JP2010091400A - 画像表示デバイス検査装置 - Google Patents

画像表示デバイス検査装置 Download PDF

Info

Publication number
JP2010091400A
JP2010091400A JP2008261469A JP2008261469A JP2010091400A JP 2010091400 A JP2010091400 A JP 2010091400A JP 2008261469 A JP2008261469 A JP 2008261469A JP 2008261469 A JP2008261469 A JP 2008261469A JP 2010091400 A JP2010091400 A JP 2010091400A
Authority
JP
Japan
Prior art keywords
image
imaging
image display
display device
resolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2008261469A
Other languages
English (en)
Inventor
Yohei Takechi
洋平 武智
Hiroyasu Kubo
泰康 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008261469A priority Critical patent/JP2010091400A/ja
Publication of JP2010091400A publication Critical patent/JP2010091400A/ja
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

【課題】ディスプレイなどの画像表示デバイス検査の際、検査画像を取得する撮像カメラの解像度が被検画像表示デバイスの解像度より低い構成でもデバイスの検査ができるようにすること。
【解決手段】画像検査方法は、画像シフト機構により撮像素子上で平行移動する像を電子画像データとして4枚取得し、それらの画像に含まれる画素の輝度Iを並べた取得輝度ベクトルI0と、最終的に求める高解像度な推定画像に含まれる画素の輝度iを並べた推定輝度ベクトルi0との関連性を規定した変換行列Aを決定し、変換行列Aの逆行列Bを求め、i0=BI0によって推定輝度ベクトルi0を求め、推定輝度ベクトルから推定画像を求める。必要に応じて、得られた推定画像から所望の解像度に変換するための画像縮小処理を行う。
【選択図】図1

Description

本発明は、画像表示デバイス(例えば、LCD,PDP,有機ELディスプレイなど)の検査技術に関するものである。
LCD,PDP,有機ELディスプレイなどの画像表示デバイスは、画像を表示するための画素と呼ばれる微細なドット(点)の集合で構成されている。それらはそれぞれ高精度な技術で生産されているが、製造工程上のさまざまな要因により、全ての画素が正常に動作しない場合がある。例えば、画像表示デバイスに対して全て黒表示(全ての画像が消灯)の画像信号を入力しても、ある特定の画素だけ点灯する場合がある(輝点不良)。また、同様に画像表示デバイスに対して全て白表示(全ての画像が点灯)の画像信号を入力しても、ある特定の画素だけ消灯する場合がある(黒点不良)。そのため、実際の画像表示デバイス生産現場においては、完成品の画素が正常な動作をしているかどうか、検査を実施する必要がある。
具体的には、先に挙げた輝点不良、黒点不良を検出するために検査用画像信号(大抵は、前述のように全て黒,白または灰色の画像)を入力して、画像表示デバイスで表示させ各画素の点灯,消灯動作の確認(検査)を行う。そのような検査は、人間の目視で行う場合と、画像表示デバイスに表示された検査用画像を撮像カメラで検査画像データとして取得し、コンピュータを用いたマシンビジョンで自動的に行う場合がある。
従来の自動画像検査方法としては、CCDカメラで被検画像表示デバイスの点灯状態を画像データとして取得し、画像処理を経て検査しているものがある(例えば、特許文献1参照)。図14は、特許文献1における検査装置の概略構成図である。
図14において、画像表示デバイスである液晶パネル1は、液晶パネル1に検査用パターンを表示するためのパターンジェネレータ2に接続されている。そして、表示された検査用パターンをCCDカメラ3で検査画像データとして取得し、コンピュータ4に内蔵された画像入力手段5、欠陥強調処理手段6、ノイズ除去手段7、欠陥抽出手段8、欠陥判別手段9を経て、その結果を画像表示装置10へ表示する構成になっている。
特開2007−086056号公報
しかしながら、特許文献1では、撮像手段であるCCDカメラ(撮像カメラ)が被検物である液晶パネル以上の解像度を有するとしている。このように、従来の検査では、画像表示デバイスの検査画像を取得する取得手段に、画像表示デバイス以上の解像度を有する撮像手段を用いることが前提となっている。一般的に撮像手段として用いられる撮像カメラは、解像度が高くなると機器の価格も高くなり、専用のハードウェアが必要になる場合が多い。また、近年の画像表示デバイスの高解像度化は著しく、テレビジョン用ディスプレイもハイビジョン解像度が標準となりつつある。そのような商品サイクルが短い状況で、画像表示デバイスの検査では、更に高解像度な製品が出てきた場合に、検査用に準備した撮像カメラの解像度が不足して使えなくなるという課題を有している。画像表示デバイスの代表的な性能検査(輝点不良の検査,黒点不良の検査)では、特に解像度が不足すると、不良画素の見逃しなど、市場における重大な品質問題を起こす要因となる。
そこで、本発明は上記従来の課題に鑑みてなされたもので、検査用の撮像カメラの解像度が被検物である画像表示デバイスの解像度よりも低くても、高解像度カメラを用いたのと同様に画像表示デバイスの輝点不良,黒点不良などの品質検査を行うことを可能とする高解像度画像を得ることを実現するためのものである。
上記目的を達成するために、本発明の画像表示デバイスの検査装置は、画像表示デバイスを載置する載置部と、前記画像表示デバイスを撮像する撮像部と、前記載置部と前記撮像部との間に配置された光学部材と、前記光学部材を前記撮像部の光軸に対して揺動させるシフト機構と、前記光学部材を揺動させながら前記撮像部で撮像した撮像結果に基づいて前記画像表示デバイスの検査を行う処理装置と、を備えることを特徴とする。
以上のように、本発明によれば、検査画像を取得する撮像カメラの解像度が、被検物である画像表示デバイスの解像度より低くても、高解像度カメラを用いた場合と同様の検査を行うことができる。
以下、本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
まず、本実施の形態の検査装置の構成について、図1〜図5を用いて説明する。
図1は、本発明の実施の形態1における画像表示デバイスの検査装置の概略構成図である。本実施の形態における画像表示デバイスの検査装置は、被検物である画像表示デバイス11の載置部(図示せず),画像シフト機構12,撮像レンズ13,撮像カメラ14,画像取得装置16,画像処理装置17,画像シフト機構制御装置21より構成される。
図1において、被検物である画像表示デバイス11の像は、画像シフト機構12を介し、撮像レンズ13により撮像カメラ14内の撮像素子15に結像される。そして、電子的な画像データとして生成され、画像取得装置16を介して画像処理装置17で取得される。その際、撮像素子15に結像する画像表示デバイス11の像は、撮像レンズ13の焦点距離,撮像素子15の面積,撮像レンズ13から画像表示デバイス11までの距離により決まる。前述の条件より求めた、本実施の形態での撮像カメラ14での撮像領域18を、図1中に示す。
本実施の形態では、撮像領域18の中心,画像シフト機構12の回転軸19,撮像レンズ13の中心,撮像素子15の中心は、共通の基準軸20上に配置する。また、画像シフト機構12は、画像シフト機構制御装置21を介して画像取得装置16と接続されており、画像取得装置16からその動作を制御可能である。
図2(a)は、実施の形態1における撮像領域18を示す概略図であり、図2(b)は、実施の形態1における撮像素子15を示す概略図である。
撮像領域18の幅と高さは、撮像レンズ13の像倍率mと撮像素子15の幅と高さにより決まる。本実施の形態では、撮像素子15として、幅、高さがそれぞれw、hである撮像素子を用いる。このとき、撮像領域18の幅W、高さHには、下記式(1)、式(2)の関係が成り立つ。
Figure 2010091400
Figure 2010091400
本実施の形態で用いた撮像素子15は、多数の画素を正方格子に配列させた構成であり、その画素幅はdである。一方、本実施の形態での撮像領域18は、撮像画素の画素幅dから、一辺がd/mとなる領域を、その分解能として観察可能である。
ここで、撮像領域18側で必要とされる分解能D0が、図1で示される構成で得られる分解能(d/m)の2倍である状況を想定して考察する(求められる分解能が、ちょうど2倍でなく、1倍〜2倍の間の倍率である場合については後述する)。
分解能の2倍である状態は、下記式(3)となる。
Figure 2010091400
ここで、D0m=Dと置き換えると、上記式(3)は、下記式(4)となる。
Figure 2010091400
上記式(4)を用いることで、撮像領域18で必要とされる分解能D0と、撮像素子15の画素幅dとの比較が、同じ撮像素子15上での大小関係として比較できる。本実施の形態では、このとき、撮像素子15上では、1辺がdの正方形である撮像画素に対して、1辺がD=d/2の正方形である仮想画素が配置されていると考えることができる。
図3は、実施の形態1における画像シフト機構12の構成を示す模式図である。ここで、図3は、基準軸20近傍の断面図として示している。
図3において、画像シフト機構12は、基板回転機構22と、板厚tで硝材屈折率nであるガラス平面基板23とから構成されており、基板回転機構22の中空部にガラス平面基板23を保持する構成となっている。ここで、ガラス平面基板23の材料としては、例えば、光学ガラスであるBK7を用いることができる。
基板回転機構22に保持されたガラス平面基板23は、(基板法線軸24とは異なる)回転軸19をその回転軸とし、基板回転機構22の動作により、矢印25の方向に自由度を持って回転する構成となっている。ここで、ガラス平面基板23は、その平面に垂直な基板法線軸24が回転軸19に対して角度θだけ傾くように調整されている。従って、基板回転機構22が回転すると、ガラス平面基板23は回転軸19の周りを角度θで歳差運動する。
基板回転機構22の回転角度は、画像シフト機構制御装置21によって取得することが可能であり、取得した情報を用いて基板回転機構22を所望の角度に調整,移動させることが可能である。基板回転機構22の回転角度の符号付けは、撮像領域18から画像シフト機構12を通して撮像カメラ14を見た場合に、時計回りの方向を+の方向とする。また、基板回転機構22の回転角度に関する情報は、画像取得装置16も利用することが可能である。
このように、ある光線(ここでは基準軸20上の光線)に対してガラス平面基板23が傾いて設置された場合、撮像領域18からの光線は基準軸20に対して垂直な方向にずれる。この状態について、図4を用いて説明する。
図4は、実施の形態1におけるガラス平面基板23に光線26が入射した時の状態を示す模式図である。
図4では、ガラス平面基板23に対し、紙面左から基準軸20に沿って光線26が入射した時の状態を想定している。前述のように、ガラス平面基板23は、基準軸20に対して角度θだけ傾いているため、光線26は、ガラス平面基板23に入射および屈折して、図4に示すように光線26の進行方向が変化する。ここで、ガラス平面基板23に屈折率nが存在するため、ガラス平面基板23内では、光線26は、基準軸20に対して角度θ´を有する。光線26は、ガラス平面基板23の内部を通過して紙面右側の面から出射する際に再度屈折し、その進行方向は、再び基準軸20と平行になる。このようにして、光線26がガラス平面基板23を通過するときには、2回屈折し、その進行方向(光線26の基準軸20に対する角度)はズレ量δだけ平行にずれる。このズレ量δは、ガラス平面基板23の屈折率n、板厚t、傾き角θを用いて、下記式(5)で表される。
Figure 2010091400
したがって、図3に示したように基板回転機構22でガラス平面基板23を回転させると、ガラス平面基板23を通過した後の像は、半径δで回転することになる。
ガラス平面基板23の板厚tや角度θを適切に調整することで、δを所望の大きさに調整することが可能である。例えば、通常入手しやすい板厚を有する複数のガラス平面基板に対して、上記式(5)に従って、θが0から1〜2°付近まで0.02°刻みで得られる条件を求め、δとθの数表を作成する。この数表を用いて、所望のδに最も近いtとθの組合せを探し、その条件で画像シフト機構12を調整することで、ズレ量δを所望の大きさに調整することができる。
本実施の形態では、前述の方法を用いて、δ=D0/(√2)となるように画像シフト機構12を調整する。撮像素子15を構成する1つの撮像画素での撮像範囲27と、一辺が必要分解能Dである9つの仮想画素28との関係を、図5を用いて説明する。
図5(a)は、実施の形態1における撮像範囲27と仮想画素28との第1の位置関係を示す図であり、図5(b)は、実施の形態1における撮像範囲27と仮想画素28との第2の位置関係を示す図であり、図5(c)は、実施の形態1における撮像範囲27と仮想画素28との第3の位置関係を示す図であり、図5(d)は、実施の形態1における撮像範囲27と仮想画素28との第4の位置関係を示す図である。これらは、それぞれ、図5(a)に対する図5(b)が,図5(b)に対する図5(c)が,図5(c)に対する図5(d)が,図5(d)に対する図5(a)が、画像シフト機構12を+方向に回転させた時の状態の遷移順序を表している。また、それぞれ、図5(b)に対する図5(a)が,図5(c)に対する図5(b)が,図5(d)に対する図5(c)が,図5(a)に対する図5(d)が、画像シフト機構12を−方向に回転させた時の状態の遷移順序を表している。
画像シフト機構12を通過した直後の像は半径δで回転するので、像倍率mの撮像レンズ13を通過し撮像素子15上に結像された像は、半径mδで回転することになる。ここで、実際には撮像素子15に対して像の方が画像シフト機構12により円軌道に沿って移動しているが、相対的な動きであると考えれば、撮像範囲27が仮想画素28に対して円軌道に沿って移動していると同様に考えられる。
図5(a)〜(d)に示すように、撮像素子での撮像範囲27は、画像シフト機構12によってシフトした状態で回転させることができるので、仮想画素281つ分だけ縦方向,横方向に移動できる。
ここで、画像シフト機構12内の基板回転機構22がある角度のときに図5(a)であったとする。そこから基板回転機構22を+90°回転させると、仮想画素28と撮像範囲27の位置関係は図5(b)の状態に変化する。さらに基板回転機構22を+90°回転させると、仮想画素28と撮像範囲27の位置関係は図5(c)の状態に変化する。さらに基板回転機構22を+90度回転させると、仮想画素28と撮像範囲27の位置関係は図5(d)の状態に変化する。さらに基板回転機構22を+90°回転させると、仮想画素28と撮像範囲27の位置関係は元の図5(a)の状態に戻る。
ここで、画像シフト機構12の回転に伴う、仮想画素28と撮像範囲27の相対的な位置,角度関係を分かりやすくするために、撮像範囲27上のある1点に注目してそれを注目点29とする。すると、図5(a)から図5(d)に示すように、撮像範囲27自体は回転せず、矢印30で示すような円軌道で注目点29が並進移動していることが分かる。
このような手段によって、撮像領域18を撮像レンズ13によって撮像素子15上に結像させた像を、仮想的に必要分解能Dの格子(画素)に区切った仮想画素28に対して、撮像画素15の画素幅dの半分の量(仮想画素単位)で位置をシフトさせた画像データ取得をすることができる。
実際の撮像素子15の仮想画素28に対する動きは、上記式(3),式(4)を用いて、半径δm=D0×m×(√2)/2=D×(√2)/2=d×(√2)/4の円を描く。しかしながら、基板回転機構22の90°毎の位置だけに注目すれば、図5(a)から図5(d)で示すように、それぞれ縦横方向にD=d/2だけ平行移動しているのと等価とみなすことができる。
次に、本実施の形態の検査手順について、図6〜図13を用いて説明する。以下は、本実施の形態での、図1に示す装置を用いてシフト画像データを取得し、そこから目的である高解像度の推定画像データを求める手順である。はじめに手順の全体の流れを説明し、その後、個々の手順の詳細について説明している。
図6は、実施の形態1における検査工程の全体の流れを示すフローチャートである。
図6において、まず、検査動作を開始する(ステップS1)。
次に、画像シフト機構12を用いて、画像表示デバイス11の像をシフトさせながら、取得画像データを4枚分取得する(ステップS2)。
次に、ステップS2で取得した取得画像データから、取得輝度ベクトルI0を生成する(ステップS3)。
次に、画像取得に用いた撮像素子の画素数に応じた大きさの変換行列Aを決定し、その逆行列Bを求める(ステップS4)。
次に、ステップS3で生成した取得輝度ベクトルI0と、ステップS4で求めた逆行列Bを用いて、推定輝度ベクトルi0を求める(ステップS5)。
次に、ステップS4で求めた推定輝度ベクトルi0を、仮想画素28の推定輝度画像データi(u,v)へ変換する(ステップS6)。
次に、所望の解像度と撮像素子15の持つ解像度の関係により、条件分岐する。この時点で、所望の解像度が撮像素子15の持つ解像度の2倍であった場合は、ここまでの過程で所望の高解像度な推定輝度画像データが求められているので、ステップS9に分岐する。一方、所望の解像度が撮像素子15の持つ解像度に対して1〜2倍の中間倍率であった場合は、ステップS8に条件分岐する(ステップS7)。
所望の解像度が撮像素子15の持つ解像度に対して1〜2倍の中間倍率であった場合は、所望の解像度となるようにステップS6までで得られた推定輝度画像データに対し、平均画素法を用いて縮小処理を施す(ステップS8)。
次に、ステップS7,ステップS8を経た後に、得られた推定輝度画像データで欠陥検査を実施する(ステップS9)。
最後に、欠陥検査が完了したとして、一連の検査動作完了とする(ステップS10)。
なお、ステップS9にある欠陥検査については本発明の要点ではないため、一般的に公知な欠陥検査法を用いるとして説明は省略する。
次に、詳細説明として、先に述べたシフト画像取得の手段を用いて、実際にシフト画像データを取得する手順を説明する。ここでは、撮像範囲27の集合を撮像範囲群31とし、仮想画素28の集合を仮想画素群32としている。
図7(a)は、実施の形態1における仮想画素群32と撮像範囲群31との位置関係を示す図であり、図7(b)は、図7(a)において仮想画素群32のみを取り出して示した図であり、図7(c)は、図7(a)において撮像範囲群31のみを取り出して示した図である。ここで、図7(c)での撮像範囲群31は、水平方向にp個、垂直方向にq個の撮像範囲27から構成されているとする。従って、図7(b)での仮想画素群32は、水平方向に2p個、垂直方向に2q個の仮想画素28から構成されていることになる。
仮想画素28の輝度データは、現時点では未知であるが、以降の手順によって求めることができ、これが推定画像データXとなる。
図7(a)〜(c)において、仮想画素28は細い実線、撮像範囲27は太い破線で示す。これらの仮想画素28、撮像範囲27について図7(a)〜(c)の左上を原点として、水平方向と垂直方向に対して1から順に画素アドレスを付与する。表し方としては2次元座標平面の座標表示と同様の表記を用いて、もっとも左上の画素を(1,1)、その1画素右隣を(2,1)、(1,1)の1画素下を(1,2)のように表す。図7(b)、(c)の枠内には、その画素アドレスを記してある。
図8は、図7で示した仮想画素群32と撮像範囲群31について、図5を用いて説明した画像シフト機構12によるシフト画像データ取得を適用した際の、仮想画素28と撮像範囲27の位置関係を示した図である。
図8(a)は、実施の形態1における仮想画素群32と撮像範囲群31の第1の位置関係を示す図であり、図8(b)は、実施の形態1における仮想画素群32と撮像範囲群31の第2の位置関係を示す図であり、図8(c)は、実施の形態1における仮想画素群32と撮像範囲群31の第3の位置関係を示す図であり、図8(d)は、実施の形態1における仮想画素群32と撮像範囲群31の第4の位置関係を示す図である。
図8(a)〜(d)は、図8(a)の状態から基板回転機構22を90°毎に回転させていった場合の仮想画素群32と撮像範囲群31の関係を示している。ここで、撮像範囲群31のうちのある1画素を注目撮像範囲33とし、その画素アドレスを(U,V)とする。ここで、U,Vは共に整数であり、1≦U≦p、1≦V≦qを満たす。
図8(a)〜(d)までの各状態において、撮像範囲群31で得られる画像データにフレーム番号を付与し、図8(a)〜(d)まで、それぞれフレーム1〜フレーム4とする。また、各撮像範囲27の輝度データをI(U,V,f)とする。U,Vは先述の画素アドレス番号であり、fはフレーム番号である。さらに、仮想画素群32内のある仮想画素28の画素アドレス(u,v)における推定輝度をi(u,v)とする。
続いて、図6のステップS2に相当する、画像データ取得の詳細な手順について説明する。
図9は、実施の形態1における画像データ取得のフローチャートである。
図9において、まず、画像データ取得を開始する(ステップS11)。
次に、図8(a)の状態をf(フレーム番号)=1の画像データとして定義する(ステップS12)。
次に、f=1の状態で撮像範囲群31の全ての画素アドレスの輝度データI(U,V,1)を取得する。なお、取得した画像データはすべて画像処理装置17内に保存される(ステップS13)。
次に、ステップS13でfが3以下であるか否かを確認する。これは、ステップS13でf=4の状態であれば必要な4枚の画像をすでに取得しているため、ステップS17にて画像取得ルーチンを終了させる事を意味する(ステップS14)。
次に、ステップS14でfが3以下であった場合は、fの値を1増加させる(ステップS15)。
次に、fを1増加させた後に、基板回転機構22を+90°回転させる。ここで、ステップS14でf=1であり、ステップS15にてf=2となった場合は、+90°回転させることにより、図8(b)の状態にしてから、再びステップS13へ戻り、f=3の画像データとして撮像範囲群31の全ての画素アドレスの輝度データI(U,V,2)を取得する。以下同様にf=3、f=4の画像データI(U,V,3)、I(U,V,4)を取得する。
図9に示す以上の手順により、図8(a)〜(d)までの画像データが取得できる。
続いて、図9の手順で取得したシフト画像データを処理して、高解像度の推定画像データを取得する詳細な手順について説明する。
ここで、図7(b)、図7(c)で定義した画素アドレスと、図8(a)〜(d)に示した注目撮像範囲33と仮想画素群32との関係から、各フレームでの注目撮像範囲33における輝度I(U,V,f)と仮想画素群32内の仮想画素28の推定輝度i(u,v)の関係を求めると、以下に示す式(6)〜式(9)になる。
Figure 2010091400
Figure 2010091400
Figure 2010091400
Figure 2010091400
続いて、図6のステップS3〜ステップS6に相当する、図9の画像データから仮想画素群32の各仮想画素28の推定輝度i(u,v),推定輝度画像データを求める詳細な手順を説明する。
図10は、実施の形態1における推定画像データ構成のフローチャートである。
図10において、まず、推定画像データ構成を開始する(ステップS18)。
次に、取得輝度ベクトルI0を生成する。取得画像ベクトルI0は、下記式(10)のように同一撮像範囲の輝度をフレーム番号順に並べ、更にそれらを画素アドレス毎に並べた成分を4pq個持つ縦ベクトルである。これらのベクトル成分はすでに求めてある取得画像データの輝度データI(U,V,f)を用いる。なお、下記式(10)中にある肩のT(T)は転置を意味する(ステップS19)。
Figure 2010091400
次に、変換行列Aを生成する。この変換行列Aの生成の詳細な手順は、後述する(ステップS20)。
次に、変換行列Aが正則行列であることを利用して、既知の方法により逆行列Bを求める(ステップS21)。
次に、ステップS21で求めた逆行列Bと、ステップS19で生成した取得輝度ベクトルI0から、推定輝度ベクトルi0を求める。推定輝度ベクトルi0の詳細な定義方法は、後述するが推定輝度ベクトルi0は、下記式(11)として求められる(ステップS22)。
Figure 2010091400
次に、推定輝度ベクトルi0から仮想画素群32の推定輝度データi(1≦u≦2p,1≦v≦2q)を求める。推定輝度ベクトルi0は縦ベクトルのデータであるから、後述する定義により、仮想画素群32の推定輝度データi(1≦u≦2p,1≦v≦2q)に変換し、これを推定画像データXとする。以上により高分解能の推定画像データXが得られる(ステップS23)。
以上のステップにより、推定画像データ構築を完了する(ステップS24)。
ここで、図10のステップS22に示されている推定輝度ベクトルi0の詳細な定義手順について説明する。推定輝度ベクトルi0は、下記式(12)のように、仮想画素群32内の仮想画素28の推定輝度iを画素アドレス順に並べた成分を4pq個持つ縦ベクトルである。
Figure 2010091400
ここで、変換行列Aの構成について説明する。
図11は、実施の形態1における変換行列Aの構成を示した模式図である。
実際の変換行列Aは、図11中の太線内の数値を成分に持つ行列である。図11には変換行列の左側と上側に、変換行列Aのそれぞれの行、列に対応した、U,V,fとu,vが記載してある。これは、行側が取得画像データから得られた輝度I(U,V,f)に、列側が推定輝度i(u,v)に対応している事を意味する。まず、ある輝度Iに対応する行位置を定める。すると、U,V,fの組み合わせが1通りに決まる。次にそのU,V,fの値を上記式(6)〜式(9)の中でfの値に合致する式に対して代入する。
例えば、(U,V,f)=(2,1,3)の場合、f=3に対応する上記式(8)にU,Vの値を代入して、下記式(13)の関係が得られる。
Figure 2010091400
推定輝度i(u,v)は1≦u≦2p,1≦v≦2qの範囲で定義されているので、i(2,0)、i(3,0)は無視すると、i(2,1)、i(3,1)が残る。つまり、(U,V,f)=(2,1,3)の行ではi(u,v)=i(2,1)、i(3,1)が推定輝度iの項として存在する。この場合、変換行列の列方向に示しているの(u,v)の値が(u,v)=(2,1)、(3,1)の行列成分だけ1を設定し、同じ行の残りの成分は0とする。このような操作を全ての行、つまり全ての(U,V,f)の組み合わせについて実行し、変換行列Aの成分に0か1を設定することにより、変換行列Aが得られる。
続いて、図10におけるステップS20に相当する、変換行列Aを決定する詳細な手順について説明する。
図12は、実施の形態1における変換行列Aを決定するフローチャートである。
図12において、まず、変換行列決定を開始する(ステップS25)。
次に、変換行列Aの数値を決定していく画素アドレスとフレーム番号として(U,V,f)=(1,1,1)を設定する(ステップS26)。
次に、撮像素子15の水平方向画素数p、垂直方向画素数qで決まる4pq行×4pq列で全て成分が0である行列を用意する(これが変換行列Aの入れ物となる)。そして、図11で示したように、行列成分を推定輝度I(1≦U≦p,1≦V≦q,1≦f≦4)と推定輝度i(1≦u≦2p,1≦v≦2q)の組み合わせに対応付けする(ステップS27)。
次に、全ての(U,V,f)の組み合わせを総当りで上記式(6)〜式(9)に代入していき、その代入後の式の右辺に存在する推定輝度i(u,v)の項に対応する行列成分に対して1を設定する操作を行う(ステップS28、S29)。
以上により、変換行列Aが決定される(ステップS30)。
ここで、より詳しくは、ステップS28は、画素アドレスとフレーム番号(U,V,f)の組み合わせに対して上記式(6)〜式(9)を適用し、項の有無によって変換行列A中に0または1を設定していくステップである。また、ステップS29は、全ての(U,V,f)の組み合わせをステップS28で総当りさせるためのパラメータ設定を行うステップである。なお、ステップS28の内容からも分かるように、変換行列Aの行列成分は必ず0または1となる。
変換行列Aの具体例として、撮像範囲群31の画素数が4×4画素(p=q=4)、仮想画素群32の画素数が8×8画素(2p=2q=8)の場合の変換行列Aを図13に示す。
図13は、実施の形態1における変換行列Aの具体例を示す図である。
以上、図9〜13で得られた推定画像データXは、撮像領域18で求められる分解能D0を図1で示される通常の構成で得られる分解能(すなわちd/m)の2倍であるとし、また、撮像素子15上で求められる分解能Dを図1で示される通常の構成で得られる分解能(すなわちd)の2倍であるとし、D0とd,Dとdの関係を上記式(3),式(4)で規定して、それらを前提に求めた推定画像データである。
しかしここで改めて、撮像領域18で求められる分解能D0を図1で示される通常の構成で得られる分解能(すなわちd/m)のk倍であるとし、また撮像素子15上で求められる分解能Dを図1で示される通常の構成で得られる分解能(すなわちd)のk倍であると規定する。ただし、kの範囲は1<k≦2(kは実数)とする。このとき上記式(3)は、下記式(14)となる。
Figure 2010091400
0m=Dと置き換えると、上記式(14)は、下記式(15)となる。
Figure 2010091400
上記式(14),式(15)から明らかなように、これらの式は、それぞれ、式(3),式(4)中の数字の2をkに置き換えたものとなっている。
この場合、求めるべき推定画像データX0は、k=2として求めた推定画像データXをk/2倍に縮小したものになっている。従って、1<k<2であるような分解能D0、Dが必要な場合は、はじめに図6のステップS1〜ステップS6の手順によってk=2で推定画像データXを求めておき、ステップS7において1<k<2であるからステップS8へ移り、ステップS8で推定画像データXを平均画素法(これは既知の画像縮小手段である)によりk/2倍に変換することで、所望のkに対応する推定画像データX0が得られる。なお、推定画像データの縮小アルゴリズムとして平均画素法以外のデータを用いると不必要なエイリアシングや偽色の発生を招く場合があるため、平均画素法を用いることが望ましい。また、ここまでで述べた画像データ取得より後の画像データ演算処理、行列データ演算処理、推定画像データ縮小処理の一切は、画像処理装置17で実行される。
以上の方法により、水平方向画素数p、垂直方向画素数qの撮像素子から得られた4枚分の画像データIから、水平方向画素数kp、垂直方向画素数kqの推定画像データとして推定輝度iを取得することができる。これにより、通常は撮像領域18における分解能が、下記式(16)でしか得られないところを、本発明の方法を用いることで、下記式(17)で得られるようになる(ただし、kの範囲は1<k≦2(kは実数))。
Figure 2010091400
Figure 2010091400
つまり撮像素子15が持つ解像度のk倍の解像度を持つ高解像度画像を得られる。このことにより、通常、撮像素子15で取得する画像データでは解像度不足により輝点不良,黒点不良を見逃してしまうが、高解像度画像データでそれらを見逃すことなく検知することが可能となる。
なお、撮像素子15は撮像画素が正方格子状に整列した構成のものであれば何でも良く、例えば、CCDやCMOSなどのエリアカメラや、フォトダイオードを格子状に配列したエリアセンサでも良い。
また、近年の高性能なパソコンや汎用コンピュータ,汎用ハードウェアで実現されているように、画像取得装置16,画像処理装置17,画像シフト機構制御装置21の3つを適宜組み合わせて、同一の機器とすることも可能である。
また、本実施例では画像取得装置16による画像データ取得手順より後に行われる、画像データ演算処理,行列データ演算処理,推定画像データ縮小処理の一切は、別途用意した専用ハードウェアに処理をさせて、その結果を画像処理装置17で表示、保存させる構成としても構わない。
また、複数種類の画像表示デバイスを検査対象とする場合も考えられる。この場合は、画像表示デバイスの解像度を予め調べておき、画像表示デバイスの解像度が撮像素子の解像度よりも大きい場合にのみ本発明の検査を行う(検査方式を切替える)ことも可能である。これにより、複数種類の画像表示デバイスを検査する場合に、適宜ふさわしい検査方式を選択することができる。この切り替え方法としては、画像表示デバイスの解像度が撮像素子の解像度よりも小さい場合に、ガラス平面基板を撮像レンズの光軸と一致させる(ガラス平面基板のシフト機能を解除する)ことが考えられる。
以上のように、本発明によれば、画像表示デバイスの解像度よりも低い解像度を有する検査用撮像カメラであっても、高解像度画像を得ることが可能となり、高解像度を有する画像表示デバイスの検査画像取得検査が可能となる。そして、画像表示デバイスの高解像度化にも検査装置自体に大きな変更を加えることなく検査画像を取得し検査を行うことが可能となる。また、画像表示デバイスのみならず幅広い画像検査の高解像度画像取得手段として利用することも可能である。
実施の形態1における画像表示デバイスの検査装置の概略構成図 (a)実施の形態1における撮像領域18を示す概略図、(b)実施の形態1における撮像素子15を示す概略図 実施の形態1における画像シフト機構12の構成を示す模式図 実施の形態1におけるガラス平面基板23に光線26が入射した時の状態を示す模式図 (a)実施の形態1における撮像範囲27と仮想画素28との第1の位置関係を示す図、(b)実施の形態1における撮像範囲27と仮想画素28との第2の位置関係を示す図、(c)実施の形態1における撮像範囲27と仮想画素28との第3の位置関係を示す図、(d)実施の形態1における撮像範囲27と仮想画素28との第4の位置関係を示す図 実施の形態1における検査工程の全体の流れを示すフローチャート (a)実施の形態1における仮想画素群32と撮像範囲群31との位置関係を示す図、(b)図7(a)において仮想画素群32のみを取り出して示した図、(c)図7(a)において撮像範囲群31のみを取り出して示した図 (a)実施の形態1における仮想画素群32と撮像範囲群31の第1の位置関係を示す図、(b)実施の形態1における仮想画素群32と撮像範囲群31の第2の位置関係を示す図、(c)実施の形態1における仮想画素群32と撮像範囲群31の第3の位置関係を示す図、(d)実施の形態1における仮想画素群32と撮像範囲群31の第4の位置関係を示す図 実施の形態1における画像データ取得のフローチャート 実施の形態1における推定画像データ構成のフローチャート 実施の形態1における変換行列Aの構成を示した模式図 実施の形態1における変換行列Aを決定するフローチャート 実施の形態1における変換行列Aの具体例を示す図 特許文献1における検査装置の概略構成図
符号の説明
1 液晶パネル
2 パターンジェネレータ
3 CCDカメラ
4 コンピュータ
5 画像入力手段
6 欠陥強調処理手段
7 ノイズ除去手段
8 欠陥抽出手段
9 欠陥判別手段
10 画像表示装置
11 画像表示デバイス
12 画像シフト機構
13 撮像レンズ
14 撮像カメラ
15 撮像素子
16 画像取得装置
17 画像処理装置
18 撮像領域
19 回転軸
20 基準軸
21 画像シフト機構制御装置
22 基板回転機構
23 ガラス平面基板
24 基板法線軸
25 矢印
26 光線
27 撮像範囲
28 仮想画素
29 注目点
30 矢印
31 撮像範囲群
32 仮想画素群
33 注目撮像範囲

Claims (6)

  1. 画像表示デバイスを載置する載置部と、
    前記画像表示デバイスを撮像する撮像部と、
    前記載置部と前記撮像部との間に配置された光学部材と、
    前記光学部材を前記撮像部の光軸に対して揺動させるシフト機構と、
    前記光学部材を揺動させながら前記撮像部で撮像した撮像結果に基づいて前記画像表示デバイスの検査を行う処理装置と、を備えること
    を特徴とする画像表示デバイス検査装置。
  2. 前記シフト機構は、前記撮像部の光軸中心に前記光学部材を回転させる機能を更に有すること
    を特徴とする請求項1記載の画像表示デバイス検査装置。
  3. 前記光学部材は、ガラス平面基板であること
    を特徴とする請求項1または2記載の画像表示デバイス検査装置。
  4. 前記シフト機構は、前記光学部材の表面に垂直な軸と前記撮像部の光軸との間に所定の角度を設けた状態で前記光学部材を揺動させるものであること
    を特徴とする請求項3記載の画像表示デバイス検査装置。
  5. 前記撮像部の撮像面上の前記画像表示デバイスの像を、前記シフト機構を用いて前記撮像面上で平行シフト移動させる制御手段を更に有すること
    を特徴とする請求項1から4いずれか記載の画像表示デバイス検査装置。
  6. 前記処理装置は、前記シフト機構により前記撮像面上で平行シフト移動した取得した複数の画像データを前記撮像部の画素数に基づいた変換行列を用いて変換し、変換したデータに基づいて前記画像表示デバイスの検査を行うものであること
    を特徴とする請求項5記載の画像表示デバイス検査装置。
JP2008261469A 2008-10-08 2008-10-08 画像表示デバイス検査装置 Ceased JP2010091400A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008261469A JP2010091400A (ja) 2008-10-08 2008-10-08 画像表示デバイス検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008261469A JP2010091400A (ja) 2008-10-08 2008-10-08 画像表示デバイス検査装置

Publications (1)

Publication Number Publication Date
JP2010091400A true JP2010091400A (ja) 2010-04-22

Family

ID=42254261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261469A Ceased JP2010091400A (ja) 2008-10-08 2008-10-08 画像表示デバイス検査装置

Country Status (1)

Country Link
JP (1) JP2010091400A (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865656A (ja) * 1994-08-19 1996-03-08 Advantest Corp 画質検査装置及びその画像合成方法
JPH0969985A (ja) * 1995-09-01 1997-03-11 Canon Inc 空間周波数制限装置およびそれを用いた撮像装置
JPH1070677A (ja) * 1996-08-29 1998-03-10 Matsushita Electric Ind Co Ltd 撮像装置
JPH11304646A (ja) * 1998-04-20 1999-11-05 Advantest Corp 表示検査装置および方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865656A (ja) * 1994-08-19 1996-03-08 Advantest Corp 画質検査装置及びその画像合成方法
JPH0969985A (ja) * 1995-09-01 1997-03-11 Canon Inc 空間周波数制限装置およびそれを用いた撮像装置
JPH1070677A (ja) * 1996-08-29 1998-03-10 Matsushita Electric Ind Co Ltd 撮像装置
JPH11304646A (ja) * 1998-04-20 1999-11-05 Advantest Corp 表示検査装置および方法

Similar Documents

Publication Publication Date Title
US7394483B2 (en) Display evaluation method and apparatus
EP3171588B1 (en) Image processing method and image processing apparatus executing that image processing method
US8890947B2 (en) Microscope apparatus and method for image acquisition of specimen slides having scattered specimens
JP2006242821A (ja) 光学パネルの撮像方法、光学パネルの検査方法、光学パネルの撮像装置、光学パネルの検査装置
JP2009003016A (ja) 顕微鏡、画像取得システム
EP3300060A1 (en) Image display method and display device
JP5292846B2 (ja) 観察装置と、観察方法
US6256066B1 (en) High-resolution image pickup method and apparatus therefor
KR20050051535A (ko) 결함 검사 장치
US20200211156A1 (en) Imaging apparatus and driving method of the same
WO2021005856A1 (ja) 破面解析装置及び破面解析方法
JP6161798B2 (ja) イメージ取得方法及びこれを利用したイメージ取得装置
JP2010091400A (ja) 画像表示デバイス検査装置
JPH1132251A (ja) 画像処理装置
JP2008033306A5 (ja)
JPH05333271A (ja) 3次元物体の認識方法および装置
JP3408879B2 (ja) フラットパネルディスプレイの表示欠陥抽出方法及びそのための装置
JP2015115726A (ja) 輝度測定方法、輝度測定装置及びこれらを用いた画質調整技術
KR20230052120A (ko) 디스플레이 패널 픽셀 불량 검사 시스템 및 그 검사 방법
JP2014178781A (ja) 画像処理装置、顕微鏡システム及び画像処理方法
JP2010008188A (ja) 表示パネルの検査装置、検査方法及びこれを用いた表示パネルの製造方法
JPH0979946A (ja) 表示装置の検査装置
JP5671957B2 (ja) 表示装置および表示方法
JP2014230170A (ja) 撮像装置、顕微鏡システム及び撮像方法
JP4711263B2 (ja) 画像データ処理方法、画像データ処理装置、画像表示方法、画像表示装置、及び、荷電粒子ビーム装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110413

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20110512

Free format text: JAPANESE INTERMEDIATE CODE: A7421

RD01 Notification of change of attorney

Effective date: 20121214

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Effective date: 20130306

Free format text: JAPANESE INTERMEDIATE CODE: A523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A045 Written measure of dismissal of application

Effective date: 20130827

Free format text: JAPANESE INTERMEDIATE CODE: A045