。   In recent years, non-aqueous electrolyte secondary batteries that use non-aqueous electrolyte and charge and discharge by moving lithium ions between the positive and negative electrodes have been used as power sources for portable electronic devices and power storage. Has been.

そして、このような非水電解質二次電池においては、その負極における負極活物質として黒鉛材料が広く利用されている。   In such a nonaqueous electrolyte secondary battery, a graphite material is widely used as a negative electrode active material in the negative electrode.

ここで、黒鉛材料の場合、放電電位が平坦であると共に、リチウムイオンがこの黒鉛結晶層間に挿入・脱離されて充放電されるため、針状の金属リチウムの発生が抑制され、充放電による体積変化も少ないという利点がある。   Here, in the case of a graphite material, the discharge potential is flat and the lithium ions are inserted and desorbed between the graphite crystal layers to be charged / discharged. There is an advantage that the volume change is small.

一方、近年においては、携帯電子機器等の多機能化・高性能化に対応させるために、さらに高容量の非水電解質二次電池が要望されているが、上記の黒鉛材料の場合、層間化合物のLiC6の理論容量は372mAh/gと小さく、上記のような要望に十分に対応す
ることができないという問題があった。
On the other hand, in recent years, there has been a demand for a non-aqueous electrolyte secondary battery having a higher capacity in order to cope with the multifunctional and high performance of portable electronic devices, etc. The theoretical capacity of LiC 6 was as small as 372 mAh / g, and there was a problem that it was not possible to sufficiently meet the above demands.

このため、近年においては、高容量の負極活物質として、リチウムイオンと合金を形成するケイ素、スズ、アルミニウム等を用いることが検討され、特に、ケイ素の場合、単位質量あたりの理論容量が約4200mAh/gと非常に大きいため、実用化に向けて種々の検討がなされている。   Therefore, in recent years, it has been studied to use silicon, tin, aluminum, or the like that forms an alloy with lithium ions as a high-capacity negative electrode active material. In particular, in the case of silicon, the theoretical capacity per unit mass is about 4200 mAh. Since it is very large as / g, various studies have been made for practical use.

しかし、リチウムイオンと合金を形成するケイ素等は、リチウムイオンの吸蔵・放出に伴う体積変化が大きく、非水電解質二次電池のサイクル特性が悪くなるという問題があった。   However, silicon or the like that forms an alloy with lithium ions has a problem that the volume change accompanying the insertion and extraction of lithium ions is large, and the cycle characteristics of the nonaqueous electrolyte secondary battery are deteriorated.

このため、従来においては、特許文献1に示されるように、負極活物質に、リチウムイオンと合金を形成するケイ素やスズ等を用いると共に、LiB(C242からなる第1
の電解質塩と、LiPF6等の第2の電解質塩とを含み、溶媒に4−フルオロエチレンカ
ーボネート等のハロゲン原子を有する炭酸エステル誘導体を含有させた非水電解液を用い、負極に安定な被膜を形成させて、非水電解液が、リチウムイオンと合金を形成する上記のケイ素やスズ等の負極活物質と反応して分解するのを抑制するようにし、サイクル特性を向上させるようにしたものが提案されている。
For this reason, conventionally, as disclosed in Patent Document 1, silicon, tin, or the like that forms an alloy with lithium ions is used as the negative electrode active material, and the first made of LiB (C 2 O 4 ) 2 is used.
A non-aqueous electrolyte solution containing a non-aqueous electrolyte solution containing a second electrolyte salt such as LiPF 6 and a carbonate ester derivative having a halogen atom such as 4-fluoroethylene carbonate in a solvent. In order to improve the cycle characteristics, the non-aqueous electrolyte is prevented from reacting and decomposing with the negative electrode active material such as silicon or tin that forms an alloy with lithium ions. Has been proposed.

しかし、負極活物質にリチウムイオンと合金を形成するケイ素やスズ等を用いた場合、上記のように充放電による体積変化が大きくて、負極活物質における膨張・収縮が大きくなり、負極活物質間における電子伝導性が低下して、断続的に容量が低下し、非水電解質二次電池のサイクル特性を十分に向上させることができないという問題があった。   However, when silicon, tin, or the like that forms an alloy with lithium ions is used as the negative electrode active material, the volume change due to charge / discharge is large as described above, and the expansion / contraction of the negative electrode active material is increased. As a result, there was a problem in that the electron conductivity in the battery decreased, the capacity decreased intermittently, and the cycle characteristics of the nonaqueous electrolyte secondary battery could not be sufficiently improved.

また、近年においては、特許文献2〜4に示されるように、負極活物質に、炭素粒子の表面にリチウムイオンと合金を形成するケイ素やアルミニウム等を担持させ、さらにこの炭素粒子の表面を炭素材で被覆した複合炭素質材料を用い、リチウムイオンの吸蔵・放出に伴うケイ素やアルミニウム等の体積変化を上記の炭素粒子により吸収させて、負極活物質間における電子伝導性が低下するのを防止し、非水電解質二次電池のサイクル特性を向上させるようにしたものが提案されている。   In recent years, as disclosed in Patent Documents 2 to 4, the negative electrode active material is supported with silicon, aluminum, or the like that forms an alloy with lithium ions on the surface of the carbon particles, and the surface of the carbon particles is further carbonized. Using a composite carbonaceous material coated with a material, volume changes such as silicon and aluminum that accompany occlusion / release of lithium ions are absorbed by the above carbon particles to prevent a decrease in electronic conductivity between the negative electrode active materials. However, a battery that improves the cycle characteristics of a non-aqueous electrolyte secondary battery has been proposed.

しかし、このように負極活物質に、炭素粒子の表面にケイ素やアルミニウム等を担持させ、さらにこの炭素粒子の表面を炭素材で被覆した複合炭素質材料を用いた場合においても、充放電サイクル時に、非水電解液が、複合炭素質材料に含まれる上記のケイ素やアルミニウム等、また複合炭素質材料の表面における炭素と継続的に反応して分解し、非水電解質二次電池のサイクル特性を十分に向上させることができないという問題があった。   However, even when a composite carbonaceous material in which silicon, aluminum, or the like is supported on the surface of the carbon particles and the surface of the carbon particles is coated with a carbon material is used in the negative electrode active material, The non-aqueous electrolyte solution decomposes by continuously reacting with the above-mentioned silicon and aluminum contained in the composite carbonaceous material and the carbon on the surface of the composite carbonaceous material, thereby improving the cycle characteristics of the non-aqueous electrolyte secondary battery. There was a problem that it could not be improved sufficiently.

特開2005−228565号公報JP 2005-228565 A 特許第3369589号公報Japanese Patent No. 3369589 特開2007−87956号公報JP 2007-87956 A 特開2008−27897号公報JP 2008-27897 A

本発明は、非水電解質二次電池における上記のような問題を解決することを課題とするものである。   An object of the present invention is to solve the above problems in a non-aqueous electrolyte secondary battery.

そして、本発明者等は、負極活物質に、上記のように炭素粒子の表面にケイ素やアルミニウム等を担持させ、さらにこの炭素粒子の表面を炭素材で被覆した複合炭素質材料を用いると共に、4−フルオロエチレンカーボネート等のハロゲン原子を有する環状炭酸エステル誘導体を含有させた非水電解液を用いることを検討した。   Then, the present inventors use a composite carbonaceous material in which the negative electrode active material carries silicon, aluminum, or the like on the surface of the carbon particles as described above, and the surface of the carbon particles is covered with a carbon material, The use of a non-aqueous electrolyte containing a cyclic carbonate derivative having a halogen atom such as 4-fluoroethylene carbonate was studied.

しかし、上記のような負極活物質と非水電解液とを組み合わせて使用した場合においても、非水電解液が、複合炭素質材料の表面における炭素と継続的に反応して分解し、長期にわたって充放電を繰り返して行うと、上記の非水電解液中における4−フルオロエチレンカーボネート等のハロゲン原子を有する炭酸エステル誘導体が消費されて、サイクル特性が低下することが分かった。   However, even when the negative electrode active material and the non-aqueous electrolyte are used in combination, the non-aqueous electrolyte continuously reacts with the carbon on the surface of the composite carbonaceous material and decomposes. When charging / discharging was repeated, it was found that the carbonic acid ester derivative having a halogen atom such as 4-fluoroethylene carbonate in the non-aqueous electrolyte was consumed and the cycle characteristics were deteriorated.

そして、本発明においては、このような問題を解決するため、非水電解質二次電池に用いる負極活物質をさらに改良し、高容量であってサイクル特性がさらに向上された非水電解質二次電池が得られるようにすることを課題とする。   In the present invention, in order to solve such a problem, the negative electrode active material used in the nonaqueous electrolyte secondary battery is further improved, and the nonaqueous electrolyte secondary battery has a high capacity and further improved cycle characteristics. It is a problem to be able to obtain.

本発明においては、上記のような課題を解決するため、リチウムイオンを吸蔵・放出可能な正極活物質を含む正極と、リチウムイオンを吸蔵・放出可能な負極活物質を含む負極と、非水電解液とを備えた非水電解質二次電池において、上記の負極活物質に、黒鉛材料からなる第1材料と、黒鉛材料とケイ素又はケイ素化合物とが非晶質炭素材料によって被覆された複合体であって複合体中におけるケイ素の割合が17質量%以上30質量%以下である第2材料とを用い、この負極活物質中における第2材料の割合を5質量%以上13質量%以下にすると共に、上記の非水電解液に、フッ素原子を有する環式炭酸エステル誘導体を添加させるようにした。   In the present invention, in order to solve the above problems, a positive electrode including a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, and non-aqueous electrolysis In a non-aqueous electrolyte secondary battery comprising a liquid, a composite in which the negative electrode active material is coated with a first material made of a graphite material, and a graphite material and silicon or a silicon compound with an amorphous carbon material. And the second material having a silicon ratio of 17% by mass or more and 30% by mass or less in the composite, and the ratio of the second material in the negative electrode active material is 5% by mass or more and 13% by mass or less. The cyclic carbonate derivative having a fluorine atom is added to the non-aqueous electrolyte.

本発明における非水電解質二次電池においては、上記のように負極活物質に、黒鉛材料からなる第1材料と、黒鉛材料とケイ素又はケイ素化合物とが非晶質炭素材料によって被覆された複合体からなる第2材料とを用いるようにしたため、黒鉛材料とケイ素又はケイ素化合物とが非晶質炭素材料によって被覆された複合体を単独で用いた場合よりも、負極活物質の充填密度が向上されて、十分な電池容量が得られると共に、初期の充放電効率も向上する。   In the nonaqueous electrolyte secondary battery according to the present invention, as described above, a composite in which the negative electrode active material is coated with the first material made of a graphite material and the graphite material and silicon or a silicon compound with an amorphous carbon material. Therefore, the packing density of the negative electrode active material is improved as compared with the case where a composite in which a graphite material and silicon or a silicon compound are coated with an amorphous carbon material is used alone. Thus, a sufficient battery capacity can be obtained, and the initial charge / discharge efficiency can be improved.

また、本発明における非水電解質二次電池においては、上記のように非水電解液に、フッ素原子を有する環式炭酸エステル誘導体を添加させたため、このフッ素原子を有する環式炭酸エステル誘導体によって充放電時に前記の負極活物質の表面に安定な被膜が形成されるようになり、非水電解液が充放電時に前記の負極活物質と反応して分解するのが抑制され、非水電解質二次電池におけるサイクル特性が向上する。   Further, in the non-aqueous electrolyte secondary battery according to the present invention, the cyclic carbonate derivative having a fluorine atom is added to the non-aqueous electrolyte as described above. A stable film is formed on the surface of the negative electrode active material during discharge, and the nonaqueous electrolyte is suppressed from reacting and decomposing with the negative electrode active material during charge and discharge, and the nonaqueous electrolyte secondary Cycle characteristics in the battery are improved.

また、本発明における非水電解質二次電池においては、上記の負極活物質における第2材料の複合体として、複合体中におけるケイ素の割合が17質量%以上になるようにしたため、非水電解質二次電池における容量がさらに向上され、また複合体中におけるケイ素の割合が30質量%以下になるようにしたため、充放電時における複合体の体積変化が少なくなって、非水電解質二次電池の充放電サイクル特性が低下するのがさらに防止されるようになる。   In the non-aqueous electrolyte secondary battery according to the present invention, since the proportion of silicon in the composite is 17% by mass or more as a composite of the second material in the negative electrode active material, the non-aqueous electrolyte secondary battery Since the capacity of the secondary battery is further improved and the ratio of silicon in the composite is 30% by mass or less, the volume change of the composite during charging / discharging is reduced, and the charge of the nonaqueous electrolyte secondary battery is reduced. The deterioration of the discharge cycle characteristics is further prevented.

また、本発明における非水電解質二次電池においては、上記の負極活物質中において、黒鉛材料とケイ素又はケイ素化合物とが非晶質炭素材料によって被覆された複合体からなる第2材料の割合を5質量%以上にしたため、非水電解質二次電池における容量がさらに向上され、またこの第2材料の割合を13質量%以下にしたため、充放電サイクル時に、この複合体からなる第2材料の表面で、フッ素原子を有する環式炭酸エステル誘導体を添加させた非水電解液が分解するのが抑制され、非水電解質二次電池の充放電サイクル特性が低下するのがさらに防止されるようになる。なお、この複合体からなる第2材料の表面において、フッ素原子を有する環式炭酸エステル誘導体を添加させた非水電解液が分解するのをより適切に抑制するためには、負極活物質中における第2材料の割合を10質量%以下にすることが好ましい。   In the nonaqueous electrolyte secondary battery according to the present invention, the ratio of the second material made of a composite in which the graphite material and silicon or a silicon compound are coated with an amorphous carbon material in the negative electrode active material described above is set. Since the content is 5% by mass or more, the capacity of the non-aqueous electrolyte secondary battery is further improved, and since the ratio of the second material is 13% by mass or less, the surface of the second material made of this composite during the charge / discharge cycle Therefore, the decomposition of the nonaqueous electrolyte solution to which the cyclic carbonate derivative having a fluorine atom is added is suppressed, and the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery are further prevented from being deteriorated. . In order to more appropriately suppress the decomposition of the nonaqueous electrolytic solution to which the cyclic carbonate derivative having a fluorine atom is added on the surface of the second material made of this composite, The ratio of the second material is preferably 10% by mass or less.

この結果、本発明においては、高容量で、充放電サイクル特性にも優れた非水電解質二次電池が得られるようになる。   As a result, in the present invention, a nonaqueous electrolyte secondary battery having a high capacity and excellent charge / discharge cycle characteristics can be obtained.

本発明の実施例及び比較例において作製した扁平電極体の部分断面説明図及び概略斜視図である。It is the partial cross section explanatory drawing and schematic perspective view of the flat electrode body produced in the Example and comparative example of this invention. 上記の実施例及び比較例において作製した非水電解質二次電池の概略平面図である。It is a schematic plan view of the nonaqueous electrolyte secondary battery produced in said Example and comparative example.

次に、本発明に係る非水電解質二次電池の実施形態について具体的に説明する。なお、本発明における非水電解質二次電池は、下記の実施形態に示したものに限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施できるものである。   Next, an embodiment of the nonaqueous electrolyte secondary battery according to the present invention will be specifically described. In addition, the nonaqueous electrolyte secondary battery in this invention is not limited to what was shown to the following embodiment, In the range which does not change the summary, it can implement suitably.

この発明の非水電解質二次電池においては、上記のように負極活物質に、黒鉛材料からなる第1材料と、黒鉛材料とケイ素又はケイ素化合物とが非晶質炭素材料によって被覆された複合体からなる第2材料とを用いるようにしている。   In the non-aqueous electrolyte secondary battery of the present invention, as described above, a composite in which the negative electrode active material is coated with the first material made of a graphite material and the graphite material and silicon or a silicon compound with an amorphous carbon material. The second material made of is used.

ここで、上記の第1材料における黒鉛材料としては、充放電特性等に優れた人造黒鉛や天然黒鉛を用いることが好ましく、一般に、X線回折法により測定した格子面間隔d002
が0.337nm以下、c軸方向の結晶子の大きさLcが30nm以上の黒鉛を用いることが好ましい。また、この黒鉛材料としては、質量積分50%における平均粒径(メジア
ン径D50)が10〜25μmの範囲のものを用いることが好ましい。
Here, as the graphite material in the first material, it is preferable to use artificial graphite or natural graphite having excellent charge / discharge characteristics and the like. Generally, the lattice spacing d002 measured by the X-ray diffraction method is used.
Is preferably 0.337 nm or less, and graphite having a c-axis direction crystallite size Lc of 30 nm or more. Moreover, as this graphite material, it is preferable to use a material having an average particle diameter (median diameter D50) in a range of 10 to 25 μm at a mass integral of 50%.

また、上記の第1材料における黒鉛材料としては、人造黒鉛や天然黒鉛の表面をさらに炭素質材料で被覆した炭素被覆黒鉛を用いることも可能である。ここで、人造黒鉛や天然黒鉛の表面を被覆する炭素質材料の前駆体としては、ピッチ系材料や、タール系材料や、ビニル系樹脂,セルロース系樹脂,フェノール系樹脂等の樹脂系材料を用いることができる。   Further, as the graphite material in the first material, it is also possible to use carbon-coated graphite in which the surface of artificial graphite or natural graphite is further coated with a carbonaceous material. Here, as a precursor of the carbonaceous material covering the surface of artificial graphite or natural graphite, a pitch material, a tar material, a resin material such as a vinyl resin, a cellulose resin, or a phenol resin is used. be able to.

また、黒鉛材料とケイ素又はケイ素化合物とが非晶質炭素材料によって被覆された複合体からなる上記の第2材料において、そのケイ素としては、単結晶ケイ素、多結晶ケイ素、非晶質ケイ素の何れを用いることも可能であるが、結晶子の大きさが60nm以下の多結晶ケイ素や非晶質ケイ素を用いることが好ましい。これは、結晶子の大きさが60nm以下の多結晶ケイ素や非晶質ケイ素においては、結晶子の方位が無秩序であるため、充放電時に1つの粒子の結晶子の界面で割れが生じた場合においても、割れが伝播しにくく、上記の複合体の構造が破壊されるのが抑制され、充放電サイクル特性が低下するのが抑制されるためである。   Further, in the second material comprising a composite in which a graphite material and silicon or a silicon compound are coated with an amorphous carbon material, the silicon may be any of single crystal silicon, polycrystalline silicon, and amorphous silicon. However, it is preferable to use polycrystalline silicon or amorphous silicon having a crystallite size of 60 nm or less. This is because in the case of polycrystalline silicon or amorphous silicon having a crystallite size of 60 nm or less, the orientation of the crystallite is disordered, so that cracks occur at the crystallite interface of one particle during charge and discharge. In this case, cracks are difficult to propagate, the structure of the composite is prevented from being destroyed, and the charge / discharge cycle characteristics are prevented from being deteriorated.

また、上記のケイ素化合物としては、ニッケル,銅,コバルト,クロム,鉄,銀,チタン,モリブデン,タングステン等の金属元素とケイ素とが非晶質化したケイ素合金や、酸化ケイ素などを用いることができる。   In addition, as the silicon compound, a silicon alloy in which a metal element such as nickel, copper, cobalt, chromium, iron, silver, titanium, molybdenum, or tungsten and silicon are made amorphous, or silicon oxide is used. it can.

また、上記のケイ素やケイ素化合物の粒径が大きくなりすぎると、充放電時における上記の複合体の膨張・収縮が大きくなって、複合体の構造を維持することが困難になり、非水電解質二次電池の充放電サイクル特性が低下するため、上記のケイ素やケイ素化合物としては、質量積分50%における平均粒径(メジアン径D50)が0.1〜10μmの範囲
のものを用いることが好ましく、より好ましくは0.1〜3μmの範囲のものを用いるようにする。なお、上記のような粒径のケイ素やケイ素化合物を得るにあたっては、ケイ素やケイ素化合物をジェットミルやボールミル等の乾式粉砕法や、ビーズミルやボールミル等の湿式粉砕法により粉砕させて得ることができる。
In addition, if the particle size of the silicon or silicon compound is too large, the expansion / contraction of the composite during charge / discharge increases, making it difficult to maintain the structure of the composite. Since the charge / discharge cycle characteristics of the secondary battery are degraded, it is preferable to use a silicon or silicon compound having an average particle diameter (median diameter D50) in the range of 0.1 to 10 μm at a mass integral of 50%. More preferably, a material in the range of 0.1 to 3 μm is used. In addition, when obtaining silicon or silicon compound having the above particle diameter, silicon or silicon compound can be obtained by pulverizing by dry pulverization method such as jet mill or ball mill, or wet pulverization method such as bead mill or ball mill. .

また、上記の複合体における黒鉛材料としては、充放電特性等に優れたものを用いることが好ましく、人造黒鉛や天然黒鉛やメソフェーズ小球体の黒鉛化物などを用いることができ、X線回折法により測定した格子面間隔d002が0.337nm以下、c軸方向の結
晶子の大きさLcが30nm以上の黒鉛を用いることが好ましい。
Further, as the graphite material in the composite, it is preferable to use a material excellent in charge / discharge characteristics, etc., and artificial graphite, natural graphite, graphitized mesophase spheroids, etc. can be used. It is preferable to use graphite having a measured lattice spacing d002 of 0.337 nm or less and a crystallite size Lc in the c-axis direction of 30 nm or more.

ここで、上記の複合体における黒鉛材料の粒径が小さすぎると、初回の充放電時に非水電解液と副反応が生じ、初期効率が低下して非水電解質二次電池の容量が低下する一方、黒鉛材料の粒径が大きくなりすぎると、充放電時における上記のケイ素やケイ素化合物の膨張・収縮を十分に緩和することができなくなって、非水電解質二次電池の充放電サイクル特性が低下する。このため、上記の複合体における黒鉛材料としては、質量積分50%
における平均粒径(メジアン径D50)が1〜25μmの範囲のものを用いることが好ましく、より好ましくは5〜20μmの範囲のものを用いるようにする。
Here, if the particle size of the graphite material in the composite is too small, a side reaction occurs with the non-aqueous electrolyte during the first charge / discharge, the initial efficiency is reduced, and the capacity of the non-aqueous electrolyte secondary battery is reduced. On the other hand, if the particle size of the graphite material becomes too large, the expansion / contraction of the silicon or silicon compound during charge / discharge cannot be sufficiently relaxed, and the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery are reduced. descend. For this reason, as a graphite material in the composite, the mass integral is 50%.
It is preferable to use those having an average particle diameter (median diameter D50) in the range of 1 to 25 μm, more preferably 5 to 20 μm.

また、上記の複合体における非晶質炭素材料としては、前駆体として、ピッチ系材料や、タール系材料や、ビニル系樹脂,セルロース系樹脂,フェノール系樹脂等の樹脂系材料を用い、これを窒素,アルゴン,ヘリウム等の不活性ガス雰囲気中において、700〜1300℃の温度で炭素化させたものを用いることができる。   In addition, as the amorphous carbon material in the above composite, as a precursor, a pitch material, a tar material, a resin material such as a vinyl resin, a cellulose resin, or a phenol resin is used. What was carbonized at the temperature of 700-1300 degreeC in inert gas atmosphere, such as nitrogen, argon, helium, can be used.

また、上記の複合体としては、黒鉛材料の表面にケイ素又はケイ素化合物を付着させ、これを非晶質炭素材料によって被覆させたものを用いることができ、さらにこの複合体の表面を炭素質材料で被覆させたものを用いることもできる。   In addition, as the above-mentioned composite, it is possible to use a composite obtained by attaching silicon or a silicon compound to the surface of a graphite material and coating the surface with an amorphous carbon material. Those coated with can also be used.

ここで、複合体の表面を炭素質材料で被覆させるにあたっては、炭素質材料の前駆体として、前記のピッチ系材料や、タール系材料や、ビニル系樹脂,セルロース系樹脂,フェノール系樹脂等の樹脂系材料を用い、これを複合体の表面に付与し、上記のように窒素,アルゴン,ヘリウム等の不活性ガス雰囲気中において、700〜1300℃の温度で炭素化させて、複合体の表面を炭素質材料で被覆させることができる。   Here, when the surface of the composite is coated with a carbonaceous material, as a precursor of the carbonaceous material, the pitch-based material, tar-based material, vinyl-based resin, cellulose-based resin, phenol-based resin, etc. Using a resin-based material, this is applied to the surface of the composite, and carbonized at a temperature of 700 to 1300 ° C. in an inert gas atmosphere such as nitrogen, argon, helium, etc. as described above. Can be coated with a carbonaceous material.

そして、上記のような負極活物質を用いて負極を作製するにあたっては、上記の負極活物質と導電剤とバインダー等を含む負極合剤を負極集電体の表面に塗布させるようにすることができる。   In preparing a negative electrode using the negative electrode active material as described above, a negative electrode mixture containing the negative electrode active material, a conductive agent, and a binder may be applied to the surface of the negative electrode current collector. it can.

ここで、上記の負極集電体の材料は、耐還元性に優れた導電性材料であればよく、例えば、銅、ニッケル及びこれらを含む合金等を用いることができる。   Here, the material of the negative electrode current collector may be a conductive material excellent in reduction resistance. For example, copper, nickel, an alloy containing these, and the like can be used.

また、上記の導電剤としては、例えば、アセチレンブラック、黒鉛、カーボンブラック等を用いることができる。また、上記のバインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム等を用いることができる。   Moreover, as said electrically conductive agent, acetylene black, graphite, carbon black etc. can be used, for example. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, and fluororubber.

また、この発明の非水電解質二次電池において、その正極に用いる正極活物質としては、リチウムイオンを吸蔵・放出することができ、その電位が貴な材料であれば特に限定されず、一般に使用されている公知の正極活物質を用いることができる。例えば、LiCoO2等のリチウム・コバルト複合酸化物、LiNiO2等のリチウム・ニッケル複合酸化物、LiMn24,LiMnO2等のリチウム・マンガン複合酸化物、LiNi1-xCox2(0<x<1)等のリチウム・ニッケル・コバルト複合酸化物、LiMn1-xCox2
0<x<1)等のリチウム・マンガン・コバルト複合酸化物、LiNixCoyMnz2(x+y+z=1)等のリチウム・ニッケル・コバルト・マンガン複合酸化物、LiNix
CoyAlz2(x+y+z=1)等のリチウム・ニッケル・コバルト・アルミニウム複
合酸化物等のリチウム含有遷移金属酸化物や、MnO2等のマンガン酸化物、V25等の
バナジウム酸化物等の金属酸化物や、その他の酸化物や硫化物を用いることができる。
In the nonaqueous electrolyte secondary battery of the present invention, the positive electrode active material used for the positive electrode is not particularly limited as long as it is a material that can occlude and release lithium ions and has a noble potential, and is generally used. A known positive electrode active material can be used. For example, lithium cobalt complex oxides such as LiCoO 2, lithium-nickel composite oxides such as LiNiO 2, LiMn 2 O 4, LiMnO lithium-manganese composite oxides such as 2, LiNi 1-x Co x O 2 (0 <X <1) and other lithium / nickel / cobalt composite oxides, LiMn 1-x Co x O 2 (
Lithium / manganese / cobalt composite oxide such as 0 <x <1), LiNi x Co y Mn z O 2 (x + y + z = 1) and other lithium / nickel / cobalt / manganese composite oxide, LiNi x
Li-containing transition metal oxides such as lithium / nickel / cobalt / aluminum composite oxides such as Co y Al z O 2 (x + y + z = 1), manganese oxides such as MnO 2 , vanadium oxides such as V 2 O 5 Such metal oxides, other oxides and sulfides can be used.

さらには、正極活物質として、少なくともニッケルを含むリチウム・ニッケル複合酸化物を含むことが好ましい。リチウム・ニッケル複合酸化物を含む正極活物質を用いた場合、充放電サイクルに伴って正極活物質表面上にLiCOが生成する。そして生成したLiCOが電解液中に存在する微量なHOと反応しCOが発生する。そして発生したCOが、充放電サイクルに伴って第2材料中の表面上に形成される有機化合物被膜に良好に作用し、サイクル特性が更に向上する。 Furthermore, it is preferable that the positive electrode active material includes a lithium / nickel composite oxide containing at least nickel. When a positive electrode active material containing a lithium / nickel composite oxide is used, Li 2 CO 3 is generated on the surface of the positive electrode active material with a charge / discharge cycle. The produced Li 2 CO 3 reacts with a trace amount of H 2 O present in the electrolytic solution to generate CO 2 . The generated CO 2 works well on the organic compound film formed on the surface of the second material in accordance with the charge / discharge cycle, and the cycle characteristics are further improved.

そして、上記のような正極活物質を用いて正極を作製するにあたっては、例えば、上記の正極活物質と導電剤とバインダー等を含む正極合剤を正極集電体の表面に塗布させるようにすることができる。   And when producing a positive electrode using the above positive electrode active materials, for example, a positive electrode mixture containing the above positive electrode active material, a conductive agent and a binder is applied to the surface of the positive electrode current collector. be able to.

ここで、上記の正極集電体の材料は、耐酸化性に優れた導電性材料であればよく、例えば、アルミニウム、ステンレス、チタン等を用いることができる。   Here, the material of the positive electrode current collector may be a conductive material excellent in oxidation resistance, and for example, aluminum, stainless steel, titanium, or the like can be used.

また、上記の導電剤としては、例えば、アセチレンブラック、黒鉛、カーボンブラック等を用いることができる。また、上記のバインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム等を用いることができる。   Moreover, as said electrically conductive agent, acetylene black, graphite, carbon black etc. can be used, for example. Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, and fluororubber.

また、この発明の非水電解質二次電池における非水電解液としても、一般に使用されている非水系溶媒に溶質を溶解させたものを用いることかできる。   Further, as the non-aqueous electrolyte in the non-aqueous electrolyte secondary battery of the present invention, a solution obtained by dissolving a solute in a generally used non-aqueous solvent can be used.

また、上記の非水系溶媒についても特に限定されず、一般に使用されているものを用いることができ、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネートと、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状カーボネートとの混合溶媒や、環状カーボネートと1,2−ジメトキシエタン、1,2−ジエトキシエタン等のエーテル系溶媒との混合溶媒を使用することができる。   Further, the above non-aqueous solvent is not particularly limited, and those commonly used can be used, for example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl A mixed solvent of a chain carbonate such as carbonate or a mixed solvent of a cyclic carbonate and an ether solvent such as 1,2-dimethoxyethane or 1,2-diethoxyethane can be used.

また、上記の溶質についても特に限定されず、一般に使用されているものを用いることができ、例えば、LiPF6,LiBF4,LiCF3SO3,LiN(CF3SO22,L
iN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,LiAsF6,LiClO4,Li210Cl10,Li212Cl12や、これらの混合物等を用いることができる。
Further, the solute is not particularly limited, and those commonly used can be used. For example, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , L
iN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , a mixture thereof, or the like can be used.

そして、上記の非水電解液に添加させるフッ素原子を有する環式炭酸エステル誘導体としては、例えば、4−フルオロ−1,3−ジオキソラン−2−オン、4,4−ジフルオロ−1,3−ジオキソラン−2−オン、4,5−ジフルオロ−1,3−ジオキソラン−2−オン、4−(フルオロメチル)−1,3−ジオキソラン−2−オン、4−(トリフルオロメチル)−1,3−ジオキソラン−2−オンを用いることができ、好ましくは、4−フルオロ−1,3−ジオキソラン−2−オンを用いるようにする。   Examples of the cyclic carbonate derivative having a fluorine atom to be added to the non-aqueous electrolyte include 4-fluoro-1,3-dioxolan-2-one, 4,4-difluoro-1,3-dioxolane. -2-one, 4,5-difluoro-1,3-dioxolan-2-one, 4- (fluoromethyl) -1,3-dioxolan-2-one, 4- (trifluoromethyl) -1,3- Dioxolan-2-one can be used, and preferably 4-fluoro-1,3-dioxolan-2-one is used.

そして、このようなフッ素原子を有する環式炭酸エステル誘導体を非水電解液に添加させるにあたり、非水電解液に対する添加量が0.1質量%未満であると、非水電解質二次電池のサイクル特性を十分に向上させる効果が得られない一方、その添加量が30質量%以上になると、高温下において充電状態で保存させた場合に、前記の負極活物質と反応して分解し、電池が膨化しやすくなる。このため、このようなフッ素原子を有する環式炭酸エステル誘導体を、非水電解液に対して0.1質量%以上30質量%未満の範囲で添加させることが好ましい。   When the cyclic carbonate derivative having such a fluorine atom is added to the non-aqueous electrolyte, if the amount added to the non-aqueous electrolyte is less than 0.1% by mass, the cycle of the non-aqueous electrolyte secondary battery While the effect of sufficiently improving the characteristics cannot be obtained, when the addition amount is 30% by mass or more, when stored in a charged state at a high temperature, it reacts with the negative electrode active material and decomposes, so that the battery It becomes easy to swell. For this reason, it is preferable to add such a cyclic carbonate derivative having a fluorine atom in a range of 0.1% by mass or more and less than 30% by mass with respect to the nonaqueous electrolytic solution.

また、上記の非水電解液には、上記のフッ素原子を有する環式炭酸エステル誘導体と共にビニレンカーボネートを添加させることが好ましい。   Moreover, it is preferable to add vinylene carbonate to the non-aqueous electrolyte together with the cyclic carbonate derivative having the fluorine atom.

このように、非水電解液にフッ素原子を有する環式炭酸エステル誘導体と共にビニレンカーボネートを添加させると、このビニレンカーボネートが分解して、上記の負極活物質における複合体からなる第2材料の表面に安定な有機系被膜が形成され、これによりフッ素原子を有する環式炭酸エステル誘導体が過剰に分解するのが抑制され、非水電解質二次電池の充放電サイクル特性がさらに向上されるようになる。   As described above, when vinylene carbonate is added together with the cyclic carbonate derivative having a fluorine atom to the non-aqueous electrolyte, the vinylene carbonate is decomposed, and the surface of the second material composed of the composite in the negative electrode active material is formed. A stable organic coating is formed, thereby suppressing excessive decomposition of the cyclic carbonate derivative having a fluorine atom, and the charge / discharge cycle characteristics of the nonaqueous electrolyte secondary battery are further improved.

ここで、このように非水電解液にビニレンカーボネートを添加させるにあたり、その量が少ないと、上記のような効果が十分に得られなくなる一方、その量が多くなりすぎると、初期効率が低下して非水電解質二次電池の容量が低下する。このため、非水電解液に対して添加させるビニレンカーボネートの量を0.1質量%以上10質量%未満の範囲にすることが好ましい。   Here, when adding vinylene carbonate to the non-aqueous electrolyte as described above, if the amount is small, the above effects cannot be obtained sufficiently, while if the amount is too large, the initial efficiency is lowered. As a result, the capacity of the non-aqueous electrolyte secondary battery decreases. For this reason, it is preferable to make the quantity of vinylene carbonate added with respect to a non-aqueous electrolyte into the range of 0.1 mass% or more and less than 10 mass%.

次に、この発明に係る非水電解質二次電池について実施例を挙げて具体的に説明すると共に、この実施例に係る非水電解質二次電池においては、サイクル特性が向上することを、比較例を挙げて明らかにする。   Next, the non-aqueous electrolyte secondary battery according to the present invention will be specifically described with reference to examples, and in the non-aqueous electrolyte secondary battery according to this example, the cycle characteristics are improved. To clarify.

(実施例1)
実施例1においては、下記のようにして作製した正極と負極と非水電解液とを用いるようにした。
Example 1
In Example 1, a positive electrode, a negative electrode, and a non-aqueous electrolyte prepared as described below were used.

[正極の作製]
正極を作製するにあたっては、Li2CO3とCo34とを、LiとCoとのモル比が1:1になるようにして石川式らいかい乳鉢において混合した後、これを空気雰囲気中において850℃で20時間熱処理し、その後、これを粉砕させて、正極活物質のLiCoO2からなるリチウム・コバルト複合酸化物を得た。
[Production of positive electrode]
In producing the positive electrode, Li 2 CO 3 and Co 3 O 4 were mixed in an Ishikawa type mortar so that the molar ratio of Li and Co was 1: 1, and then mixed in an air atmosphere. And then heat-treated at 850 ° C. for 20 hours, and then pulverized to obtain a lithium-cobalt composite oxide made of LiCoO 2 as the positive electrode active material.

そして、この正極活物質と、導電剤の炭素と、バインダーのポリフッ化ビニリデンとの質量比が95:2.5:2.5になるようにし、これに分散媒のN−メチル−2−ピロリドンを加え、これらを混練して正極合剤スラリーを作製した。   The mass ratio of the positive electrode active material, the conductive agent carbon, and the polyvinylidene fluoride binder is 95: 2.5: 2.5, and the dispersion medium N-methyl-2-pyrrolidone is added thereto. Were added and kneaded to prepare a positive electrode mixture slurry.

次いで、この正極合剤スラリーをアルミニウム箔からなる正極集電体の両面に塗布し、これを乾燥させた後、これを圧延させて正極を作製し、この正極に正極集電タブを取り付けた。なお、このように作製した正極における正極合剤の充填密度は3.60g/cm3
であった。
Next, this positive electrode mixture slurry was applied to both surfaces of a positive electrode current collector made of aluminum foil, dried, and then rolled to prepare a positive electrode, and a positive electrode current collecting tab was attached to the positive electrode. The filling density of the positive electrode mixture in the positive electrode thus prepared was 3.60 g / cm 3.
Met.

[負極の作製]
負極を作製するにあたっては、単結晶ケイ素原料と溶媒のメチルナフタレンとを窒素ガス雰囲気中においてビーズミルに入れて湿式粉砕し、単結晶ケイ素の平均粒径(メジアン径D50)が0.2μmになった単結晶ケイ素含有スラリーを得た。なお、この単結晶ケイ素の結晶子サイズはその粒径に等しい。
[Production of negative electrode]
In producing the negative electrode, the single crystal silicon raw material and the solvent methylnaphthalene were placed in a bead mill in a nitrogen gas atmosphere and wet pulverized, and the average particle diameter (median diameter D50) of the single crystal silicon was 0.2 μm. A single crystal silicon-containing slurry was obtained. The crystallite size of this single crystal silicon is equal to its particle size.

そして、上記の単結晶ケイ素含有スラリーに黒鉛と炭素ピッチとを加えて混合し、この混合物を炭化させて分級した後、これに炭素ピッチを加えて被覆し、これをさらに炭化させて、黒鉛とケイ素とが非晶質炭素材料によって被覆された複合体からなる第2材料を得た。なお、この複合体からなる第2材料中におけるケイ素の含有量は20.9質量%であった。   Then, graphite and carbon pitch are added to and mixed with the above-mentioned single crystal silicon-containing slurry, and the mixture is carbonized and classified, and then carbon pitch is added to the resulting slurry to further carbonize the graphite and A second material composed of a composite in which silicon was coated with an amorphous carbon material was obtained. In addition, content of the silicon in the 2nd material which consists of this composite_body | complex was 20.9 mass%.

また、第1材料の黒鉛材料としては、X線回折法により測定した格子面間隔d002が0
.3355nm、c軸方向の結晶子の大きさLcが116.1nmの人造黒鉛を用いた。
Further, as the first graphite material, the lattice spacing d002 measured by the X-ray diffraction method is 0.
. Artificial graphite having a crystallite size Lc of 116.1 nm in the c-axis direction of 3355 nm was used.

そして、上記の人造黒鉛からなる第1材料と、上記の複合体からなる第2材料とを、質量比が88.8:11.2になるように混合して負極活物質を得た。   And the 1st material which consists of said artificial graphite, and the 2nd material which consists of said composite were mixed so that mass ratio might be 88.8: 11.2, and the negative electrode active material was obtained.

そして、増粘剤のカルボキシメチルセルロースを水に溶かした水溶液中に、上記の負極活物質と、バインダーのSBRとを、負極活物質とバインダーと増粘剤との質量比が97.5:1.5:1.0になるように加えて混練し、負極合剤スラリーを作製した。   And in the aqueous solution which melt | dissolved the carboxymethylcellulose of the thickener in water, said negative electrode active material and SBR of a binder are 97.5: 1. Mass ratio of a negative electrode active material, a binder, and a thickener. 5: 1.0 was added and kneaded to prepare a negative electrode mixture slurry.

次いで、この負極合剤スラリーを銅箔からなる負極集電体の両面に塗布し、これを乾燥させた後、圧延させて負極を作製し、この負極に負極集電タブを取り付けた。なお、このように作製した負極における負極合剤の充填密度は1.60g/cm3であった。 Next, the negative electrode mixture slurry was applied to both surfaces of a negative electrode current collector made of copper foil, dried, and then rolled to produce a negative electrode. A negative electrode current collecting tab was attached to the negative electrode. The filling density of the negative electrode mixture in the negative electrode thus prepared was 1.60 g / cm 3 .

[非水電解液の作製]
非水電解液を作製するにあたっては、エチレンカーボネートとエチルメチルカーボネートとを3:7の体積比で混合させた混合溶媒に、溶質としてヘキサフルオロリン酸リチウムLiPF6を1mol/lの濃度になるように溶解させた非水電解液に対して、フッ素
原子を有する環式炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オンを10.0質量%添加させた。
[Preparation of non-aqueous electrolyte]
In producing the non-aqueous electrolyte, lithium hexafluorophosphate LiPF 6 is used as a solute at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a volume ratio of 3: 7. 10.0 mass% of 4-fluoro-1,3-dioxolan-2-one, which is a cyclic carbonate derivative having a fluorine atom, was added to the nonaqueous electrolytic solution dissolved in the solution.

そして、非水電解質二次電池を作製するにあたっては、図1(A),(B)に示すように、上記の正極11と負極12とを、ポリプロピレン製の微多孔膜からなるセパレータ13を介して対向するようにして巻回し、これをプレスして扁平電極体10を作製し、上記の正極11と負極12とに設けた正極集電タブ11aと負極集電タブ12aとをこの扁平電極体10から突出させた。   And in producing a nonaqueous electrolyte secondary battery, as shown to FIG. 1 (A) and (B), said positive electrode 11 and the negative electrode 12 are passed through the separator 13 which consists of a microporous film made from a polypropylene. The flat electrode body 10 is manufactured by pressing it so as to face each other, and the positive electrode current collecting tab 11a and the negative electrode current collecting tab 12a provided on the positive electrode 11 and the negative electrode 12 are connected to the flat electrode body. 10 protruded.

次いで、図2に示すように、上記の扁平電極体10をアルミニウムラミネートフィルムで構成された電池容器20内に収容させると共に、この電池容器20内に上記の非水電解液を加え、上記の正極11に設けた正極集電タブ11aと負極12に設けた負極集電タブ12aとを外部に取り出すようにして、上記の電池容器20の開口部を封口させ、縦6.2cm,横3.5cm,厚み3.6mmになった非水電解質二次電池を作製した。   Next, as shown in FIG. 2, the flat electrode body 10 is housed in a battery container 20 made of an aluminum laminate film, and the non-aqueous electrolyte is added to the battery container 20. 11 and the negative electrode current collecting tab 12a provided on the negative electrode 12 are taken out to the outside, the opening of the battery container 20 is sealed, and the height is 6.2 cm and the width is 3.5 cm. A non-aqueous electrolyte secondary battery having a thickness of 3.6 mm was produced.

(実施例2)
実施例2においては、上記の実施例1における非水電解液の作製において、上記の非水電解液に対して、フッ素原子を有する環式炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オンを10.0質量%添加させると共に、ビニレンカーボネートを2.0質量%添加させ、それ以外は、上記の実施例1の場合と同様にして、実施例2の非水電解質二次電池を作製した。
(Example 2)
In Example 2, in the preparation of the non-aqueous electrolyte in Example 1 above, 4-fluoro-1,3-dioxolane, which is a cyclic carbonate derivative having a fluorine atom, is used with respect to the non-aqueous electrolyte. The non-aqueous electrolyte secondary of Example 2 was added in the same manner as in Example 1 except that 10.0% by mass of 2-one was added and 2.0% by mass of vinylene carbonate was added. A battery was produced.

(実施例3)
実施例3においては、上記の実施例2と同様に、上記の非水電解液に対して、フッ素原子を有する環式炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オンを10.0質量%添加させると共に、ビニレンカーボネートを2.0質量%添加させたものを用いるようにした。
(Example 3)
In Example 3, as in Example 2 above, 4-fluoro-1,3-dioxolan-2-one, which is a cyclic carbonate derivative having a fluorine atom, was added to the non-aqueous electrolyte. While adding 10.0 mass%, what added 2.0 mass% vinylene carbonate was used.

また、この実施例3においては、上記の実施例1における負極の作製において、上記の複合体からなる第2材料中におけるケイ素の含有量を22.8質量%にすると共に、前記の人造黒鉛からなる第1材料と、上記の複合体からなる第2材料とを、質量比が92.4:7.6になるように混合させた負極活物質を用いるようにした。   Further, in this Example 3, in the production of the negative electrode in Example 1 described above, the silicon content in the second material made of the above composite was made 22.8% by mass, and the artificial graphite was used. A negative electrode active material obtained by mixing the first material and the second material made of the above composite so that the mass ratio was 92.4: 7.6 was used.

そして、これら以外は、上記の実施例1の場合と同様にして、実施例3の非水電解質二次電池を作製した。   Except for these, the nonaqueous electrolyte secondary battery of Example 3 was fabricated in the same manner as in Example 1 above.

(実施例4)
実施例4においては、上記の実施例2と同様に、上記の非水電解液に対して、フッ素原子を有する環式炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オンを10.0質量%添加させると共に、ビニレンカーボネートを2.0質量%添加させたものを用いるようにした。
Example 4
In Example 4, as in Example 2 above, 4-fluoro-1,3-dioxolan-2-one, which is a cyclic carbonate derivative having a fluorine atom, was added to the non-aqueous electrolyte. While adding 10.0 mass%, what added 2.0 mass% vinylene carbonate was used.

また、この実施例4においては、上記の実施例1における負極の作製において、黒鉛とケイ素とが非晶質炭素材料によって被覆された複合体からなる第2材料を得るにあたり、上記の単結晶ケイ素に代えて、高純度三塩化シランSiHCl3を原料として熱還元法に
より作製した多結晶ケイ素を用い、複合体からなる第2材料中におけるケイ素の含有量を18.6質量%にすると共に、前記の人造黒鉛からなる第1材料と、上記の複合体からなる第2材料とを、質量比が91.5:8.5になるように混合させた負極活物質を用いるようにした。
Further, in this Example 4, in the production of the negative electrode in Example 1 described above, in obtaining the second material composed of a composite in which graphite and silicon are coated with an amorphous carbon material, the single crystal silicon described above is used. Instead of using polycrystalline silicon produced by a thermal reduction method using high-purity silane trichloride SiHCl 3 as a raw material, the silicon content in the second material composed of the composite is 18.6% by mass, and A negative electrode active material in which a first material made of artificial graphite and a second material made of the above composite were mixed at a mass ratio of 91.5: 8.5 was used.

そして、これら以外は、上記の実施例1の場合と同様にして、実施例4の非水電解質二次電池を作製した。   Except for these, the nonaqueous electrolyte secondary battery of Example 4 was fabricated in the same manner as in Example 1 above.

(実施例5)
実施例5においては、上記の実施例2と同様に、上記の非水電解液に対して、フッ素原子を有する環式炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オンを10.0質量%添加させると共に、ビニレンカーボネートを2.0質量%添加させたものを用いるようにした。
(Example 5)
In Example 5, as in Example 2 above, 4-fluoro-1,3-dioxolan-2-one, which is a cyclic carbonate derivative having a fluorine atom, was added to the non-aqueous electrolyte. While adding 10.0 mass%, what added 2.0 mass% vinylene carbonate was used.

また、この実施例5においては、上記の実施例1における負極の作製において、上記の複合体からなる第2材料中におけるケイ素の含有量を22.0質量%にすると共に、前記の人造黒鉛からなる第1材料と、上記の複合体からなる第2材料とを、質量比が92.4:7.6になるように混合させた負極活物質を用いるようにした。   Further, in this Example 5, in the production of the negative electrode in Example 1 described above, the silicon content in the second material made of the above composite was set to 22.0% by mass, and the artificial graphite was used. A negative electrode active material obtained by mixing the first material and the second material made of the above composite so that the mass ratio was 92.4: 7.6 was used.

また、この実施例5においては、上記の実施例1における正極の作製において、LiOHと、ニッケルを含む複合水酸化物(Ni0.80Co0.15Al0.05(OH))を、モル比が1.05:1となるようにして石川式らいかい乳鉢にて混合した後、酸素雰囲気中にて720℃で20時間熱処理後に粉砕することにより得られたリチウム・ニッケル複合酸化物を用いるようにした。 Further, in this embodiment 5, in the preparation of the positive electrode in Example 1 above, and LiOH, composite hydroxide containing nickel (Ni 0.80 Co 0.15 Al 0.05 ( OH) 2) and, Lithium / nickel composite oxide obtained by mixing in an Ishikawa type mortar with a molar ratio of 1.05: 1 and then pulverizing after heat treatment at 720 ° C. for 20 hours in an oxygen atmosphere. I used it.

そして、これら以外は、上記の実施例1の場合と同様にして、実施例5の非水電解質二次電池を作製した。   A nonaqueous electrolyte secondary battery of Example 5 was made in the same manner as in Example 1 except for those described above.

(比較例1)
比較例1においては、上記の実施例2と同様に、非水電解液に対して、フッ素原子を有する環式炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オンを10.0質量%添加させると共に、ビニレンカーボネートを2.0質量%添加させたものを用いるようにした。
(Comparative Example 1)
In Comparative Example 1, as in Example 2 above, 4-fluoro-1,3-dioxolan-2-one, which is a cyclic carbonate derivative having a fluorine atom, was added to the nonaqueous electrolyte solution in the manner of 10. While adding 0% by mass, 2.0% by mass of vinylene carbonate was added.

また、この比較例1においては、上記の実施例1における負極の作製において、上記の複合体からなる第2材料中におけるケイ素の含有量を4.0質量%にすると共に、前記の人造黒鉛からなる第1材料と、上記の複合体からなる第2材料とを、質量比が45.0:55.0になるように混合させた負極活物質を用いるようにした。   Further, in Comparative Example 1, in the production of the negative electrode in Example 1 described above, the silicon content in the second material made of the composite was 4.0% by mass, and the artificial graphite was used. A negative electrode active material in which a first material and a second material made of the above composite were mixed so as to have a mass ratio of 45.0: 55.0 was used.

そして、これら以外は、上記の実施例1の場合と同様にして、比較例1の非水電解質二次電池を作製した。   Except for these, the nonaqueous electrolyte secondary battery of Comparative Example 1 was fabricated in the same manner as in Example 1 above.

(比較例2)
比較例2においては、上記の実施例2と同様に、非水電解液に対して、フッ素原子を有する環式炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オンを10.0質量%添加させると共に、ビニレンカーボネートを2.0質量%添加させたものを用いるようにした。
(Comparative Example 2)
In Comparative Example 2, as in Example 2 described above, 4-fluoro-1,3-dioxolan-2-one, which is a cyclic carbonate derivative having a fluorine atom, was added to the non-aqueous electrolyte solution in an amount of 10. While adding 0% by mass, 2.0% by mass of vinylene carbonate was added.

また、この比較例2においては、上記の実施例1における負極の作製において、上記の複合体からなる第2材料中におけるケイ素の含有量を15.8質量%にすると共に、前記の人造黒鉛からなる第1材料と、上記の複合体からなる第2材料とを、質量比が85.8:14.2になるように混合させた負極活物質を用いるようにした。   Further, in Comparative Example 2, in the production of the negative electrode in Example 1 described above, the silicon content in the second material made of the composite was set to 15.8% by mass, and the artificial graphite was used. A negative electrode active material obtained by mixing the first material and the second material composed of the above composite so that the mass ratio was 85.8: 14.2 was used.

そして、これら以外は、上記の実施例1の場合と同様にして、比較例2の非水電解質二次電池を作製した。   Except for these, a nonaqueous electrolyte secondary battery of Comparative Example 2 was produced in the same manner as in Example 1 above.

(比較例3)
比較例3においては、上記の実施例2と同様に、非水電解液に対して、フッ素原子を有する環式炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オンを10.0質量%添加させると共に、ビニレンカーボネートを2.0質量%添加させたものを用いるようにした。
(Comparative Example 3)
In Comparative Example 3, as in Example 2 described above, 4-fluoro-1,3-dioxolan-2-one, which is a cyclic carbonate derivative having a fluorine atom, was added to the nonaqueous electrolytic solution in an amount of 10. While adding 0% by mass, 2.0% by mass of vinylene carbonate was added.

また、この比較例3においては、上記の実施例1における負極の作製において、上記の複合体からなる第2材料中におけるケイ素の含有量を19.0質量%にすると共に、前記の人造黒鉛からなる第1材料と、上記の複合体からなる第2材料とを、質量比が85.5:14.5になるように混合させた負極活物質を用いるようにした。   Further, in Comparative Example 3, in the production of the negative electrode in Example 1 above, the silicon content in the second material made of the composite was set to 19.0% by mass, and the artificial graphite was used. A negative electrode active material in which a first material and a second material made of the above composite were mixed so that the mass ratio was 85.5: 14.5 was used.

そして、これら以外は、上記の実施例1の場合と同様にして、比較例3の非水電解質二次電池を作製した。   Except for these, a nonaqueous electrolyte secondary battery of Comparative Example 3 was produced in the same manner as in Example 1 above.

先ず、上記のようにして作製した実施例1,2及び比較例1の各非水電解質二次電池について、それぞれ室温条件の下で、800mAの定電流で電池電圧が4.2Vになるまで充電させ、さらに4.2Vの定電圧で電流値が40mAになるまで充電させた後、800mAの定電流で電池電圧が2.75Vに達するまで放電させて、それぞれ1サイクル目の放電容量Q1を求めた。   First, the nonaqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Example 1 manufactured as described above were charged under a room temperature condition until the battery voltage reached 4.2 V at a constant current of 800 mA. The battery is further charged with a constant voltage of 4.2 V until the current value reaches 40 mA, and then discharged with a constant current of 800 mA until the battery voltage reaches 2.75 V, and the discharge capacity Q1 of the first cycle is obtained for each. It was.

そして、この実施例1,2及び比較例1の各非水電解質二次電池に対して、上記の1サイクル目と同様にして、それぞれ200サイクルの充放電を繰り返して行い、それぞれ200サイクル目の放電容量Q200を求め、下記の式により200サイクル後の容量維持率
を求め、その結果を下記の表1に示した。なお、下記の表においては、フッ素原子を有する環式炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オンをFECと、ビニレンカーボネートをVCと略して記載した。
200サイクル後容量維持率(%)=Q200÷Q1×100
Then, each of the nonaqueous electrolyte secondary batteries of Examples 1 and 2 and Comparative Example 1 was repeatedly charged and discharged for 200 cycles in the same manner as in the first cycle, and each of the 200th cycle. The discharge capacity Q200 was determined, the capacity retention rate after 200 cycles was determined by the following formula, and the results are shown in Table 1 below. In the following table, 4-fluoro-1,3-dioxolan-2-one, which is a cyclic carbonate derivative having a fluorine atom, is abbreviated as FEC, and vinylene carbonate is abbreviated as VC.
Capacity maintenance rate after 200 cycles (%) = Q200 ÷ Q1 × 100

Figure 2010092830
Figure 2010092830

この結果、フッ素原子を有する環式炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オンを添加させた非水電解液を用いた場合において、負極活物質に、黒鉛材料からなる第1材料と、黒鉛材料とケイ素又はケイ素化合物とが非晶質炭素材料によって被覆された複合体からなる第2材料とを用い、この複合体中におけるケイ素の割合が17質量%以上30質量%以下で、負極活物質中における第2材料の割合が5質量%以上13質量%以下になった実施例1,2の各非水電解質二次電池は、上記の複合体中におけるケイ素の割合が17質量%未満の4.0質量%で、負極活物質中における第2材料の割合が13質量%を越える55.0質量%になった比較例1の非水電解質二次電池に比べて、充放電サイクル特性が大きく向上していた。   As a result, in the case of using a nonaqueous electrolytic solution to which 4-fluoro-1,3-dioxolan-2-one, which is a cyclic carbonate derivative having a fluorine atom, is used, the negative electrode active material is made of a graphite material. A first material and a second material made of a composite in which a graphite material and silicon or a silicon compound are coated with an amorphous carbon material are used, and the silicon content in the composite is 17% by mass to 30% by mass. In the following, each nonaqueous electrolyte secondary battery of Examples 1 and 2 in which the ratio of the second material in the negative electrode active material is 5% by mass or more and 13% by mass or less has a silicon ratio in the above composite. Compared to the non-aqueous electrolyte secondary battery of Comparative Example 1 in which the ratio of the second material in the negative electrode active material is less than 17% by mass of 4.0% by mass and 55.0% by mass exceeding 13% by mass. Large charge / discharge cycle characteristics It was improved.

また、上記の非水電解液に対して、フッ素原子を有する環式炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オンと共にビニレンカーボネートを添加させた実施例2の非水電解質二次電池は、非水電解液に対してビニレンカーボネートを添加させていない実施例1の非水電解質二次電池よりもさらに充放電サイクル特性が向上していた。   Further, the nonaqueous electrolyte of Example 2 in which vinylene carbonate was added together with 4-fluoro-1,3-dioxolan-2-one, which is a cyclic carbonate derivative having a fluorine atom, to the above nonaqueous electrolytic solution. The secondary battery had further improved charge / discharge cycle characteristics as compared with the nonaqueous electrolyte secondary battery of Example 1 in which vinylene carbonate was not added to the nonaqueous electrolyte.

次に、フッ素原子を有する環式炭酸エステル誘導体である4−フルオロ−1,3−ジオキソラン−2−オンを10.0質量%、ビニレンカーボネートを2.0質量%添加させた非水電解液を用いた実施例2〜5及び比較例2,3の各非水電解質二次電池について、前記のように室温条件の下で、800mAの定電流で電池電圧が4.2Vになるまで充電させ、さらに4.2Vの定電圧で電流値が40mAになるまで充電させた後、実施例2〜5及び比較例2,3の各非水電解質二次電池について800mAの定電流で電池電圧が2.75Vに達するまで放電させ、それぞれ1サイクル目の放電容量Q1を求めた。   Next, a nonaqueous electrolytic solution in which 10.0% by mass of 4-fluoro-1,3-dioxolan-2-one, which is a cyclic carbonate derivative having a fluorine atom, and 2.0% by mass of vinylene carbonate are added. For each of the nonaqueous electrolyte secondary batteries of Examples 2 to 5 and Comparative Examples 2 and 3 used, charging was performed at a constant current of 800 mA until the battery voltage reached 4.2 V under the room temperature conditions as described above. Further, after charging at a constant voltage of 4.2 V until the current value reaches 40 mA, each of the nonaqueous electrolyte secondary batteries of Examples 2 to 5 and Comparative Examples 2 and 3 has a battery voltage of 2. The battery was discharged until it reached 75 V, and the discharge capacity Q1 of the first cycle was determined for each.

そして、この実施例2〜5及び比較例2,3の各非水電解質二次電池に対して、上記の1サイクル目と同様にして、それぞれ300サイクルの充放電を繰り返して行い、それぞれ300サイクル目の放電容量Q300を求め、下記の式により300サイクル後の容量維
持率を求め、その結果を下記の表2に示した。
300サイクル後容量維持率(%)=Q300÷Q1×100
Then, each of the nonaqueous electrolyte secondary batteries of Examples 2 to 5 and Comparative Examples 2 and 3 was repeatedly charged and discharged for 300 cycles in the same manner as in the first cycle, and 300 cycles for each. The discharge capacity Q300 of the eye was determined, the capacity retention rate after 300 cycles was determined by the following formula, and the results are shown in Table 2 below.
Capacity maintenance rate after 300 cycles (%) = Q300 ÷ Q1 × 100

Figure 2010092830
Figure 2010092830

この結果、フッ素原子を有する環式炭酸エステル誘導体とビニレンカーボネートとを添加させた非水電解液を用いた場合において、負極活物質に、黒鉛材料からなる第1材料と、黒鉛材料とケイ素又はケイ素化合物とが非晶質炭素材料によって被覆された複合体からなる第2材料とを用い、この複合体中におけるケイ素の割合が17質量%以上30質量%以下で、負極活物質中における第2材料の割合が5質量%以上13質量%以下になった実施例2〜5の各非水電解質二次電池は、上記の複合体中におけるケイ素の割合が17質量%以下の15.8質量%であり、負極活物質中における第2材料の割合が13質量%を超える14.2質量%である比較例2や,上記の複合体中におけるケイ素の割合が17質量%以上30質量%以下であるが、負極活物質中における第2材料の割合が13質量%を超える14.5質量%になった比較例3の非水電解質二次電池に比べて、充放電サイクル特性が大きく向上していた。   As a result, in the case of using a non-aqueous electrolyte solution in which a cyclic carbonate derivative having a fluorine atom and vinylene carbonate are used, the negative electrode active material includes a first material made of a graphite material, a graphite material and silicon or silicon. And a second material made of a composite coated with an amorphous carbon material, and the silicon content in the composite is 17% by mass to 30% by mass, and the second material in the negative electrode active material In each of the nonaqueous electrolyte secondary batteries of Examples 2 to 5 having a ratio of 5 mass% to 13 mass%, the ratio of silicon in the above composite was 15.8 mass% with a ratio of 17 mass% or less. Yes, Comparative Example 2 in which the ratio of the second material in the negative electrode active material is 14.2% by mass exceeding 13% by mass, and the ratio of silicon in the composite is 17% by mass to 30% by mass But Compared to the non-aqueous electrolyte secondary battery of Comparative Example 3 in which the ratio of the second material became 14.5 wt% of more than 13 wt% in the anode active material, the charge-discharge cycle characteristics were significantly improved.

また、実施例2〜4の非水電解質二次電池を比較した場合、負極活物質中における第2材料の割合が10質量%以下になった実施例3,4の非水電解質二次電池は、負極活物質中における第2材料の割合が10質量%越えた実施例2の非水電解質二次電池よりもさらに充放電サイクル特性が向上しており、また上記の複合体におけるケイ素に結晶子サイズが60nm以下の多結晶ケイ素を用いた実施例4の非水電解質二次電池は、複合体におけるケイ素に結晶子サイズが60nmを越える単結晶ケイ素を用いた実施例3の非水電解質二次電池によりもさらに充放電サイクル特性が向上していた。   Moreover, when comparing the nonaqueous electrolyte secondary batteries of Examples 2 to 4, the nonaqueous electrolyte secondary batteries of Examples 3 and 4 in which the ratio of the second material in the negative electrode active material was 10% by mass or less were In addition, the charge / discharge cycle characteristics are further improved as compared with the nonaqueous electrolyte secondary battery of Example 2 in which the ratio of the second material in the negative electrode active material exceeds 10% by mass. The nonaqueous electrolyte secondary battery of Example 4 using polycrystalline silicon having a size of 60 nm or less is the nonaqueous electrolyte secondary battery of Example 3 using single crystal silicon having a crystallite size exceeding 60 nm as silicon in the composite. The charge / discharge cycle characteristics were further improved by the battery.

また、実施例3、5の非水電解質二次電池を比較した場合、正極活物質にリチウム・ニッケル複合酸化物を用いた実施例5の非水電解質二次電池は、正極活物質にリチウム・コバルト複合酸化物を用いた実施例3の非水電解質二次電池よりも更に充放電サイクル特性が向上していた。   Further, when comparing the non-aqueous electrolyte secondary batteries of Examples 3 and 5, the non-aqueous electrolyte secondary battery of Example 5 using a lithium-nickel composite oxide as the positive electrode active material was obtained by using lithium The charge / discharge cycle characteristics were further improved as compared with the nonaqueous electrolyte secondary battery of Example 3 using a cobalt composite oxide.

10 扁平電極体
11 正極
11a 正極集電タブ
12 負極
12a 負極集電タブ
13 セパレータ
20 電池容器
DESCRIPTION OF SYMBOLS 10 Flat electrode body 11 Positive electrode 11a Positive electrode current collection tab 12 Negative electrode 12a Negative electrode current collection tab 13 Separator 20 Battery container

Claims (7)

リチウムイオンを吸蔵・放出可能な正極活物質を含む正極と、リチウムイオンを吸蔵・放出可能な負極活物質を含む負極と、非水電解液とを備えた非水電解質二次電池において、上記の負極活物質に、黒鉛材料からなる第1材料と、黒鉛材料とケイ素又はケイ素化合物とが非晶質炭素材料によって被覆された複合体であって複合体中におけるケイ素の割合が17質量%以上30質量%以下である第2材料とを用い、この負極活物質中における第2材料の割合を5質量%以上13質量%以下にすると共に、上記の非水電解液に、フッ素原子を有する環式炭酸エステル誘導体を添加させたことを特徴とする非水電解質二次電池。   In a non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material capable of occluding and releasing lithium ions, a negative electrode including a negative electrode active material capable of occluding and releasing lithium ions, and a non-aqueous electrolyte, A composite in which a negative electrode active material is coated with a first material made of a graphite material and a graphite material and silicon or a silicon compound with an amorphous carbon material, and the proportion of silicon in the composite is 17% by mass or more and 30% by mass. A second material that is less than or equal to mass%, the ratio of the second material in the negative electrode active material is set to 5 mass% or more and 13 mass% or less, and the non-aqueous electrolyte includes a cyclic atom having a fluorine atom. A non-aqueous electrolyte secondary battery comprising a carbonate ester derivative added thereto. 請求項1に記載の非水電解質二次電池において、前記の非水電解液に、前記のフッ素原子を有する環式炭酸エステル誘導体と共にビニレンカーボネートを添加させたことを特徴とする非水電解質二次電池。   2. The nonaqueous electrolyte secondary battery according to claim 1, wherein vinylene carbonate is added to the nonaqueous electrolyte solution together with the cyclic carbonate derivative having a fluorine atom. battery. 請求項1又は請求項2に記載の非水電解質二次電池において、前記のフッ素原子を有する環式炭酸エステル誘導体として、4−フルオロ−1,3−ジオキソラン−2−オン、4,4−ジフルオロ−1,3−ジオキソラン−2−オン、4,5−ジフルオロ−1,3−ジオキソラン−2−オンから選択される少なくとも1種を添加させたことを特徴とする非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to claim 1 or 2, wherein the cyclic carbonate derivative having a fluorine atom is 4-fluoro-1,3-dioxolan-2-one, 4,4-difluoro. A non-aqueous electrolyte secondary battery comprising at least one selected from 1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one. 請求項1〜請求項3の何れか1項に記載の非水電解質二次電池において、前記の非水電解液に対して、前記のフッ素原子を有する環式炭酸エステル誘導体が0.1質量%以上30質量%未満の範囲で添加されていることを特徴とする非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the cyclic carbonate derivative having a fluorine atom is 0.1% by mass with respect to the nonaqueous electrolyte. A nonaqueous electrolyte secondary battery characterized by being added in a range of less than 30% by mass. 請求項1〜請求項4の何れか1項に記載の非水電解質二次電池において、前記の正極活物質が、少なくともニッケルを含むリチウム・ニッケル複合酸化物を含むことを特徴とする非水電解質二次電池。   5. The nonaqueous electrolyte secondary battery according to claim 1, wherein the positive electrode active material contains a lithium / nickel composite oxide containing at least nickel. Secondary battery. 請求項1〜請求項5の何れか1項に記載の非水電解質二次電池において、前記の複合体中におけるケイ素又はケイ素化合物の結晶子サイズが60nm以下であることを特徴とする非水電解質二次電池。   The nonaqueous electrolyte secondary battery according to any one of claims 1 to 5, wherein a crystallite size of silicon or a silicon compound in the composite is 60 nm or less. Secondary battery. 請求項1〜請求項6の何れか1項に記載の非水電解質二次電池において、前記の負極活物質中における第2材料の割合が、5質量%以上10質量%以下であることを特徴とする非水電解質二次電池。
The nonaqueous electrolyte secondary battery according to any one of claims 1 to 6, wherein a ratio of the second material in the negative electrode active material is 5% by mass or more and 10% by mass or less. A non-aqueous electrolyte secondary battery.
JP2009029322A 2008-09-11 2009-02-12 Nonaqueous electrolyte secondary battery Pending JP2010092830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009029322A JP2010092830A (en) 2008-09-11 2009-02-12 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008232766 2008-09-11
JP2009029322A JP2010092830A (en) 2008-09-11 2009-02-12 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2010092830A true JP2010092830A (en) 2010-04-22

Family

ID=42255344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009029322A Pending JP2010092830A (en) 2008-09-11 2009-02-12 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2010092830A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012054240A (en) * 2011-10-13 2012-03-15 Hitachi Maxell Energy Ltd Lithium secondary battery
JP2012124118A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Lithium ion secondary battery and method of manufacturing the same
JP2012227154A (en) * 2010-09-14 2012-11-15 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
WO2013094668A1 (en) * 2011-12-22 2013-06-27 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US20140079961A1 (en) * 2012-09-20 2014-03-20 Ningde Amperex Technology Limited Method of replenishing lithium for the negative plate of a li-ion battery
JP2014127317A (en) * 2012-12-26 2014-07-07 Hitachi Ltd Method of manufacturing nonaqueous electrolyte secondary battery
KR20150114902A (en) 2014-04-02 2015-10-13 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode for nonaqueous electrolytic secondary battery and nonaqueous electrolytic secondary battery
JP2016001630A (en) * 2015-10-07 2016-01-07 日立化成株式会社 Lithium ion secondary battery and method of manufacturing the same
JP2016143462A (en) * 2015-01-30 2016-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
KR20160118261A (en) 2014-02-07 2016-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR20160118260A (en) 2014-02-07 2016-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP2016532253A (en) * 2013-10-07 2016-10-13 エルジー・ケム・リミテッド Secondary battery containing silicon compound
KR20170023832A (en) 2014-06-23 2017-03-06 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and method for producing negative electrode active material particles
WO2017125977A1 (en) 2016-01-21 2017-07-27 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material, and method for manufacturing nonaqueous electrolyte secondary battery
WO2017150311A1 (en) * 2016-02-29 2017-09-08 日本電気株式会社 Negative-electrode active material and lithium ion secondary battery using same
KR20180019569A (en) 2015-06-17 2018-02-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
KR20180066070A (en) 2015-10-08 2018-06-18 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method of manufacturing negative electrode material for non-aqueous electrolyte secondary battery, and method of manufacturing non-aqueous electrolyte secondary battery
WO2019026550A1 (en) 2017-08-03 2019-02-07 信越化学工業株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
WO2019039399A1 (en) * 2017-08-24 2019-02-28 日本電気株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery containing the same
WO2020149079A1 (en) 2019-01-15 2020-07-23 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery and method for producing same
US10833323B2 (en) 2016-02-24 2020-11-10 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode material for non-aqueous electrolyte secondary battery
CN114335456A (en) * 2021-12-06 2022-04-12 桂林电子科技大学 Fast-charging composite negative electrode material and preparation method and application thereof
CN116613390A (en) * 2023-07-21 2023-08-18 宁德新能源科技有限公司 Battery and electronic equipment
US11961997B2 (en) 2018-11-07 2024-04-16 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, aqueous negative electrode slurry composition, and method for producing negative electrode active material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2006332020A (en) * 2005-04-26 2006-12-07 Sony Corp Battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146292A (en) * 2002-10-28 2004-05-20 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery
JP2006332020A (en) * 2005-04-26 2006-12-07 Sony Corp Battery

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227154A (en) * 2010-09-14 2012-11-15 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2012124118A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Lithium ion secondary battery and method of manufacturing the same
JP2012054240A (en) * 2011-10-13 2012-03-15 Hitachi Maxell Energy Ltd Lithium secondary battery
WO2013094668A1 (en) * 2011-12-22 2013-06-27 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN104011924A (en) * 2011-12-22 2014-08-27 三洋电机株式会社 Nonaqueous electrolyte secondary battery
JPWO2013094668A1 (en) * 2011-12-22 2015-04-27 三洋電機株式会社 Nonaqueous electrolyte secondary battery
US20140079961A1 (en) * 2012-09-20 2014-03-20 Ningde Amperex Technology Limited Method of replenishing lithium for the negative plate of a li-ion battery
JP2014127317A (en) * 2012-12-26 2014-07-07 Hitachi Ltd Method of manufacturing nonaqueous electrolyte secondary battery
JP2016532253A (en) * 2013-10-07 2016-10-13 エルジー・ケム・リミテッド Secondary battery containing silicon compound
US10333142B2 (en) 2013-10-07 2019-06-25 Lg Chem, Ltd. Secondary battery including silicon-based compound
JP2018088419A (en) * 2013-10-07 2018-06-07 エルジー・ケム・リミテッド Secondary battery containing silicon compound
KR20160118260A (en) 2014-02-07 2016-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
KR20160118261A (en) 2014-02-07 2016-10-11 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US10388950B2 (en) 2014-02-07 2019-08-20 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US9728779B2 (en) 2014-04-02 2017-08-08 Shin-Etsu Chemical Co., Ltd. Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR20150114902A (en) 2014-04-02 2015-10-13 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode for nonaqueous electrolytic secondary battery and nonaqueous electrolytic secondary battery
US10629890B2 (en) 2014-06-23 2020-04-21 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode active material particles
KR20170023832A (en) 2014-06-23 2017-03-06 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and method for producing negative electrode active material particles
KR20220005639A (en) 2014-06-23 2022-01-13 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and method for producing negative electrode active material particles
JP2016143462A (en) * 2015-01-30 2016-08-08 日立化成株式会社 Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
KR20180019569A (en) 2015-06-17 2018-02-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
US10418627B2 (en) 2015-06-17 2019-09-17 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for non-aqueous electrolyte secondary battery
JP2016001630A (en) * 2015-10-07 2016-01-07 日立化成株式会社 Lithium ion secondary battery and method of manufacturing the same
US10707482B2 (en) 2015-10-08 2020-07-07 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method for producing negative electrode material for non-aqueous secondary battery, and method for producing non-aqueous electrolyte secondary battery
KR20180066070A (en) 2015-10-08 2018-06-18 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method of manufacturing negative electrode material for non-aqueous electrolyte secondary battery, and method of manufacturing non-aqueous electrolyte secondary battery
WO2017125977A1 (en) 2016-01-21 2017-07-27 信越化学工業株式会社 Negative electrode active material, mixed negative electrode active material, nonaqueous electrolyte secondary battery, method for producing negative electrode active material, and method for manufacturing nonaqueous electrolyte secondary battery
US10833323B2 (en) 2016-02-24 2020-11-10 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode material for non-aqueous electrolyte secondary battery
JPWO2017150311A1 (en) * 2016-02-29 2018-12-20 日本電気株式会社 Negative electrode active material and lithium ion secondary battery using the same
US10644347B2 (en) 2016-02-29 2020-05-05 Nec Corporation Negative electrode active material and lithium ion secondary battery using the same
WO2017150311A1 (en) * 2016-02-29 2017-09-08 日本電気株式会社 Negative-electrode active material and lithium ion secondary battery using same
KR20200037221A (en) 2017-08-03 2020-04-08 신에쓰 가가꾸 고교 가부시끼가이샤 Non-aqueous electrolyte secondary battery negative electrode active material, non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery negative electrode material manufacturing method
WO2019026550A1 (en) 2017-08-03 2019-02-07 信越化学工業株式会社 Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
US11316152B2 (en) 2017-08-03 2022-04-26 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing negative electrode material for non-aqueous electrolyte secondary battery
JP7140125B2 (en) 2017-08-24 2022-09-21 日本電気株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery including the same
JPWO2019039399A1 (en) * 2017-08-24 2020-07-30 日本電気株式会社 Negative electrode for lithium-ion secondary battery and lithium-ion secondary battery including the same
US11387442B2 (en) 2017-08-24 2022-07-12 Nec Corporation Negative electrode for lithium ion secondary battery and lithium ion secondary battery comprising the same
WO2019039399A1 (en) * 2017-08-24 2019-02-28 日本電気株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery containing the same
US11961997B2 (en) 2018-11-07 2024-04-16 Shin-Etsu Chemical Co., Ltd. Negative electrode active material, mixed negative electrode active material, aqueous negative electrode slurry composition, and method for producing negative electrode active material
KR20210110606A (en) 2019-01-15 2021-09-08 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for nonaqueous electrolyte secondary battery and manufacturing method thereof
WO2020149079A1 (en) 2019-01-15 2020-07-23 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery and method for producing same
CN114335456A (en) * 2021-12-06 2022-04-12 桂林电子科技大学 Fast-charging composite negative electrode material and preparation method and application thereof
CN114335456B (en) * 2021-12-06 2024-05-17 桂林电子科技大学 Quick-charging type composite anode material and preparation method and application thereof
CN116613390A (en) * 2023-07-21 2023-08-18 宁德新能源科技有限公司 Battery and electronic equipment
CN116613390B (en) * 2023-07-21 2023-11-03 宁德新能源科技有限公司 Battery and electronic equipment

Similar Documents

Publication Publication Date Title
JP2010092830A (en) Nonaqueous electrolyte secondary battery
JP6428647B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
KR102140969B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
JP5366909B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP4853608B2 (en) Lithium secondary battery
JP5758720B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5116329B2 (en) Nonaqueous electrolyte secondary battery
WO2013108571A1 (en) Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5247196B2 (en) Nonaqueous electrolyte secondary battery
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP6059019B2 (en) Nonaqueous electrolyte secondary battery
JP2017228439A (en) Lithium ion secondary battery and method for manufacturing the same
JP2012104335A (en) Nonaqueous electrolyte secondary battery
JP6353310B2 (en) Nonaqueous electrolyte secondary battery
JP2008311209A (en) Nonaqueous electrolyte secondary battery
JP2008311211A (en) Nonaqueous electrolyte secondary battery
JP2009245940A (en) Nonaqueous electrolyte secondary battery
JP4798741B2 (en) Non-aqueous secondary battery
JPH0785888A (en) Lithium secondary battery
US20120082896A1 (en) Nonaqueous electrolyte secondary battery
JP2007242420A (en) Nonaqueous electrolyte secondary battery, and method of manufacturing anode active material for nonaqueous electrolyte secondary battery
WO2016103592A1 (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2008166118A (en) Lithium secondary battery and negative electrode active material for same
JP4910239B2 (en) Non-aqueous electrolyte secondary battery
JP2008181714A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130910