JP2010092698A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010092698A
JP2010092698A JP2008261116A JP2008261116A JP2010092698A JP 2010092698 A JP2010092698 A JP 2010092698A JP 2008261116 A JP2008261116 A JP 2008261116A JP 2008261116 A JP2008261116 A JP 2008261116A JP 2010092698 A JP2010092698 A JP 2010092698A
Authority
JP
Japan
Prior art keywords
battery
mass
nonaqueous electrolyte
cyclic
sulfite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008261116A
Other languages
Japanese (ja)
Other versions
JP5272635B2 (en
Inventor
Katsushi Nishie
勝志 西江
Tomonori Kako
智典 加古
Yudai Kawazoe
雄大 川副
Shinya Kitano
真也 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2008261116A priority Critical patent/JP5272635B2/en
Publication of JP2010092698A publication Critical patent/JP2010092698A/en
Application granted granted Critical
Publication of JP5272635B2 publication Critical patent/JP5272635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery suppressing an increase in internal resistance of the battery after high temperature storage, and an increase in internal resistance of the battery when the battery after high temperature storage is used at low temperature. <P>SOLUTION: The nonaqueous electrolyte secondary battery 1 includes a positive electrode containing a positive electrode active material, a negative electrode containing a negative active material, and a nonaqueous electrolyte. The nonaqueous electrolyte contains 2.0 or less mass% of cyclic unsaturated sultone compound and 2.0 or less mass% of at least one cyclic sulfite ester selected from the group consisting of ethylene sulfite, 1,2-propylene glycol sulfite and vinyl ethylene sulfite to the total mass of the nonaqueous electrolyte. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン二次電池などの非水電解質二次電池は、高電圧・高エネルギー密度を有するため、例えば、携帯電話、ノート型パソコン電源などとして広く用いられている。
このような非水電解質二次電池(以下、単に「電池」ともいう)では、一般に、負極活物質に炭素材料、正極活物質にリチウム遷移金属複合酸化物が用いられ、非水電解質として、エチレンカーボネート(EC)やプロピレンピレンカーボネート(PC)等の溶媒にLiPFなどの支持塩を溶解させた非水電解液が使用されている。
Nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries have high voltage and high energy density, and are therefore widely used, for example, as mobile phones and notebook personal computer power supplies.
In such a non-aqueous electrolyte secondary battery (hereinafter also simply referred to as “battery”), a carbon material is generally used as the negative electrode active material, and a lithium transition metal composite oxide is used as the positive electrode active material, and ethylene is used as the non-aqueous electrolyte. A nonaqueous electrolytic solution in which a supporting salt such as LiPF 6 is dissolved in a solvent such as carbonate (EC) or propylene pyrene carbonate (PC) is used.

非水電解質二次電池においては、優れた高温放置性能が求められている。例えば、盛夏の屋外に駐車した自動車の車内に放置される携帯電話などに使用する電池は、高温環境下に晒される場合があるからである。
非水電解質二次電池を充電状態で高温環境下に保存すると、正負極上において電解液が酸化あるいは還元分解して被膜成長し、その結果内部抵抗が増大するという問題がある。
このような高温保存後の電池性能低下の問題を解決するものとして、例えば、非水電解質に不飽和スルトンを添加した非水電解質二次電池が知られている(特許文献1を参照)。
また、特許文献2には非水電解質にエチレンサルファイトを含有させることにより、非水電解質二次電池の高温保存特性を改善する技術が開示され、特許文献3には非水電解質にビニレンカーボネート化合物とビニルエチレンサルファイト化合物とを含有させることにより、負極表面上に複合被膜が形成され、連続充電した際のガス発生が抑制されるとともに、連続充電後の放電特性を向上させる技術が開示されている。
特開2002−329528公報 特開2002−170575公報 特開2005−166553公報
Non-aqueous electrolyte secondary batteries are required to have excellent high-temperature storage performance. For example, a battery used for a mobile phone or the like that is left in a car parked outdoors in midsummer may be exposed to a high temperature environment.
If the nonaqueous electrolyte secondary battery is stored in a charged state in a high temperature environment, there is a problem that the electrolytic solution is oxidized or reductively decomposed on the positive and negative electrodes to grow a film, resulting in an increase in internal resistance.
As a means for solving such a problem of battery performance degradation after high-temperature storage, for example, a non-aqueous electrolyte secondary battery in which unsaturated sultone is added to a non-aqueous electrolyte is known (see Patent Document 1).
Patent Document 2 discloses a technique for improving high-temperature storage characteristics of a non-aqueous electrolyte secondary battery by containing ethylene sulfite in the non-aqueous electrolyte. Patent Document 3 discloses a vinylene carbonate compound in the non-aqueous electrolyte. And a vinyl ethylene sulfite compound, a composite film is formed on the negative electrode surface, and gas generation during continuous charging is suppressed, and a technique for improving discharge characteristics after continuous charging is disclosed. Yes.
JP 2002-329528 A JP 2002-170575 A JP 2005-166553 A

上記特許文献1に記載の非水電解質を用いると、不飽和スルトンを添加しない非水電解質を用いた電池よりも、高温保存後の電池の内部抵抗の増大を抑制することはできるが、充分なものではなかった。
また、上記特許文献2または特許文献3に記載の非水電解質二次電池を用いると、エチレンサルファイトを添加しない非水電解質を用いた電池よりも高温保存時の放電特性は改善されるが、高温保存後の電池の内部抵抗の増大を抑制することができなかった。
さらに、非水電解質二次電池は、近年、電気自動車やハイブリッドカーなどの移動体用の電源としての需要が高まっており、このような用途の電池においては、高温放置性能だけではなく、幅広い温度における電池性能が求められる。例えば、一日の気温差の大きい地域などで、高温環境に晒された後に低温環境で使用する場合があるからである。低温環境では常温環境下よりも、さらに、電池の内部抵抗が増大して、出力が低下してしまうという問題がある。
When the non-aqueous electrolyte described in Patent Document 1 is used, an increase in the internal resistance of the battery after high-temperature storage can be suppressed as compared with a battery using a non-aqueous electrolyte to which no unsaturated sultone is added. It was not a thing.
Moreover, when the non-aqueous electrolyte secondary battery described in Patent Document 2 or Patent Document 3 is used, the discharge characteristics during high-temperature storage are improved as compared with a battery using a non-aqueous electrolyte to which ethylene sulfite is not added. An increase in the internal resistance of the battery after high temperature storage could not be suppressed.
Further, in recent years, non-aqueous electrolyte secondary batteries have been increasingly demanded as power sources for moving bodies such as electric vehicles and hybrid cars. Battery performance is required. For example, it may be used in a low temperature environment after being exposed to a high temperature environment in an area where the temperature difference of the day is large. There is a problem that the internal resistance of the battery further increases and the output decreases in a low temperature environment than in a normal temperature environment.

本発明は上記のような事情に基づいて完成されたものであり、高温保存後の電池の内部抵抗の増大を抑制し、かつ、高温保存後の電池を低温使用した際の電池の内部抵抗の増大を抑制する非水電解質二次電池を提供することを目的とする。   The present invention has been completed on the basis of the above circumstances, suppresses an increase in the internal resistance of the battery after high-temperature storage, and reduces the internal resistance of the battery when the battery after high-temperature storage is used at a low temperature. It aims at providing the nonaqueous electrolyte secondary battery which suppresses an increase.

上記問題を解決するために、鋭意検討した結果、本発明者らは、所定量の環状不飽和スルトン化合物と、所定量の環状亜硫酸エステルとを非水電解質に添加することにより、これらを単独で添加したものよりも、顕著に高温保存後の電池の内部抵抗の増大を抑制し、かつ、高温保存後の電池を低温使用した際の電池の内部抵抗の増大を抑制することができるということを見出した。   As a result of intensive studies to solve the above problems, the present inventors have added a predetermined amount of a cyclic unsaturated sultone compound and a predetermined amount of a cyclic sulfite ester to the nonaqueous electrolyte, thereby independently using them. The increase in the internal resistance of the battery after high temperature storage can be suppressed more significantly than the added one, and the increase in the internal resistance of the battery when using the battery after high temperature storage at a low temperature can be suppressed. I found it.

すなわち、本発明は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備える非水電解質二次電池であって、前記非水電解質は、前記非水電解質の総質量に対して、下記一般式(1)で表される環状不飽和スルトン化合物を2.0質量%以下含むとともに、エチレンサルファイト、1,2−プロピレングリコールサルファイト、およびビニルエチレンサルファイトからなる群より選ばれる一以上の環状亜硫酸エステルを2.0質量%以下含むことを特徴とする非水電解質二次電池である。
なお、一般式(1)で表される環状不飽和スルトン化合物の含有量は非水電解質の総質量に対して0.1質量%以上が好ましく、環状亜硫酸エステルの含有量は非水電解質の総質量に対して0.1質量%以上が好ましい。
That is, the present invention provides a nonaqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a nonaqueous electrolyte, wherein the nonaqueous electrolyte is a total of the nonaqueous electrolyte. The cyclic unsaturated sultone compound represented by the following general formula (1) is contained in an amount of 2.0% by mass or less based on the mass, and is composed of ethylene sulfite, 1,2-propylene glycol sulfite, and vinyl ethylene sulfite. A nonaqueous electrolyte secondary battery comprising 2.0% by mass or less of one or more cyclic sulfites selected from the group.
In addition, the content of the cyclic unsaturated sultone compound represented by the general formula (1) is preferably 0.1% by mass or more with respect to the total mass of the nonaqueous electrolyte, and the content of the cyclic sulfite is the total amount of the nonaqueous electrolyte. 0.1 mass% or more is preferable with respect to mass.

Figure 2010092698
Figure 2010092698

(式中、R、R、R、Rはそれぞれ、水素、フッ素、又はフッ素を含んでいてもよい炭素数1〜4の炭化水素基であり、nは1〜3の整数である)。 (In the formula, R 1 , R 2 , R 3 and R 4 are each hydrogen, fluorine or a hydrocarbon group having 1 to 4 carbon atoms which may contain fluorine, and n is an integer of 1 to 3). is there).

所定量の環状不飽和スルトン化合物と、所定量の環状亜硫酸エステルとを非水電解質に添加することにより、これらを単独で添加したものよりも、顕著に高温保存後の電池の内部抵抗の増大を抑制し、かつ、高温保存後の電池を低温使用した際の電池の内部抵抗の増大を抑制することができる理由の詳細は明らかではないが、以下のように推察される。   By adding a predetermined amount of a cyclic unsaturated sultone compound and a predetermined amount of a cyclic sulfite to the non-aqueous electrolyte, the internal resistance of the battery after storage at a high temperature is remarkably increased as compared with the case where these are added alone. Although the details of the reason why it is possible to suppress the increase in the internal resistance of the battery when it is suppressed and the battery after high temperature storage is used at a low temperature are not clear, it is presumed as follows.

電解液に添加した環状不飽和スルトン化合物と、環状亜硫酸エステルとからなる混成被膜が、正極および負極の極板表面に形成されて、当該混成被膜が電解液の分解反応を抑制して、高温保存後の電池の内部抵抗の増大を抑制するとともに、高温保存後の電池を低温使用した際の電池の内部抵抗の増大を抑制したと考えられる。
本発明において、環状不飽和スルトン化合物は、1,3−プロペンスルトンであることが好ましい。自己分解性が低く取り扱いが容易だからである。
A hybrid coating composed of a cyclic unsaturated sultone compound added to the electrolyte and a cyclic sulfite is formed on the electrode plate surfaces of the positive electrode and the negative electrode, and the hybrid coating suppresses the decomposition reaction of the electrolyte and is stored at a high temperature. It is thought that the increase in the internal resistance of the battery after the high temperature storage was suppressed while the increase in the internal resistance of the battery after the high temperature storage was suppressed.
In the present invention, the cyclic unsaturated sultone compound is preferably 1,3-propene sultone. This is because it is low in self-degradability and easy to handle.

本発明によれば、高温保存後の電池の内部抵抗の増大を抑制し、かつ、高温保存後の電池を低温使用した際の電池の内部抵抗の増大を抑制する非水電解質二次電池を提供することができる。   According to the present invention, there is provided a nonaqueous electrolyte secondary battery that suppresses an increase in internal resistance of a battery after storage at high temperature and suppresses an increase in internal resistance of the battery when the battery after high temperature storage is used at a low temperature. can do.

<実施形態1>
本発明の実施形態1を図1によって説明する。
図1は、本発明の一実施形態である角形の非水電解質二次電池1の概略断面図である。この非水電解質二次電池1(以下、単に「電池」ともいう)は、アルミニウム箔からなる正極集電体に正極合剤を塗布してなる正極板3と、銅箔からなる負極集電体に負極合剤を塗布してなる負極板4とがセパレータ5を介して渦巻状に巻回された発電要素2と、非水電解質とを電池ケース6に収納してなる。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIG.
FIG. 1 is a schematic cross-sectional view of a prismatic nonaqueous electrolyte secondary battery 1 according to an embodiment of the present invention. This non-aqueous electrolyte secondary battery 1 (hereinafter also simply referred to as “battery”) includes a positive electrode plate 3 formed by applying a positive electrode mixture to a positive electrode current collector made of aluminum foil, and a negative electrode current collector made of copper foil. A power generation element 2 in which a negative electrode plate 4 formed by applying a negative electrode mixture to a battery and a non-aqueous electrolyte wound in a spiral shape with a separator 5 interposed therebetween are housed in a battery case 6.

電池ケース6には、安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、負極板4は負極リード11を介して電池ケース6の上部にある負極端子9と接続され、正極板3は正極リード10を介して電池蓋7と接続されている。   A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, the negative electrode plate 4 is connected to a negative electrode terminal 9 at the upper part of the battery case 6 via a negative electrode lead 11, and the positive electrode plate 3 is a positive electrode. The battery lid 7 is connected via the lead 10.

正極板3は、アルミニウムなどの金属により形成された正極集電体の両面に、リチウムイオンを吸蔵放出可能な正極活物質を含有する正極合剤層を備えている。正極集電体のうち正極合剤層の形成されていない部分には正極リード10が溶着されている。   The positive electrode plate 3 includes a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions on both surfaces of a positive electrode current collector formed of a metal such as aluminum. A positive electrode lead 10 is welded to a portion of the positive electrode current collector where the positive electrode mixture layer is not formed.

本発明において用いる非水電解質二次電池の正極活物質としては、特に制限はなく、種々の材料を適宜使用できる。例えば、一般式LiM1O2−δ(ただし、M1はCo、NiまたはMnを表し、0.4≦x≦1.2、0≦δ≦0.5)で表される複合酸化物、またはこれらの複合酸化物にAl、Mn、Fe、Ni、Co、Cr、Ti、Zn、P、Bから選ばれる少なくとも一種の元素を含有した化合物を使用することができる。
さらに、一般式LiNiM2M32−δ(ただし、M2、M3はそれぞれAl、Mn、Fe、Ni、Co、Cr、Ti、Zn、P、Bから選ばれる少なくとも一種の元素、0.4≦x≦1.2、0.8≦p+q+r≦1.2、0≦δ≦0.5)で表されるリチウムとニッケルの複合酸化物を用いることができる。
さらに、一般式LiM4PO(ただし、M4は3d遷移金属、0≦x≦2、0.8≦s≦1.2)で表されるオリビン構造を有する化合物を用いることができ、また、この化合物に非晶質炭素を被覆して用いてもよい。
There is no restriction | limiting in particular as a positive electrode active material of the nonaqueous electrolyte secondary battery used in this invention, A various material can be used suitably. For example, a composite oxide represented by the general formula Li x M1O 2-δ (where M1 represents Co, Ni, or Mn, 0.4 ≦ x ≦ 1.2, 0 ≦ δ ≦ 0.5), or A compound containing at least one element selected from Al, Mn, Fe, Ni, Co, Cr, Ti, Zn, P, and B can be used for these composite oxides.
Moreover, the general formula Li x Ni p M2 q M3 r O 2-δ ( However, M2, M3 are respectively Al, Mn, Fe, Ni, Co, Cr, Ti, Zn, at least one element selected P, from B 0.4 ≦ x ≦ 1.2, 0.8 ≦ p + q + r ≦ 1.2, and 0 ≦ δ ≦ 0.5) can be used.
Moreover, the general formula Li x M4 s PO 4 (provided that, M4 are 3d transition metal, 0 ≦ x ≦ 2,0.8 ≦ s ≦ 1.2) can be a compound having an olivine structure represented by, Further, this compound may be used by coating with amorphous carbon.

上記した正極活物質には、導電剤、結着剤等を添加することができる。導電剤としては、無機化合物、有機化合物を用いることができる。無機化合物としては、アセチレンブラック、カーボンブラック、グラファイトなどを用いることができ、有機化合物としては、例えばポリアニリン等の導電性ポリマーなどを用いることができる。結着剤としては、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエンゴム、ポリアクリロニトリルなどを単独で、あるいは混合して用いることができる。   A conductive agent, a binder, or the like can be added to the positive electrode active material. As the conductive agent, an inorganic compound or an organic compound can be used. As the inorganic compound, acetylene black, carbon black, graphite or the like can be used, and as the organic compound, for example, a conductive polymer such as polyaniline can be used. As the binder, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyacrylonitrile, or the like can be used alone or in combination.

次に、負極板4について説明する。負極板4は、銅などの金属により形成された負極集電体の両面に、リチウムイオンを吸蔵放出可能な負極活物質を含有する負極合剤層を備えている。負極集電体のうち負極合剤層の形成されていない部分には、負極リード11が超音波溶着により溶着されている。   Next, the negative electrode plate 4 will be described. The negative electrode plate 4 includes a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions on both surfaces of a negative electrode current collector formed of a metal such as copper. A negative electrode lead 11 is welded by ultrasonic welding to a portion of the negative electrode current collector where the negative electrode mixture layer is not formed.

負極合剤層に含有される負極活物質としては、グラファイト、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)等の炭素質材料、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金系化合物、金属Li、一般式M5O(ただしM5は、W、Mo、Si、Cu、およびSnから選ばれる少なくとも一種の元素、0≦z≦2)で表される金属酸化物、またはこれらの混合物を用いることができる。負極活物質には正極活物質と同様に、ポリフッ化ビニリデンなどの結着剤等を添加することができる。 As the negative electrode active material contained in the negative electrode mixture layer, carbonaceous materials such as graphite, non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), Al, Si, Pb, Sn, Zn , an alloy compound of Cd or the like and the lithium metal Li, the general formula M5O z (except M5 is, W, Mo, Si, Cu, and at least one element selected from Sn, 0 ≦ z ≦ 2) is represented by Metal oxides or mixtures thereof can be used. Similarly to the positive electrode active material, a binder such as polyvinylidene fluoride can be added to the negative electrode active material.

セパレータ5としては、織布、不織布、合成樹脂微多孔膜などを用いることができ、特に、合成樹脂微多孔膜を好適に用いることができる。なかでも、ポリエチレン及びポリプロピレン性微多孔膜やアラミドなどを加工した耐熱性樹脂または、これらを複合した微多孔膜などのポリオレフィン系微多孔膜を用いることができる。   As the separator 5, a woven fabric, a non-woven fabric, a synthetic resin microporous film, or the like can be used. In particular, a synthetic resin microporous film can be suitably used. Among them, it is possible to use a heat-resistant resin obtained by processing polyethylene and polypropylene microporous membranes, aramids, or the like, or a polyolefin microporous membrane such as a microporous membrane obtained by combining these.

非水電解質は非水溶媒に電解質塩などを溶解して調製される。
電解質塩としては、LiClO、LiPF、LiBF、LiAsF、LiCFCO、LiCF(CF、LiCF(C、LiCFSO、LiCFCFSO、LiCFCFCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF、LiN(COCFCF、LiPF(CFCF、LiB(C、LiBF、LiP(C、LiPF(C、LiPF等を単独でまたは二種以上混合して使用することができる。電解質塩として、LiPFを用いるか、あるいはLiPFを主体として前記電解質塩を少量混合して用いることが好ましい。
The non-aqueous electrolyte is prepared by dissolving an electrolyte salt or the like in a non-aqueous solvent.
Examples of the electrolyte salt include LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 (CF 3 ) 3 , LiCF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiCF 3 CF 2 SO. 3, LiCF 3 CF 2 CF 2 SO 3, LiN (SO 2 CF 3) 2, LiN (SO 2 CF 2 CF 3) 2, LiN (COCF 3) 2, LiN (COCF 2 CF 3) 2, LiPF 3 ( CF 2 CF 3 ) 3 , LiB (C 2 O 4 ) 2 , LiBF 2 C 2 O 4 , LiP (C 2 O 4 ) 3 , LiPF 2 (C 2 O 4 ) 2 , LiPF 4 C 2 O 4, etc. It can be used alone or in combination of two or more. It is preferable to use LiPF 6 as the electrolyte salt, or to mix and use a small amount of the electrolyte salt mainly composed of LiPF 6 .

上記電解質塩を溶解する非水溶媒は、エチレンカーボネート、プロピレンカーボネートなどの環状炭酸エステル、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状炭酸エステル、メチルアセテート、エチルアセテートなどの鎖状カルボン酸エステル、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ホスファゼン類などの極性溶媒を単独でまたは二種以上混合して使用することができる。
また、電池特性向上のために、少量の化合物を非水電解質中に混合してもよく、ビニレンカーボネート、メチルビニレンカーボネートなどのカーボネート類、酢酸ビニル、プロピオン酸ビニルなどのビニルエステル類、ジアリルスルフィド、アリルフェニルスルフィドなどのスルフィド類、ビス(ビニルスルホニル)メタン、ブタジエンスルホン等のスルホン類、メタンスルホン酸メチル、メタンスルホン酸エチルなどの鎖状スルホン酸エステル類、硫酸ジメチル、硫酸ジエチルなどの硫酸エステル類、ベンゼン、トルエンなどの芳香族化合物、パーフルオロオクタンなどのハロゲン置換アルカン、ホウ酸トリストリメチルシリル、硫酸ビストリメチルシリル、リン酸トリストリメチルシリル、チタン酸テトラキストリメチルシリルなどのシリルエステル類等を単独でまたは二種以上混合して使用することができる。
Nonaqueous solvents for dissolving the electrolyte salts include cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and chain carboxylates such as methyl acetate and ethyl acetate. , Γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, phosphazenes and the like can be used alone or in admixture of two or more.
Further, in order to improve battery characteristics, a small amount of compound may be mixed in the non-aqueous electrolyte, carbonates such as vinylene carbonate and methyl vinylene carbonate, vinyl esters such as vinyl acetate and vinyl propionate, diallyl sulfide, Sulfides such as allyl phenyl sulfide, sulfones such as bis (vinylsulfonyl) methane and butadiene sulfone, chain sulfonates such as methyl methanesulfonate and ethyl methanesulfonate, sulfate esters such as dimethyl sulfate and diethyl sulfate Aromatic compounds such as benzene and toluene, halogen-substituted alkanes such as perfluorooctane, tristrimethylsilyl borate, bistrimethylsilyl sulfate, tristrimethylsilyl phosphate, and tetrakistrimethylsilyl titanate. Glycol ester and the like can be used alone or in admixture of two or more.

さて、本発明において、非水電解質には、下記一般式(1)で表される環状不飽和スルトン化合物と、エチレンサルファイト、1,2−プロピレングリコールサルファイト、およびビニルエチレンサルファイトからなる群より選ばれる一以上の環状亜硫酸エステルとが含まれる。   In the present invention, the nonaqueous electrolyte includes a group consisting of a cyclic unsaturated sultone compound represented by the following general formula (1), ethylene sulfite, 1,2-propylene glycol sulfite, and vinyl ethylene sulfite. And one or more cyclic sulfites selected from the above.

Figure 2010092698
Figure 2010092698

(式中、R、R、R、Rはそれぞれ、水素、フッ素、又はフッ素を含んでいてもよい炭素数1〜4の炭化水素基であり、nは1〜3の整数である)。 (In the formula, R 1 , R 2 , R 3 and R 4 are each hydrogen, fluorine or a hydrocarbon group having 1 to 4 carbon atoms which may contain fluorine, and n is an integer of 1 to 3). is there).

環状不飽和スルトン化合物としては、例えば、1,3−プロペンスルトン、1−メチル−1,3−プロペンスルトン、1−フルオロ−1,3−プロペンスルトン、1,1−ジメチル−1,3−プロペンスルトン、1,2−ジメチル−1,3−プロペンスルトン、2−メチル−1,3−プロペンスルトン、2−フルオロ−1,3−プロペンスルトン、3−メチル−1,3−プロペンスルトン、3−フルオロ−1,3−プロペンスルトン、1,4−ブテンスルトン、1−メチル−1,4−ブテンスルトン、1−フルオロ−1,4−ブテンスルトン、2−メチル−1,4−ブテンスルトン、2−フルオロ−1,4−ブテンスルトン、3−メチル−1,4−ブテンスルトン、3−フルオロ−1,4−ブテンスルトン、4−メチル−1,4−ブテンスルトン、4−フルオロ−1,4−ブテンスルトン等が挙げられる。これらのうち、以下の式(2)で示される1,3−プロペンスルトンは、自己分解性が低く取り扱いが容易であるので好ましい。   Examples of the cyclic unsaturated sultone compound include 1,3-propene sultone, 1-methyl-1,3-propene sultone, 1-fluoro-1,3-propene sultone, 1,1-dimethyl-1,3-propene. Sultone, 1,2-dimethyl-1,3-propene sultone, 2-methyl-1,3-propene sultone, 2-fluoro-1,3-propene sultone, 3-methyl-1,3-propene sultone, 3- Fluoro-1,3-propene sultone, 1,4-butene sultone, 1-methyl-1,4-butene sultone, 1-fluoro-1,4-butene sultone, 2-methyl-1,4-butene sultone, 2-fluoro-1 , 4-butene sultone, 3-methyl-1,4-butene sultone, 3-fluoro-1,4-butene sultone, 4-methyl-1,4-butene sultone Emissions, 4-fluoro-1,4-butene sultone, and the like. Of these, 1,3-propene sultone represented by the following formula (2) is preferable because it has low self-degradability and is easy to handle.

Figure 2010092698
Figure 2010092698

本発明において、R1〜R4が炭素数5以上の炭化水素基やnが4以上の環状不飽和スルトンは非水電解質の粘度上昇による注液性の低下を招くため好ましくない。 In the present invention, a hydrocarbon group having 5 to 5 carbon atoms or a cyclic unsaturated sultone having 4 or more in n is not preferable because R1 to R4 cause a decrease in liquid injection property due to an increase in viscosity of the nonaqueous electrolyte.

本発明において、非水電解質には、非水電解質の総質量に対して、環状不飽和スルトン化合物が2.0質量%以下含まれるとともに、エチレンサルファイト、1,2−プロピレングリコールサルファイト、およびビニルエチレンサルファイトからなる群より選ばれる一以上の環状亜硫酸エステルが2.0質量%以下含まれる。
環状不飽和スルトン化合物の量が非水電解質の総質量に対して2.0質量%を超えると、分解反応によりガスが発生して内部抵抗が増大してしまう。また、環状亜硫酸エステルの量非水電解質の総質量に対して2.0質量%を超えると、分解反応によりガスが発生して内部抵抗が増大してしまう。
なお、環状不飽和スルトン化合物および環状亜硫酸エステルの量が、非水電解質の総質量に対して、それぞれ、0.1質量%未満の場合には、電池の内部抵抗の増大を抑制する効果が小さくなるため、環状不飽和スルトン化合物の含有量は、非水電解質の総質量に対して0.1質量%以上が好ましく、また、環状亜硫酸エステルの含有量は、非水電解質の総質量に対して0.1質量%以上が好ましい。
In the present invention, the non-aqueous electrolyte contains 2.0% by mass or less of a cyclic unsaturated sultone compound based on the total mass of the non-aqueous electrolyte, ethylene sulfite, 1,2-propylene glycol sulfite, and One or more cyclic sulfites selected from the group consisting of vinylethylene sulfite are contained in an amount of 2.0% by mass or less.
When the amount of the cyclic unsaturated sultone compound exceeds 2.0% by mass with respect to the total mass of the nonaqueous electrolyte, gas is generated due to the decomposition reaction and the internal resistance increases. On the other hand, if the amount of cyclic sulfite exceeds 2.0% by mass with respect to the total mass of the nonaqueous electrolyte, gas is generated by the decomposition reaction and the internal resistance increases.
When the amount of the cyclic unsaturated sultone compound and the cyclic sulfite is less than 0.1% by mass with respect to the total mass of the nonaqueous electrolyte, the effect of suppressing the increase in the internal resistance of the battery is small. Therefore, the content of the cyclic unsaturated sultone compound is preferably 0.1% by mass or more based on the total mass of the nonaqueous electrolyte, and the content of the cyclic sulfite ester is based on the total mass of the nonaqueous electrolyte. 0.1 mass% or more is preferable.

すなわち、本発明の電池では、上記量の環状不飽和スルトン化合物と上記量の環状亜硫酸エステルとを含む非水電解質を用いることにより、これらを単独で含む非水電解質を用いた電池よりも顕著に、高温保存後の電池の内部抵抗の増大を抑制し、かつ、高温保存後の電池を低温使用した際の電池の内部抵抗の増大を抑制することができるのである。   That is, in the battery of the present invention, by using a non-aqueous electrolyte containing the above-mentioned amount of the cyclic unsaturated sultone compound and the above-mentioned amount of the cyclic sulfite ester, the battery is more marked than a battery using a non-aqueous electrolyte containing these alone. The increase in the internal resistance of the battery after high temperature storage can be suppressed, and the increase in the internal resistance of the battery when the battery after high temperature storage is used at a low temperature can be suppressed.

環状不飽和スルトン化合物と環状亜硫酸エステルとを含む非水電解質を有する電池において、高温保存後の内部抵抗の増大を抑制する機構については、明らかではないが、以下のように推測される。
電解液に添加した環状不飽和スルトン化合物と、環状亜硫酸エステルとからなる混成被膜が、正極および負極の極板表面に形成されて、当該混成被膜が電解液の分解反応を抑制して、高温保存後の電池の内部抵抗の増大を抑制するとともに、高温保存後の電池を低温使用した際の電池の内部抵抗の増大を抑制すると考えられる。
In a battery having a non-aqueous electrolyte containing a cyclic unsaturated sultone compound and a cyclic sulfite ester, the mechanism for suppressing the increase in internal resistance after high-temperature storage is not clear, but is presumed as follows.
A hybrid coating composed of a cyclic unsaturated sultone compound added to the electrolyte and a cyclic sulfite is formed on the electrode plate surfaces of the positive electrode and the negative electrode, and the hybrid coating suppresses the decomposition reaction of the electrolyte and is stored at a high temperature. It is considered that the increase in the internal resistance of the battery after the high temperature storage is suppressed while the increase in the internal resistance of the battery after the high temperature is suppressed.

<実施例>
以下、本発明の実施例および比較例を示すが、本発明はこれに限定されるものではない。
1.実施例1の電池の作製
図1に示す形態の非水電解質二次電池を以下の方法により作製した。
(1)正極板の作製
結着剤のポリフッ化ビニリデン5質量部と、導電剤のアセチレンブラック5質量部と、正極活物質としてLiNi0.17Co0.66Mn0.17を90質量部とを混合したものに、N−メチル−2−ピロリドンを加えてペースト状に調製した後、これを、厚さが20μmのアルミニウム箔製の正極集電体の両面に塗布、乾燥することによって正極板3を作製し、正極リード10を備え付けた。
<Example>
Hereinafter, although the Example and comparative example of this invention are shown, this invention is not limited to this.
1. Production of Battery of Example 1 A nonaqueous electrolyte secondary battery having the form shown in FIG. 1 was produced by the following method.
(1) Production of positive electrode plate 5 parts by mass of polyvinylidene fluoride as a binder, 5 parts by mass of acetylene black as a conductive agent, and 90 masses of LiNi 0.17 Co 0.66 Mn 0.17 O 2 as a positive electrode active material After adding N-methyl-2-pyrrolidone to the mixture and preparing a paste, this was applied to both sides of a positive electrode current collector made of aluminum foil with a thickness of 20 μm and dried. A positive electrode plate 3 was prepared and a positive electrode lead 10 was provided.

(2)負極板の作製
負極活物質として難黒鉛化性炭素を92質量部と、結着剤のポリフッ化ビニリデン8質量部とを、Nメチル−2−ピロリドンに加えてペースト状に調製した後、これを、厚さが10μmの銅箔製の負極集電体の両面に塗布し、乾燥することによって負極板4を作製し、負極リード11を備え付けた。
(2) Preparation of negative electrode plate After adding 92 parts by mass of non-graphitizable carbon as a negative electrode active material and 8 parts by mass of polyvinylidene fluoride as a binder to N-methyl-2-pyrrolidone and preparing it in a paste form This was applied to both surfaces of a negative electrode current collector made of copper foil having a thickness of 10 μm and dried to prepare the negative electrode plate 4, and the negative electrode lead 11 was provided.

(3)電池の作製
セパレータとしては、ポリエチレン微多孔膜を用いた。
非水電解質としては、以下の方法で調製した非水電解液を用いた。エチレンカーボネート(EC):ジエチルカーボネート(DMC):エチルメチルカーボネート(EMC)=3:3:4(体積比)の混合溶媒に、LiPFを調製後に1mol/Lとなるように溶解し、さらに、非水電解液の総質量に対して、0.1質量%の1,3−プロペンスルトン(PSL)と、0.1質量%のビニルエチレンサルファイト(VES)を添加して非水電解液を調製した。
これらの材料を用いて容量が450mAhの実施例1の非水電解質二次電池を5セル作製した。
(3) Fabrication of battery A polyethylene microporous membrane was used as the separator.
As the non-aqueous electrolyte, a non-aqueous electrolyte prepared by the following method was used. In a mixed solvent of ethylene carbonate (EC): diethyl carbonate (DMC): ethyl methyl carbonate (EMC) = 3: 3: 4 (volume ratio), LiPF 6 was dissolved to 1 mol / L after preparation, 0.1% by mass of 1,3-propene sultone (PSL) and 0.1% by mass of vinyl ethylene sulfite (VES) are added to the total mass of the non-aqueous electrolyte to obtain a non-aqueous electrolyte. Prepared.
Using these materials, five cells of the nonaqueous electrolyte secondary battery of Example 1 having a capacity of 450 mAh were produced.

2.実施例2〜28および比較例1〜35の電池の作製
非水電解質の総質量に対して、0.1質量%の1,3−プロペンスルトン(PSL)と、0.1質量%のビニルエチレンサルファイト(VES)に代えて、表1に示す量のPSLとVESとを添加したこと以外は実施例1と同様にして、実施例2〜16および比較例1〜15の非水電解質二次電池を作製した。
2. Production of batteries of Examples 2 to 28 and Comparative Examples 1 to 35 0.1% by mass of 1,3-propene sultone (PSL) and 0.1% by mass of vinylethylene with respect to the total mass of the nonaqueous electrolyte The nonaqueous electrolyte secondary of Examples 2 to 16 and Comparative Examples 1 to 15 were the same as Example 1 except that the amounts of PSL and VES shown in Table 1 were added instead of sulfite (VES). A battery was produced.

非水電解質の総質量に対して、0.1質量%の1,3−プロペンスルトン(PSL)と、0.1質量%のビニルエチレンサルファイト(VES)に代えて、表2に示す量の1,3−プロペンスルトン(PSL)と、エチレンサルファイト(ES)とを添加したこと以外は実施例1と同様にして、実施例17〜20および比較例16〜22の非水電解質二次電池を作製した。   Instead of 0.1% by mass of 1,3-propene sultone (PSL) and 0.1% by mass of vinyl ethylene sulfite (VES) with respect to the total mass of the nonaqueous electrolyte, the amounts shown in Table 2 were used. Nonaqueous electrolyte secondary batteries of Examples 17 to 20 and Comparative Examples 16 to 22 are the same as Example 1 except that 1,3-propene sultone (PSL) and ethylene sulfite (ES) are added. Was made.

非水電解質の総質量に対して、0.1質量%の1,3−プロペンスルトン(PSL)と、0.1質量%のビニルエチレンサルファイト(VES)に代えて、表3に示す量の1,4−ブテンスルトン(BSL)と、ビニルエチレンサルファイト(VES)とを添加したこと以外は実施例1と同様にして、実施例21〜24および比較例23〜28の非水電解質二次電池を作製した。
非水電解質の総質量に対して、0.1質量%の1,3−プロペンスルトン(PSL)と、0.1質量%のビニルエチレンサルファイト(VES)に代えて、表4に示す量の1,3−プロペンスルトン(PSL)と、1,2−プロピレングリコールサルファイト(PGS)とを添加したこと以外は実施例1と同様にして、実施例25〜28および比較例29〜35の非水電解質二次電池を作製した。
Instead of 0.1% by mass of 1,3-propene sultone (PSL) and 0.1% by mass of vinyl ethylene sulfite (VES) with respect to the total mass of the nonaqueous electrolyte, the amounts shown in Table 3 were used. The nonaqueous electrolyte secondary batteries of Examples 21 to 24 and Comparative Examples 23 to 28 were the same as Example 1 except that 1,4-butene sultone (BSL) and vinyl ethylene sulfite (VES) were added. Was made.
Instead of 0.1% by mass of 1,3-propene sultone (PSL) and 0.1% by mass of vinyl ethylene sulfite (VES) with respect to the total mass of the nonaqueous electrolyte, the amounts shown in Table 4 were used. Examples 25-28 and Comparative Examples 29-35 are the same as Example 1 except that 1,3-propene sultone (PSL) and 1,2-propylene glycol sulfite (PGS) were added. A water electrolyte secondary battery was produced.

3.評価試験
(1)高温保存後の電池性能試験
(i)初期放電容量確認試験
実施例1〜28および比較例1〜35の各電池を用いて、以下の方法により初期放電容量確認試験を行った。
各電池を、25℃において450mA定電流で4.2Vまで充電し、さらに4.2V定電圧で合計3時間充電した後、450mA定電流で、終止電圧2.5Vの条件で放電を行うことにより初期放電容量を測定した。
3. Evaluation Test (1) Battery Performance Test after High Temperature Storage (i) Initial Discharge Capacity Confirmation Test Using each battery of Examples 1-28 and Comparative Examples 1-35, an initial discharge capacity confirmation test was performed by the following method. .
By charging each battery to 4.2 V at a constant current of 450 mA at 25 ° C. and further charging for a total of 3 hours at a constant voltage of 4.2 V, and then discharging at a constant current of 450 mA and a final voltage of 2.5 V. The initial discharge capacity was measured.

(ii)60℃での保存試験
初期放電容量測定後の各電池について、60℃での保存試験を以下の方法により行った。450mA定電流で4.03Vまで充電し、さらに4.03V定電圧で、合計3時間充電して電池のSOCを80%に設定し、60℃の恒温槽中において30日間(1か月)保管した。25℃に冷却した後、各電池を、450mA定電流で、終止電圧2.5Vの条件で放電した後、前記初期放電容量確認試験と同様の条件で充放電を行った。この60℃での保存試験を6ヶ月間繰り返した。
ここで、「SOCを80%に」とは、電池の容量に対して、充電電気量が80%であることを表す。
(Ii) Storage test at 60 ° C. Each battery after the initial discharge capacity measurement was subjected to a storage test at 60 ° C. by the following method. Charge to 4.03 V at a constant current of 450 mA, further charge for a total of 3 hours at a constant voltage of 4.03 V, set the SOC of the battery to 80%, and store in a constant temperature bath at 60 ° C. for 30 days (1 month) did. After cooling to 25 ° C., each battery was discharged at a constant current of 450 mA and a final voltage of 2.5 V, and then charged and discharged under the same conditions as in the initial discharge capacity confirmation test. This storage test at 60 ° C. was repeated for 6 months.
Here, “SOC is set to 80%” represents that the amount of charged electricity is 80% with respect to the capacity of the battery.

(iii)25℃における直流抵抗値
60℃での保存試験後の実施例1〜5の電池、実施例7〜10の電池、実施例12〜16の電池、及び比較例1〜15の電池をそれぞれ、450mA定電流で3.73Vまで充電し、さらに3.73V定電圧で、合計3時間充電することにより電池のSOCを50%に設定し、25℃で5時間保持した後、90mA(I1)で10秒間放電したときの電圧(E1)、225mA(I2)で10秒間放電したときの電圧(E2)をそれぞれ測定した。
ここで、「SOCを50%に」とは、電池の容量に対して、充電電気量が50%であることを表す。
(Iii) DC resistance value at 25 ° C. The batteries of Examples 1 to 5, the batteries of Examples 7 to 10, the batteries of Examples 12 to 16, and the batteries of Comparative Examples 1 to 15 after the storage test at 60 ° C. Each battery was charged to 3.73 V at a constant current of 450 mA, and further charged for a total of 3 hours at a constant voltage of 3.73 V, so that the SOC of the battery was set to 50%. After holding at 25 ° C. for 5 hours, 90 mA (I1 ), The voltage (E1) when discharged for 10 seconds and the voltage (E2) when discharged for 10 seconds at 225 mA (I2) were measured.
Here, “SOC to 50%” indicates that the amount of charged electricity is 50% with respect to the capacity of the battery.

上記の測定値を用いて、25℃における直流抵抗値(Rx)を以下の式により算出し表1に示した。
Rx=(E1−E2)/放電電流(I2−I1)
直流抵抗値が100mΩ以下であれば、高温保存後の内部抵抗の増大を抑制できたと判断した。
Using the measured values, the DC resistance value (Rx) at 25 ° C. was calculated by the following formula and shown in Table 1.
Rx = (E1-E2) / Discharge current (I2-I1)
If the DC resistance value was 100 mΩ or less, it was judged that the increase in internal resistance after high-temperature storage could be suppressed.

(iv)−20℃における直流抵抗値
60℃での保存試験後の実施例1〜28および比較例1〜35の各電池を、450mA定電流で3.73Vまで充電し、さらに3.73V定電圧で、合計3時間充電することにより電池のSOCを50%に設定し、−20℃で5時間保持した後、90mA(I1)で10秒間放電したときの電圧(E3)、225mA(I2)で10秒間放電したときの電圧(E4)をそれぞれ測定した。
ここで、「SOCを50%に」とは、電池の容量に対して、充電電気量が50%であることを表す。
(Iv) DC resistance value at −20 ° C. The batteries of Examples 1 to 28 and Comparative Examples 1 to 35 after the storage test at 60 ° C. are charged to 3.73 V at a constant current of 450 mA, and further set to 3.73 V constant. The battery SOC was set to 50% by charging the battery for a total of 3 hours, held at −20 ° C. for 5 hours, and then discharged at 90 mA (I1) for 10 seconds (E3) and 225 mA (I2). The voltage (E4) when discharged for 10 seconds was measured.
Here, “SOC to 50%” indicates that the amount of charged electricity is 50% with respect to the capacity of the battery.

上記の測定値を用いて、−20℃における直流抵抗値(Ry)を以下の式により算出し、表1〜表4に示した。直流抵抗値が500mΩ以下であれば、低温使用による内部抵抗の増大を抑制できたと判断した。
Ry=(E3−E4)/放電電流(I2−I1)
Using the above measured values, DC resistance values (Ry) at −20 ° C. were calculated by the following formulas and shown in Tables 1 to 4. If the DC resistance value was 500 mΩ or less, it was judged that the increase in internal resistance due to low temperature use could be suppressed.
Ry = (E3-E4) / Discharge current (I2-I1)

なお、表1〜表4には、非水電解液に添加した環状不飽和スルトン化合物の量(非水電解質の総質量に対する質量%)および環状亜硫酸エステルの量(非水電解質の総質量に対する質量%)を併せて示した。表中、抵抗値とは直流抵抗値を意味する。   In Tables 1 to 4, the amount of the cyclic unsaturated sultone compound added to the non-aqueous electrolyte (mass% based on the total mass of the non-aqueous electrolyte) and the amount of the cyclic sulfite ester (mass based on the total mass of the non-aqueous electrolyte). %). In the table, the resistance value means a DC resistance value.

Figure 2010092698
Figure 2010092698

Figure 2010092698
Figure 2010092698

Figure 2010092698
Figure 2010092698

Figure 2010092698
Figure 2010092698

4.結果と考察
(1)非水電解質の総質量に対して2.0質量%以下の環状不飽和スルトン化合物、および、2.0質量%以下の環状亜硫酸エステルを含有する非水電解液を備える本発明の電池(実施例1〜5、実施例7〜10,実施例12〜16)では、25℃の直流抵抗値が100mΩ以下であり、高温保存後の内部抵抗の増大を抑制できた。
4). Results and Discussion (1) A book comprising a non-aqueous electrolyte containing 2.0% by mass or less of a cyclic unsaturated sultone compound and 2.0% by mass or less of a cyclic sulfite ester relative to the total mass of the non-aqueous electrolyte. In the batteries of the invention (Examples 1 to 5, Examples 7 to 10, and Examples 12 to 16), the DC resistance value at 25 ° C. was 100 mΩ or less, and an increase in internal resistance after high-temperature storage could be suppressed.

しかし、環状不飽和スルトン化合物および環状亜硫酸エステルの少なくとも一方が、上記の含有量の範囲を外れている電池(比較例1〜15)では直流抵抗値が高く、高温保存後の内部抵抗の増大を抑制できなかった。   However, in batteries (Comparative Examples 1 to 15) in which at least one of the cyclic unsaturated sultone compound and the cyclic sulfite is out of the above content range, the DC resistance value is high, and the internal resistance after high-temperature storage is increased. Could not be suppressed.

具体的には、環状不飽和スルトン化合物のみを0.1質量%〜2.0質量%添加した電池(比較例1、比較例6、比較例8〜10)では、環状不飽和スルトン化合物と環状亜硫酸エステルの双方未添加の電池(比較例1)と比較して、抵抗値がわずかに小さくなっただけであった。また、環状亜硫酸エステルのみを0.1質量%〜2.0質量%添加した電池(比較例2〜4)では、環状不飽和スルトン化合物と環状亜硫酸エステルの双方未添加の電池(比較例1)と比較してわずかに抵抗値が小さくなっただけであった。
環状不飽和スルトン化合物を4.0質量%添加した電池(比較例12〜15)や環状亜硫酸エステルを5.0質量%添加した電池(比較例5、7、11)では環状不飽和スルトン化合物と環状亜硫酸エステルの双方未添加の電池(比較例1)よりも抵抗値が大きくなった。これは、環状不飽和スルトン化合物と環状亜硫酸エステルのいずれか一方でも所定量以上含まれていると、電解液の分解によるガス発生が起こって内部抵抗が増大すると考えられる。
Specifically, in the battery (Comparative Example 1, Comparative Example 6, Comparative Example 8 to 10) in which only 0.1% by mass to 2.0% by mass of the cyclic unsaturated sultone compound is added, the cyclic unsaturated sultone compound and the cyclic compound are cyclic. The resistance value was only slightly smaller than that of the battery in which neither sulfite was added (Comparative Example 1). Moreover, in the battery (Comparative Examples 2 to 4) in which only 0.1% by mass to 2.0% by mass of the cyclic sulfite ester is added, the battery in which neither the cyclic unsaturated sultone compound nor the cyclic sulfite ester is added (Comparative Example 1). The resistance value was only slightly smaller than that.
In the battery (Comparative Examples 12 to 15) to which 4.0% by mass of the cyclic unsaturated sultone compound was added and the battery (Comparative Examples 5, 7 and 11) to which 5.0% by mass of the cyclic sulfite was added, the cyclic unsaturated sultone compound and The resistance value was larger than that of the battery to which neither cyclic sulfite was added (Comparative Example 1). This is considered to be that when either a cyclic unsaturated sultone compound or a cyclic sulfite is contained in a predetermined amount or more, gas generation occurs due to decomposition of the electrolytic solution and internal resistance increases.

(2)低温使用における内部抵抗について
非水電解質の総質量に対して、2.0質量%以下の環状不飽和スルトン化合物、および、2.0質量%以下の環状亜硫酸エステルを含有する非水電解液を備える本発明の電池(実施例1〜28)では、−20℃の直流抵抗値が500mΩ以下であり、高温保存置後の電池を低温で使用したときの内部抵抗の増大を抑制できた。
なお、本発明の電池のうち、0.2〜1.0質量%のPSLと、0.3〜1.0質量%のVESとを含むもの(実施例6〜9、実施例11〜13)、および0.2〜1.0質量%のBSLと、0.5質量%のVESとを含むもの(実施例22〜23)では、特に好適な結果が得られた。
しかし、環状不飽和スルトン化合物および環状亜硫酸エステルの少なくとも一方が、上記の含有量の範囲を外れている電池(比較例1〜15)では直流抵抗値が高く、高温保存後の低温使用における内部抵抗の増大を抑制できなかった。
(2) Internal resistance in low temperature use Non-aqueous electrolysis containing 2.0% by mass or less of cyclic unsaturated sultone compound and 2.0% by mass or less of cyclic sulfite with respect to the total mass of the non-aqueous electrolyte. In the battery of the present invention (Examples 1 to 28) provided with the liquid, the direct current resistance value at −20 ° C. was 500 mΩ or less, and the increase in internal resistance when the battery after high-temperature storage was used at low temperature could be suppressed. .
In addition, among the batteries of the present invention, those containing 0.2 to 1.0% by mass of PSL and 0.3 to 1.0% by mass of VES (Examples 6 to 9, Examples 11 to 13) In addition, particularly preferable results were obtained with 0.2% to 1.0% by mass of BSL and 0.5% by mass of VES (Examples 22 to 23).
However, in the batteries (Comparative Examples 1 to 15) in which at least one of the cyclic unsaturated sultone compound and the cyclic sulfite is out of the above content range, the DC resistance value is high, and the internal resistance in low temperature use after high temperature storage. The increase in the amount could not be suppressed.

具体的には、環状不飽和スルトン化合物のみを0.1質量%〜2.0質量%添加した電池(比較例1、比較例6、比較例8〜10、比較例23、比較例25)では、環状不飽和スルトン化合物および環状亜硫酸エステルの双方未添加の電池(比較例1)と比較して、抵抗値がわずかに小さくなっただけであった。また、環状亜硫酸エステルのみを0.1質量%〜2.0質量%添加した電池(比較例2〜4、比較例16〜18)では、環状不飽和スルトン化合物と環状亜硫酸エステルの双方未添加の電池(比較例1)と比較してわずかに抵抗値が小さくなっただけであった。   Specifically, in the battery (Comparative Example 1, Comparative Example 6, Comparative Example 8-10, Comparative Example 23, Comparative Example 25) in which only 0.1% by mass to 2.0% by mass of the cyclic unsaturated sultone compound was added. The resistance value was only slightly smaller as compared with the battery in which neither the cyclic unsaturated sultone compound nor the cyclic sulfite was added (Comparative Example 1). Moreover, in the battery (Comparative Examples 2-4, Comparative Examples 16-18) which added only 0.1 mass%-2.0 mass% of cyclic sulfites, neither cyclic unsaturated sultone compound and cyclic sulfites were added. The resistance value was only slightly smaller than that of the battery (Comparative Example 1).

環状不飽和スルトン化合物を4.0質量%添加した電池(比較例12〜15、比較例20〜22、比較例27、比較例28)、および環状亜硫酸エステルを5.0質量%添加した電池のうち比較例24の電池を除く電池(比較例5、比較例7、比較例11、比較例18〜19、比較例24、比較例26)では環状不飽和スルトン化合物および環状亜硫酸エステルの双方未添加の電池(比較例1)よりも抵抗値が大きくなった。これは、環状不飽和スルトン化合物と環状亜硫酸エステルのいずれか一方でも所定量以上含まれていると、電解液の分解によるガス発生が起こって内部抵抗が増大すると考えられる。   Batteries added with 4.0% by mass of cyclic unsaturated sultone compound (Comparative Examples 12-15, Comparative Examples 20-22, Comparative Example 27, Comparative Example 28), and batteries added with 5.0% by mass of cyclic sulfite ester Among the batteries except Comparative Example 24 (Comparative Example 5, Comparative Example 7, Comparative Example 11, Comparative Example 18-19, Comparative Example 24, and Comparative Example 26), both the cyclic unsaturated sultone compound and the cyclic sulfite were not added. The resistance value was larger than that of the battery (Comparative Example 1). This is considered to be that when either a cyclic unsaturated sultone compound or a cyclic sulfite is contained in a predetermined amount or more, gas generation occurs due to decomposition of the electrolytic solution and internal resistance increases.

<他の実施形態>   <Other embodiments>

本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。   The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)上記実施形態では、角形の電池を示したが、電池の形状は例えば円筒型などであってもよい。   (1) Although the rectangular battery is shown in the above embodiment, the shape of the battery may be, for example, a cylindrical shape.

(2)上記実施例においては、正極活物質としてLiNi0.17Co0.66Mn0.17を用いたが、正極活物質としてLiNi1/3Co1/3Mn1/3、LiCoO、LiNiO、LiNi1/2Mn1/2などを用いてもよい。 (2) In the above examples, LiNi 0.17 Co 0.66 Mn 0.17 O 2 was used as the positive electrode active material, but LiNi 1/3 Co 1/3 Mn 1/3 O 2 was used as the positive electrode active material. LiCoO 2 , LiNiO 2 , LiNi 1/2 Mn 1/2 O 2, or the like may be used.

(3)上記実施例においては、負極活物質として難黒鉛化性炭素を使用したが、負極活物質としてカーボンブラック、グラファイト、易黒鉛化性炭素(ソフトカーボン)などを用いてもよい。   (3) In the above examples, non-graphitizable carbon is used as the negative electrode active material, but carbon black, graphite, graphitizable carbon (soft carbon), or the like may be used as the negative electrode active material.

実施形態1の電池の断面図Sectional drawing of the battery of Embodiment 1.

符号の説明Explanation of symbols

1…非水電解質二次電池
3…正極板
4…負極板
5…セパレータ
6…電池ケース
DESCRIPTION OF SYMBOLS 1 ... Nonaqueous electrolyte secondary battery 3 ... Positive electrode plate 4 ... Negative electrode plate 5 ... Separator 6 ... Battery case

Claims (2)

正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備える非水電解質二次電池であって、
前記非水電解質は、前記非水電解質の総質量に対して、下記一般式(1)で表される環状不飽和スルトン化合物を2.0質量%以下含むとともに、
エチレンサルファイト、1,2−プロピレングリコールサルファイト、およびビニルエチレンサルファイトからなる群より選ばれる一以上の環状亜硫酸エステルを2.0質量%以下含むことを特徴とする非水電解質二次電池。
Figure 2010092698
(式中、R、R、R、Rはそれぞれ、水素、フッ素、又はフッ素を含んでいてもよい炭素数1〜4の炭化水素基であり、nは1〜3の整数である)。
A non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte,
The nonaqueous electrolyte contains 2.0% by mass or less of a cyclic unsaturated sultone compound represented by the following general formula (1) with respect to the total mass of the nonaqueous electrolyte.
A non-aqueous electrolyte secondary battery comprising 2.0% by mass or less of one or more cyclic sulfites selected from the group consisting of ethylene sulfite, 1,2-propylene glycol sulfite, and vinyl ethylene sulfite.
Figure 2010092698
(In the formula, R 1 , R 2 , R 3 and R 4 are each hydrogen, fluorine or a hydrocarbon group having 1 to 4 carbon atoms which may contain fluorine, and n is an integer of 1 to 3). is there).
前記環状不飽和スルトン化合物は1,3−プロペンスルトンであることを特徴とする請求項1に記載の非水電解質二次電池。 The non-aqueous electrolyte secondary battery according to claim 1, wherein the cyclic unsaturated sultone compound is 1,3-propene sultone.
JP2008261116A 2008-10-07 2008-10-07 Nonaqueous electrolyte secondary battery Active JP5272635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008261116A JP5272635B2 (en) 2008-10-07 2008-10-07 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008261116A JP5272635B2 (en) 2008-10-07 2008-10-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2010092698A true JP2010092698A (en) 2010-04-22
JP5272635B2 JP5272635B2 (en) 2013-08-28

Family

ID=42255231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261116A Active JP5272635B2 (en) 2008-10-07 2008-10-07 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5272635B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500033B1 (en) * 2012-04-30 2015-03-06 주식회사 엘지화학 Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary cell comprising the same
JP2016111005A (en) * 2012-06-12 2016-06-20 エー123 システムズ エルエルシーA123 Systems LLC Electrolyte formulation for reduced gassing in wide temperature range cycling, and secondary battery
JP2016189242A (en) * 2015-03-30 2016-11-04 日立マクセル株式会社 Nonaqueous electrolyte battery
WO2018164124A1 (en) * 2017-03-07 2018-09-13 住友精化株式会社 Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
JPWO2020203322A1 (en) * 2019-03-29 2020-10-08
CN112928332A (en) * 2021-03-17 2021-06-08 杉杉新材料(衢州)有限公司 High-voltage lithium ion battery non-aqueous electrolyte and lithium ion battery
WO2023013759A1 (en) * 2021-08-06 2023-02-09 Muアイオニックソリューションズ株式会社 Non-aqueous electrolyte, and non-aqueous electrolyte battery using said non-aqueous electrolyte
WO2023199942A1 (en) * 2022-04-15 2023-10-19 株式会社Gsユアサ Non-aqueous electrolyte storage element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329528A (en) * 2001-03-01 2002-11-15 Mitsui Chemicals Inc Nonaqueous electrolyte, secondary battery using it and additive for electrolyte
JP2004158213A (en) * 2002-11-01 2004-06-03 Toshiba Corp Manufacturing method of nonaqueous electrolyte secondary battery
JP2004172114A (en) * 2002-11-06 2004-06-17 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005166553A (en) * 2003-12-04 2005-06-23 Mitsubishi Chemicals Corp Nonaqueous electrolytic for lithium ion secondary battery, and the lithium ion secondary battery
JP2005259381A (en) * 2004-03-09 2005-09-22 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005310702A (en) * 2004-04-26 2005-11-04 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329528A (en) * 2001-03-01 2002-11-15 Mitsui Chemicals Inc Nonaqueous electrolyte, secondary battery using it and additive for electrolyte
JP2004158213A (en) * 2002-11-01 2004-06-03 Toshiba Corp Manufacturing method of nonaqueous electrolyte secondary battery
JP2004172114A (en) * 2002-11-06 2004-06-17 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005166553A (en) * 2003-12-04 2005-06-23 Mitsubishi Chemicals Corp Nonaqueous electrolytic for lithium ion secondary battery, and the lithium ion secondary battery
JP2005259381A (en) * 2004-03-09 2005-09-22 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005310702A (en) * 2004-04-26 2005-11-04 Japan Storage Battery Co Ltd Non-aqueous electrolyte secondary battery

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101500033B1 (en) * 2012-04-30 2015-03-06 주식회사 엘지화학 Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte and lithium secondary cell comprising the same
JP2016111005A (en) * 2012-06-12 2016-06-20 エー123 システムズ エルエルシーA123 Systems LLC Electrolyte formulation for reduced gassing in wide temperature range cycling, and secondary battery
JP2016189242A (en) * 2015-03-30 2016-11-04 日立マクセル株式会社 Nonaqueous electrolyte battery
JP7059250B2 (en) 2017-03-07 2022-04-25 住友精化株式会社 Additives for non-aqueous electrolytes, non-aqueous electrolytes, and power storage devices
WO2018164124A1 (en) * 2017-03-07 2018-09-13 住友精化株式会社 Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
CN110383565A (en) * 2017-03-07 2019-10-25 住友精化株式会社 Addition agent of non-aqueous electrolyte, nonaqueous electrolytic solution and electrical storage device
JPWO2018164124A1 (en) * 2017-03-07 2020-01-09 住友精化株式会社 Non-aqueous electrolyte additive, non-aqueous electrolyte, and power storage device
US11387490B2 (en) 2017-03-07 2022-07-12 Sumitomo Seika Chemicals Co., Ltd. Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
JP7216805B2 (en) 2019-03-29 2023-02-01 三井化学株式会社 Non-aqueous electrolyte for batteries and lithium secondary batteries
CN113646931A (en) * 2019-03-29 2021-11-12 三井化学株式会社 Nonaqueous electrolyte for battery and lithium secondary battery
WO2020203322A1 (en) * 2019-03-29 2020-10-08 三井化学株式会社 Nonaqueous electrolyte solution for batteries, and lithium secondary battery
JPWO2020203322A1 (en) * 2019-03-29 2020-10-08
CN112928332A (en) * 2021-03-17 2021-06-08 杉杉新材料(衢州)有限公司 High-voltage lithium ion battery non-aqueous electrolyte and lithium ion battery
WO2023013759A1 (en) * 2021-08-06 2023-02-09 Muアイオニックソリューションズ株式会社 Non-aqueous electrolyte, and non-aqueous electrolyte battery using said non-aqueous electrolyte
KR20240005902A (en) 2021-08-06 2024-01-12 엠유 아이오닉 솔류션즈 주식회사 Non-aqueous electrolyte and non-aqueous electrolyte battery using the non-aqueous electrolyte
WO2023199942A1 (en) * 2022-04-15 2023-10-19 株式会社Gsユアサ Non-aqueous electrolyte storage element

Also Published As

Publication number Publication date
JP5272635B2 (en) 2013-08-28

Similar Documents

Publication Publication Date Title
JP5621770B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP5272635B2 (en) Nonaqueous electrolyte secondary battery
KR101581780B1 (en) electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP5464076B2 (en) Nonaqueous electrolyte secondary battery, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery manufacturing method
JP2007179883A (en) Nonaqueous electrolyte secondary battery
JP5245203B2 (en) Nonaqueous electrolyte secondary battery
KR101322500B1 (en) Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery
WO2014038174A1 (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP2010086681A (en) Nonaqueous electrolyte secondary battery
JP4893038B2 (en) Nonaqueous electrolyte secondary battery
JP4893003B2 (en) Nonaqueous electrolyte secondary battery
JP4940617B2 (en) Nonaqueous electrolyte secondary battery
US9160033B2 (en) Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery
US11764403B2 (en) Nonaqueous electrolyte secondary battery
KR102318380B1 (en) Electrolyte and lithium secondary battery comprising the same
JP2007220313A (en) Nonaqueous secondary battery
JP5029005B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
US20210202994A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5272635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150