JP2010086681A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010086681A
JP2010086681A JP2008251813A JP2008251813A JP2010086681A JP 2010086681 A JP2010086681 A JP 2010086681A JP 2008251813 A JP2008251813 A JP 2008251813A JP 2008251813 A JP2008251813 A JP 2008251813A JP 2010086681 A JP2010086681 A JP 2010086681A
Authority
JP
Japan
Prior art keywords
nonaqueous electrolyte
mass
battery
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008251813A
Other languages
Japanese (ja)
Inventor
Yudai Kawazoe
雄大 川副
Katsushi Nishie
勝志 西江
Tomonori Kako
智典 加古
Shinya Kitano
真也 北野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2008251813A priority Critical patent/JP2010086681A/en
Publication of JP2010086681A publication Critical patent/JP2010086681A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with rise of inner resistance restrained due to repetition of charge and discharge. <P>SOLUTION: The nonaqueous electrolyte secondary battery 1 includes a cathode containing a cathode active material, an anode containing an anode active material and nonaqueous electrolyte. As the cathode active material, a compound expressed in a general formula: Li<SB>v</SB>M1<SB>w</SB>PO<SB>4</SB>(provided, 0≤v≤2, 0.8≤w≤1.2, and M1 is 3d transition metal) is used, and the nonaqueous electrolyte contains 3.0% by mass or less of vinylene carbonate and 4.0% by mass or less of organic silicide with an Si-N bond to a total mass of the nonaqueous electrolyte. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

非水電解質二次電池(以下、単に「電池」ともいう)は、高電圧・高エネルギー密度を有するため、例えば、携帯電話、ノート型パソコン電源などとして広く用いられている。
このような非水電解質二次電池では、一般に、負極活物質に炭素材料、正極活物質にリチウム遷移金属複合酸化物が用いられ、非水電解質として、エチレンカーボネート(EC)等の溶媒にLiPFなどの支持塩を溶解させた非水電解液が使用されている。
Non-aqueous electrolyte secondary batteries (hereinafter also simply referred to as “batteries”) have high voltage and high energy density, and are therefore widely used, for example, as mobile phones and notebook personal computer power supplies.
In such a non-aqueous electrolyte secondary battery, a carbon material is generally used as a negative electrode active material, and a lithium transition metal composite oxide is used as a positive electrode active material. LiPF 6 is used as a non-aqueous electrolyte in a solvent such as ethylene carbonate (EC). A non-aqueous electrolyte solution in which a supporting salt such as is dissolved is used.

そして、上記のような非水電解質にビニレンカーボネート(炭酸ビニレン)を添加することにより、初回の充放電によって、負極上に安定なSEI被膜(solid electrolyte interface)を形成し、この被膜により電解液の分解が抑制されることが知られている(例えば、特許文献1および特許文献2を参照)。
また、特許文献3および特許文献4には、非水電解液にSi−N結合を有する有機ケイ素化合物を含ませることにより、この化合物と電解液中の水やフッ化水素と反応させて、電池材料に悪影響を与えない化合物に変化させる技術が開示されている。
特開2003−331927公報 特開平8−96852号公報 特開平11−16602号公報 特開2003−7332公報
Then, by adding vinylene carbonate (vinylene carbonate) to the non-aqueous electrolyte as described above, a stable SEI film (solid electrolyte interface) is formed on the negative electrode by the first charge / discharge, and the electrolyte solution is formed by this film. It is known that decomposition is suppressed (see, for example, Patent Document 1 and Patent Document 2).
Further, Patent Document 3 and Patent Document 4 include a non-aqueous electrolyte containing an organosilicon compound having a Si—N bond, thereby reacting the compound with water or hydrogen fluoride in the electrolyte, and A technique for changing to a compound that does not adversely affect the material is disclosed.
JP 2003-331927 A JP-A-8-96852 Japanese Patent Laid-Open No. 11-16602 JP 2003-7332 A

ところで、正極活物質として一般式LiM1PO(ただし、0≦v≦2、0.8≦w≦1.2で、M1は3d遷移金属である)で表される化合物、例えばリン酸鉄リチウム(LiFePO)を用いた場合、当該化合物は、コバルト酸リチウム(LiCoO)等と比べて水を多く含んでいるため、電池内部に水が持ち込まれやすい。また電解質に六フッ化リン酸リチウム(LiPF)を用いた場合には、電池内部に含まれる水と反応して、次式に示すようにフッ酸を生じる。
LiPF+HO→2HF+LiF+POF
By the way, a compound represented by the general formula Li v M1 w PO 4 (where 0 ≦ v ≦ 2, 0.8 ≦ w ≦ 1.2, and M1 is a 3d transition metal) as a positive electrode active material, such as phosphorus When lithium iron oxide (LiFePO 4 ) is used, since the compound contains more water than lithium cobaltate (LiCoO 2 ) or the like, water is likely to be brought into the battery. In addition, when lithium hexafluorophosphate (LiPF 6 ) is used as the electrolyte, it reacts with water contained in the battery to generate hydrofluoric acid as shown in the following formula.
LiPF 6 + H 2 O → 2HF + LiF + POF 3

このような場合に、非水電解液にビニレンカーボネートを添加しても、電解質中に含まれる水や酸と反応してビニレンカーボネートが消費され、負極上に安定なSEI被膜が形成され難いという問題があった。
また、SEI被膜が形成されたとしても、充放電の繰返しにより内部抵抗が上昇するという問題があった。このような問題が生じる原因のひとつとして、例えば、SEI被膜は電気的な抵抗が高いため、充放電の繰返しにより、被膜の破壊が起こることなどが考えられる。
In such a case, even if vinylene carbonate is added to the non-aqueous electrolyte, the vinylene carbonate is consumed by reacting with water or acid contained in the electrolyte, and it is difficult to form a stable SEI film on the negative electrode. was there.
Further, even when the SEI film is formed, there is a problem that the internal resistance increases due to repeated charge and discharge. One possible cause of such a problem is that, for example, the SEI film has a high electrical resistance, so that the film is destroyed by repeated charge and discharge.

一方、非水電解液にビニレンカーボネートを添加せずに、Si−N結合を有する有機ケイ素化合物を添加したものを検討したところ、負極上の電解液の分解を抑制することができず、内部抵抗が上昇するという問題があった。
本発明は上記のような事情に基づいて完成されたものであり、充放電の繰返しによる内部抵抗の上昇を抑制した非水電解質二次電池を提供することを目的とする。
On the other hand, when an organic silicon compound having a Si—N bond was added to the non-aqueous electrolyte without adding vinylene carbonate, decomposition of the electrolyte on the negative electrode could not be suppressed, and internal resistance There was a problem of rising.
The present invention has been completed based on the above circumstances, and an object thereof is to provide a nonaqueous electrolyte secondary battery in which an increase in internal resistance due to repeated charge and discharge is suppressed.

上記問題を解決するために、鋭意検討した結果、本発明者らは、正極活物質に、一般式LiM1PO(ただし、0≦v≦2、0.8≦w≦1.2で、M1は3d遷移金属である)で表される化合物を用いた場合に、所定量のビニレンカーボネートと、所定量のSi−N結合を有する有機ケイ素化合物とを非水電解質に添加することにより、これらを単独で添加したものよりも、顕著に電池の内部抵抗の上昇を抑制することができるということを見出した。 As a result of intensive studies to solve the above problems, the present inventors have determined that the positive electrode active material has a general formula Li v M1 w PO 4 (where 0 ≦ v ≦ 2, 0.8 ≦ w ≦ 1.2). And M1 is a 3d transition metal) by adding a predetermined amount of vinylene carbonate and a predetermined amount of an organosilicon compound having a Si—N bond to the non-aqueous electrolyte. The inventors have found that the increase in the internal resistance of the battery can be remarkably suppressed as compared with the case where these are added alone.

すなわち、本発明は、正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備える非水電解質二次電池であって、前記正極活物質に、一般式LiM1PO(ただし、0≦v≦2、0.8≦w≦1.2で、M1は3d遷移金属である)で表される化合物を用い、前記非水電解質は、前記非水電解質の総質量に対して、ビニレンカーボネートを3.0質量%以下、および、Si−N結合を有する有機ケイ素化合物を4.0質量%以下含むことを特徴とする非水電解質二次電池である。 That is, the present invention is a non-aqueous electrolyte secondary battery including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte, and the positive electrode active material includes a general formula Li v M1 w A compound represented by PO 4 (where 0 ≦ v ≦ 2, 0.8 ≦ w ≦ 1.2, and M1 is a 3d transition metal), and the nonaqueous electrolyte is a total of the nonaqueous electrolytes. A non-aqueous electrolyte secondary battery comprising 3.0% by mass or less of vinylene carbonate and 4.0% by mass or less of an organosilicon compound having a Si—N bond with respect to mass.

非水電解質に所定量のビニレンカーボネートと所定量のSi−N結合を有する有機ケイ素化合物とを添加することにより、電池の内部抵抗の上昇を顕著に抑制することができる理由の詳細は明らかではないが、以下のように推察される。   The details of why the increase in the internal resistance of the battery can be remarkably suppressed by adding a predetermined amount of vinylene carbonate and a predetermined amount of an organosilicon compound having a Si—N bond to the nonaqueous electrolyte are not clear. However, it is guessed as follows.

非水電解質に添加したSi−N結合を有する有機ケイ素化合物が、電池に含まれる水または酸と優先的に反応して、ビニレンカーボネートと水または酸との反応による被膜形成能の低下を抑制し、電池の内部抵抗の上昇を抑制したと考えられる。   The organosilicon compound having a Si-N bond added to the non-aqueous electrolyte reacts preferentially with water or acid contained in the battery, and suppresses a decrease in film forming ability due to the reaction between vinylene carbonate and water or acid. It is thought that the rise in the internal resistance of the battery was suppressed.

本発明によれば、充放電の繰返しによる内部抵抗の上昇を抑制した非水電解質二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte secondary battery which suppressed the raise of internal resistance by repetition of charging / discharging can be provided.

<実施形態1>
本発明の実施形態1を図1によって説明する。
図1は、本発明の一実施形態である角形の非水電解質二次電池1の概略断面図である。この非水電解質二次電池1(以下、単に「電池」ともいう)は、アルミニウム箔からなる正極集電体に正極合剤を塗布してなる正極板3(正極)と、銅箔からなる負極集電体に負極合剤を塗布してなる負極板4(負極)とがセパレータ5を介して渦巻状に巻回された発電要素2と、非水電解質とを電池ケース6に収納してなる。
<Embodiment 1>
Embodiment 1 of the present invention will be described with reference to FIG.
FIG. 1 is a schematic cross-sectional view of a prismatic nonaqueous electrolyte secondary battery 1 according to an embodiment of the present invention. This non-aqueous electrolyte secondary battery 1 (hereinafter also simply referred to as “battery”) includes a positive electrode plate 3 (positive electrode) obtained by applying a positive electrode mixture to a positive electrode current collector made of aluminum foil, and a negative electrode made of copper foil. A power generation element 2 in which a negative electrode plate 4 (negative electrode) formed by applying a negative electrode mixture to a current collector is spirally wound via a separator 5 and a nonaqueous electrolyte are housed in a battery case 6. .

電池ケース6には、安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、負極板4は負極リード11を介して電池ケース6の上部にある負極端子9と接続され、正極板3は正極リード10を介して電池蓋7と接続されている。   A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, the negative electrode plate 4 is connected to a negative electrode terminal 9 at the upper part of the battery case 6 via a negative electrode lead 11, and the positive electrode plate 3 is a positive electrode. The battery lid 7 is connected via the lead 10.

正極板3は、アルミニウムなどの金属により形成された正極集電体の両面に、リチウムイオンを吸蔵放出可能な正極活物質を含有する正極合剤層を備えている。正極集電体のうち正極合剤層の形成されていない部分には正極リード10が溶着されている。   The positive electrode plate 3 includes a positive electrode mixture layer containing a positive electrode active material capable of occluding and releasing lithium ions on both surfaces of a positive electrode current collector formed of a metal such as aluminum. A positive electrode lead 10 is welded to a portion of the positive electrode current collector where the positive electrode mixture layer is not formed.

本発明の非水電解質二次電池においては、正極活物質として、一般式LiM1PO(ただし、0≦v≦2、0.8≦w≦1.2で、M1は3d遷移金属である)で表されるオリビン構造を有する化合物が用いられる。本発明では、正極活物質として、前記オリビン構造を有する化合物をカーボンや非晶質炭素で被覆したものを用いてもよい。カーボンで被覆した場合には、電池内に多くの水が持ち込まれやすいが、このように電池内の水分量が多いものを用いた場合には、特に本発明の効果が顕著に現れる。
上記一般式LiM1POで表されるオリビン構造を有する化合物の中では、安価な材料であるという観点からLiFePOが、特に好ましい。
In the nonaqueous electrolyte secondary battery of the present invention, as the positive electrode active material, the general formula Li v M1 w PO 4 (where 0 ≦ v ≦ 2, 0.8 ≦ w ≦ 1.2, and M1 is a 3d transition metal) And a compound having an olivine structure represented by: In the present invention, as the positive electrode active material, a material having the olivine structure coated with carbon or amorphous carbon may be used. When coated with carbon, a large amount of water is likely to be brought into the battery, but the effect of the present invention is particularly prominent when such a battery having a large amount of water is used.
Among the compounds having an olivine structure represented by the general formula Li v M1 w PO 4 , LiFePO 4 is particularly preferable from the viewpoint of being an inexpensive material.

上記した正極活物質には、導電剤、結着剤等を添加することができる。導電剤としては、無機化合物、有機化合物を用いることができる。無機化合物としては、カーボンブラック、グラファイトなどを用いることができ、有機化合物としては、例えばポリアニリン等の導電性ポリマーなどを用いることができる。結着剤としては、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、スチレン−ブタジエンゴム、ポリアクリロニトリルなどを単独で、あるいは混合して用いることができる。   A conductive agent, a binder, or the like can be added to the positive electrode active material. As the conductive agent, an inorganic compound or an organic compound can be used. As the inorganic compound, carbon black, graphite or the like can be used, and as the organic compound, for example, a conductive polymer such as polyaniline can be used. As the binder, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, styrene-butadiene rubber, polyacrylonitrile, or the like can be used alone or in combination.

次に、負極板4について説明する。負極板4は、銅などの金属により形成された負極集電体の両面に、リチウムイオンを吸蔵放出可能な負極活物質を含有する負極合剤層を備えている。負極集電体のうち負極合剤層の形成されていない部分には、負極リード11が超音波溶着により溶着されている。   Next, the negative electrode plate 4 will be described. The negative electrode plate 4 includes a negative electrode mixture layer containing a negative electrode active material capable of occluding and releasing lithium ions on both surfaces of a negative electrode current collector formed of a metal such as copper. A negative electrode lead 11 is welded by ultrasonic welding to a portion of the negative electrode current collector where the negative electrode mixture layer is not formed.

負極合剤層に含有される負極活物質としては、グラファイト、難黒鉛化性炭素(ハードカーボン)、易黒鉛化性炭素(ソフトカーボン)等の炭素質材料、Al、Si、Pb、Sn、Zn、Cd等とリチウムとの合金系化合物、金属Li、一般式M5O(ただし、M5は、W、Mo、Si、Cu、Snから選ばれる少なくとも一種の元素、0≦z≦2)で表される金属酸化物、またはこれらの混合物を用いることができる。負極活物質には正極活物質と同様に、ポリフッ化ビニリデンなどの結着剤などを添加することができる。 As the negative electrode active material contained in the negative electrode mixture layer, carbonaceous materials such as graphite, non-graphitizable carbon (hard carbon), graphitizable carbon (soft carbon), Al, Si, Pb, Sn, Zn And an alloy compound of lithium with Cd and the like, metal Li, and general formula M5O z (where M5 is at least one element selected from W, Mo, Si, Cu, and Sn, 0 ≦ z ≦ 2). Metal oxides or mixtures thereof can be used. Similarly to the positive electrode active material, a binder such as polyvinylidene fluoride can be added to the negative electrode active material.

セパレータ5としては、織布、不織布、合成樹脂微多孔膜などを用いることができ、合成樹脂微多孔膜を好適に用いることができる。合成樹脂微多孔膜のうち、特に、ポリエチレン製微多孔膜、ポリプロピレン製の微多孔膜、アラミドなどを加工した耐熱性樹脂、またはこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が特に好適に用いられる。   As the separator 5, a woven fabric, a non-woven fabric, a synthetic resin microporous film, or the like can be used, and a synthetic resin microporous film can be suitably used. Among the synthetic resin microporous membranes, polyolefin microporous membranes such as polyethylene microporous membranes, polypropylene microporous membranes, heat-resistant resins processed from aramids, etc., or microporous membranes composed of these are particularly suitable. Used for.

非水電解質は非水溶媒に電解質塩を溶解してなる。
電解質塩としては、LiPF、LiClO、LiBF、LiAsF、LiCFCO、LiCF(CF、LiCF(C、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF、LiN(COCFCF、LiPF(CFCF等の塩を単独でまたは二種以上混合して使用することができる。
The non-aqueous electrolyte is obtained by dissolving an electrolyte salt in a non-aqueous solvent.
Examples of the electrolyte salt include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 CO 2 , LiCF 3 (CF 3 ) 3 , LiCF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 , LiN (COCF 2 CF 3 ) 2 , LiPF 3 (CF 2 CF 3 ) 3 or the like alone or in combination Can be used as a mixture.

上記電解質塩を溶解する非水溶媒は、エチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテートなどの極性溶媒を単独でまたは二種以上混合して使用することができる。   Nonaqueous solvents for dissolving the electrolyte salts are ethylene carbonate, propylene carbonate, γ-butyrolactone, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, 1,2-dimethoxyethane. , 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, methyl acetate and the like can be used alone or in admixture of two or more.

さて、本発明では、非水電解質には、その総質量に対して、ビニレンカーボネートが3.0質量%以下、Si−N結合を有する有機ケイ素化合物が4.0質量%以下含まれる。   In the present invention, the nonaqueous electrolyte contains 3.0% by mass or less of vinylene carbonate and 4.0% by mass or less of an organosilicon compound having a Si—N bond with respect to the total mass.

ビニレンカーボネート(以下単に「VC」ともいう)の量が、非水電解質の総質量に対して3.0質量%以下を超えると電池の内部抵抗が大きくなる。なお、VCの量は、非水電解質の総質量に対して、0.02質量%以上であるのが好ましい。VCの量が非水電解質の総質量に対して0.02質量%未満であると、被膜が充分に形成されないことがある。   When the amount of vinylene carbonate (hereinafter also simply referred to as “VC”) exceeds 3.0 mass% or less with respect to the total mass of the nonaqueous electrolyte, the internal resistance of the battery increases. In addition, it is preferable that the quantity of VC is 0.02 mass% or more with respect to the total mass of a nonaqueous electrolyte. When the amount of VC is less than 0.02% by mass with respect to the total mass of the nonaqueous electrolyte, the coating film may not be sufficiently formed.

Si−N結合を有する有機ケイ素化合物(以下、単に「有機ケイ素化合物」ともいう)の量が、非水電解質の総質量に対して、4.0質量%を超えると電池の内部抵抗が大きくなる。なお、有機ケイ素化合物の量は、非水電解質の総質量に対して、0.01質量%以上であるのが好ましい。有機ケイ素化合物の量が非水電解質の総質量に対して、0.01質量%未満であると、ビニレンカーボネートと水などとの反応を抑制する効果が発揮できない場合がある。   When the amount of the organosilicon compound having a Si—N bond (hereinafter also simply referred to as “organosilicon compound”) exceeds 4.0 mass% with respect to the total mass of the nonaqueous electrolyte, the internal resistance of the battery increases. . In addition, it is preferable that the quantity of an organosilicon compound is 0.01 mass% or more with respect to the total mass of a nonaqueous electrolyte. If the amount of the organosilicon compound is less than 0.01% by mass with respect to the total mass of the nonaqueous electrolyte, the effect of suppressing the reaction between vinylene carbonate and water may not be exhibited.

本発明では、VCと有機ケイ素化合物とを上記の量で含む非水電解質を用いることにより、これらを単独で含む非水電解質を用いた電池よりも顕著に電池の内部抵抗の上昇を抑制することができるのである。   In the present invention, by using a non-aqueous electrolyte containing VC and an organosilicon compound in the above amounts, the increase in the internal resistance of the battery is remarkably suppressed as compared with a battery using a non-aqueous electrolyte containing these alone. Can do it.

VCと有機ケイ素化合物とを含む非水電解質を有する電池の内部抵抗の上昇を抑制する機構については、明らかではないが、以下のように推測される。
非水電解質に添加したSi−N結合を有する有機ケイ素化合物が、電池に含まれる水または酸と優先的に反応して、ビニレンカーボネートと水または酸との反応による被膜形成能の低下を抑制し、電池の内部抵抗の上昇を抑制したと考えられる。
Although it is not clear about the mechanism which suppresses the raise of the internal resistance of the battery which has nonaqueous electrolyte containing VC and an organosilicon compound, it estimates as follows.
The organosilicon compound having a Si-N bond added to the non-aqueous electrolyte reacts preferentially with water or acid contained in the battery, and suppresses a decrease in film forming ability due to the reaction between vinylene carbonate and water or acid. It is thought that the rise in the internal resistance of the battery was suppressed.

なお、本発明において、Si−N結合を有する有機ケイ素化合物としては、例えば、1,3−ジフェニル−1,1,3,3−テトラメチルジシラザン、1,1,3,3,5,5−ヘキサメチルシクロトリシラザン、1,1,1,3,3,3−ヘキサメチルジシラザン、1,3−ビス(クロロメチル)テトラメチルジシラザン、1,3−ジビニル−1,1,3,3−テトラメチルジシラザン、ヘプタメチルジシラザン、オクタメチルシクロテトラシラザン、(N,O−ビストリメチルシリル)アセトアミド、(N,N−ジエチルアミノ)トリメチルシラザン、ビス(トリメチルシリル)−1,4−ブタンジアミン、N−トリメチルシリルイミダゾール等が挙げられる。   In the present invention, examples of the organosilicon compound having a Si—N bond include 1,3-diphenyl-1,1,3,3-tetramethyldisilazane, 1,1,3,3,5,5. -Hexamethylcyclotrisilazane, 1,1,1,3,3,3-hexamethyldisilazane, 1,3-bis (chloromethyl) tetramethyldisilazane, 1,3-divinyl-1,1,3 3-tetramethyldisilazane, heptamethyldisilazane, octamethylcyclotetrasilazane, (N, O-bistrimethylsilyl) acetamide, (N, N-diethylamino) trimethylsilazane, bis (trimethylsilyl) -1,4-butanediamine, N-trimethylsilylimidazole etc. are mentioned.

<実施例>
以下、本発明の実施例および比較例を示すが、本発明はこれに限定されるものではない。
1.実施例1の電池の作製
図1に示す形態の非水電解質二次電池を以下の方法により作製した。
(1)正極板の作製
結着剤のポリフッ化ビニリデン5質量部と、導電剤のアセチレンブラック5質量部と、正極活物質として非晶質炭素を被覆したLiFePOを90質量部とを混合したものに、N−メチル−2−ピロリドンを加えてペースト状に調製した後、これを、厚さが20μmのアルミニウム箔製の正極集電体の両面に塗布、乾燥することによって正極板3を作製し、正極リード10を備え付けた。
<Example>
Hereinafter, although the Example and comparative example of this invention are shown, this invention is not limited to this.
1. Production of Battery of Example 1 A nonaqueous electrolyte secondary battery having the form shown in FIG. 1 was produced by the following method.
(1) Production of positive electrode plate 5 parts by mass of polyvinylidene fluoride as a binder, 5 parts by mass of acetylene black as a conductive agent, and 90 parts by mass of LiFePO 4 coated with amorphous carbon as a positive electrode active material were mixed. N-methyl-2-pyrrolidone was added to the product to prepare a paste, and this was applied to both sides of a positive electrode current collector made of aluminum foil having a thickness of 20 μm and dried to produce positive electrode plate 3 The positive electrode lead 10 was provided.

(2)負極板の作製
負極活物質として難黒鉛化性炭素を90質量部と、結着剤のポリフッ化ビニリデン10質量部とを、N−メチル−2−ピロリドンに加えてペースト状に調製した後、これを、厚さが10μmの銅箔製の負極集電体の両面に塗布し、乾燥することによって負極板4を作製し、負極リード11を備え付けた。
(2) Production of Negative Electrode Plate 90 parts by mass of non-graphitizable carbon as a negative electrode active material and 10 parts by mass of polyvinylidene fluoride as a binder were prepared in a paste form by adding to N-methyl-2-pyrrolidone. Thereafter, this was applied to both sides of a negative electrode current collector made of copper foil having a thickness of 10 μm, and dried to prepare the negative electrode plate 4, and the negative electrode lead 11 was provided.

(3)電池の作製
セパレータとしては、ポリエチレン微多孔膜を用いた。
非水電解質を、以下の方法により調製した。エチレンカーボネート(EC):ジエチルカーボネート(DMC):エチルメチルカーボネート(EMC)=3:2:5(体積比)の混合溶媒に、LiPFを調製後に1mol/Lとなるように溶解し、さらに、非水電解質の総質量に対して、0.01質量%の1,3−ジフェニル−1,1,3,3−テトラメチルジシラザン(DPTMSZ)と、0.02質量%のビニレンカーボネート(VC)を添加して非水電解質を調製した。
これらの材料を用いて容量が400mAhの実施例1の非水電解質二次電池を5セル作製した。
(3) Fabrication of battery A polyethylene microporous membrane was used as the separator.
A non-aqueous electrolyte was prepared by the following method. In a mixed solvent of ethylene carbonate (EC): diethyl carbonate (DMC): ethyl methyl carbonate (EMC) = 3: 2: 5 (volume ratio), LiPF 6 was dissolved to 1 mol / L after preparation, 0.01% by mass of 1,3-diphenyl-1,1,3,3-tetramethyldisilazane (DPTMSZ) and 0.02% by mass of vinylene carbonate (VC) based on the total mass of the nonaqueous electrolyte Was added to prepare a non-aqueous electrolyte.
Using these materials, five cells of the nonaqueous electrolyte secondary battery of Example 1 having a capacity of 400 mAh were produced.

2.実施例2〜48および比較例1〜58の電池の作製
非水電解質の総質量に対して、0.01質量%の1,3−ジフェニル−1,1,3,3−テトラメチルジシラザン(DPTMSZ)と、0.02質量%のビニレンカーボネート(VC)に代えて、表1に示す量のDPTMSZとVCとを添加したこと以外は実施例1と同様にして、実施例2〜36および比較例1〜28の非水電解質二次電池を5セルずつ作製した。
2. Production of Batteries of Examples 2 to 48 and Comparative Examples 1 to 58 0.01% by mass of 1,3-diphenyl-1,1,3,3-tetramethyldisilazane (based on the total mass of the nonaqueous electrolyte) Examples 2-36 and Comparative Example 1 except that DPTMSZ and VC were added in place of DPTMSZ) and 0.02% by mass of vinylene carbonate (VC). Five non-aqueous electrolyte secondary batteries of Examples 1 to 28 were produced.

非水電解質の総質量に対して、0.01質量%のDPTMSZと、0.02質量%のVCに代えて、表2に示す量の1,1,3,3,5,5−ヘキサメチルシクロトリシラザン(HM−CTSZ)とVCとを添加したこと以外は実施例1と同様にして、実施例37〜42および比較例29〜43の非水電解質二次電池を5セルずつ作製した。   The amount of 1,1,3,3,5,5-hexamethyl shown in Table 2 is used instead of 0.01 wt% DPTMSZ and 0.02 wt% VC based on the total weight of the nonaqueous electrolyte. Except that cyclotrisilazane (HM-CTSZ) and VC were added, the non-aqueous electrolyte secondary batteries of Examples 37 to 42 and Comparative Examples 29 to 43 were produced in units of 5 in the same manner as Example 1.

非水電解質の総質量に対して、0.01質量%のDPTMSZと、0.02質量%のVCに代えて、表3に示す量の1,1,1,3,3,3−ヘキサメチルジシラザン(HM−DS)とVCとを添加したこと以外は実施例1と同様にして、実施例43〜48および比較例44〜58の非水電解質二次電池を5セルずつ作製した。   Instead of 0.01 wt% DPTMSZ and 0.02 wt% VC, the amount of 1,1,1,3,3,3-hexamethyl shown in Table 3 with respect to the total weight of the nonaqueous electrolyte Five non-aqueous electrolyte secondary batteries of Examples 43 to 48 and Comparative Examples 44 to 58 were produced in the same manner as in Example 1 except that disilazane (HM-DS) and VC were added.

3.評価試験
(1)充放電サイクル寿命試験
実施例1〜48および比較例1〜58の各電池5セルずつを用いて、以下の方法により初期放電容量確認試験を行った。
各電池を、25℃において、400mA定電流で3.6Vまで充電し、さらに3.6V定電圧で合計3時間充電した後、400mA定電流で終止電圧2.0Vの条件で放電を行うことにより初期放電容量を測定した。
3. Evaluation Test (1) Charge / Discharge Cycle Life Test An initial discharge capacity confirmation test was performed by the following method using 5 cells of each of Examples 1-48 and Comparative Examples 1-58.
By charging each battery to 3.6 V at a constant current of 400 mA at 25 ° C. and further charging for 3 hours at a constant voltage of 3.6 V, and then discharging at a constant current of 400 mA and a final voltage of 2.0 V. The initial discharge capacity was measured.

初期放電容量測定後の各電池について、60℃での充放電サイクル寿命試験を以下の方法により行った。60℃の恒温槽において、各電池を、800mA定電流で3.6V定電圧で合計30分充電した後、800mA定電流で終止電圧2.0Vの条件で放電を行い、これを1サイクルとして、1000サイクル繰返した。次に、各電池を25℃で5時間冷却し、冷却後の各電池について、上記初期放電容量確認試験と同様の方法により、25℃での放電容量確認試験を行った。   About each battery after initial stage discharge capacity measurement, the charge / discharge cycle life test at 60 degreeC was done with the following method. In a constant temperature bath of 60 ° C., each battery was charged with a constant current of 3.6 mA and a constant voltage of 3.6 V for 30 minutes, and then discharged under a condition of a final voltage of 2.0 V with a constant current of 800 mA. 1000 cycles were repeated. Next, each battery was cooled at 25 ° C. for 5 hours, and each battery after cooling was subjected to a discharge capacity confirmation test at 25 ° C. in the same manner as in the initial discharge capacity confirmation test.

25℃での放電容量確認試験後の各電池を、充電電流1CmA(400mA)、充電電圧3.2Vの定電流−定電圧充電で3時間充電することにより電池のSOCを50%に設定し、80mAで10秒間放電したときの電圧(E1)、0.5CmAで10秒間放電したときの電圧(E2)をそれぞれ測定した。
ここで、「SOC50%」とは、電池の容量に対して充電電気量が50%であることを表す。
Each battery after the discharge capacity confirmation test at 25 ° C. is charged for 3 hours with a constant current-constant voltage charge with a charge current of 1 CmA (400 mA) and a charge voltage of 3.2 V, and the SOC of the battery is set to 50%. The voltage (E1) when discharged at 80 mA for 10 seconds and the voltage (E2) when discharged at 0.5 CmA for 10 seconds were measured.
Here, “SOC 50%” represents that the charge electricity amount is 50% with respect to the capacity of the battery.

上記の測定値を用いて、直流抵抗値(R)を以下の式により算出した。
R=(E1−E2)/放電電流(I)
Using the above measured values, the DC resistance value (R) was calculated by the following equation.
R = (E1-E2) / Discharge current (I)

各電池について5セルずつ直流抵抗値を算出し、その平均値を表1〜表3に示した。直流抵抗値が300mΩ以下であれば、充放電の繰返しによる内部抵抗の上昇を抑制できたと判断した。   The DC resistance value was calculated for each battery by 5 cells, and the average values are shown in Tables 1 to 3. If the DC resistance value was 300 mΩ or less, it was determined that the increase in internal resistance due to repeated charge and discharge could be suppressed.

なお、表1〜3には、非水電解質に添加した有機ケイ素化合物およびVCの量(非水電解質の全質量に対する質量%)を併せて示した。表中、抵抗値とは直流抵抗値を意味する。   In Tables 1 to 3, the amounts of the organosilicon compound and VC added to the nonaqueous electrolyte (% by mass with respect to the total mass of the nonaqueous electrolyte) are also shown. In the table, the resistance value means a DC resistance value.

Figure 2010086681
Figure 2010086681

Figure 2010086681
Figure 2010086681

Figure 2010086681
Figure 2010086681

4.結果と考察
非水電解質の全質量に対して、4.0質量%以下のSi−N結合を有する有機ケイ素化合物と、3.0質量%以下のVCとを含有する非水電解質を備える本発明の電池(実施例1〜48)では、直流抵抗値が290mΩ以下であり、充放電の繰返しによる内部抵抗の上昇を抑制できた。
本発明の電池のうち、1.0〜2.0質量%の有機ケイ素化合物と、0.5〜2.0質量%のVCとを含むもの(実施例16,17,22,23,28,29,40,41,46,47)では、特に好適な結果が得られた。
4). Results and Discussion The present invention is provided with a nonaqueous electrolyte containing an organosilicon compound having a Si—N bond of 4.0% by mass or less and VC of 3.0% by mass or less with respect to the total mass of the nonaqueous electrolyte. In the batteries (Examples 1 to 48), the DC resistance value was 290 mΩ or less, and an increase in internal resistance due to repeated charge and discharge could be suppressed.
Among the batteries of the present invention, those containing 1.0 to 2.0% by mass of an organosilicon compound and 0.5 to 2.0% by mass of VC (Examples 16, 17, 22, 23, 28, 29, 40, 41, 46, 47) particularly favorable results were obtained.

しかし、有機ケイ素化合物およびVCの少なくとも一方が、上記の含有量の範囲を外れている電池(比較例1〜58)では直流抵抗値が高く、充放電の繰返しによる内部抵抗の上昇を抑制できなかった。   However, in batteries (Comparative Examples 1 to 58) in which at least one of the organosilicon compound and VC is out of the above content range, the DC resistance value is high, and the increase in internal resistance due to repeated charge and discharge cannot be suppressed. It was.

具体的には、有機ケイ素化合物のみを0.01質量%〜4.0質量%添加した電池(比較例2〜7、比較例29〜34、および比較例44〜49)では、有機ケイ素化合物とVCの双方未添加の電池(比較例1)より抵抗値は小さかったが、ごくわずかであった。
また、VCのみを0.02質量%〜3.0質量%添加した電池(比較例9,11,13,15,17,19)では、有機ケイ素化合物とVCの双方未添加の電池(比較例1)より抵抗値は小さかったが、ごくわずかであった。
Specifically, in the batteries (Comparative Examples 2-7, Comparative Examples 29-34, and Comparative Examples 44-49) to which only 0.01% by mass to 4.0% by mass of the organic silicon compound was added, Although the resistance value was smaller than that of the battery not added with both VCs (Comparative Example 1), it was very small.
Moreover, in the battery (Comparative Examples 9, 11, 13, 15, 17, 19) in which only VC is added in 0.02 mass% to 3.0 mass%, both the organosilicon compound and VC are not added (Comparative Example). Although the resistance value was smaller than 1), it was very small.

以上より、正極活物質に、LiFePOを用い、非水電解質の全質量に対して、4.0質量%以下のSi−N結合を有する有機ケイ素化合物と、3.0質量%以下のVCとを含有する非水電解質を用いることにより、充放電の繰返しによる内部抵抗の上昇を抑制する効果が顕著に表れるということがわかった。 As described above, LiFePO 4 is used as the positive electrode active material, and an organosilicon compound having 4.0% by mass or less of Si—N bonds with respect to the total mass of the nonaqueous electrolyte, and 3.0% by mass or less of VC and It has been found that the use of a non-aqueous electrolyte containing a remarkably effective effect of suppressing an increase in internal resistance due to repeated charge and discharge.

<他の実施形態>   <Other embodiments>

本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。   The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)上記実施形態では、角形の電池を示したが、電池の形状は例えば円筒型などであってもよい。   (1) Although the rectangular battery is shown in the above embodiment, the shape of the battery may be, for example, a cylindrical shape.

(2)上記実施例においては、負極活物質として難黒鉛化性炭素を使用したが、負極活物質としてカーボンブラック、グラファイト、易黒鉛化性炭素(ソフトカーボン)などを用いてもよい。   (2) In the above embodiment, non-graphitizable carbon is used as the negative electrode active material, but carbon black, graphite, graphitizable carbon (soft carbon), or the like may be used as the negative electrode active material.

実施形態1の電池の断面図Sectional drawing of the battery of Embodiment 1.

符号の説明Explanation of symbols

1…非水電解質二次電池
3…正極板
4…負極板
5…セパレータ
6…電池ケース
DESCRIPTION OF SYMBOLS 1 ... Nonaqueous electrolyte secondary battery 3 ... Positive electrode plate 4 ... Negative electrode plate 5 ... Separator 6 ... Battery case

Claims (1)

正極活物質を含む正極と、負極活物質を含む負極と、非水電解質とを備える非水電解質二次電池であって、
前記正極活物質に、一般式LiM1PO(ただし、0≦v≦2、0.8≦w≦1.2で、M1は3d遷移金属である)で表される化合物を用い、
前記非水電解質は、前記非水電解質の総質量に対して、ビニレンカーボネートを3.0質量%以下、および、Si−N結合を有する有機ケイ素化合物を4.0質量%以下含むことを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a non-aqueous electrolyte,
For the positive electrode active material, a compound represented by the general formula Li v M1 w PO 4 (where 0 ≦ v ≦ 2, 0.8 ≦ w ≦ 1.2, and M1 is a 3d transition metal) is used,
The nonaqueous electrolyte contains 3.0% by mass or less of vinylene carbonate and 4.0% by mass or less of an organosilicon compound having a Si—N bond with respect to the total mass of the nonaqueous electrolyte. Non-aqueous electrolyte secondary battery.
JP2008251813A 2008-09-29 2008-09-29 Nonaqueous electrolyte secondary battery Pending JP2010086681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251813A JP2010086681A (en) 2008-09-29 2008-09-29 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251813A JP2010086681A (en) 2008-09-29 2008-09-29 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2010086681A true JP2010086681A (en) 2010-04-15

Family

ID=42250456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251813A Pending JP2010086681A (en) 2008-09-29 2008-09-29 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2010086681A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027503A1 (en) * 2009-09-01 2011-03-10 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery
WO2012049723A1 (en) * 2010-10-12 2012-04-19 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery
WO2013090027A1 (en) 2011-12-14 2013-06-20 Dow Global Technologies Llc Lithium battery electrodes containing lithium oxalate
WO2014027492A1 (en) * 2012-08-16 2014-02-20 トヨタ自動車株式会社 Lithium secondary battery and method for producing same
KR20140105813A (en) * 2011-12-08 2014-09-02 바스프 에스이 Electrochemical cells and the use thereof
US9583790B2 (en) 2013-11-22 2017-02-28 Samsung Electronics Co., Ltd. Electrolyte for lithium battery and lithium battery including the same
JP2019501478A (en) * 2016-05-06 2019-01-17 リアル パワー インダストリアル リミテッド カンパニー Secondary battery and manufacturing method thereof
JP2019506717A (en) * 2016-02-26 2019-03-07 トヨタ・モーター・ヨーロッパToyota Motor Europe Lithium-ion battery formation process
JP2019194980A (en) * 2018-04-23 2019-11-07 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Electrolyte and lithium ion battery
CN116589687A (en) * 2023-07-13 2023-08-15 江阴纳力新材料科技有限公司 Silicon-containing compound, current collector, preparation method, electrode plate and application

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027503A1 (en) * 2009-09-01 2011-03-10 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery
WO2012049723A1 (en) * 2010-10-12 2012-04-19 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery
JPWO2012049723A1 (en) * 2010-10-12 2014-02-24 日立ビークルエナジー株式会社 Nonaqueous electrolyte secondary battery
KR20140105813A (en) * 2011-12-08 2014-09-02 바스프 에스이 Electrochemical cells and the use thereof
KR101944238B1 (en) 2011-12-08 2019-01-31 바스프 에스이 Electrochemical cells and the use thereof
JP2015500553A (en) * 2011-12-08 2015-01-05 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Electrochemical cell and use thereof
JP2015505139A (en) * 2011-12-14 2015-02-16 ダウ グローバル テクノロジーズ エルエルシー Lithium battery electrode containing lithium oxalate
WO2013090027A1 (en) 2011-12-14 2013-06-20 Dow Global Technologies Llc Lithium battery electrodes containing lithium oxalate
JP2014038767A (en) * 2012-08-16 2014-02-27 Toyota Motor Corp Lithium secondary battery and method of manufacturing the same
WO2014027492A1 (en) * 2012-08-16 2014-02-20 トヨタ自動車株式会社 Lithium secondary battery and method for producing same
CN104584308A (en) * 2012-08-16 2015-04-29 丰田自动车株式会社 Lithium secondary battery and method for producing same
US9595718B2 (en) 2012-08-16 2017-03-14 Toyota Jidosha Kabushiki Kaisha Lithium secondary battery and method for producing same
US9583790B2 (en) 2013-11-22 2017-02-28 Samsung Electronics Co., Ltd. Electrolyte for lithium battery and lithium battery including the same
JP2019506717A (en) * 2016-02-26 2019-03-07 トヨタ・モーター・ヨーロッパToyota Motor Europe Lithium-ion battery formation process
JP2019501478A (en) * 2016-05-06 2019-01-17 リアル パワー インダストリアル リミテッド カンパニー Secondary battery and manufacturing method thereof
JP2019194980A (en) * 2018-04-23 2019-11-07 寧徳時代新能源科技股▲分▼有限公司Contemporary Amperex Technology Co., Limited Electrolyte and lithium ion battery
US11239498B2 (en) 2018-04-23 2022-02-01 Contemporary Amperex Technology Co., Limited Electrolytic solution and lithium-ion battery
CN116589687A (en) * 2023-07-13 2023-08-15 江阴纳力新材料科技有限公司 Silicon-containing compound, current collector, preparation method, electrode plate and application
CN116589687B (en) * 2023-07-13 2023-11-03 江阴纳力新材料科技有限公司 Silicon-containing compound, current collector, preparation method, electrode plate and application

Similar Documents

Publication Publication Date Title
JP5621770B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP6260619B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2010086681A (en) Nonaqueous electrolyte secondary battery
US20100283429A1 (en) Non-aqueous electrolytes and electrochemical devices including the same
US11876177B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP2009245828A (en) Nonaqueous electrolyte secondary battery
JP6269475B2 (en) Secondary battery
JP6394611B2 (en) Manufacturing method of secondary battery
JP5464076B2 (en) Nonaqueous electrolyte secondary battery, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery manufacturing method
JP2010205436A (en) Nonaqueous electrolyte secondary battery
EP3240093B1 (en) Secondary battery, battery pack, electric vehicle, power storage system, electric tool, and electronic apparatus
JP2009272170A (en) Nonaqueous electrolyte secondary battery
WO2014038174A1 (en) Nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP5272635B2 (en) Nonaqueous electrolyte secondary battery
JPWO2019009239A1 (en) Secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices
JP2018181772A (en) Nonaqueous electrolyte power storage element and manufacturing method thereof
WO2019181278A1 (en) Lithium secondary battery
US20230089885A1 (en) Non-Aqueous Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Including Same
EP3560012B1 (en) Bipolar secondary battery, as well as battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus comprising the same
US9160033B2 (en) Non-aqueous electrolyte composition and non-aqueous electrolyte secondary battery
JP2004327444A (en) Electrolyte for lithium secondary battery, and lithium secondary battery including this
WO2013084393A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
CN108292781B (en) Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP2011134547A (en) Lithium ion secondary battery
CN104810543B (en) Secondary battery, battery pack, electric vehicle, electric power tool, and electronic apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100608