JP2010089327A - Molding device and method of manufacturing molding using the same - Google Patents

Molding device and method of manufacturing molding using the same Download PDF

Info

Publication number
JP2010089327A
JP2010089327A JP2008260243A JP2008260243A JP2010089327A JP 2010089327 A JP2010089327 A JP 2010089327A JP 2008260243 A JP2008260243 A JP 2008260243A JP 2008260243 A JP2008260243 A JP 2008260243A JP 2010089327 A JP2010089327 A JP 2010089327A
Authority
JP
Japan
Prior art keywords
mold
cavity
target surface
molds
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008260243A
Other languages
Japanese (ja)
Other versions
JP5143694B2 (en
Inventor
Tsukasa Shiroganeya
司 白銀屋
Kazutoshi Yakimoto
数利 焼本
Hiroshi Ito
伊東  宏
Takashi Ochiiwa
崇 落岩
Akihiro Naito
章弘 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2008260243A priority Critical patent/JP5143694B2/en
Publication of JP2010089327A publication Critical patent/JP2010089327A/en
Application granted granted Critical
Publication of JP5143694B2 publication Critical patent/JP5143694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding device capable of manufacturing a molding of high quality. <P>SOLUTION: Cooling pipes 50 and 70 are arranged in the center in the thickness direction of a cavity mold 45 of an upper mold 41 and a cavity mold 65 of a lower mold 61 respectively. Heaters 51 and 71 for heating the molds are mounted on object surfaces 48 and 68 of the cooling pipes 50 and 70 and on the opposite object surfaces of the same respectively. The cooling pipes 50 and 70 and the heaters 51 and 71 for heating the molds are mounted in the cavity molds 45 and 65 symmetrically respectively in the direction parallel to the object surfaces 48 and 68 and in the direction vertical to the object surfaces 48 and 68. It is possible to prevent warps of the cavity molds 45 and 65 even when the temperatures of the cavity molds 45 and 65 are increased or decreased. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、金型装置及びこれを用いた成形体の製造方法に係り、特にプレス成形などにより成形体を製造するための金型であって対向する一対の金型を互いに加圧することで成形体を得る装置及び方法に関している。   The present invention relates to a mold apparatus and a method of manufacturing a molded body using the mold apparatus, and more particularly, a mold for manufacturing a molded body by press molding or the like by pressing a pair of opposing molds together. The present invention relates to an apparatus and method for obtaining a body.

現在、数十nm〜数百μmの超微細な凹凸形状を表面に有するとともに、三次元、薄肉、かつ大面積の形状を有する樹脂成形体が、マイクロレンズ・アレイのような電子ディスプレイ用光学部品、マルチモード光導波路のような光情報通信用部品として求められている。
特許文献1に開示された樹脂成形技術は、樹脂を残留応力の緩和時間の短い溶融状態で微細凹凸に直接塗布することにより最終形状に近い形に附形を行い、その後の加圧附形時(この時点での樹脂温度は金型温度にまで下がっている)は、微細な凹凸部の隅部を樹脂が充填できる最小限の加圧に留めて過度の充填を防ぐことで、光情報通信用部品等に求められる、低残留応力、低複屈折、高光透過性、優れた機械的強度を有する樹脂製超微細構造体成形を得られる工法である。
Currently, a resin molded body having an ultra-fine concavo-convex shape of several tens of nm to several hundred μm on the surface and a three-dimensional, thin, and large-area shape is an optical component for an electronic display such as a microlens array. There is a demand for optical information communication components such as multimode optical waveguides.
In the resin molding technique disclosed in Patent Document 1, the resin is directly applied to fine irregularities in a molten state with a short relaxation time of residual stress, thereby forming a shape close to the final shape, and then during pressure forming (At this point, the resin temperature has dropped to the mold temperature.) By keeping the corners of the fine irregularities at the minimum pressure that can be filled with resin to prevent excessive filling, optical information communication This is a method of obtaining a resin-made ultrafine structure molding having low residual stress, low birefringence, high light transmittance, and excellent mechanical strength required for parts and the like.

しかし、概ねの成形体形状が附形される樹脂塗布時や加圧附形時に、金型が熱変形してしまっていては、成形品に変形や残留応力が発生し、問題となる。また、この工法では成形プロセスの中で金型温度を樹脂の溶融温度から取り出し可能な温度(流動停止温度、ガラス転移温度、結晶化温度等)以下まで冷却するため、附形時に残留応力が緩和した場合でも冷却時に成形体内部に冷却の時間差が生じた場合は熱応力が発生し、また、一時的な金型の熱変形によりその温度での緩和の限度を超える外的な力が作用した場合には残留応力が生じ、成形プロセスの完了時の成形体にこれらに起因する残留応力や歪みが残存することになる。   However, if the mold is thermally deformed at the time of resin coating or pressurizing with an approximately molded body shape, deformation or residual stress occurs in the molded product, which is a problem. Also, in this method, the mold temperature is cooled to below the temperature at which the mold temperature can be taken out from the melting temperature of the resin (flow stop temperature, glass transition temperature, crystallization temperature, etc.), so the residual stress is reduced during molding. However, if there is a difference in the cooling time inside the molded body during cooling, thermal stress is generated, and an external force exceeding the relaxation limit at that temperature was applied due to temporary thermal deformation of the mold. In some cases, residual stress is generated, and residual stress and distortion due to these remain in the molded body at the completion of the molding process.

図5に特許文献2に開示されたこの種の従来の金型装置の構成を示す。金型装置は、上金型11と下金型21とを備えており、上金型11は、型取付板12に固定された主型13と、主型13に断熱板14を介して取り付けられたキャビティ型15を有している。同様に、下金型21は、型取付板22に固定された主型23と、主型23に断熱板24を介して取り付けられたキャビティ型25を有している。   FIG. 5 shows the configuration of this type of conventional mold apparatus disclosed in Patent Document 2. In FIG. The mold apparatus includes an upper mold 11 and a lower mold 21, and the upper mold 11 is attached to the main mold 13 fixed to the mold mounting plate 12 and to the main mold 13 via a heat insulating plate 14. The cavity mold 15 is provided. Similarly, the lower mold 21 has a main mold 23 fixed to the mold attachment plate 22 and a cavity mold 25 attached to the main mold 23 via a heat insulating plate 24.

双方のキャビティ型15及び25の対向面が成形体を得る対象表面を構成し、これらのキャビティ型15及び25には、それぞれ対象表面側に金型加熱用ヒータ16及び26が、反対象表面側に冷却用配管17及び27が配設されている。一方、双方の主型13及び23には、それぞれ冷却用配管18及び28が配設されている。
また、上金型11の対象表面には鏡面仕上げが施工され、下金型21の対象表面には微細凹凸を有するスタンパ30が配置されている。スタンパ30は、キャビティ型25に形成された吸着用溝31を介して吸着固定され、スタンパ30の周囲には機械的固定のためのスタンパ押さえ32が配置されている。
Opposite surfaces of both cavity molds 15 and 25 constitute a target surface from which a molded body is obtained, and these cavity molds 15 and 25 are respectively provided with heaters 16 and 26 for heating the mold on the target surface side, and on the opposite target surface side. The cooling pipes 17 and 27 are arranged on the side. On the other hand, both main molds 13 and 23 are provided with cooling pipes 18 and 28, respectively.
A mirror finish is applied to the target surface of the upper mold 11, and a stamper 30 having fine irregularities is disposed on the target surface of the lower mold 21. The stamper 30 is sucked and fixed through a suction groove 31 formed in the cavity mold 25, and a stamper presser 32 for mechanical fixing is disposed around the stamper 30.

図6に示されるように、双方のキャビティ型15及び25は、それぞれ対応する型取付板12及び22から主型13及び23、断熱板14及び24を貫通する複数本の支持ボルト19及び29によって固定されている。これらの支持ボルト19及び29により、上金型11及び下金型21は、それぞれ一体構造の形態をなしている。
下金型21のキャビティ型25には、吸着用溝31に連通する真空吸着回路33が配設されている。
As shown in FIG. 6, both cavity molds 15 and 25 are respectively provided by a plurality of support bolts 19 and 29 penetrating from the corresponding mold mounting plates 12 and 22 through the main molds 13 and 23 and the heat insulating plates 14 and 24. It is fixed. By these support bolts 19 and 29, the upper mold 11 and the lower mold 21 are each in the form of an integral structure.
The cavity mold 25 of the lower mold 21 is provided with a vacuum suction circuit 33 communicating with the suction groove 31.

特開2007−76178号公報JP 2007-76178 A 特開2007−30432号公報JP 2007-30432 A

このような従来の金型装置において、金型加熱用ヒータ16及び26に通電して、キャビティ型15及び25の温度を上昇させた場合、図7に示されるように、支持ボルト19及び29の存在により断熱板14及び24の近傍においてはキャビティ型15及び25の熱膨張が拘束される一方、金型加熱用ヒータ16及び26が位置する対象表面側ではキャビティ型15及び25の熱膨張による伸びが発生する。その結果、上下のキャビティ型15及び25が互いに凸形状に変形を起こす。すなわち、キャビティ型15及び25の対象表面同士は反り合って、凸形状同士が相対することになる。この状態で上金型11と下金型21とを合わせると、図8に示すように、対象表面の中央部分Aのみが接触し、不均一な圧力分布が起こり、外周部の加圧附形が不完全なものになる。   In such a conventional mold apparatus, when the temperature of the cavity molds 15 and 25 is raised by energizing the heaters 16 and 26 for heating the molds, as shown in FIG. The thermal expansion of the cavity molds 15 and 25 is constrained in the vicinity of the heat insulating plates 14 and 24 due to the presence, while the expansion due to the thermal expansion of the cavity molds 15 and 25 is performed on the target surface side where the heaters 16 and 26 for mold heating are located. Will occur. As a result, the upper and lower cavity molds 15 and 25 are deformed into a convex shape. That is, the target surfaces of the cavity molds 15 and 25 are warped and the convex shapes are opposed to each other. When the upper mold 11 and the lower mold 21 are put together in this state, as shown in FIG. 8, only the central portion A of the target surface comes into contact, non-uniform pressure distribution occurs, and pressurization of the outer peripheral portion is performed. Becomes incomplete.

また、キャビティ型15及び25は、耐食性などを考慮して一般にステンレス系材料で製作されているが、ステンレス系材料は比較的熱伝導性が低く、金型加熱用ヒータ16及び26で発生した熱は、キャビティ型15及び25の全体に迅速且つ均一に伝わりにくく、不均一な温度分布を形成する。その結果、ますます前述のキャビティ型15及び25の変形現象は増長されることになる。   The cavity molds 15 and 25 are generally made of a stainless steel material in consideration of corrosion resistance and the like, but the stainless steel material has a relatively low thermal conductivity, and the heat generated by the heaters 16 and 26 for heating the molds. Is difficult to propagate quickly and uniformly throughout the cavity molds 15 and 25 and forms a non-uniform temperature distribution. As a result, the deformation phenomenon of the cavity molds 15 and 25 is increasingly increased.

さらに、金型加熱用ヒータ16及び26への通電を停止し、キャビティ型15及び25内の冷却用配管17及び27へ通水すると、図9に示されるように、支持ボルト19及び29が存在する断熱板14及び24側でキャビティ型15及び25の熱膨張が拘束されると共に冷却用配管17及び27の付近では熱収縮による縮みが発生する。このとき、金型加熱用ヒータ16及び26が存在する対象表面側では、まだ加熱時の熱による伸びが残っており、キャビティ型15及び25が熱伝導の悪いステンレス系材料であることも合い重なって、反対象表面側と対象表面側上との間で、熱変形(伸びと縮み)に差が生じることになる。その結果、キャビティ型15及び25が凸形状に変形を起こす。すなわち、キャビティ型15及び25の対象表面同士は反り合って、凸形状同士が相対する。これにより、図10に示すように、対象表面の中央部分Bのみが接触し、不均一な圧力分布が起こることになる。   Further, when energization to the heaters 16 and 26 for mold heating is stopped and water is passed through the cooling pipes 17 and 27 in the cavity molds 15 and 25, as shown in FIG. 9, support bolts 19 and 29 are present. The thermal expansion of the cavity molds 15 and 25 is restricted on the heat insulating plates 14 and 24 side, and shrinkage due to thermal contraction occurs in the vicinity of the cooling pipes 17 and 27. At this time, on the target surface side where the heaters 16 and 26 for mold heating are present, the elongation due to heat at the time of heating still remains, and the cavity molds 15 and 25 are made of stainless steel materials having poor heat conduction. Thus, there is a difference in thermal deformation (elongation and shrinkage) between the opposite surface side and the upper surface side. As a result, the cavity molds 15 and 25 are deformed into a convex shape. That is, the target surfaces of the cavity molds 15 and 25 warp and the convex shapes are opposed to each other. As a result, as shown in FIG. 10, only the central portion B of the target surface comes into contact, and non-uniform pressure distribution occurs.

また、冷却用配管17及び27への通水で、キャビティ型15及び25に急速冷却がかかることから、反対象表面側と対象表面側上との間で起こる熱変形(伸びと縮み)に、加熱時よりも大きな差が生ずる。その結果、相対する凸形状同士は、より大きく変形してしまう。成形体は微細凹凸部によって金型に拘束されている為、金型が更に反るような形状の変化をすると、成形体の内部にマクロ的には延伸、局部的には微細凹凸部の底等に圧縮変形やずり変形による応力を発生する。また、キャビティ型と成形体との間の接触熱抵抗は成形体表面各部の圧力に影響されるので、キャビティ型が更に反ることで、圧力分布の不均一がより顕著になると、成形体面内において、ガラス転移温度に到達する時間に差を生じる。そうすると、先に冷却された部分の熱収縮により、未だガラス転移温度に冷却されていない部分が延伸されてしまう。また、キャビティ型自体の熱伝導が不充分な場合も、冷却管の配置に応じた温度分布が生じ、同様の問題が生じる。既に温度低下により、樹脂の緩和時間が長くなっているため、この時点で発生した歪は、以後のプロセスで除去することは難しい。   Moreover, since rapid cooling is applied to the cavity molds 15 and 25 by passing water through the cooling pipes 17 and 27, the thermal deformation (elongation and contraction) that occurs between the anti-target surface side and the target surface side, There is a greater difference than during heating. As a result, the opposing convex shapes are deformed more greatly. Since the molded body is constrained to the mold by the fine irregularities, if the shape changes such that the mold further warps, it will stretch macroscopically inside the molded body and locally the bottom of the fine irregularities. Stress due to compressive deformation or shear deformation. In addition, since the contact thermal resistance between the cavity mold and the molded body is affected by the pressure on each part of the molded body surface, if the cavity mold is further warped and the pressure distribution becomes more uneven, , There is a difference in the time to reach the glass transition temperature. If it does so, the part which has not yet cooled to the glass transition temperature will be extended | stretched by the thermal contraction of the part cooled previously. Further, when the heat conduction of the cavity mold itself is insufficient, a temperature distribution corresponding to the arrangement of the cooling pipe is generated, and the same problem occurs. Since the relaxation time of the resin has already become longer due to the temperature drop, it is difficult to remove the strain generated at this point in the subsequent process.

また、結晶性樹脂については、結晶化温度を通過する際の冷却速度が成形体各部でばらつくと、結晶化度が異なることになり、その結果、収縮率に差を生じ、成形体のソリ、ウネリ変形を生ずる。
さらに、成形体と金型表面との付着力は、双方の温度に支配されており、これらの面内に温度のばらつきがあると、付着力の不均一性により成形体の離型が円滑にできなくなる。
As for the crystalline resin, if the cooling rate when passing through the crystallization temperature varies in each part of the molded body, the degree of crystallinity will be different, resulting in a difference in shrinkage rate, warping of the molded body, Causes undulation deformation.
Furthermore, the adhesive force between the molded body and the mold surface is governed by the temperature of both, and if there is a variation in temperature within these planes, the mold will be released smoothly due to uneven adhesion. become unable.

この発明はこのような問題点を解消するためになされたもので、高品質の成形体を得ることができる金型装置を提供することを目的とする。
また、この発明は、このような金型装置を用いて成形体を製造する方法を提供することも目的としている。
The present invention has been made to solve such problems, and an object thereof is to provide a mold apparatus capable of obtaining a high-quality molded article.
Another object of the present invention is to provide a method for producing a molded body using such a mold apparatus.

この発明に係る金型装置は、それぞれ成形体を得るための対象表面を有する一対の金型を対向して配置すると共に互いに加圧することにより成形体を製造し、少なくとも一方の金型は、対象表面側から、対象表面を形成する対象表面構成部材と、対象表面構成部材を保持すると共に加熱手段と冷却手段の双方を具備するキャビティ型と、キャビティ型を保持する主型とを備えた金型装置において、加熱手段及び冷却手段がそれぞれキャビティ型に対して対象表面と平行な面内方向にも対象表面と垂直な方向にも対称に配置されたものである。   A mold apparatus according to the present invention manufactures a molded body by arranging a pair of molds each having a target surface for obtaining a molded body facing each other and pressurizing each other, and at least one of the molds is a target. A mold comprising an object surface constituting member for forming an object surface, a cavity mold for holding the object surface constituting member and having both a heating means and a cooling means, and a main mold for holding the cavity mold from the surface side. In the apparatus, the heating means and the cooling means are arranged symmetrically with respect to the cavity mold both in the in-plane direction parallel to the target surface and in the direction perpendicular to the target surface.

好ましくは、キャビティ型を対象表面と平行な面内のほぼ中央部の1箇所で主型に締結保持する支持棒と、キャビティ型の周縁部を主型に対して押さえつける押さえ治具とを備えている。
さらに、支持棒の熱変形を拘束することなく支持棒の主型からの脱落を防止するための固定具を備えることが好ましい。
このとき、支持棒は対象表面と垂直な方向に延びて一端部がキャビティ型にネジ止めされると共に他端部に形成されたテーパ部を有し、固定具は対象表面と平行な方向に延びると共に先端部に形成されたテーパ部を有し、支持棒のテーパ部と固定具のテーパ部が互いに勘合するように構成することができる。
Preferably, a support rod for fastening and holding the cavity mold to the main mold at approximately one central portion in a plane parallel to the target surface, and a pressing jig for pressing the peripheral edge of the cavity mold against the main mold are provided. Yes.
Furthermore, it is preferable to provide a fixture for preventing the support bar from falling off the main mold without restricting thermal deformation of the support bar.
At this time, the support bar extends in a direction perpendicular to the target surface, one end is screwed to the cavity mold, and has a tapered portion formed at the other end, and the fixture extends in a direction parallel to the target surface. In addition, a taper portion formed at the tip portion can be provided, and the taper portion of the support bar and the taper portion of the fixture can be configured to engage with each other.

また、押さえ治具は、キャビティ型の熱変形を拘束することなくキャビティ型を押さえるためにキャビティ型の周縁部に当接する弾性体を有することが好ましい。
キャビティ型の構成材料は、従来使用されているステンレス系の鋼材(熱伝導度:約20W/m・K)よりも熱伝導性の良いものを使用する。望まれる素材の熱伝導率の範囲は少なくとも70W/m・K以上、望ましくは100W/m・K以上ある材料から剛性や比熱等の他の特性を加味して選択する、例えばベリリウム銅合金がこの候補となる。
さらに、キャビティ型と主型の間に挟持された断熱板を備えることが好ましい。
なお、対象表面構成部材としては、微細凹凸が形成された対象表面を有するスタンパ、または、平坦な対象表面を有する平面板を用いることができる。
Moreover, it is preferable that the holding jig has an elastic body that comes into contact with the peripheral edge of the cavity mold in order to hold the cavity mold without restraining thermal deformation of the cavity mold.
As the cavity-type constituent material, a material having better thermal conductivity than a conventionally used stainless steel material (thermal conductivity: about 20 W / m · K) is used. The range of thermal conductivity of the desired material is at least 70 W / m · K or more, preferably 100 W / m · K or more, taking into account other characteristics such as rigidity and specific heat, such as beryllium copper alloy Be a candidate.
Furthermore, it is preferable to provide a heat insulating plate sandwiched between the cavity mold and the main mold.
As the target surface constituent member, a stamper having a target surface on which fine irregularities are formed or a flat plate having a flat target surface can be used.

この発明に係る成形体の製造方法は、以上のような金型装置を用い、加熱手段によりキャビティ型の温度を上昇させる工程と、一対の金型を互いに加圧することにより成形体を得る工程と、冷却手段によりキャビティ型の温度を下降させる工程と、得られた成形体を金型装置から取り出す工程とを備えた方法である。   The method for producing a molded body according to the present invention includes a step of increasing the temperature of the cavity mold by a heating means using the mold apparatus as described above, and a step of obtaining a molded body by pressurizing a pair of molds to each other. The method includes a step of lowering the temperature of the cavity mold by the cooling means and a step of taking out the obtained molded body from the mold apparatus.

この発明によれば、加熱手段及び冷却手段がそれぞれキャビティ型に対して対象表面と平行な面内方向にも対象表面と垂直な方向にも対称に配置されているので、加熱時においても冷却時においてもキャビティ型の反りの発生が防止され、高品質の成形体を得ることが可能となる。   According to this invention, the heating means and the cooling means are arranged symmetrically with respect to the cavity mold both in the in-plane direction parallel to the target surface and in the direction perpendicular to the target surface. Also, the occurrence of warpage of the cavity mold is prevented, and a high-quality molded product can be obtained.

以下、この発明の実施の形態を添付図面に基づいて説明する。
図1に実施の形態に係る金型装置の構成を示す。金型装置は、上金型41と下金型61とを備えている。上金型41は、型取付板42に固定された主型43と、主型43に断熱板44を介して取り付けられたキャビティ型45と、キャビティ型45に押さえ部材46により着脱自在に保持された平面板47とを有している。平面板47は、断面台形状を有しており、短辺側に成形体を得るための平坦な対象表面48が形成されている。この平面板47は、キャビティ型45に形成された吸着用溝49を介して吸着固定され、対象表面48には鏡面仕上げが施工されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 shows a configuration of a mold apparatus according to the embodiment. The mold apparatus includes an upper mold 41 and a lower mold 61. The upper mold 41 is detachably held by a main mold 43 fixed to the mold mounting plate 42, a cavity mold 45 attached to the main mold 43 via a heat insulating plate 44, and a pressing member 46 on the cavity mold 45. And a flat plate 47. The flat plate 47 has a trapezoidal cross section, and a flat target surface 48 for obtaining a molded body is formed on the short side. The flat plate 47 is sucked and fixed through a suction groove 49 formed in the cavity mold 45, and the target surface 48 is mirror-finished.

同様に、下金型61は、型取付板62に固定された主型63と、主型63に断熱板64を介して取り付けられたキャビティ型65と、キャビティ型65に押さえ部材66により保持されたスタンパ67とを有し、スタンパ67に成形体を得るための対象表面68が形成されている。このスタンパ67は、キャビティ型65に形成された吸着用溝69を介して吸着固定され、対象表面68には、成形体に微細形状を転写するための微細凹凸が形成されている。   Similarly, the lower die 61 is held by a main die 63 fixed to the die attaching plate 62, a cavity die 65 attached to the main die 63 via a heat insulating plate 64, and a holding member 66 on the cavity die 65. A target surface 68 for obtaining a molded body is formed on the stamper 67. The stamper 67 is sucked and fixed through a suction groove 69 formed in the cavity mold 65, and fine unevenness for transferring a fine shape to the molded body is formed on the target surface 68.

双方のキャビティ型45及び65には、それぞれ厚さ方向の中央部に冷却手段を構成する冷却用配管50及び70が配設されると共に、冷却用配管50及び70の対象表面側及び反対象表面側の双方にそれぞれ加熱手段を構成する金型加熱用ヒータ51及び71が配設されている。これら冷却用配管50及び70、金型加熱用ヒータ51及び71は、それぞれキャビティ型45及び65に対して対象表面48及び68と平行な面内方向にも、対象表面48及び68と垂直な方向すなわち厚さ方向にも対称に配置されている。   Both the cavity molds 45 and 65 are provided with cooling pipes 50 and 70 constituting cooling means at the center in the thickness direction, respectively, and the target surface side and the anti-target surface of the cooling pipes 50 and 70 are disposed. On both sides, heaters 51 and 71 for mold heating that constitute heating means are disposed. The cooling pipes 50 and 70 and the mold heaters 51 and 71 are in the in-plane direction parallel to the target surfaces 48 and 68 with respect to the cavity molds 45 and 65, respectively, and in the direction perpendicular to the target surfaces 48 and 68. That is, they are also arranged symmetrically in the thickness direction.

一方、双方の主型43及び63には、それぞれ冷却用配管52及び72が配設されている。
さらに、型取付板42及び62には、それぞれキャビティ型45及び65の側方にまで延びる押さえ治具53及び73が取り付けられており、これら押さえ治具53及び73の先端部により耐熱ゴム等からなる弾性体54及び74を介してキャビティ型45及び65の周縁部が主型43及び63に対して押さえつけられている。
On the other hand, both main molds 43 and 63 are provided with cooling pipes 52 and 72, respectively.
Furthermore, holding jigs 53 and 73 extending to the sides of the cavity molds 45 and 65 are attached to the mold mounting plates 42 and 62, respectively. The peripheral portions of the cavity molds 45 and 65 are pressed against the main molds 43 and 63 through the elastic bodies 54 and 74.

図2に示されるように、キャビティ型45及び65の断熱板44及び64側の面内のほぼ中央部の1箇所に支持棒55及び75の一端部がネジ止めされている。この支持棒55及び75は、対象表面48及び68と垂直な方向に延びて主型43及び63を貫通し、他端部が型取付板42及び62に形成された溝に係合すると共にこの他端部に凹状のテーパ部56及び76が形成されている。
また、型取付板42及び62に形成された溝には側方から固定具57及び77が挿入され、固定具57及び77の先端部に形成された凸状のテーパ部58及び78が支持棒55及び75のテーパ部56及び76に勘合し、これにより、支持棒55及び75の熱変形を拘束することなく支持棒55及び75の主型43及び63からの脱落が防止されている。
このような構成により、キャビティ型45及び65は、ほぼ中央の1点で保持固定されると共に、押さえ治具53及び73と弾性体54及び74によって熱変形の拘束から解放されている。
As shown in FIG. 2, one end portions of the support rods 55 and 75 are screwed to one place in a substantially central portion in the surface of the cavity molds 45 and 65 on the heat insulating plates 44 and 64 side. The support rods 55 and 75 extend in a direction perpendicular to the target surfaces 48 and 68 and pass through the main molds 43 and 63, and the other ends engage with grooves formed in the mold mounting plates 42 and 62. Concave taper portions 56 and 76 are formed at the other end.
Also, fixtures 57 and 77 are inserted into the grooves formed in the mold attachment plates 42 and 62 from the side, and convex taper portions 58 and 78 formed at the tip portions of the fixtures 57 and 77 are support rods. Thus, the support rods 55 and 75 are prevented from falling off from the main molds 43 and 63 without restricting the thermal deformation of the support rods 55 and 75.
With such a configuration, the cavity molds 45 and 65 are held and fixed at a substantially central point, and are released from thermal deformation restraint by the pressing jigs 53 and 73 and the elastic bodies 54 and 74.

また、キャビティ型45及び65には、吸着用溝49及び69に連通する真空吸着回路59及び79が配設されている。
なお、キャビティ型45及び65は、熱伝導性に優れた良熱伝導材、例えばベリリウム銅から形成されている。
型取付板42及び62は、図示しないプレス装置の型取付盤に上金型41及び下金型61を取り付けるためのものであり、主型43及び63に配設された冷却用配管52及び72は、プレス装置の型取付盤への熱の伝導を軽減するためのものである。
The cavity molds 45 and 65 are provided with vacuum suction circuits 59 and 79 communicating with the suction grooves 49 and 69.
Note that the cavity molds 45 and 65 are made of a good thermal conductive material having excellent thermal conductivity, for example, beryllium copper.
The mold mounting plates 42 and 62 are for mounting the upper mold 41 and the lower mold 61 on a mold mounting board of a press apparatus (not shown), and cooling pipes 52 and 72 disposed on the main molds 43 and 63. Is for reducing heat conduction to the mold mounting plate of the press apparatus.

次に、この実施の形態に係る金型装置を用いて成形体を製造する方法について説明する。
まず、金型加熱用ヒータ51及び71に通電してキャビティ型45及び65の温度を上昇させ、スタンパ67上に例えば溶融樹脂を塗布し、上金型41と下金型61を互いに加圧することにより成形体を得る。その後、冷却用配管50及び70に通水してキャビティ型45及び65の温度を下降させ、得られた成形体を金型装置から取り出す。
Next, a method for producing a molded body using the mold apparatus according to this embodiment will be described.
First, the mold heating heaters 51 and 71 are energized to increase the temperature of the cavity molds 45 and 65, for example, a molten resin is applied onto the stamper 67, and the upper mold 41 and the lower mold 61 are pressurized together. To obtain a molded body. Thereafter, water is passed through the cooling pipes 50 and 70 to lower the temperatures of the cavity molds 45 and 65, and the obtained molded body is taken out from the mold apparatus.

ここで、金型加熱用ヒータ51及び71に通電してキャビティ型45及び65の温度を上昇させたときには、図3に示されるように、中央1点の支持棒55及び75によるキャビティ型45及び65の固定方法に起因して、キャビティ型45及び65の熱膨張を拘束する力は発生しない。また、キャビティ型45及び65内に配置されている金型加熱用ヒータ51及び71及び冷却用配管50及び70が、それぞれキャビティ型45及び65の面内方向にも厚さ方向にも対称の相似型な配置形態を有することで、キャビティ型45及び65の反りが防止される。すなわち、相似型な配管形態をとることによって、キャビティ型45及び65の熱膨張による伸びが、キャビティ型45及び65内部で均一にバランスよく発生し、その結果として、キャビティ型45及び65における反りの発生が防止されることとなる。この状態で、上金型41と下金型61を互いに合わせると、対象表面48及び68の全体が均等に接触し、均一な圧力分布を得ることができる。   Here, when the heaters 51 and 71 for mold heating are energized to raise the temperature of the cavity molds 45 and 65, as shown in FIG. Due to the fixing method of 65, no force is generated to restrain the thermal expansion of the cavity molds 45 and 65. In addition, the mold heating heaters 51 and 71 and the cooling pipes 50 and 70 disposed in the cavity molds 45 and 65 are similar in symmetry to the in-plane direction and the thickness direction of the cavity molds 45 and 65, respectively. Warping of the cavity molds 45 and 65 is prevented by having the mold arrangement form. That is, by adopting a similar piping configuration, the expansion due to the thermal expansion of the cavity molds 45 and 65 occurs uniformly in the cavity molds 45 and 65, and as a result, warpage of the cavity molds 45 and 65 occurs. Occurrence is prevented. In this state, when the upper mold 41 and the lower mold 61 are aligned with each other, the entire target surfaces 48 and 68 are in uniform contact, and a uniform pressure distribution can be obtained.

また、キャビティ型45及び65が熱伝導性に優れた材料、例えばベリリウム銅から製作されていることで、金型加熱用ヒータ51及び71で発生した熱は、キャビティ型45及び65の全体に迅速且つ均一に伝わりやすく、均一な温度分布が達成される。その結果、ますますキャビティ型45及び65に反りが発生するおそれは小さくなる。
ここで、表1と図11に素材の異なる従来構造の金型(比較例1及び2)と本発明の金型(実施例)との加熱時に発生する反りをシミュレーションした解析条件と結果を示す。
In addition, since the cavity molds 45 and 65 are made of a material having excellent thermal conductivity, for example, beryllium copper, the heat generated by the heaters 51 and 71 for the mold heating is quickly transmitted to the entire cavity molds 45 and 65. And it is easy to transmit uniformly and uniform temperature distribution is achieved. As a result, the possibility that the cavity molds 45 and 65 are warped is further reduced.
Here, Table 1 and FIG. 11 show the analysis conditions and results simulating the warpage that occurs when heating the molds of the conventional structure (Comparative Examples 1 and 2) and the molds of the present invention (Examples) of different materials. .

Figure 2010089327
Figure 2010089327

素材の熱伝導度が良くなれば反りが低減されることは既に述べたが、同じ従来構造で比較した場合、150mmの解析範囲の反りの変位差は熱伝導度の悪い比較例1の5.5μmに対し、5倍以上の熱伝導率を持つ素材の比較例2でも2.5μmと半減する程度であった。これに対し、本発明の金型構造を用いた場合、変位差は0.5μmと同じ素材の比較例2と比べても1/5に激減することが分かる。このシミュレーション結果から、高熱伝導材を使用することに加えて、本発明の構造を用いることで、変位差を極めて小さく抑えることが実現可能になることが確認された。   It has already been described that the warpage is reduced if the thermal conductivity of the material is improved. However, when compared with the same conventional structure, the warp displacement difference in the analysis range of 150 mm is the same as that of Comparative Example 1 in which the thermal conductivity is poor. The comparative example 2 of the material having a thermal conductivity of 5 times or more compared to 5 μm was about half of 2.5 μm. On the other hand, when the mold structure of the present invention is used, it can be seen that the displacement difference is drastically reduced to 1/5 compared with Comparative Example 2 which is the same material as 0.5 μm. From this simulation result, it was confirmed that it is possible to suppress the displacement difference to be extremely small by using the structure of the present invention in addition to using the high thermal conductive material.

金型加熱用ヒータ51及び71への通電を停止し、キャビティ型45及び65内の冷却用配管50及び70へ通水すると、キャビティ型45及び65内に配置されている金型加熱用ヒータ51及び71及び冷却用配管50及び70がそれぞれキャビティ型45及び65の面内方向にも厚さ方向にも対称の相似型な配置形態を有することやキャビティ型45及び65が熱伝導性の優れた材料からなることも重なり合い、図4に示すように、キャビティ型45及び65内部において冷却用配管50及び70を挟んだ対象表面側と反対象表面側との間で、キャビティ型45及び65の収縮による縮みが均一にバランスよく発生し、その結果として、キャビティ型45及び65における反りが防止される。また、これにより、対象表面48及び68の全体が均一に接触し、均一な圧力分布を得ることができる。   When energization of the heaters 51 and 71 for mold heating is stopped and water is passed through the cooling pipes 50 and 70 in the cavity molds 45 and 65, the heater 51 for mold heating disposed in the cavity molds 45 and 65 is used. And 71 and the cooling pipes 50 and 70 have a similar arrangement form symmetrical in the in-plane direction and thickness direction of the cavity molds 45 and 65, respectively, and the cavity molds 45 and 65 have excellent thermal conductivity. As shown in FIG. 4, the cavity molds 45 and 65 contract between the object surface side and the anti-target surface side sandwiching the cooling pipes 50 and 70 inside the cavity molds 45 and 65. The shrinkage due to is generated uniformly and in a balanced manner, and as a result, warpage in the cavity molds 45 and 65 is prevented. Thereby, the whole object surface 48 and 68 contacts uniformly, and uniform pressure distribution can be obtained.

ここで、図12に実施例と比較例1における金型面内の温度プロファイルを示す。これは、図13に示すように、キャビティ型45(または15)の平面板47と接する面(概ね160mm角)において、中央部の100mm角の四隅と中心、各辺の中点の計9点の温度を、熱電対を設置して実測したものである。比較例1では、冷却中の各地点の温度変化がばらついてしまうが、本発明の実施例では、冷却中でも各測定点がほぼ一致したプロファイルを描いた。90℃通過時の両者を比較すると、温度差、時間差、冷却速度差のいずれについても本発明の実施で改善しており、均等な冷却が得られていることが分かる。   Here, FIG. 12 shows temperature profiles in the mold surface in the example and the comparative example 1. As shown in FIG. 13, on the surface (approximately 160 mm square) in contact with the flat plate 47 of the cavity mold 45 (or 15), there are a total of nine points of the four corners and the center of the 100 mm square in the center, and the midpoint of each side. The temperature was measured by installing a thermocouple. In Comparative Example 1, the temperature change at each point during cooling varies, but in the example of the present invention, a profile in which each measurement point substantially matches even during cooling is drawn. Comparing both at the time of passing 90 ° C., it can be seen that the temperature difference, time difference, and cooling rate difference are all improved by the implementation of the present invention, and uniform cooling is obtained.

なお、キャビティ型45及び65の側方に配置された押さえ治具53及び73によりキャビティ型45及び65の周縁部を主型43及び63に対して押さえつけることで、中央1点のみの支持による回転のおそれ等の不安定な支持を補助することができる。また、この押さえ治具53及び73とキャビティ型45及び65との接触部位には、キャビティ型45及び65を完全に拘束しないよう弾性体54及び74が配置されているため、キャビティ型45及び65の反りが発現することは回避される。   In addition, rotation by supporting only one central point is achieved by pressing the peripheral edges of the cavity dies 45 and 65 against the main dies 43 and 63 by the holding jigs 53 and 73 arranged on the sides of the cavity dies 45 and 65. Unstable support, such as the fear of Further, since the elastic bodies 54 and 74 are arranged at the contact portions between the holding jigs 53 and 73 and the cavity molds 45 and 65 so as not to completely restrain the cavity molds 45 and 65, the cavity molds 45 and 65 are disposed. The occurrence of warping is avoided.

また、上金型41の対象表面48を形成する平面板47がキャビティ型45に押さえ部材46により着脱自在に保持されているので、対象表面48が損傷した場合においても、平面板47のみを交換すれば済み、対象表面の損傷による成形作業の長期中断のおそれが解消される。
さらに、平面板47は断面台形状を有し、成形体を得る対象表面48が短辺側に形成されてテーパ形状を有しているので、離型の際に熱収縮によって成形体が平面板47に抱きつくために離型困難になることが回避され、良好な離型状況を確保することが可能となる。
Further, since the flat plate 47 forming the target surface 48 of the upper die 41 is detachably held by the cavity mold 45 by the pressing member 46, only the flat plate 47 is replaced even when the target surface 48 is damaged. This eliminates the risk of long-term interruption of the molding operation due to damage to the target surface.
Further, the flat plate 47 has a trapezoidal cross section, and since the target surface 48 from which the molded body is obtained is formed on the short side and has a tapered shape, the molded body is flat plate by heat shrinkage at the time of mold release. It is avoided that it becomes difficult to release the mold because it hugs 47, and it is possible to secure a good release condition.

なお、上記の実施の形態では、上金型41と下金型61のそれぞれが、対象表面48及び68側から、平面板47及びスタンパ67と、加熱手段と冷却手段の双方を具備するキャビティ型45及び65と、断熱板44及び64と、主型43及び63とを備える構成を有していたが、これに限るものではなく、上金型41と下金型61の少なくとも一方がこのような構成を有する金型装置にこの発明を適用することができる。   In the above embodiment, each of the upper mold 41 and the lower mold 61 is a cavity mold that includes both the flat plate 47 and the stamper 67 and both the heating means and the cooling means from the target surfaces 48 and 68 side. 45 and 65, the heat insulating plates 44 and 64, and the main molds 43 and 63. However, the present invention is not limited to this, and at least one of the upper mold 41 and the lower mold 61 is like this. The present invention can be applied to a mold apparatus having such a configuration.

この発明の実施の形態に係る金型装置の構成を示す断面図である。It is sectional drawing which shows the structure of the metal mold | die apparatus which concerns on embodiment of this invention. 実施の形態に係る金型装置を示す他の断面図である。It is other sectional drawing which shows the metal mold | die apparatus which concerns on embodiment. 実施の形態に係る金型装置の加熱時の様子を示す断面図である。It is sectional drawing which shows the mode at the time of the heating of the metal mold | die apparatus which concerns on embodiment. 実施の形態に係る金型装置の冷却時の様子を示す断面図である。It is sectional drawing which shows the mode at the time of cooling of the metal mold | die apparatus which concerns on embodiment. 従来の金型装置の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional metal mold apparatus. 従来の金型装置を示す他の断面図である。It is other sectional drawing which shows the conventional metal mold apparatus. 従来の金型装置の加熱時の様子を示す断面図である。It is sectional drawing which shows the mode at the time of the heating of the conventional metal mold apparatus. 従来の金型装置の加熱時の対象表面の様子を示す図である。It is a figure which shows the mode of the target surface at the time of the heating of the conventional metal mold apparatus. 従来の金型装置の冷却時の様子を示す断面図である。It is sectional drawing which shows the mode at the time of cooling of the conventional metal mold apparatus. 従来の金型装置の冷却時の対象表面の様子を示す図である。It is a figure which shows the mode of the target surface at the time of cooling of the conventional metal mold apparatus. 本発明の金型と従来構造の金型の加熱時に発生する反りをシミュレーションした結果を示すグラフである。It is a graph which shows the result of having simulated the curvature which generate | occur | produces at the time of the metal mold | die of this invention, and the metal mold | die of a conventional structure. 実施例と比較例1における金型面内の温度プロファイルを示すグラフである。4 is a graph showing temperature profiles in the mold surface in Examples and Comparative Example 1; 図12の温度プロファイルの測定位置を示す図である。It is a figure which shows the measurement position of the temperature profile of FIG.

符号の説明Explanation of symbols

41 上金型、42,62 型取付板、43,63 主型、44,64 断熱板、45,65 キャビティ型、46,66 押さえ部材、47 平面板、48,68 対象表面、49,69 吸着用溝、50,52,70,72 冷却用配管、51,71 金型加熱用ヒータ、53,73 押さえ治具、54,74 弾性体、55,75 支持棒、56,58,76,78 テーパ部、57,77 固定具、59.79 真空吸着回路。61 下金型、67 スタンパ。   41 Upper mold, 42, 62 mold mounting plate, 43, 63 main mold, 44, 64 heat insulation plate, 45, 65 cavity mold, 46, 66 holding member, 47 flat plate, 48, 68 target surface, 49, 69 adsorption Groove, 50, 52, 70, 72 Cooling pipe, 51, 71 Heater for mold heating, 53, 73 Holding jig, 54, 74 Elastic body, 55, 75 Support rod, 56, 58, 76, 78 Taper Part, 57,77 fixture, 59.79 vacuum suction circuit. 61 Lower mold, 67 stamper.

Claims (10)

それぞれ成形体を得るための対象表面を有する一対の金型を対向して配置すると共に互いに加圧することにより成形体を製造し、
少なくとも一方の金型は、前記対象表面側から、前記対象表面を形成する対象表面構成部材と、前記対象表面構成部材を保持すると共に加熱手段と冷却手段の双方を具備するキャビティ型と、前記キャビティ型を保持する主型とを備えた金型装置において、
前記加熱手段及び前記冷却手段がそれぞれ前記キャビティ型に対して前記対象表面と平行な面内方向にも前記対象表面と垂直な方向にも対称に配置されたことを特徴とする金型装置。
A pair of molds each having a target surface for obtaining a molded body are placed opposite to each other and pressed together to produce a molded body,
At least one mold includes, from the target surface side, a target surface constituent member that forms the target surface, a cavity mold that holds the target surface constituent member and includes both heating means and cooling means, and the cavity In a mold apparatus having a main mold for holding a mold,
The mold apparatus, wherein the heating means and the cooling means are arranged symmetrically with respect to the cavity mold both in an in-plane direction parallel to the target surface and in a direction perpendicular to the target surface.
前記キャビティ型を前記対象表面と平行な面内のほぼ中央部の1箇所で前記主型に締結保持する支持棒と、
前記キャビティ型の周縁部を前記主型に対して押さえつける押さえ治具と
を備えた請求項1に記載の金型装置。
A support rod that fastens and holds the cavity mold to the main mold at one location in a substantially central portion in a plane parallel to the target surface;
The mold apparatus according to claim 1, further comprising: a pressing jig that presses a peripheral edge of the cavity mold against the main mold.
前記支持棒の熱変形を拘束することなく前記支持棒の前記主型からの脱落を防止するための固定具を備えた請求項2に記載の金型装置。   The mold apparatus according to claim 2, further comprising: a fixture for preventing the support bar from falling off the main mold without restraining thermal deformation of the support bar. 前記支持棒は前記対象表面と垂直な方向に延びて一端部が前記キャビティ型にネジ止めされると共に他端部に形成されたテーパ部を有し、
前記固定具は前記対象表面と平行な方向に延びると共に先端部に形成されたテーパ部を有し、
前記支持棒のテーパ部と前記固定具のテーパ部が互いに勘合する請求項3に記載の金型装置。
The support bar extends in a direction perpendicular to the target surface and has one end screwed to the cavity mold and a tapered portion formed at the other end.
The fixture has a tapered portion that extends in a direction parallel to the target surface and is formed at a tip portion.
The mold apparatus according to claim 3, wherein the taper portion of the support bar and the taper portion of the fixture are fitted to each other.
前記押さえ治具は、前記キャビティ型の熱変形を拘束することなく前記キャビティ型を押さえるために前記キャビティ型の周縁部に当接する弾性体を有する請求項2〜4のいずれか一項に記載の金型装置。   The said pressing jig has an elastic body which contact | abuts to the peripheral part of the said cavity type | mold in order to hold | suppress the said cavity type | mold, without restraining the thermal deformation of the said cavity type | mold. Mold equipment. 前記キャビティ型は、良熱伝導材からなる請求項1〜5のいずれか一項に記載の金型装置。   The mold apparatus according to claim 1, wherein the cavity mold is made of a good heat conductive material. 前記キャビティ型は、ベリリウム銅からなる請求項6に記載の金型装置。   The mold apparatus according to claim 6, wherein the cavity mold is made of beryllium copper. 前記キャビティ型と前記主型の間に挟持された断熱板を備えた請求項1〜7のいずれか一項に記載の金型装置。   The mold apparatus according to claim 1, further comprising a heat insulating plate sandwiched between the cavity mold and the main mold. 前記対象表面構成部材は、微細凹凸が形成された対象表面を有するスタンパ、または、平坦な対象表面を有する平面板からなる請求項1〜8のいずれか一項に記載の金型装置。   The mold apparatus according to any one of claims 1 to 8, wherein the target surface constituent member includes a stamper having a target surface on which fine irregularities are formed, or a flat plate having a flat target surface. 請求項1〜9のいずれか一項に記載の金型装置を用いる成形体の製造方法であって、
前記加熱手段により前記キャビティ型の温度を上昇させる工程と、
一対の前記金型を互いに加圧することにより成形体を得る工程と、
前記冷却手段により前記キャビティ型の温度を下降させる工程と、
得られた成形体を前記金型装置から取り出す工程と
を備えたことを特徴とする成形体の製造方法。
A method for producing a molded body using the mold apparatus according to any one of claims 1 to 9,
Increasing the temperature of the cavity mold by the heating means;
Obtaining a molded body by pressing the pair of molds together;
Lowering the temperature of the cavity mold by the cooling means;
And a step of taking out the obtained molded body from the mold apparatus.
JP2008260243A 2008-10-07 2008-10-07 Mold apparatus and method for producing molded body using the same Active JP5143694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008260243A JP5143694B2 (en) 2008-10-07 2008-10-07 Mold apparatus and method for producing molded body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008260243A JP5143694B2 (en) 2008-10-07 2008-10-07 Mold apparatus and method for producing molded body using the same

Publications (2)

Publication Number Publication Date
JP2010089327A true JP2010089327A (en) 2010-04-22
JP5143694B2 JP5143694B2 (en) 2013-02-13

Family

ID=42252520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008260243A Active JP5143694B2 (en) 2008-10-07 2008-10-07 Mold apparatus and method for producing molded body using the same

Country Status (1)

Country Link
JP (1) JP5143694B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011141996A1 (en) * 2010-05-11 2011-11-17 パイオニア株式会社 Transfer device and method, and computer program
JP2013244644A (en) * 2012-05-24 2013-12-09 Mitsubishi Engineering Plastics Corp Insulated mold
JP2014162012A (en) * 2013-02-21 2014-09-08 Japan Steel Works Ltd:The Microstructure molding method and microstructure molding die
JP2015093415A (en) * 2013-11-11 2015-05-18 株式会社日本製鋼所 Fine structure molding die and fine structure molding method
KR102361433B1 (en) * 2021-01-27 2022-02-16 김미연 forming apparatus of film for mobile device cover

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338269A (en) * 2003-05-16 2004-12-02 Nippon Steel Chem Co Ltd Fuel cell separator, and method and apparatus for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004338269A (en) * 2003-05-16 2004-12-02 Nippon Steel Chem Co Ltd Fuel cell separator, and method and apparatus for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011141996A1 (en) * 2010-05-11 2011-11-17 パイオニア株式会社 Transfer device and method, and computer program
JP2013244644A (en) * 2012-05-24 2013-12-09 Mitsubishi Engineering Plastics Corp Insulated mold
JP2014162012A (en) * 2013-02-21 2014-09-08 Japan Steel Works Ltd:The Microstructure molding method and microstructure molding die
JP2015093415A (en) * 2013-11-11 2015-05-18 株式会社日本製鋼所 Fine structure molding die and fine structure molding method
KR102361433B1 (en) * 2021-01-27 2022-02-16 김미연 forming apparatus of film for mobile device cover

Also Published As

Publication number Publication date
JP5143694B2 (en) 2013-02-13

Similar Documents

Publication Publication Date Title
KR102262440B1 (en) Methods of manufacturing glass articles using anisothermal temperature profiles
JP5143694B2 (en) Mold apparatus and method for producing molded body using the same
TWI543858B (en) Annealing method, annealing jig, and annealing device
TWI624436B (en) Manufacturing method of glass plate with curved shape, glass plate with curved shape and manufacturing device of glass plate with curved shape
TWI557082B (en) Plate glass forming method and forming mold
WO2014073335A1 (en) Method for manufacturing cover glass for display and device for manufacturing cover glass for display
WO2014073336A1 (en) Method for manufacturing cover glass for display and device for manufacturing cover glass for display
CN104960114A (en) Composite material product batch manufacturing method and forming mold capable of achieving deformation compensation
JP3896461B2 (en) Precision mold
US20080169583A1 (en) Processing Method of Fine Structure and Processing Equipment for Fine Structure
JP4409985B2 (en) Press molding apparatus, press molding method and molded product
JP6975618B2 (en) Molding equipment
US10315945B2 (en) Optical element manufacturing apparatus
JP7031666B2 (en) Molding equipment and manufacturing method of molded products
JP2009202348A (en) Molding equipment
JPH10180808A (en) Device and method for molding resin
JP6702904B2 (en) Optical element manufacturing equipment
CN204687167U (en) Deformation-compensated manufacture composite products mould connector can be realized
JP5376626B2 (en) Hot plate device and thermal transfer press device
JP5896482B2 (en) Fine structure molding die and fine structure molding method
TW202231179A (en) Flexible circuit board forming device and a flexible circuit board forming method having a second forming fixture which together with a second bearing fixture clamps the flexible circuit board that has undergone the pre-forming and is carried on the second bearing fixture
JP2005288759A (en) Method for producing thin-wall molding
JP2008137835A (en) Molding apparatus and method for producing molded article
JP2006168167A (en) Method and apparatus for manufacturing rubber roller
JP2018154507A (en) Manufacturing apparatus of optical element, manufacturing method of optical element, and setting method of manufacturing apparatus of optical element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250