JP2010090504A - Polyester fiber and fibrous product - Google Patents

Polyester fiber and fibrous product Download PDF

Info

Publication number
JP2010090504A
JP2010090504A JP2008261430A JP2008261430A JP2010090504A JP 2010090504 A JP2010090504 A JP 2010090504A JP 2008261430 A JP2008261430 A JP 2008261430A JP 2008261430 A JP2008261430 A JP 2008261430A JP 2010090504 A JP2010090504 A JP 2010090504A
Authority
JP
Japan
Prior art keywords
polyester fiber
stress
fiber
impact
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008261430A
Other languages
Japanese (ja)
Inventor
Yoshimasa Ogiwara
由嗣 荻原
Kota Nakamura
浩太 中村
Yoshiharu Okumura
由治 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008261430A priority Critical patent/JP2010090504A/en
Publication of JP2010090504A publication Critical patent/JP2010090504A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber and fibrous product suitable for an industrial, especially safety related product, by solving problems of conventional technologies, while reducing an impact received by a human body, etc., absorbing a large energy and having a thermal dimensional stability. <P>SOLUTION: (1) The polyester fiber consisting mainly of an ethylene terephthalate as a recurring unit is provided by having 1.5-2.5 cN/dtex breaking strength (Tb), 150 to 220% breaking elongation (Eb), 1-7% dry heat shrinkage (ΔS), and 1.0×10<SP>-4</SP>to 1.0×10<SP>-2</SP>cN/dtex gradient of secondary standing up stress. (2) The polyester fiber described in the (1), has 40-80% constant stress extension region in the load-extension curve of the polyester fiber. (3) The most preferable form is a fibrous product selected from the group consisting of a safety band, a safety net, a safety belt, a drop-preventing rope, an impact resistant net and an impact-absorbing net by using at least a part of the polyester fiber described in the (1) and (2). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はポリエステル繊維に関する。詳しくは高伸度、低収縮、高品位を兼ね備えた産業資材用途、特に安全帯、安全ベルトなど安全関連分野に用いることができ、しかも特異な装置・設備を要することなく、低コストでの生産が可能なポリエステル繊維に関するものである。   The present invention relates to a polyester fiber. Specifically, it can be used for industrial materials that combine high elongation, low shrinkage, and high quality, especially in safety-related fields such as safety belts and safety belts, and at low cost without the need for special equipment and facilities. It is related with the polyester fiber which can be.

エチレンテレフタレートを主たる繰返し単位とするポリエステルからなる繊維は、種々の優れた特性を有することから、衣料用途のみならず、産業用途にも広く使用されている。ポリエステル繊維が産業資材用途、特に安全帯、安全ベルトなど安全関連分野に用いられる場合、一般に重要視される特性は衝突、落下時の衝撃によって繊維製品が破断しないことである。さらには衝突、落下時に人体に加わる応力(衝撃度)が小さいことが要求されている。また、用途によっては、製品に加工される工程あるいは製品に加工されて使用される時に熱が加わる場合がある。このような場合には、ポリエステル繊維の寸法を熱的に安定(熱的寸法安定性)させるために、加熱時の収縮率(乾熱収縮率)が小さいことがさらに要求される。かかる性能を満足させるために、現在までに安全関連分野に使用する繊維について、いくつかの提案がなされている。   Since the fiber which consists of polyester which has ethylene terephthalate as a main repeating unit has various outstanding characteristics, it is widely used not only for the clothing use but for the industrial use. When polyester fibers are used in industrial materials, particularly in safety-related fields such as safety belts and safety belts, a property that is generally regarded as important is that the textiles do not break due to impact during impact or drop. Furthermore, it is required that the stress (impact level) applied to the human body at the time of collision or dropping is small. Further, depending on the application, heat may be applied when the product is processed into a product or used after being processed into a product. In such a case, in order to thermally stabilize the dimensions of the polyester fiber (thermal dimensional stability), it is further required that the shrinkage rate during heating (dry heat shrinkage rate) is small. In order to satisfy such performance, several proposals have been made for fibers used in safety-related fields.

例えば、特許文献1には、ポリエチレンテレフタレートに、第3成分としてイソフタル酸、アジピン酸などの二官能性カルボン酸あるいはネオペンチルグリコールなどのジオールを共重合させることにより、延伸後の繊維を収縮させやすくさせ、20%を超える延伸後弛緩処理を行うことで、さらに高伸度のポリエステル繊維を得る方法が開示されており、一般的に特許文献1の図1に示されるような伸度−強度曲線(SS曲線)を有する。特許文献1の図1のように繊維が伸長しながらエネルギーを吸収する場合、繊維の伸長によって吸収されるエネルギー吸収量は、本発明の図1に示すようなSS曲線と伸度軸とで囲まれる面積に対応し、人体等に加わる衝撃度はエネルギー吸収が完了した伸びにおける応力に対応する。したがって、特許文献1の図1のような繊維では、伸長初期には低い応力で伸長するため、この領域でエネルギー吸収が完了するような負荷であれば人体等にかかる衝撃度は小さいものの、大きな負荷がかかった際には、急激に応力が立ち上がる領域まで伸長するため人体等に対する衝撃度が大きいという問題があった。   For example, Patent Document 1 discloses that a polyethylene terephthalate is copolymerized with a bifunctional carboxylic acid such as isophthalic acid or adipic acid or a diol such as neopentyl glycol as a third component, so that the fiber after stretching can be easily contracted. And a method of obtaining a polyester fiber having a higher elongation by performing a relaxation treatment after stretching exceeding 20%, and generally, an elongation-strength curve as shown in FIG. (SS curve). When the fiber absorbs energy while extending as shown in FIG. 1 of Patent Document 1, the energy absorption amount absorbed by the extension of the fiber is surrounded by the SS curve and the elongation axis as shown in FIG. 1 of the present invention. The degree of impact applied to the human body or the like corresponds to the stress in the elongation after energy absorption is completed. Therefore, in the fiber as shown in FIG. 1 of Patent Document 1, since it is stretched with a low stress at the initial stage of elongation, if the load is such that energy absorption is completed in this region, the impact on the human body or the like is small but large. When a load is applied, there is a problem that the degree of impact on the human body or the like is large because the stress extends to a region where the stress suddenly rises.

また、特許文献2には、特許文献1の問題点を解決するために、大きなエネルギーを小さな衝撃で吸収し得るエネルギー吸収ポリエステル繊維を得る方法が開示されている。かかる技術は降伏点応力(Ty)と破断強度(Tb)がTb/Ty≦1.4であること等を特徴としたポリエステル繊維に関するものであり、該ポリエステル繊維は降伏点定応力と破断伸度の差が小さいことで一定の応力で伸長しながら衝撃を吸収しつつ、かつ人体等に与える負荷を低減することが可能である。しかしながら、大きなエネルギーを小さな衝撃で吸収し得るエネルギー吸収ポリエステル繊維として、さらなる改良が求められていた。   Moreover, in order to solve the problem of patent document 1, the method of obtaining the energy absorption polyester fiber which can absorb a big energy with a small impact is disclosed by patent document 2. FIG. This technique relates to a polyester fiber characterized in that the yield point stress (Ty) and the breaking strength (Tb) are Tb / Ty ≦ 1.4, and the polyester fiber has a constant yield point stress and a breaking elongation. Since the difference is small, it is possible to absorb the impact while stretching with a constant stress and reduce the load applied to the human body or the like. However, further improvement has been demanded as an energy-absorbing polyester fiber capable of absorbing large energy with a small impact.

特許文献3には、高弾性糸とポリエチレンテレフタレート等の汎用繊維を組み合わせることで初期拘束力と衝撃吸収性の双方に優れた安全ベルトを得る技術が開示されている。しかし、一般的に価格が高く、染色性に乏しいポリアリレート繊維やアラミド繊維等の高弾性繊維を用いるため、得られた繊維製品が高価格かつ染色斑が発生しやすいという問題を有していた。また、複数種の繊維を用いる場合には、製造時の取扱性が悪いだけで無く、染色や熱セット工程において繊維固有の熱収縮率の差などによって織構造が不均一になるといった意匠的な問題も有している。   Patent Document 3 discloses a technique for obtaining a safety belt excellent in both initial restraining force and impact absorption by combining high-elasticity yarns and general-purpose fibers such as polyethylene terephthalate. However, since high-cost fibers such as polyarylate fibers and aramid fibers, which are generally expensive and poor in dyeability, are used, the resulting fiber product has a problem that it is expensive and dyeing spots are likely to occur. . In addition, when using multiple types of fibers, the design is not only poor in handling at the time of manufacture, but also has a non-uniform woven structure due to differences in the thermal shrinkage rate inherent to the fibers in the dyeing and heat setting processes. It also has problems.

特許文献4には、自己伸長能を有するポリエステルマルチフィラメント未延伸糸の弛緩熱処理糸とポリエステルマルチフィラメント延伸糸を組み合わせてなる複合糸条を得る方法が開示されている。しかし、特許文献4に開示されているような複合糸条の繊維では、製造時の取扱性が悪いだけでなく、染色や熱セット工程において繊維固有の熱収縮率の差などによって織構造が不均一になり、破断強度が低下するといった問題も有している。さらに、自己伸長能により熱的寸法安定性が乏しく、安全帯、安全ネット等の繊維製品に使用する際、形状保持性が著しく不足するといった問題点もあった。上記のように人体等が受ける衝撃(応力)を低減しつつ、大きなエネルギーを吸収し、さらに熱的に安定である繊維および繊維製品に関する技術開発が進められているものの、それら全てを同時に満足する繊維および繊維製品が得られていないのが現状である。
特開平9−143816号公報 特開2003−64526号公報 特開平8−72668号公報 特開平8−158183号公報
Patent Document 4 discloses a method for obtaining a composite yarn obtained by combining a relaxation heat-treated yarn of polyester multifilament undrawn yarn having self-extension ability and polyester multifilament drawn yarn. However, the composite yarn fibers disclosed in Patent Document 4 are not only poor in handling at the time of production, but also have a poor woven structure due to differences in the thermal contraction rate inherent to the fibers in the dyeing and heat setting processes. It also has the problem that it becomes uniform and the breaking strength decreases. In addition, the thermal dimensional stability is poor due to the self-extension ability, and there is a problem that the shape retention is remarkably insufficient when used for textile products such as safety belts and safety nets. As described above, while technological development related to fibers and textile products that absorbs large energy and is thermally stable while reducing the impact (stress) received by the human body, etc., all of them are satisfied at the same time. At present, fibers and fiber products are not obtained.
JP-A-9-143816 JP 2003-64526 A JP-A-8-72668 JP-A-8-158183

本発明は産業用、特に安全関連製品に好適な繊維および繊維製品であって、前記従来技術の有する問題を解決し、人体等が受ける衝撃を低減しつつ大きなエネルギーを吸収し、熱的寸法安定性を有する繊維および繊維製品を提供することを課題とする。   The present invention is a fiber and fiber product suitable for industrial use, particularly safety-related products, which solves the problems of the prior art, absorbs large energy while reducing the impact received by the human body, etc., and stabilizes thermal dimensions. It is an object to provide a fiber and a fiber product having properties.

本発明者らは、かかる従来技術を鑑み鋭意検討を進めた結果、次の特性を有するポリエステル繊維およびそれを用いた繊維製品が、人体等が受ける負荷を低減しつつ大きなエネルギーを吸収し、さらに熱的寸法安定性に優れていることを見出し本発明に到達した。すなわち、本発明は、
(1)エチレンテレフタレートを主たる繰返し単位とするポリエステルからなる繊維であって、破断強度(Tb)が1.5〜2.5cN/dtex、破断伸度(Eb)が150〜220%、乾熱収縮率(ΔS)が1〜7%、二次立上り応力の傾きが1.0×10−4〜1.0×10−2cN/dtex・%であるポリエステル繊維、(2)ポリエステル繊維の伸度−強度曲線における定応力伸長域が40〜80%である(1)に記載のポリエステル繊維、(3)(1)または(2)に記載のポリエステル繊維を少なくとも一部用いてなる、安全帯、安全ネット、安全ベルト、落下防止ロープ、耐衝撃ネット、衝撃吸収ネットからなる群より選ばれた一つである繊維製品である。
As a result of diligent investigation in view of such conventional technology, the present inventors have absorbed a large amount of energy while reducing the load received by the human body etc., while the polyester fiber having the following characteristics and the fiber product using the polyester fiber have the following characteristics: The present inventors have found that the thermal dimensional stability is excellent and have reached the present invention. That is, the present invention
(1) A fiber made of polyester having ethylene terephthalate as a main repeating unit, having a breaking strength (Tb) of 1.5 to 2.5 cN / dtex, a breaking elongation (Eb) of 150 to 220%, and dry heat shrinkage A polyester fiber having a rate (ΔS) of 1 to 7% and a slope of secondary rising stress of 1.0 × 10 −4 to 1.0 × 10 −2 cN / dtex ·%, (2) elongation of the polyester fiber A safety band comprising at least a portion of the polyester fiber according to (1), the polyester fiber according to (3) (1) or (2), wherein the constant stress elongation region in the strength curve is 40 to 80%, It is a textile product that is one selected from the group consisting of a safety net, a safety belt, a fall prevention rope, an impact resistant net, and an impact absorbing net.

本発明のポリエステル繊維は、人体等に与える衝撃を低減するような降伏点応力を有し、定応力で伸長した後、緩やかに応力を立上げながら大きなエネルギー吸収を可能とする。さらに、熱収縮率が低いため熱的寸法安定性に優れており、経時的な物性変化を伴わない。本発明の繊維製品は、衝突、落下時等に衝撃から人体等を守る、安全用資材として好適に使用することができる。   The polyester fiber of the present invention has a yield point stress that reduces the impact applied to the human body and the like, and after stretching at a constant stress, enables large energy absorption while gradually raising the stress. Furthermore, since the thermal shrinkage rate is low, the thermal dimensional stability is excellent, and there is no change in physical properties over time. The textile product of the present invention can be suitably used as a safety material that protects the human body and the like from impact in the event of a collision, dropping, or the like.

本発明のポリエステル繊維は、破断強度(Tb)が1.5〜2.5cN/dtexであり、好ましくは1.7〜2.4cN/dtex、さらに好ましくは1.8〜2.3cN/dtexである。破断強度が2.5cN/dtexを超える場合には、SS曲線において降伏後に伸長した後の応力の立ち上がり(二次立ち上り応力)が急激になるため、衝撃時に急激な負荷が人体等にかかる懸念がある。破断強度が1.5cN/dtex未満の場合には、衝撃に対して必要なエネルギー量を吸収する前に繊維が破断してしまう懸念がある。また繊維の破断を防ぐため、繊維製品に使用する繊維量を増やした際には、製品の重量が大きく、取り扱い性に劣る問題がある。   The polyester fiber of the present invention has a breaking strength (Tb) of 1.5 to 2.5 cN / dtex, preferably 1.7 to 2.4 cN / dtex, more preferably 1.8 to 2.3 cN / dtex. is there. If the breaking strength exceeds 2.5 cN / dtex, the stress rise (secondary rise stress) after elongation after yielding in the SS curve becomes abrupt, so there is a concern that a sudden load is applied to the human body or the like at the time of impact. is there. When the breaking strength is less than 1.5 cN / dtex, there is a concern that the fiber breaks before absorbing the amount of energy necessary for impact. Further, when the amount of fibers used in the fiber product is increased in order to prevent fiber breakage, there is a problem that the weight of the product is large and the handleability is inferior.

本発明のポリエステル繊維は、破断伸度(Eb)が150〜220%であり、好ましくは、170〜215%、さらに好ましくは、180〜210%である。破断伸度が220%を超える場合には、SS曲線の降伏応力が低く、エネルギー吸収量であるSS曲線と伸度軸とで囲まれる面積が小さくなってしまうため、低い応力では衝撃に対して十分なエネルギー吸収が行われず、応力が立ち上がる領域まで伸長する必要があり、結果として人体等に対する衝撃度が大きくなってしまう。破断伸度が150%未満の場合には、SS曲線の降伏応力が高く、衝撃が加わった瞬間の人体等にかかる負荷が大きくなってしまう。また二次立ち上がり応力の傾きも大きくなるため、大きな衝撃時に急激な負荷が人体等にかかる懸念がある。本発明でいう降伏応力とは、図1に示すようにSS曲線の初期立ち上がり後、降伏する点での応力を指す。   The polyester fiber of the present invention has a breaking elongation (Eb) of 150 to 220%, preferably 170 to 215%, and more preferably 180 to 210%. When the elongation at break exceeds 220%, the yield stress of the SS curve is low, and the area surrounded by the SS curve, which is the amount of energy absorption, and the elongation axis becomes small. Sufficient energy absorption is not performed, and it is necessary to extend to a region where stress rises. As a result, the degree of impact on a human body or the like increases. When the elongation at break is less than 150%, the yield stress of the SS curve is high, and the load on the human body or the like at the moment of impact is increased. In addition, since the slope of the secondary rising stress increases, there is a concern that a sudden load is applied to the human body or the like at the time of a large impact. The yield stress referred to in the present invention refers to the stress at the point of yielding after the initial rise of the SS curve as shown in FIG.

さらに、本発明のポリエステル繊維は、乾熱収縮率(ΔS)が1〜7%であり、好ましくは1〜6.5%、さらに好ましくは1〜6%である。本発明のポリエステル繊維は、染色時や織編後に緊張熱セット処理が施される場合や、炎天下の屋外等の高温雰囲気下で長時間晒される場合がある。本発明の乾熱収縮率が前記範囲を満足する繊維は、染色時や緊張熱セット時、高温雰囲気下に晒された際に繊維の伸長や大きな収縮が無く、繊維製品とした際に品位の良い製品を得ることができる。乾熱収縮率が0以上1%未満である場合には、ネット等の繊維製品とした際、網目の固定が不十分となり、網目がずれ、さらに編自体の強力が低くなるという問題があり、0%未満である場合には、炎天下の屋外等の高温雰囲気下において自己伸長能により熱的寸法安定性が乏しく、形状保持性が著しく不足するといった問題点がある。乾熱収縮率が7%を超える場合には、繊維製品とした時、熱処理を行うと繊維が有する収縮性により繊維製品全体が大きく収縮し厚みが増大してしまい、収納性や軽量性に劣るといった問題がある。   Furthermore, the polyester fiber of the present invention has a dry heat shrinkage (ΔS) of 1 to 7%, preferably 1 to 6.5%, more preferably 1 to 6%. The polyester fiber of the present invention may be subjected to a tension heat setting treatment at the time of dyeing or knitting, or may be exposed for a long time in a high temperature atmosphere such as outdoors under a hot sun. The fiber having the dry heat shrinkage rate of the present invention satisfying the above range has no fiber elongation or large shrinkage when exposed to a high temperature atmosphere at the time of dyeing or tension heat setting, and the quality of the fiber product is high. You can get a good product. When the dry heat shrinkage rate is 0 or more and less than 1%, there is a problem that when the fiber product such as a net is used, the mesh is not sufficiently fixed, the mesh is displaced, and the strength of the knitting itself is further reduced. If it is less than 0%, there is a problem that the thermal dimensional stability is poor due to the self-extension ability in a high temperature atmosphere such as outdoors under a hot sun, and the shape retention is remarkably insufficient. When the dry heat shrinkage rate exceeds 7%, when a fiber product is formed, the heat treatment will cause the fiber product to shrink greatly due to the shrinkage of the fiber, increasing the thickness, resulting in poor storage and light weight. There is a problem.

本発明のポリエステル繊維は、二次立上り応力の傾きが1.0×10−4〜1.0×10−2cN/dtex・%であり、好ましくは3.0×10−4〜7.5×10−3cN/dtex・%、さらに好ましくは5.0×10−4〜5.0×10−3cN/dtex・%である。ここで、二次立上り応力の傾きとは、図1に示すSS曲線において降伏後に定応力伸長し、その後、応力が立ち上がる点(図1に示す降伏後、応力が一定となる初期の点と、SS曲線上の任意の点とを結んだときの直線の傾きが1.0×10−4cN/dtex・%以上になる最も初期の点を指す)と、その点の伸度から5%伸度が増加した点で結ばれるSS曲線の接線の傾きを指す。本発明の定応力伸長域とは、図1に示すSS曲線において、降伏後、応力が一定となる初期の点と、SS曲線上の任意の点とを結んだときの直線の傾きが1.0×10−4cN/dtex・%よりも小さい領域の伸度を指す。二次立上り応力の傾きが大きい場合には、落下等の衝撃時に、急激に人体等に負荷がかかることを示し、二次立上り応力の傾きが小さい場合には応力が急激に立ち上がる事無く衝撃を吸収することを意味する。二次立上り応力の傾きが1.0×10−4cN/dtex・%未満である場合には、降伏後応力が立ち上がらないため、衝撃を受けた際に繊維が受けた応力が伝播することなく、応力が1点に集中してしまい、衝撃吸収能を発現する前に繊維が破断してしまうという懸念を有している。二次立上り応力の傾きが1.0×10−2cN/dtex・%を超える場合には、応力が急激に立ち上がるため、衝撃時に急激な負荷が人体等にかかる懸念がある。 In the polyester fiber of the present invention, the slope of the secondary rising stress is 1.0 × 10 −4 to 1.0 × 10 −2 cN / dtex ·%, preferably 3.0 × 10 −4 to 7.5. It is * 10 < -3 > cN / dtex *%, More preferably, it is 5.0 * 10 < -4 > -5.0 * 10 < -3 > cN / dtex *%. Here, the slope of the secondary rising stress is the point at which constant stress is extended after yielding in the SS curve shown in FIG. 1 and thereafter the stress rises (the initial point where the stress becomes constant after yielding shown in FIG. The initial point where the slope of the straight line when connecting to any point on the SS curve is 1.0 × 10 −4 cN / dtex ·% or more) It refers to the slope of the tangent line of the SS curve connected at the point where the degree increases. The constant stress elongation region of the present invention means that the slope of a straight line when connecting an initial point where the stress becomes constant after yielding and an arbitrary point on the SS curve in the SS curve shown in FIG. It refers to the elongation of a region smaller than 0 × 10 −4 cN / dtex ·%. When the slope of the secondary rising stress is large, it indicates that a load is applied suddenly to the human body, etc. at the time of impact such as dropping, and when the slope of the secondary rising stress is small, the impact does not rise suddenly. It means to absorb. When the slope of the secondary rising stress is less than 1.0 × 10 −4 cN / dtex ·%, the stress after yielding does not rise, so that the stress received by the fiber is not propagated when receiving an impact. The stress is concentrated at one point, and there is a concern that the fiber breaks before the impact absorbing ability is exhibited. When the slope of the secondary rising stress exceeds 1.0 × 10 −2 cN / dtex ·%, since the stress rises rapidly, there is a concern that a sudden load is applied to the human body or the like at the time of impact.

本発明のポリエステル繊維は、SS曲線における定応力伸長域が40〜80%であることが好ましく、より好ましくは45〜80%、さらに好ましくは50〜80%である。定応力伸長域が40〜80%の範囲を満足する場合には、降伏後から応力が立ち上がるまで一定応力で伸長しエネルギーを吸収するため、十分なエネルギー吸収が行われ、立ち上がり後も低い応力でエネルギー吸収を終えることができるため、大きな負荷が人体等にかからない。さらに定応力伸長域後SS曲線が緩やかに立ち上がることで、応力が1点に集中して繊維または繊維製品が破断することなく衝撃吸収能を発現するため好ましい。   In the polyester fiber of the present invention, the constant stress elongation region in the SS curve is preferably 40 to 80%, more preferably 45 to 80%, and still more preferably 50 to 80%. When the constant stress elongation region satisfies the range of 40 to 80%, the energy is absorbed and absorbed at a constant stress until the stress rises after yielding. Since energy absorption can be completed, a large load is not applied to the human body. Further, it is preferable that the SS curve gradually rises after the constant stress elongation region, so that the stress is concentrated at one point and the impact absorbing ability is exhibited without breaking the fiber or the fiber product.

本発明で、エチレンテレフタレートを主たる繰返し単位とするポリエステルからなる繊維とは、エチレンテレフタレートの繰り返し単位が98モル%以上のものを指し、より好ましくは100モル%である。本発明に用いるポリエステル繊維は、酸化チタン、炭酸カルシウム、カオリン、クレーなどの艶消し剤、顔料、染料、滑剤、酸化防止剤、耐熱剤、耐蒸熱剤、耐光剤、紫外線吸収剤、帯電防止剤および難燃剤などを含むことができる。   In this invention, the fiber which consists of polyester which has ethylene terephthalate as a main repeating unit refers to the thing which the repeating unit of ethylene terephthalate is 98 mol% or more, More preferably, it is 100 mol%. The polyester fibers used in the present invention are matting agents such as titanium oxide, calcium carbonate, kaolin, clay, pigments, dyes, lubricants, antioxidants, heat resistance agents, heat resistance agents, light resistance agents, ultraviolet absorbers, antistatic agents. And flame retardants and the like.

本発明のポリエステル繊維において、単繊維繊度や総繊度は特に限定されるものではないが、単繊維繊度としては2〜25dtex、総繊度としては500〜3000dtexを好ましい範囲として例示することができる。単繊維繊度が上記の範囲を満足する場合には、耐摩耗性に有利であり、紡出後の冷却工程で均一に冷却を行えるため好ましい。総繊度が上記の範囲を満足する場合には、単位時間当たりの生産性が良く効率的に製造することができ、工業的に有利な生産が可能となるため好ましい。また、本発明のポリエステル繊維の断面形状にも特に決まりはなく、肉薄化や剛性向上、意匠性向上などの目的で、扁平断面、中空断面、芯鞘複合断面といった様々な断面を有する繊維を使用することができる。   In the polyester fiber of the present invention, the single fiber fineness and the total fineness are not particularly limited, but the single fiber fineness is preferably 2 to 25 dtex, and the total fineness is preferably 500 to 3000 dtex. When the single fiber fineness satisfies the above range, it is advantageous in wear resistance, and it is preferable because cooling can be performed uniformly in the cooling step after spinning. When the total fineness satisfies the above-mentioned range, it is preferable because the productivity per unit time can be produced efficiently and efficiently, and industrially advantageous production becomes possible. The cross-sectional shape of the polyester fiber of the present invention is not particularly determined, and fibers having various cross-sections such as a flat cross-section, a hollow cross-section, and a core-sheath composite cross-section are used for the purpose of thinning, improving rigidity, and improving design. can do.

次に、本発明のポリエステル繊維を得る方法の一例を、ポリエチレンテレフタレート溶融紡糸を例にとって示すが、本発明はこれに限定されることは無く、その他公知の紡糸方法を採用することができる。本発明で用いるポリエステルの固有粘度(IV)は、破断強伸度を制御する点から特定範囲にあることが好ましく、ポリエチレンテレフタレートの場合には、固有粘度は0.8〜1.3の範囲が好ましく、より好ましくは0.9〜1.2である。窒素雰囲気中でホッパーに充填されたエチレンテレフタレートの繰り返し単位が98モル%以上のポリエチレンテレフタレート樹脂のチップをエクストルーダーにて溶融混練して紡糸パックに導入し、口金より吐出する方法で得ることができる。前述の添加剤等を添加する際は、エクストルーダーにて直接混合する方法や、あらかじめ添加剤等を高濃度に含有したポリエチレンテレフタレート樹脂マスターチップを作成して、溶融前にチップをブレンドする方法が採用できる。   Next, an example of a method for obtaining the polyester fiber of the present invention will be shown taking polyethylene terephthalate melt spinning as an example, but the present invention is not limited to this, and other known spinning methods can be adopted. The intrinsic viscosity (IV) of the polyester used in the present invention is preferably in a specific range from the viewpoint of controlling the breaking strength and elongation. In the case of polyethylene terephthalate, the intrinsic viscosity is in the range of 0.8 to 1.3. Preferably, it is 0.9-1.2. It can be obtained by melting and kneading a polyethylene terephthalate resin chip having an ethylene terephthalate repeating unit of 98 mol% or more filled in a hopper in a nitrogen atmosphere into an spinning pack and discharging from a spinneret. . When adding the aforementioned additives, etc., there are a method of directly mixing with an extruder, or a method of preparing a polyethylene terephthalate resin master chip containing a high concentration of additives in advance and blending the chips before melting. Can be adopted.

溶融紡糸温度は固有粘度、ポリマ種類等により適宜変更することができるが、270〜320℃であることが好ましい。270℃未満で紡糸を行なった場合にはポリマの溶融時に十分な流動性が得られない可能性があり、320℃を越える温度ではポリマが分解し、本発明の如きポリエステル繊維を得られない可能性がある。紡糸口金の直下は、紡糸口金面より0〜15cmを上端とし、その上端から5〜30cmの範囲を加熱筒および/または断熱筒で囲み、紡出糸条を250〜350℃ の高温雰囲気中を短時間で通過させることで、非晶部配向度が低い未延伸糸が得られる。非晶部配向度が高いと低伸度で、さらに二次立ち上がり応力が急になり本発明の如き物性が得難いため、上記条件が好ましい。   The melt spinning temperature can be appropriately changed depending on the intrinsic viscosity, polymer type, and the like, but is preferably 270 to 320 ° C. When spinning at less than 270 ° C., there is a possibility that sufficient fluidity cannot be obtained when the polymer is melted. At temperatures exceeding 320 ° C., the polymer is decomposed and polyester fibers as in the present invention cannot be obtained. There is sex. Immediately below the spinneret, the upper end is 0 to 15 cm from the spinneret surface, the range from 5 to 30 cm from the upper end is surrounded by a heating cylinder and / or a heat insulating cylinder, and the spinning yarn is placed in a high-temperature atmosphere at 250 to 350 ° C. By passing it in a short time, an undrawn yarn with a low degree of amorphous part orientation can be obtained. The above conditions are preferred because a high degree of orientation in the amorphous part results in low elongation and a sudden rise in secondary stress, making it difficult to obtain the properties of the present invention.

高温雰囲気中を通過した未延伸糸条は、次いで10〜100℃ 、好ましくは15〜75℃ の風を吹きつけて冷却固化することが好ましい。冷却風が10℃未満の場合には通常装置とは別に大型の冷却装置が必要となるため好ましくない。また、冷却風が100℃を超える場合には紡糸時の単繊維揺れが大きくなるため、単繊維同士の衝突等が発生し製糸性良く繊維を製造することが困難となる。空冷装置は横吹き出しタイプ(ユニフロー型)でも良いし、環状型吹きだしタイプを用いても良い。また、モノフィラメントの様に高い冷却効果が求められる際には、水冷等の冷却方法を採用することができる。   The unstretched yarn that has passed through the high-temperature atmosphere is then preferably cooled and solidified by blowing air of 10 to 100 ° C., preferably 15 to 75 ° C. When the cooling air is less than 10 ° C., a large cooling device is required separately from the normal device, which is not preferable. In addition, when the cooling air exceeds 100 ° C., the single fiber sway during spinning becomes large, so that the single fibers collide with each other, making it difficult to produce the fibers with good spinning properties. The air cooling device may be a horizontal blowing type (uniflow type) or an annular blowing type. Moreover, when a high cooling effect is required like a monofilament, a cooling method such as water cooling can be adopted.

冷却固化された未延伸糸条は、次いで給油装置で油剤が付与される。油剤は、水系であっても非水系であっても良い。平滑剤を主成分とし、界面活性剤、制電剤、極圧剤成分等を含み、ポリエステル樹脂に活性な成分を除いた油剤組成とすることが好ましい。例えば、平滑剤成分としてアルキルエーテルエステル、界面活性剤成分として高級アルコールのアルキレンオキサイド付加物、極圧剤成分として有機ホスフェート塩等を鉱物油で希釈した非水系油剤であることがより好ましい。   The unstretched yarn that has been cooled and solidified is then applied with an oil agent by an oil supply device. The oil agent may be aqueous or non-aqueous. It is preferable to have an oil composition containing a smoothing agent as a main component, including a surfactant, an antistatic agent, an extreme pressure agent component, and the like, and excluding components active in a polyester resin. For example, an alkyl ether ester as a smoothing agent component, an alkylene oxide adduct of a higher alcohol as a surfactant component, and a non-aqueous oil agent in which an organic phosphate salt or the like is diluted with mineral oil as an extreme pressure agent component is more preferable.

油剤を付与された未延伸糸条は、引取りローラに捲回して引取る。引取りローラの表面速度、即ち引取り速度は1000〜2500m/分が好ましく、さらに好ましくは1300〜2300m/分である。1000m/分未満の引取り速度の場合には、SS曲線の降伏応力が低く、定応力伸長域で吸収できるエネルギー量が小さくなり、十分なエネルギー吸収が行われず、応力が立ち上がる領域まで伸長する必要があり、結果として人体等に加わる応力が大きくなってしまう。2500m/分を超える引き取り速度の場合には、SS曲線において降伏応力が高くなり、衝撃吸収時に人体等にかかる負荷が大きくなってしまう。また本発明の如き、破断伸度150〜220%の繊維を得ることが困難となる。   The unstretched yarn to which the oil agent is applied is wound around a take-up roller. The surface speed of the take-up roller, that is, the take-up speed is preferably 1000 to 2500 m / min, more preferably 1300 to 2300 m / min. When the take-off speed is less than 1000 m / min, the yield stress of the SS curve is low, the amount of energy that can be absorbed in the constant stress extension region is small, sufficient energy absorption is not performed, and it is necessary to extend to a region where the stress rises. As a result, the stress applied to the human body or the like increases. When the take-up speed exceeds 2500 m / min, the yield stress increases in the SS curve, and the load applied to the human body and the like at the time of impact absorption increases. Moreover, it becomes difficult to obtain a fiber having a breaking elongation of 150 to 220% as in the present invention.

上記引取り速度で引き取られた未延伸糸条は一旦巻き取った後、若しくは一旦巻き取ることなく連続して1〜1.35倍の延伸倍率で熱処理するのが好ましく、より好ましくは1〜1.3倍、さらに好ましくは1〜1.25倍である。延伸倍率が1.35倍を超える場合には、定応力伸長域後の二次立上り応力の傾きが急激になるため、本発明の如き、二次立上り応力の傾きが1.0×10−4〜1.0×10−2cN/dtex・%のポリエステル繊維を得ることが困難となり、繊維製品とした際、大きなエネルギー吸収量が必要な衝撃が加わった時に急激な負荷が人体等にかかる懸念がある。 The undrawn yarn taken up at the take-up speed is preferably heat-treated at a draw ratio of 1 to 1.35 times, more preferably 1 to 1 after being wound up or continuously without being wound up. .3 times, more preferably 1 to 1.25 times. When the draw ratio exceeds 1.35 times, since the slope of the secondary rising stress after the constant stress elongation region becomes steep, the slope of the secondary rising stress as in the present invention is 1.0 × 10 −4. It is difficult to obtain a polyester fiber of ˜1.0 × 10 −2 cN / dtex ·%, and when it is made into a fiber product, there is a concern that a sudden load is applied to a human body or the like when an impact that requires a large amount of energy absorption is applied. There is.

例えば延伸方法としては、引取りローラ(以下、1FRと略すことがある)と同様に、2ケのローラを1ユニットとするネルソン型ローラを給糸ローラ(以下、2FRと略すことがある)、第1延伸ローラ(以下、1DRと略すことがある)、熱セットローラ(以下、2DRと略すことがある)および弛緩ローラ(以下、RRと略すことがある)と並べて配置し、順次糸条を捲回して上記条件にて延伸熱処理を行うが、この時、延伸段数、ローラ数、ローラ間での延伸比率に特に決まりはない。通常、引取りローラと給糸ローラ間では糸条を集束させるためにストレッチを行う。ストレッチ率は1〜5%の範囲が好ましい。引取りローラは50〜90℃に加熱して、引き取り糸条を予熱して次の延伸工程に送る。   For example, as a drawing method, similarly to a take-up roller (hereinafter sometimes abbreviated as 1FR), a Nelson type roller having two rollers as one unit is a yarn feeding roller (hereinafter sometimes abbreviated as 2FR), Arranged side by side with a first stretching roller (hereinafter abbreviated as 1DR), a heat setting roller (hereinafter abbreviated as 2DR) and a relaxation roller (hereinafter abbreviated as RR). The film is wound and subjected to the stretching heat treatment under the above conditions. At this time, the number of stretching stages, the number of rollers, and the stretching ratio between the rollers are not particularly limited. Usually, stretching is performed between the take-up roller and the yarn supply roller in order to converge the yarn. The stretch rate is preferably in the range of 1 to 5%. The take-up roller is heated to 50 to 90 ° C. to preheat the take-up yarn and sent to the next drawing step.

延伸は給糸ローラと熱セットローラ間で行い、給糸ローラの温度は70〜120℃とし、その後第1延伸ローラ(100〜140℃)にて延伸倍率の90〜98%で糸条の延伸を行い、熱セットローラにて総延伸倍率の1〜5%で糸条の延伸を行いながら熱セットを行なう。第1延伸ローラにて延伸倍率の90〜98%で糸条の延伸を行うのは、分子が結晶化していない流動性を持った状態で延伸を行い、より延伸効果を高め配向を進めるためである。延伸された糸条は熱セットローラにて130〜170℃で熱セットを行なった後、熱セットローラと弛緩ローラとの間で0〜7%、好ましくは0〜5%、さらに好ましくは0〜3%の弛緩処理を行ない、巻取り機にて巻き取られる。弛緩処理では熱延伸によって生じた歪みを取るだけで無く、延伸によって達成された構造を固定したり、非晶領域の配向を緩和させ熱収縮率を下げたりすることができる。弛緩ローラは非加熱ローラまたは、150℃以下に加熱したローラを用いる。上記条件を満足する場合には、本発明の特性を満足する繊維構造が形成されると考えられる。   Stretching is performed between a yarn feeding roller and a heat setting roller. The temperature of the yarn feeding roller is set to 70 to 120 ° C., and then the yarn is stretched at 90 to 98% of the stretching ratio by the first stretching roller (100 to 140 ° C.). And heat setting is performed while the yarn is stretched at 1 to 5% of the total draw ratio with a heat setting roller. The reason why the yarn is stretched at 90 to 98% of the stretching ratio with the first stretching roller is to perform stretching in a fluid state where the molecules are not crystallized, to further enhance the stretching effect and advance the orientation. is there. The stretched yarn is heat-set at 130 to 170 ° C. with a heat setting roller, and then 0 to 7%, preferably 0 to 5%, more preferably 0 to 0 between the heat setting roller and the relaxation roller. 3% relaxation treatment is carried out and wound up by a winder. In the relaxation treatment, not only the strain caused by thermal stretching can be removed, but also the structure achieved by stretching can be fixed, the orientation of the amorphous region can be relaxed, and the thermal shrinkage rate can be lowered. As the relaxation roller, a non-heated roller or a roller heated to 150 ° C. or less is used. When the above conditions are satisfied, it is considered that a fiber structure that satisfies the characteristics of the present invention is formed.

従来、紡糸した未延伸糸を2500m/分以下の速度で引き取り、延伸倍率1〜1.35倍で延伸し、熱セットローラで結晶化温度以上の熱を急激に加えた場合、非晶部がガラス転移温度(約70℃)を大きく超えることで分子運動が極めて活発となり、糸揺れが大きく製糸性が悪化するといった問題があった。本発明では、上記問題を解決するために、本発明のように紡糸した未延伸糸を1000〜2500m/分の引き取り速度で引き取り、分子鎖を引き揃え、配向させて、給糸ローラから熱セットローラまでで結晶開始温度100〜120℃の熱を加えるのが好ましく、より好ましくは110℃〜120℃であり、結晶開始温度近傍の熱を段階的に長時間(0.2〜0.3秒が好ましく、より好ましくは0.22〜0.28秒)与えゆっくりと結晶化させ、さらに170℃を超える高温熱セットを行わないことで、従来のように、大きい熱を急激に加えることなく結晶化を完了させ、糸揺れなく製糸を行うことが可能となった。ただし、130℃未満の熱セット温度の場合には、十分に結晶化が進まず、熱収縮の緩和が得られないため、本発明の如き、乾熱収縮率(ΔS)1〜7%の繊維を得ることが困難となる。本発明の結晶開始温度とは、DSC曲線において結晶化発熱が始まる温度を指す。   Conventionally, when a spun undrawn yarn is taken up at a speed of 2500 m / min or less, drawn at a draw ratio of 1-1.35 times, and heat above the crystallization temperature is suddenly applied by a heat setting roller, When the glass transition temperature (about 70 ° C.) is greatly exceeded, the molecular motion becomes extremely active, and there is a problem that the yarn swaying is large and the spinning property is deteriorated. In the present invention, in order to solve the above problems, undrawn yarn spun as in the present invention is taken up at a take-up speed of 1000 to 2500 m / min, molecular chains are aligned and oriented, and heat set from a yarn feeding roller. It is preferable to apply heat at a crystal start temperature of 100 to 120 ° C. until the roller, more preferably at 110 ° C. to 120 ° C., and heat near the crystal start temperature is gradually increased for a long time (0.2 to 0.3 seconds). (Preferably, 0.22 to 0.28 seconds) and slowly crystallize, and by not performing high-temperature heat setting exceeding 170 ° C. It became possible to complete the process and to produce the yarn without shaking. However, when the heat set temperature is less than 130 ° C., the crystallization does not proceed sufficiently, and relaxation of heat shrinkage cannot be obtained. Therefore, the fiber having a dry heat shrinkage rate (ΔS) of 1 to 7% as in the present invention. It becomes difficult to obtain. The crystallization onset temperature of the present invention refers to the temperature at which the crystallization exotherm begins in the DSC curve.

また、毛羽の発生を少なくして高品位のポリエステル繊維を得るために、給糸ローラと第1延伸ローラの間に、繊維糸条に高圧流体を吹き付けて、該繊維を構成する糸条に交絡を付与し、糸条を集束させながら延伸を行っても良い。糸条を交絡、集束させるための交絡付与装置は、通常糸条を巻き取る直前に糸条に交絡を付与し、集束させるために用いられる交絡ノズルを用いることができる。該交絡付与装置は1段目の延伸時に行うのが効果的であるが、1段目に加え、2段目および3段目の延伸時にも行っても良い。ポリエステル繊維に施す交絡度(CF値)としては5〜70であることが好ましく、より好ましくは10〜60である。交絡度が5未満の場合には、高次加工における工程通過性が悪くなるため好ましくない。また、交絡度が70より大きい場合には、ループが発生しやすく、安定して高次加工を行うことが困難である。   In addition, in order to obtain high-quality polyester fibers with less generation of fluff, high-pressure fluid is sprayed on the fiber yarns between the yarn feeding roller and the first drawing roller, and the yarns constituting the fibers are entangled. And may be stretched while converging the yarn. The entanglement imparting device for entanglement and convergence of the yarn can use an entanglement nozzle that is usually used to impart and entangle the yarn just before winding the yarn. The entanglement imparting device is effective when it is stretched in the first stage, but it may also be performed when stretching the second and third stages in addition to the first stage. The entanglement degree (CF value) applied to the polyester fiber is preferably 5 to 70, more preferably 10 to 60. When the degree of entanglement is less than 5, it is not preferable because process passability in high-order processing is deteriorated. If the degree of entanglement is greater than 70, loops are likely to occur, making it difficult to perform high-order processing stably.

本発明のポリエステル繊維の特徴は、5〜30cmの範囲を加熱筒および/または断熱筒で囲みポリエステル繊維を急冷固化し、引き取り速度1000〜2500m/分により分子鎖を引き揃えて、配向させ、さらに1〜1.35倍の低倍率延伸を行い段階的かつ長時間、結晶開始温度近傍(100〜120℃)の熱を加え、さらに130〜170℃の低温での熱セットを併せる事で得ることができる。   The polyester fiber according to the present invention is characterized in that the range of 5 to 30 cm is surrounded by a heating cylinder and / or a heat insulating cylinder, the polyester fiber is rapidly cooled and solidified, and molecular chains are aligned and oriented at a take-up speed of 1000 to 2500 m / min. It is obtained by stretching at a low magnification of 1 to 1.35 times, applying heat in the vicinity of the crystal start temperature (100 to 120 ° C.) stepwise and for a long time, and further combining heat at a low temperature of 130 to 170 ° C. Can do.

本発明の繊維製品は、前記本発明のポリエステル繊維を少なくとも一部使用する。本発明のポリエステル繊維を用いることで、衝撃吸収能に優れ、人体等にかかる負荷を低減し、熱的寸法安定性に優れた安全帯、安全ネット、安全ベルト、落下防止ロープ、耐衝撃ネット、衝撃吸収ネット等の安全用途として好適な繊維製品を得ることが可能となる。   The textile product of the present invention uses at least a part of the polyester fiber of the present invention. By using the polyester fiber of the present invention, it has excellent shock absorption capacity, reduces the load on the human body, etc., and has a safety belt, safety net, safety belt, fall prevention rope, impact resistance net, excellent thermal dimensional stability, It is possible to obtain a textile product suitable for safety use such as an impact absorbing net.

次に本発明の繊維製品の製造方法を安全帯を例にとって説明するが、本発明の繊維製品の製造方法はこれに限定されるものでは無く、通常知られたネット、ベルト、ロープ、織編物等の製造方法を採用することができる。前述のように製造されたポリエステル繊維を、ニードル織機を用いて下記の条件で製織する。例えば、緯糸には通常の円断面糸からなる合成繊維マルチフィラメントを用い、経糸に繊度1100dtexで単繊維数200本の本発明のポリエステル繊維を用いて安全帯用ウェビングとする。織密度は限定されるものではなく、必要なエネルギー吸収特性に応じて変更できる。また、この時の織構造には特に決まりは無く、平織り、斜文織、朱子織や、それらを組み合わせた織構造を採用することができるが、ウェビングの初期応力を高めるために綾織か朱子織を採用することが好ましい。ウェビングの厚みは特に指定は無いが、2.0〜3.0mmの範囲であることが好ましい。ウェビング厚みが3.0mmを超える場合には収納性に劣るという問題があり、ウェビングの厚みが2.0mmを下回る場合には衝撃がウェビングに加わった際にウェビングが破断してしまう懸念性を有している。   Next, the production method of the textile product of the present invention will be described by taking a safety belt as an example. However, the production method of the textile product of the present invention is not limited to this, and a generally known net, belt, rope, woven or knitted fabric is used. A manufacturing method such as the above can be adopted. The polyester fiber manufactured as described above is woven using a needle loom under the following conditions. For example, a synthetic fiber multifilament made of ordinary circular cross-section yarn is used as the weft, and the polyester fiber of the present invention having a fineness of 1100 dtex and 200 single fibers is used as the warp webbing. The weave density is not limited and can be changed according to the required energy absorption characteristics. In addition, there is no particular rule on the weaving structure at this time, and plain weaving, oblique weaving, satin weaving or a combination weaving structure can be adopted, but in order to increase the initial stress of webbing, weave or satin weaving Is preferably adopted. The thickness of the webbing is not particularly specified, but is preferably in the range of 2.0 to 3.0 mm. When the webbing thickness exceeds 3.0 mm, there is a problem that the storage property is inferior. When the webbing thickness is less than 2.0 mm, there is a concern that the webbing may be broken when an impact is applied to the webbing. is doing.

ウェビングには必要に応じて染色加工を施しても良い。染色は通常の染色方法を採用すればよく、例えば、染色浴に浸漬後170℃で1分間処理する方法を用いることができる。染料としては、アントラキノン染料、アゾ染料、ニトロジジェニルアミン染料、メチン染料およびナフトキノン染料など通常のポリエステル用染料を用いることができる。また、一般に赤、青、黄色の染料を組み合わせることによって望ましい色彩を得ることができる。さらに、染色に際しては、本発明の効果を損なわない範囲であれば、エトキシ化ジオクチルフェノールやアニオン性非イオン性表面活性剤、アルキルアルコールポリグリコールエーテル、硫酸エステル塩などに代表される分散・均染剤、湿潤剤のほか、抗移行剤、pH調整剤、紫外線吸収剤および酸化防止剤などの添加物を染料液中に加えても良い。   The webbing may be dyed as necessary. For the dyeing, a normal dyeing method may be employed. For example, a method of treating at 170 ° C. for 1 minute after immersion in a dyeing bath can be used. As the dye, usual polyester dyes such as anthraquinone dye, azo dye, nitrodienylamine dye, methine dye and naphthoquinone dye can be used. In general, a desired color can be obtained by combining red, blue and yellow dyes. Further, when dyeing, within a range that does not impair the effects of the present invention, dispersion / level dyeing represented by ethoxylated dioctylphenol, anionic nonionic surfactant, alkyl alcohol polyglycol ether, sulfate ester salt, etc. In addition to the agent and the wetting agent, additives such as an anti-migratory agent, a pH adjuster, an ultraviolet absorber and an antioxidant may be added to the dye solution.

得られた本発明のウェビングは、例えば、図3に示すような本発明のポリエステル繊維のみで構成される安全帯や図4、5に示すようなショックアブソーバ型の安全帯に使用できるが、特に使用法はこれに限定されるものではない。本発明で言うショックアブソーバとは、墜落を防止するときに生ずる衝撃を緩和するための器具を言い、図4に示すような短尺部に本発明のウェビングを、長尺部には通常の円断面糸からなる高強力合成繊維マルチフィラメントウェビングにより構成されるものが挙げられる。図4のようなショックアブソーバ型の安全帯は、短尺部に用いた本発明のポリエステル繊維が伸び始め徐々に衝撃を吸収し、長尺部により安全帯の破断を抑制する。この構成により、短尺部の伸長の始まりでは本発明のポリエステル繊維が有する定応力伸長域により人体等に対し小さな衝撃で大きなエネルギー吸収が行われ、人体等への負荷を低減しつつ、短尺部が伸びきった段階で長尺部の衝撃吸収能が発現し、安全帯の破断を抑制することができる。また、図5に示すような経糸に本発明のポリエステル繊維を用い、からみ経糸(図5参照)として高強力の合成繊維マルチフィラメントを用いたものも挙げられる。この安全帯に衝撃が加わった際、ベルトが伸長するのに併せからみ経糸が伸長し、からみ経糸が伸びきった段階で衝撃吸収能が発現し、安全帯の破断を抑制することができる。かくして、本発明のポリエステル繊維製品を得ることができる。   The obtained webbing of the present invention can be used for, for example, a safety belt composed only of the polyester fiber of the present invention as shown in FIG. 3 and a shock absorber type safety belt as shown in FIGS. The usage is not limited to this. The shock absorber referred to in the present invention refers to a device for mitigating the impact that occurs when preventing a crash, and the webbing of the present invention is used for the short part as shown in FIG. What is comprised by the high strength synthetic fiber multifilament webbing which consists of a thread | yarn is mentioned. In the shock absorber type safety belt as shown in FIG. 4, the polyester fiber of the present invention used for the short portion starts to stretch and absorbs the impact gradually, and the long portion suppresses the breakage of the safety belt. With this configuration, at the beginning of the extension of the short part, the constant stress extension region of the polyester fiber of the present invention absorbs a large amount of energy with a small impact on the human body and the like, while reducing the load on the human body etc. When it is fully stretched, the impact absorbing ability of the long part is developed, and the safety belt can be prevented from breaking. Moreover, the thing using the polyester fiber of this invention for the warp as shown in FIG. 5, and using the high strength synthetic fiber multifilament as the entanglement warp (refer FIG. 5) is also mentioned. When an impact is applied to the safety belt, the tangled warp is stretched as the belt is stretched, and when the tangled warp is fully stretched, the impact absorbing ability is exhibited, and the safety belt can be prevented from breaking. Thus, the polyester fiber product of the present invention can be obtained.

以下、実施例によって本発明の態様を更に詳しく説明する。特性の定義および測定法は次の通りである。
[総繊度]:JIS L1013(1999)8.3.1a)A法に基づき、中山電気産業(株)社製検尺機を用いて、表示繊度×0.45mN/dtexの初荷重を加え測定し、総繊度とした。
Hereinafter, embodiments of the present invention will be described in more detail by way of examples. The property definitions and measurement methods are as follows.
[Total Fineness]: JIS L1013 (1999) 8.3.1a) Based on A method, using a measuring machine manufactured by Nakayama Electric Industry Co., Ltd. and applying an initial load of display fineness x 0.45 mN / dtex. And the total fineness.

[単繊維繊度]
総繊度を単繊維数で除することにより算出した。ここで、単繊維数は、JIS L1013(1999)8.4により算出した。
[Single fiber fineness]
The total fineness was calculated by dividing by the number of single fibers. Here, the number of single fibers was calculated according to JIS L1013 (1999) 8.4.

[破断伸度(Eb)、破断強度(Tb)、降伏応力、定応力伸長域、二次立上り応力の傾き]
(株)オリエンテック社製“テンシロン”引張試験機を用い、試料長10cm、引張速度30cm/分の条件で得たSS曲線(伸度‐強度特性)から求める。図1に示すようにSS曲線の初期立ち上がり後、降伏する点での応力を降伏応力とした。またSS曲線において、降伏後、応力が一定となる初期の点と、SS曲線上の任意の点とを結んだときの直線の傾きが1.0×10−4cN/dtex・%よりも小さい領域の伸度を定応力伸長域とし、定応力伸長した後の応力の傾きを二次立上り応力の傾きとした。
[Elongation at break (Eb), strength at break (Tb), yield stress, constant stress elongation range, slope of secondary rising stress]
Using a “Tensilon” tensile tester manufactured by Orientec Co., Ltd., the SS curve (elongation-strength property) obtained under the conditions of a sample length of 10 cm and a tensile speed of 30 cm / min is obtained. As shown in FIG. 1, the stress at the yield point after the initial rise of the SS curve was defined as the yield stress. In the SS curve, the slope of the straight line when connecting an initial point where the stress is constant after yielding and an arbitrary point on the SS curve is smaller than 1.0 × 10 −4 cN / dtex ·%. The elongation of the region was defined as a constant stress elongation region, and the slope of the stress after the constant stress elongation was defined as the slope of the secondary rising stress.

[乾熱収縮率(ΔS)]
JIS L1013により、150℃の乾熱炉中で無荷重下30分間の熱処理を施し、熱処理試験前後における試長を0.10cN/dtexの荷重下で測定し、下記式に従って求めた。測定は2回行い、平均値を求めた。
乾熱収縮率(%)=(処理前試長−処理後試長)×100/処理前試長
[固有粘度(IV)]
オルソクロロフェノール100mLに対し試料8gを溶解した溶液の相対粘度ηをオストワルド式粘度計を用いて25℃で測定し、IV=0.0242η+0.2634の近似式によって求めた。
[Dry heat shrinkage (ΔS)]
According to JIS L1013, heat treatment was performed for 30 minutes under no load in a dry heat furnace at 150 ° C., and the test length before and after the heat treatment test was measured under a load of 0.10 cN / dtex, and was determined according to the following formula. The measurement was performed twice to obtain an average value.
Dry heat shrinkage (%) = (Test length before treatment−Test length after treatment) × 100 / Test length before treatment [Intrinsic viscosity (IV)]
The relative viscosity η of a solution in which 8 g of the sample was dissolved in 100 mL of orthochlorophenol was measured at 25 ° C. using an Ostwald viscometer, and obtained by an approximate expression of IV = 0.0242η + 0.2634.

[交絡度(CF値)]
1m試長の試料に100gの荷重をかけ、6gのフックを下降速度1〜2cm/秒で下降させ、式:交絡度(CF値)=100(cm)/下降距離(cm)により計算して求めた。試行回数10回の平均値を採用した。
[Degree of confounding (CF value)]
A 100 g load is applied to a sample of 1 m length, a 6 g hook is lowered at a descending speed of 1 to 2 cm / sec, and calculated by the formula: Entanglement (CF value) = 100 (cm) / Descent distance (cm) Asked. An average value of 10 trials was adopted.

[本発明のポリエステル繊維のみからなる安全帯評価]
図3に示すような安全帯として、本発明のポリエステル繊維を用いてベルト試長200cm(緯糸に東レ株式会社製ポリエステル原糸560−96−702Cを織密度20本/インチで打ち込み、経糸には、繊度1100dtexで単繊維数120本の本発明ポリエステル繊維を織密度100本/インチで打ち込んで巾51mmのウェビングとした)のものを作成し、85kgの砂のうを用いて労働安全衛生法第四十二条の規定に基づき制定された安全帯の規格(2002)第七条の耐衝撃性等に基づいて荷重落下試験を行い、落下の衝撃エネルギーをSS曲線で囲まれる面積から計算し、人体に加わる応力を求めた。上記の試験においては、ベルトに加わる負荷エネルギー(J(=N・m))は、85kg×9.81m/s×2m=1667.7N・mであり、ベルトのSS曲線と伸度軸とで囲まれる面積に対応していることから、エネルギー吸収が完了した時点の伸びにおける応力が人体に加わる衝撃となる。
[Evaluation of safety band consisting only of polyester fiber of the present invention]
As a safety belt as shown in FIG. 3, the polyester fiber of the present invention is used to test a belt test length of 200 cm (weaving polyester base yarn 560-96-702C manufactured by Toray Industries Inc. at a weaving density of 20 yarns / inch, The polyester fiber of the present invention having a fineness of 1100 dtex and 120 single fibers was driven at a weaving density of 100 fibers / inch to make a webbing of 51 mm width), and 85 kg of sandbags were used. A load drop test is performed based on the impact resistance of the safety belt standard (2002) Article 7 established based on the provisions of Article 42, and the impact energy of the drop is calculated from the area surrounded by the SS curve, The stress applied to the human body was determined. In the above test, the load energy (J (= N · m)) applied to the belt is 85 kg × 9.81 m / s 2 × 2 m = 1667.7 N · m, and the SS curve and the elongation axis of the belt Since this corresponds to the area surrounded by, the stress in the elongation at the time when the energy absorption is completed is an impact applied to the human body.

[ショックアブソーバ型の安全帯評価]
図4に示すようなショックアブソーバ型の安全帯として、短尺部に本発明のポリエステル繊維を用いてベルト試長を200cm(緯糸に東レ株式会社製ポリエステル原糸560−96−702Cを織密度20本/インチで打ち込み、経糸には、繊度1100dtexで単繊維数120本の本発明ポリエステル繊維を織密度100本/インチで打ち込んで巾51mmのウェビングとした)、長尺部に東レ株式会社製ポリエステル原糸1100−240−704Dを用いてベルト試長300cm(緯糸に東レ株式会社製ポリエステル原糸560−96−702Cを織密度20本/インチで打ち込み、経糸には、該ポリエステル繊維を織密度100本/インチで打ち込んで巾51mmのウェビングとした)を作成し、85kgの砂のうを用いて労働安全衛生法第四十二条の規定に基づいき制定された安全帯の規格(2002)第七条の耐衝撃性等に基づいて荷重落下試験を行い、落下の衝撃エネルギーをSS曲線で囲まれる面積から計算し、人体に加わる応力を求めた。上記の試験においては、ベルトに加わる負荷エネルギー(J(=N・m))は、85kg×9.81m/s×2m=1667.7N・mであり、ベルトのSS曲線と伸度軸とで囲まれる面積に対応していることから、エネルギー吸収が完了した時点の伸びにおける応力が人体に加わる衝撃となる。
[Shock absorber type safety belt evaluation]
As a shock absorber type safety belt as shown in FIG. 4, the polyester fiber of the present invention is used for the short length portion of the belt, the belt test length is 200 cm (the polyester yarn 560-96-702C manufactured by Toray Industries, Ltd. is used for the weft, and the weaving density is 20 pieces. For the warp, the polyester fiber of the present invention having a fineness of 1100 dtex and a single fiber number of 120 is driven at a weaving density of 100 fibers / inch to make a webbing with a width of 51 mm). Using a yarn 1100-240-704D, a belt test length of 300 cm (polyester yarn 560-96-702C manufactured by Toray Industries, Inc. is driven into the weft at a weaving density of 20 / inch, and the warp yarn has 100 polyester fibers of the polyester fiber. / Inch to make a webbing with a width of 51 mm) and labor using an 85 kg sandbag Safety drop standard based on the provisions of Article 42 of the Sanitation Act (2002) Conducts a load drop test based on the impact resistance etc. of Article 7, and the impact energy of the fall is surrounded by an SS curve The stress applied to the human body was calculated from the area. In the above test, the load energy (J (= N · m)) applied to the belt is 85 kg × 9.81 m / s 2 × 2 m = 1667.7 N · m, and the SS curve and the elongation axis of the belt Since this corresponds to the area surrounded by, the stress in the elongation at the time when the energy absorption is completed is an impact applied to the human body.

(実施例1)
東レ株式会社製の固有粘度1.23のポリエチレンテレフタレートポリマを、295℃の1軸エクストルーダー式押出機に連続的に供給し連続的に溶融した。溶融ポリマを295℃の配管を通じて8段のスタティックミキサーで混練し、ギヤポンプにて総繊度が1100dtexとなるように計量した後、295℃の紡糸パックに導き、パック内では10ミクロンカットのフィルターを通過させ、孔径0.6mm、孔長0.78mmの丸型単孔が120個開けられた口金より押し出し紡出した。紡出糸条を口金下に設けた長さ7cm、雰囲気温度285℃の加熱筒を通過させた後、環状型チムニーを用いて40℃の冷風を30m/分の速度で吹き付け固化させた後、油剤ロールにて油剤(三洋化成社製:サンオイルF)を付与した。油剤を付与した糸条を1570m/分の表面速度を有する1FR(70℃)で巻き取った後、連続して延伸工程に供した。
Example 1
A polyethylene terephthalate polymer having an intrinsic viscosity of 1.23 manufactured by Toray Industries, Inc. was continuously fed to a single screw extruder type extruder at 295 ° C. and continuously melted. The melted polymer is kneaded with an eight-stage static mixer through a pipe at 295 ° C, weighed with a gear pump so that the total fineness becomes 1100 dtex, led to a spin pack at 295 ° C, and passed through a 10-micron cut filter in the pack. Then, extrusion spinning was performed from a die having 120 round single holes each having a hole diameter of 0.6 mm and a hole length of 0.78 mm. After passing through a heated cylinder having a length of 7 cm and an atmospheric temperature of 285 ° C. provided with a spun yarn under the base, cold air of 40 ° C. was blown and solidified at a rate of 30 m / min using an annular chimney, An oil agent (manufactured by Sanyo Chemical Co., Ltd .: Sun Oil F) was applied with an oil agent roll. The yarn provided with the oil was wound up at 1FR (70 ° C.) having a surface speed of 1570 m / min, and then subjected to the stretching step continuously.

1FRを通過した糸条を、一旦巻き取ることなく速度1600m/分の2FR(90℃)、速度1920m/分の1DR(120℃)、速度2000m/分の2DR(140℃)、速度2000m/分のRR(非加熱)に連続して供すことにより延伸を行った。交絡処理装置は2FRと1DRの間(東レ株式会社製 EC−Y23)および、RRと巻取ローラの間(ヘバーライン社製PP3500)に設置し、それぞれ0.5MPaおよび0.6MPaの高圧空気を噴射して、ポリエステル繊維を得た。ここで得られたポリエステル繊維を用いてベルト試長200cmの図3に示すような安全帯(緯糸に東レ株式会社製ポリエステル原糸560−96−702Cを織密度20本/インチで打ち込み、経糸には、上記方法で得られたポリエステル繊維を織密度100本/インチで打ち込んで巾51mmのウェビングとした)を作成した。得られたポリエステル繊維の特性を表1及び図2に、得られた安全帯の評価結果を表2に、またベルトの伸長に対する応力を図6に示した。   2FR (90 ° C) at a speed of 1600 m / min, 1DR at a speed of 1920 m / min (120 ° C), 2DR at a speed of 2000 m / min (140 ° C), a speed of 2000 m / min without winding the yarn that has passed through 1FR The film was stretched by being continuously subjected to RR (non-heated). The entanglement processing device is installed between 2FR and 1DR (EC-Y23 manufactured by Toray Industries, Inc.) and between RR and the take-up roller (PP3500 manufactured by Heberline), and injects high-pressure air of 0.5 MPa and 0.6 MPa, respectively. Thus, a polyester fiber was obtained. Using the polyester fiber obtained here, a safety belt as shown in FIG. 3 having a belt test length of 200 cm (polyester raw yarn 560-96-702C manufactured by Toray Industries, Inc. is driven into the weft at a weaving density of 20 yarns / inch, Made a polyester web obtained by the above method at a weaving density of 100 fibers / inch to make a webbing with a width of 51 mm). The characteristics of the obtained polyester fiber are shown in Table 1 and FIG. 2, the evaluation results of the obtained safety belt are shown in Table 2, and the stress with respect to belt elongation is shown in FIG.

(実施例2)
1850m/分の表面速度を有する1FR(70℃)で巻き取ったこと、速度1880m/分の2FR(90℃)、速度1920m/分の1DR(120℃)、速度2000m/分の2DR(140℃)、速度2000m/分のRR(非加熱)に連続して供したこと以外は、実施例1と同様に行った。
(Example 2)
Winding at 1FR (70 ° C.) having a surface speed of 1850 m / min, 2FR (90 ° C.) at a speed of 1880 m / min, 1DR at a speed of 1920 m / min (120 ° C.), 2DR at a speed of 2000 m / min (140 ° C. ), Except that it was continuously subjected to RR (non-heated) at a speed of 2000 m / min.

(実施例3)
1500m/分の表面速度を有する1FR(70℃)で巻き取ったこと、速度1540m/分の2FR(90℃)、速度1920m/分の1DR(120℃)、速度2000m/分の2DR(140℃)、速度2000m/分のRR(非加熱)に連続して供したこと以外は、実施例1と同様に行った。
(Example 3)
Winding at 1FR (70 ° C) with a surface speed of 1500m / min, 2FR (90 ° C) at a speed of 1540m / min, 1DR at a speed of 1920m / min (120 ° C), 2DR at a speed of 2000m / min (140 ° C) ), Except that it was continuously subjected to RR (non-heated) at a speed of 2000 m / min.

(実施例4)
2380m/分の表面速度を有する1FR(70℃)で巻き取ったこと、速度2400m/分の2FR(90℃)、速度2430m/分の1DR(120℃)、速度2500m/分の2DR(150℃)、速度2475m/分のRR(非加熱)に連続して供したこと以外は、実施例1と同様に行った。
Example 4
Winding at 1FR (70 ° C.) having a surface speed of 2380 m / min, 2FR (90 ° C.) at a speed of 2400 m / min, 1DR at a speed of 2430 m / min (120 ° C.), 2DR at a speed of 2500 m / min (150 ° C. ), The same as Example 1 except that it was continuously subjected to RR (non-heated) at a speed of 2475 m / min.

(実施例5)
2380m/分の表面速度を有する1FR(70℃)で巻き取ったこと、速度2400m/分の2FR(90℃)、速度2430m/分の1DR(120℃)、速度2500m/分の2DR(170℃)、速度2480m/分のRR(非加熱)に連続して供した以外は、実施例1と同様に行った。
(Example 5)
Winding up at 1FR (70 ° C) with a surface speed of 2380 m / min, 2FR at 2400 m / min (90 ° C), 1DR at a speed of 2430 m / min (120 ° C), 2DR at a speed of 2500 m / min (170 ° C) ), The same as in Example 1 except that it was continuously subjected to RR (non-heated) at a speed of 2480 m / min.

(実施例6)
図4に示すようなショックアブソーバ型の安全帯として、短尺部に実施例5で得られたポリエステル繊維を用いてベルト試長を200cm(緯糸に東レ株式会社製ポリエステル原糸560−96−702Cを織密度20本/インチで打ち込み、経糸には、実施例5で得られたポリエステル繊維を織密度100本/インチで打ち込んで巾51mmのウェビングとした)、長尺部に東レ株式会社製ポリエステル原糸1100−240−704Dを用いてベルト試長300cm(緯糸に東レ株式会社製ポリエステル原糸560−96−702Cを織密度20本/インチで打ち込み、経糸には、該ポリエステル繊維を織密度50本/インチで打ち込んで巾51mmのウェビングとした)を作成した以外は実施例1と同様に行った。
(Example 6)
As a shock absorber type safety belt as shown in FIG. 4, the polyester fiber obtained in Example 5 is used for the short portion, the belt test length is 200 cm (polyester yarn 560-96-702C manufactured by Toray Industries, Inc. is used as the weft). The polyester fiber obtained in Example 5 was driven at a weaving density of 100 yarns / inch to form a webbing of 51 mm in width, and a polyester raw material manufactured by Toray Industries, Inc. was used for the long portion. Using a yarn 1100-240-704D, a belt trial length of 300 cm (polyester yarn 560-96-702C manufactured by Toray Industries, Inc. was driven into the weft at a weaving density of 20 / inch, and the warp yarn was filled with 50 of this polyester fiber. This was performed in the same manner as in Example 1, except that a webbing with a width of 51 mm was made by driving in / inch.

(比較例1)
IV0.68のポリエチレンテレフタレートポリマを用いたこと、紡出糸条を口金下に設けた長さ30cm、雰囲気温度300℃の加熱筒を通過させたこと、環状型チムニーを用いて18℃の冷風を30m/分の速度で吹き付け固化させたこと4000m/分の表面速度を有する1FR(70℃)で巻き取ったこと、速度4120m/分の2FR(120℃)、速度5155m/分の1DR(120℃)、速度5155m/分の2DR(190℃)、速度5000m/分のRR(非加熱)に連続して供したこと以外は、実施例1と同様に行った。
(Comparative Example 1)
Using IV 0.68 polyethylene terephthalate polymer, passing the spinning yarn through a heating cylinder with a length of 30 cm and an ambient temperature of 300 ° C. under the base, and using a ring-type chimney to cool air at 18 ° C. It was solidified by spraying at a speed of 30 m / min, wound at 1 FR (70 ° C.) having a surface speed of 4000 m / min, 2FR (120 ° C.) at a speed of 4120 m / min, 1DR at a speed of 5155 m / min (120 ° C. ), 2DR (190 ° C.) at a speed of 5155 m / min, and RR (non-heated) at a speed of 5000 m / min were used in the same manner as in Example 1.

(比較例2)
2DRの熱セット温度を120℃にしたこと意外は実施例4と同様に行った。
(Comparative Example 2)
The same procedure as in Example 4 was performed except that the 2DR heat setting temperature was 120 ° C.

(比較例3)
1750m/分の表面速度を有する1FR(70℃)で巻き取ったこと、速度1770m/分の2FR(90℃)、速度2390m/分の1DR(120℃)、速度2480m/分の2DR(130℃)、速度2480m/分のRR(非加熱)に連続して供したこと以外は、実施例1と同様に行った。
(Comparative Example 3)
Winding at 1FR (70 ° C.) having a surface speed of 1750 m / min, 2FR (90 ° C.) at a speed of 1770 m / min, 1DR at a speed of 2390 m / min (120 ° C.), 2DR at a speed of 2480 m / min (130 ° C. ), The same as in Example 1 except that it was continuously subjected to RR (non-heated) at a speed of 2480 m / min.

(比較例4)
900m/分の表面速度を有する1FRで巻き取ったこと、ストレッチ、延伸、熱処理を施さず定長条件で巻き取ったこと以外は、実施例1と同様に行った。
(Comparative Example 4)
It was carried out in the same manner as in Example 1 except that it was wound at 1 FR having a surface speed of 900 m / min, and wound at a constant length without stretching, stretching and heat treatment.

本発明のポリエステル繊維でない比較例2、4の繊維製品は、衝撃吸収時に人体等に加わる応力は小さいものの、乾熱収縮率が大きく、繊維製品とした時、熱処理を行うと繊維が有する収縮性により繊維製品全体が大きく収縮し厚みが増大してしまい、収納性や軽量性に劣るといった問題がある。また比較例1及び比較例3の繊維製品はエネルギーを吸収する際、急激に応力が増大し、ベルトがほとんど伸長せず人体等に大きな負荷がかかってしまう。これらに対し、本発明の範囲を満足するポリエステル繊維の繊維製品は、伸長することによって大きなエネルギーを低い応力で吸収することができ、人体等に大きな負荷が急激に加わらないため、非常に優しい繊維製品といえる。   The fiber products of Comparative Examples 2 and 4 which are not polyester fibers of the present invention have a small dry heat shrinkage ratio, although the stress applied to the human body and the like during impact absorption is small. As a result, the entire fiber product contracts greatly to increase the thickness, resulting in inferior storage properties and light weight. Moreover, when the fiber products of Comparative Example 1 and Comparative Example 3 absorb energy, the stress increases abruptly, and the belt hardly expands and a large load is applied to the human body. On the other hand, the polyester fiber fiber product that satisfies the scope of the present invention can absorb a large amount of energy with low stress by stretching, and a large load is not applied to the human body etc. A product.

Figure 2010090504
Figure 2010090504

Figure 2010090504
Figure 2010090504

本発明のポリエステル繊維は、人体等に与える衝撃を低減するような降伏点応力を有し、定応力で伸長した後、緩やかに応力を立上げながら大きなエネルギー吸収を可能とすること、さらに、熱収縮率が低いため熱的寸法安定性に優れており、経時的な物性変化を伴わないことから繊維製品として使用する場合、衝突、落下時等に衝撃から人体等を守る、安全用資材として好適に使用することができる。   The polyester fiber of the present invention has a yield point stress that reduces the impact on the human body, etc., and is capable of absorbing a large amount of energy while gradually raising the stress after being stretched at a constant stress. It has excellent thermal dimensional stability due to its low shrinkage rate, and it does not change over time, so it is suitable as a safety material that protects the human body from impacts when impacting or dropping when used as a textile product. Can be used for

降伏応力・定応力伸長域・二次立上り応力の傾き・エネルギー吸収量の説明図である。It is explanatory drawing of the yield stress, the constant stress expansion | extension area | region, the inclination of a secondary rising stress, and energy absorption. 実施例5、比較例1、比較例4においておのおの得られたポリエステル繊維のSS曲線である。It is SS curve of the polyester fiber obtained in Example 5, Comparative Example 1, and Comparative Example 4, respectively. 本発明のポリエステル繊維のみで作られた安全帯である。It is a safety belt made only of the polyester fiber of the present invention. 本発明のポリエステル繊維をショックアブソーバとして使用した安全帯である。It is a safety belt using the polyester fiber of the present invention as a shock absorber. 本発明のポリエステル繊維の安全帯にからみ経糸を併せた安全帯である。It is a safety belt in which the warp yarn is combined with the safety belt of the polyester fiber of the present invention. 実施例5、実施例6、比較例1においておのおの得られた安全帯の伸長(m)に対する応力(kN)を示した図である。It is the figure which showed the stress (kN) with respect to expansion | extension (m) of the safety belt | band | zone obtained in Example 5, Example 6, and the comparative example 1, respectively.

符号の説明Explanation of symbols

1−1:降伏応力
1−2:応力が一定となる初期の点
1−3:定応力伸長域
1−4:エネルギー吸収量
1−5:二次立上り応力の傾き
3−1:本発明のポリエステル繊維
3−2:縫製部
4−1:短尺部(本発明のポリエステル繊維)
4−2:縫製部
4−3:長尺部(高強度ポリエステル繊維等)
5−1:本発明のポリエステル繊維
5−2:縫製部
5−3:からみ経糸
1-1: Yield stress 1-2: Initial point where the stress becomes constant 1-3: Constant stress extension region 1-4: Energy absorption 1-5: Slope of secondary rising stress 3-1: Polyester fiber 3-2: Sewing part 4-1: Short part (polyester fiber of the present invention)
4-2: Sewing part 4-3: Long part (high-strength polyester fiber, etc.)
5-1: Polyester fiber of the present invention 5-2: Sewing part 5-3: Tangle warp

Claims (3)

エチレンテレフタレートを主たる繰返し単位とするポリエステルからなる繊維であって、破断強度(Tb)が1.5〜2.5cN/dtex、破断伸度(Eb)が150〜220%、乾熱収縮率(ΔS)が1〜7%、二次立上り応力の傾きが1.0×10−4〜1.0×10−2cN/dtex・%であるポリエステル繊維。 A fiber made of polyester having ethylene terephthalate as a main repeating unit, having a breaking strength (Tb) of 1.5 to 2.5 cN / dtex, a breaking elongation (Eb) of 150 to 220%, and a dry heat shrinkage (ΔS ) Is 1 to 7%, and the slope of the secondary rising stress is 1.0 × 10 −4 to 1.0 × 10 −2 cN / dtex ·%. ポリエステル繊維の伸度−強度曲線における定応力伸長域が40〜80%である請求項1に記載のポリエステル繊維。 2. The polyester fiber according to claim 1, wherein the constant stress elongation region in the elongation-strength curve of the polyester fiber is 40 to 80%. 請求項1または2に記載のポリエステル繊維を少なくとも一部用いてなる、安全帯、安全ネット、安全ベルト、落下防止ロープ、耐衝撃ネット、衝撃吸収ネットからなる群より選ばれた一つである繊維製品。 A fiber which is one selected from the group consisting of a safety belt, a safety net, a safety belt, a fall prevention rope, an impact resistance net and an impact absorption net, comprising at least part of the polyester fiber according to claim 1 or 2. Product.
JP2008261430A 2008-10-08 2008-10-08 Polyester fiber and fibrous product Pending JP2010090504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008261430A JP2010090504A (en) 2008-10-08 2008-10-08 Polyester fiber and fibrous product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008261430A JP2010090504A (en) 2008-10-08 2008-10-08 Polyester fiber and fibrous product

Publications (1)

Publication Number Publication Date
JP2010090504A true JP2010090504A (en) 2010-04-22

Family

ID=42253484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008261430A Pending JP2010090504A (en) 2008-10-08 2008-10-08 Polyester fiber and fibrous product

Country Status (1)

Country Link
JP (1) JP2010090504A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102995156A (en) * 2012-12-15 2013-03-27 浙江海利得新材料股份有限公司 High-elongation selvage polyester industrial yarn for tyre cord fabric and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102995156A (en) * 2012-12-15 2013-03-27 浙江海利得新材料股份有限公司 High-elongation selvage polyester industrial yarn for tyre cord fabric and preparation method thereof

Similar Documents

Publication Publication Date Title
EP3011086B1 (en) Process for the preparation of a fiber, a fiber and a yarn made from such a fiber
JP5730782B2 (en) Normal pressure dyeable polyester fiber and method for producing the same
KR101918049B1 (en) Polyamide fiber and method for producing same
JP2009150022A (en) Sheath-core conjugate fiber and fiber fabric thereof
US11105019B2 (en) Polyamide fiber capable of high-temperature dyeing
EP1878817B1 (en) Fibers, high airtightness fabrics and a fabrication method thereof
JP2010090504A (en) Polyester fiber and fibrous product
JP5718100B2 (en) Normal pressure dyeable polyester fiber
JP4604797B2 (en) Polylactic acid fiber package and manufacturing method
JP4151295B2 (en) Method for producing polylactic acid fiber
JP2006045691A (en) Polyester fiber and fiber product
JP4626163B2 (en) Polylactic acid fiber, fiber product using the same, and method for producing the same
JP2001295153A (en) Method for producing webbing for seat belt and webbing for seat belt
JP4244441B2 (en) Safety net
JP2001294122A (en) Webbing for seat belt and its manufacturing method
JP2011058133A (en) Industrial fibrous structural material
JP2004285497A (en) Method for producing low shrinkable polyester filament
JP2024051376A (en) Polyamide multifilament and polyamide false twist textured yarn
JP4517675B2 (en) Remote area
JP2012211423A (en) Composite drawn false twisted yarn
JP5718164B2 (en) Structure processed yarn
JP2005113325A (en) Modified cross-section polyester multifilament and method for producing the same
JP2002105754A (en) Polybutylene terephthalate fiber and seat belt webbing
JP2017179631A (en) Polyester fiber for raschel net and manufacturing method therefor
JP2004003082A (en) Method and apparatus for producing polyamide fiber