JP3896461B2 - Precision mold - Google Patents

Precision mold Download PDF

Info

Publication number
JP3896461B2
JP3896461B2 JP2003375877A JP2003375877A JP3896461B2 JP 3896461 B2 JP3896461 B2 JP 3896461B2 JP 2003375877 A JP2003375877 A JP 2003375877A JP 2003375877 A JP2003375877 A JP 2003375877A JP 3896461 B2 JP3896461 B2 JP 3896461B2
Authority
JP
Japan
Prior art keywords
mold
heat
heat transfer
temperature
precision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003375877A
Other languages
Japanese (ja)
Other versions
JP2005138366A (en
Inventor
隆弘 大橋
公俊 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003375877A priority Critical patent/JP3896461B2/en
Publication of JP2005138366A publication Critical patent/JP2005138366A/en
Application granted granted Critical
Publication of JP3896461B2 publication Critical patent/JP3896461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、プラスチック射出成形、鋳造、鍛造、プレス成形などの金型を用いた成形加工に使用する金型に関し、特に、精密な製品を得るための精密成型金型に関する。   The present invention relates to a mold used for molding using a mold such as plastic injection molding, casting, forging, and press molding, and more particularly to a precision molding mold for obtaining a precise product.

金属などの鋳造やプラスチックなどの射出成形など金型を使用した成形加工法では、金型に溶融した材料を充填し、冷却固化して離型し製品とする。
溶融金属やプラスチックを金型に流し込む過程では、溶融材料の温度は金型への熱移動により低下し、ついには凝固が生じ流動性が悪化して金型内の空隙部を満たすことができないことがある。プラスチック射出成形においても、高温の溶融樹脂が、ノズルから射出されて、ランナー、ゲート、キャビティへと流動していく過程で、相対的に低温の金属構成部材に接して熱を奪われ、温度が低下し粘度が上がって流動抵抗が増加し、さらには固化に至って金型の隅々に行き渡らず、所定の形状が得られないいわゆるショートショットが発生することがある。また、冷却状態が局部的に偏りを有するときは、反りやひけが発生する場合がある。
In a molding method using a mold such as casting of metal or injection molding of plastic, the mold is filled with a molten material, cooled and solidified, and released into a product.
In the process of pouring molten metal or plastic into the mold, the temperature of the molten material decreases due to heat transfer to the mold, eventually solidification occurs and the fluidity deteriorates so that the voids in the mold cannot be filled. There is. Even in plastic injection molding, in the process where high-temperature molten resin is injected from the nozzle and flows into the runner, gate, and cavity, heat is removed from the relatively low-temperature metal components, and the temperature is reduced. There is a case where a so-called short shot is generated in which a predetermined shape cannot be obtained without decreasing and increasing the viscosity and increasing the flow resistance and further solidifying to reach every corner of the mold. Further, when the cooling state is locally biased, warping or sinking may occur.

湯流れ中の温度低下や流動停止は、種々の実験結果を参考にして経験的に取り扱われている。流動停止までに流れる距離すなわち流動長さは、用途組成、溶融材料の温度と液相線温度の差である過熱度、湯口ヘッドの形状、金型物性値、温度、雰囲気などに影響される。
また、成形品は金型の中で不均一な収縮をする。これは成形品各部の冷却速度や温度が異なる上に金型が自由な収縮を妨げるからである。金型の拘束が大きく凝固の遅れた部分に引張り力が作用するときには亀裂が発生し、亀裂が生じなくても不均一な収縮が起これば残留応力が発生し、解枠後変形することがある。
Temperature drop and flow stoppage during hot water flow are handled empirically with reference to various experimental results. The distance that flows until the flow stops, that is, the flow length, is affected by the composition of use, the degree of superheat that is the difference between the temperature of the molten material and the liquidus temperature, the shape of the gate head, the physical properties of the mold, the temperature, the atmosphere, and the like.
Further, the molded product shrinks unevenly in the mold. This is because the cooling rate and temperature of each part of the molded product are different and the mold prevents free shrinkage. Cracks occur when tensile force acts on the part where the mold is constrained and solidification is delayed, and even if cracks do not occur, if non-uniform shrinkage occurs, residual stress is generated, and deformation may occur after unpacking. is there.

このように、金型を使った成形加工では、溶融材料の流動性が問題となり材料や金型の温度が成形品の品質に大きな影響を与える。
上記のような不具合を防ぐ目的で金型内にカートリッジヒータを埋設したものがある。この方法では、ヒータのジュール熱で金型温度を高めて樹脂との間の温度差を低下させ、樹脂から逃げる熱を減少させ、樹脂の温度低下を防いで流動性を確保する。
また、加熱ヒータを金型の外に設けて、これを金型内部に設けた伝熱管と管路で結び、水や油などの熱輸送流体を流通させて、金型を加熱する方法もある。
Thus, in the molding process using a mold, the fluidity of the molten material becomes a problem, and the temperature of the material and the mold greatly affects the quality of the molded product.
There is a cartridge heater embedded in a mold for the purpose of preventing the above problems. In this method, the die temperature is increased by the Joule heat of the heater, the temperature difference between the resin and the resin is reduced, the heat escaping from the resin is reduced, the temperature of the resin is prevented from decreasing, and fluidity is ensured.
There is also a method of heating the mold by providing a heater outside the mold, connecting it with a heat transfer pipe provided inside the mold, and circulating a heat transport fluid such as water or oil. .

金型に埋設したヒータによる加熱法や熱輸送流体を使った加熱法では、熱伝導でヒータ周りから金型全体の温度を上げることになり、その後の冷却過程において金型内の成型品を所定の温度に下げるために著しく時間がかかっていた。また、熱媒を用いる方法では、樹脂流動部の近くに複雑な構造を持った伝熱管を配置するので、成形品が微細化するほど実装が困難になり、また流体輸送と熱交換を高度に制御するため装置が大掛かりになる。しかも、熱輸送流体は高温状態で金型に供給され金型と熱交換して温度が低下するので、伝熱管の上流と下流で温度格差が生じ、成形品部分を厳密に均一加熱することは困難である。   In the heating method using a heater embedded in a mold or the heating method using a heat transport fluid, the temperature of the entire mold is raised from around the heater due to heat conduction, and the molded product in the mold is predetermined in the subsequent cooling process. It took a lot of time to lower the temperature. In addition, in the method using a heat medium, a heat transfer tube having a complicated structure is arranged near the resin flow part, so that the smaller the molded product, the more difficult the mounting becomes, and the higher the fluid transport and heat exchange. The device becomes large for control. In addition, since the heat transport fluid is supplied to the mold at a high temperature and heat exchange with the mold, the temperature decreases, so there is a temperature difference between the upstream and downstream of the heat transfer tube, and the molded product part can be heated strictly uniformly Have difficulty.

特許文献1には、金型を挟んだブロックにヒートパイプを埋め込んだプラスチック成形用金型が開示されている。ヒートパイプは熱移動メカニズムに気相と液相間の相変化を用いるので、固体熱伝導や対流熱伝達よりも熱移動速度が格段に速い。ヒートパイプの実効的な熱伝導率は極めて大きく、銅やアルミニウムなどと比較すると数10倍になる。開示された金型は、ヒートパイプを利用して外部の冷却源に熱を逃がすので、金型を均一に素早く冷却しつつ冷却速度を容易に制御することができる。冷却速度は、冷却源の冷媒流量を調整することにより制御できる。   Patent Document 1 discloses a plastic molding die in which a heat pipe is embedded in a block sandwiching a die. Since heat pipes use a phase change between the gas phase and the liquid phase for the heat transfer mechanism, the heat transfer rate is much faster than solid heat conduction or convective heat transfer. The effective heat conductivity of the heat pipe is extremely large, which is several tens of times that of copper or aluminum. Since the disclosed mold uses a heat pipe to release heat to an external cooling source, the cooling rate can be easily controlled while cooling the mold uniformly and quickly. The cooling rate can be controlled by adjusting the refrigerant flow rate of the cooling source.

しかし、開示された金型は、ヒートパイプをキャビティに平行に挿入したもので、金型全体の温度を均一に変化させることができるが、局所的に異なる温度に調整することはできない。なお、特許文献1にはヒートパイプを金型自体に挿入したものも記載されているが、これもヒートパイプで金型全体の温度を調整するもので、局所的な温度制御を行うものではない。したがって、金型の形状に対応して局所的な温度を最適な状態に規定して製品に局所的な欠陥が発生することを防ぐことはできない。   However, the disclosed mold is one in which a heat pipe is inserted in parallel to the cavity, and the temperature of the entire mold can be changed uniformly, but it cannot be adjusted to a locally different temperature. In addition, although patent document 1 also describes what inserted the heat pipe into metal mold | die itself, this is also what adjusts the temperature of the whole metal mold | die with a heat pipe, and does not perform local temperature control. . Therefore, it is impossible to prevent local defects from occurring in the product by defining the local temperature in an optimum state corresponding to the shape of the mold.

さらに、近年、金型内における熱状態を数値的に解析し、理想的な温度分布あるいは熱流状態を算定して、高品質な加工を実現させるためのシミュレーションを精密に行うことができるようになっている。たとえば、成形過程で金型の局所毎に計画に従った温度変化をさせることにより、凝固や晶出などによる材質の偏在や不均質な収縮による異常や残留応力を防止して精密な成形品を得ることができる。シミュレーション結果を活用して精密成型を可能にするためには、実際の金型を理想的な温度状態にするための具体的な方法が望まれる。   Furthermore, in recent years, it has become possible to accurately perform simulations to achieve high-quality machining by numerically analyzing the heat state in the mold and calculating the ideal temperature distribution or heat flow state. ing. For example, by changing the temperature according to the plan for each part of the mold during the molding process, uneven distribution of materials due to solidification and crystallization, abnormalities due to inhomogeneous shrinkage, and residual stress can be prevented, resulting in precise molded products. Obtainable. In order to enable precision molding using the simulation result, a specific method for bringing an actual mold to an ideal temperature state is desired.

たとえば従来の伝熱管を用いた加熱冷却方法で局所的な温度管理を行おうとすると、多数の独立した伝熱管をキャビティ表面近くに配置して、その1本ずつについて熱伝達量を制御する必要がある。こうした制御を達成するためには、複雑な構造と大規模な制御装置を備えなければならない。
このように、従来の金型では、上記のように加熱冷却管をキャビティ面に平行の方向に埋め込んで、金型全体を急速に均一な温度にする方法は与えられていたが、金型の局部の温度状態を調整して金型や金型中の成形品の温度分布を制御する手法はなかった。
特開平5−337997
For example, if local temperature control is to be performed by a conventional heating / cooling method using heat transfer tubes, it is necessary to arrange a number of independent heat transfer tubes near the cavity surface and control the heat transfer amount for each one. is there. In order to achieve such control, a complicated structure and a large-scale control device must be provided.
As described above, in the conventional mold, as described above, there has been provided a method of embedding the heating / cooling pipe in a direction parallel to the cavity surface to rapidly bring the entire mold to a uniform temperature. There was no method for controlling the temperature distribution of the mold or the molded product in the mold by adjusting the local temperature state.
JP-A-5-337997

そこで、本発明が解決しようとする課題は、金型内の成形品の近くに複雑な構造を配設することなく、成形品に対して速やかに加熱冷却が可能な金型を提供することであり、また、金型の各部において局部毎に必要な加熱冷却を適切に施すことができる金型を提供することである。   Therefore, the problem to be solved by the present invention is to provide a mold capable of quickly heating and cooling the molded product without arranging a complicated structure near the molded product in the mold. In addition, another object is to provide a mold capable of appropriately performing necessary heating and cooling for each part in each part of the mold.

上記課題を解決するため、本発明の精密成形金型は、金型の溶融材料に接する面に前端面を近接させた熱伝達柱を多数配置し、これらの熱伝達柱の後端部に温度調整可能な熱源を配置したことを特徴とする。
溶融材料の接する金型面に多数の熱授受点が存在し、この熱授受点がそれぞれ温度調整可能な熱源に接続されて温度制御が可能であるので、金型に充填された溶融材料の温度分布を調整することができる。
したがって、本発明の金型を用いると、欠陥のない高精度な成形品を得ることができる。
In order to solve the above problems, the precision molding die of the present invention has a large number of heat transfer columns with the front end face close to the surface in contact with the molten material of the mold, and the temperature at the rear end of these heat transfer columns. An adjustable heat source is arranged.
There are many heat transfer points on the mold surface in contact with the molten material, and these heat transfer points are connected to a temperature-controllable heat source, and the temperature can be controlled, so the temperature of the molten material filled in the mold The distribution can be adjusted.
Therefore, when the mold of the present invention is used, a highly accurate molded product having no defects can be obtained.

熱伝達柱の前端面は、金型キャビティ、ゲート、ランナー部に配置して、これら部分の微小範囲毎に温度調整することができる。
なお、割型の金型の一方のキャビティ面に熱伝達柱の端面をほぼ全面に亘って配置してもよい。このような金型はキャビティ面全面に温度調節点を備えるため、シミュレーションにより得られた希望の温度分布がどんな状態であってもほぼ希望を達成して目的の成形品を得ることができる。なお、割型金型の他方に温度調節点がなくても、成形品が適当に薄ければ、殆ど希望通りの温度制御ができるので、装置と運転の経済から一方の金型にのみ熱伝達柱を備えればよい。
The front end surface of the heat transfer column can be arranged in the mold cavity, gate, and runner portion, and the temperature can be adjusted for each minute range of these portions.
It should be noted that the end face of the heat transfer column may be disposed over substantially the entire surface of one cavity of the split mold. Since such a mold is provided with a temperature adjustment point on the entire cavity surface, the desired molded product can be obtained with almost the desired result regardless of the desired temperature distribution obtained by the simulation. Even if there is no temperature adjustment point on the other part of the split mold, if the molded product is thin enough, the temperature can be controlled almost as desired. What is necessary is just to provide a pillar.

熱伝達柱は、金型を構成する材料より高い熱伝導率を有する材料で形成される。たとえば、銅、アルミニウム、銅合金などの高熱伝導率金属あるいはSiCセラミックなどであってもよい。
なお、熱伝達柱は、ヒートパイプであることが好ましい。ヒートパイプは、円管など密閉容器の中にウィッグと共に封じ込めた作動液体の蒸発と凝縮、すなわち相変化を使用して、金属類の数10倍の能率で熱輸送を行うことができる。
伝熱柱の金型面に近接した前端面と反対の後端部に設けた熱源は、個々の伝熱柱の端部の温度を調整するもので、小型の熱伝達機構を有するものであることが好ましい。
The heat transfer column is formed of a material having a higher thermal conductivity than the material constituting the mold. For example, it may be a high thermal conductivity metal such as copper, aluminum, copper alloy, or SiC ceramic.
The heat transfer column is preferably a heat pipe. The heat pipe can perform heat transport with efficiency several tens of times that of metals by using evaporation and condensation of a working liquid confined together with a wig in a closed container such as a circular pipe, that is, phase change.
The heat source provided at the rear end opposite to the front end surface close to the mold surface of the heat transfer column adjusts the temperature at the end of each heat transfer column and has a small heat transfer mechanism. It is preferable.

特に、高い誘電損失を有する材料を熱伝導柱の後端面に当てて、これに高周波発振源から高周波電流を作用させて、誘導発熱によって温度調整することが好ましい。高誘電損失材料は、個々の熱伝導柱に取り付けられる程度に小型に形成することができ、高周波発振源から電源配線をすれば、電圧調整により簡単に発熱制御を行うことができるので、本発明の目的に好適である。また、金型表面に設置する熱伝導柱の先端面は小さく、かつ、熱源や制御装置を溶融材料から十分離れた位置に置くことができるので、比較的自由に装置を構成することができ、特に微細で精密な成形品を製造する金型を必要とするときに大きな効果がある。   In particular, it is preferable to adjust the temperature by induction heating by applying a material having high dielectric loss to the rear end face of the heat conducting column and applying a high frequency current from a high frequency oscillation source thereto. The high dielectric loss material can be formed small enough to be attached to each heat conduction column, and if power supply wiring is provided from a high frequency oscillation source, heat generation can be easily controlled by voltage adjustment. It is suitable for the purpose. In addition, since the tip surface of the heat conduction column installed on the mold surface is small and the heat source and the control device can be placed at a position sufficiently away from the molten material, the device can be configured relatively freely. This is particularly effective when a mold for producing a fine and precise molded product is required.

さらに、熱源に冷却源を備えて、加熱冷却を迅速に行えるように構成することが好ましい。冷却源として冷却管を使い、中に冷却水を通して高誘電損失材料などの加熱源を冷却するようにすることができる。
また、ヒートパイプなどの熱伝達柱の溶融材料に接する面に近接させた前端面は、溶融材料に接する表面に直接露出して表面の一部となるようにしてもよい。溶融材料に対して直接的に熱の加除を行うので、より直接的な温度調整を行うことができる。なお、熱伝達柱の端面は十分な平滑さと平坦度を有するので、金型の表面としても問題がない。
Furthermore, it is preferable to provide a heat source with a cooling source so that heating and cooling can be performed quickly. A cooling pipe can be used as a cooling source, and a heating source such as a high dielectric loss material can be cooled through cooling water.
In addition, the front end surface of the heat transfer column such as a heat pipe that is close to the surface in contact with the molten material may be directly exposed to the surface in contact with the molten material and become a part of the surface. Since heat is directly added to or melted from the molten material, more direct temperature adjustment can be performed. In addition, since the end surface of the heat transfer column has sufficient smoothness and flatness, there is no problem as a mold surface.

以下、本発明に係る精密成形金型を図面を用いて詳細に説明する。
図1は本発明の1実施例における精密成形金型の断面図、図2はその平面図である。
Hereinafter, a precision mold according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is a sectional view of a precision molding die in one embodiment of the present invention, and FIG. 2 is a plan view thereof.

図1の断面図と図2の平面図に概念的に表示するように、本実施例の精密成形金型1は、2個の割型2,3で成形品の最終形状を形成するキャビティ4を形成したものである。一方の割型2には、キャビティ面21から裏面22まで貫通する穴を適当数形成し、この穴に外周を断熱材5で被覆したヒートパイプ6が埋設されている。
ヒートパイプ6の前端面61は、キャビティ面21と同じ面を形成しキャビティ表面の一部を構成する。
ヒートパイプ6の後端面には薄い高誘電損失体7が密着接合されていて、その外側に高周波ヒータ8が設けられている。高周波ヒータ8には外部の高周波電源装置9から高周波電流が供給される。
As conceptually shown in the cross-sectional view of FIG. 1 and the plan view of FIG. 2, the precision molding die 1 of this embodiment has a cavity 4 that forms the final shape of the molded product with two split dies 2 and 3. Is formed. In one split mold 2, an appropriate number of holes penetrating from the cavity surface 21 to the back surface 22 are formed, and a heat pipe 6 whose outer periphery is covered with a heat insulating material 5 is embedded in the hole.
The front end surface 61 of the heat pipe 6 forms the same surface as the cavity surface 21 and constitutes a part of the cavity surface.
A thin high dielectric loss body 7 is tightly bonded to the rear end face of the heat pipe 6, and a high frequency heater 8 is provided on the outside thereof. A high frequency current is supplied to the high frequency heater 8 from an external high frequency power supply device 9.

高周波ヒータ8に高周波電流を供給して交流電場を加えると高誘電損失体7が発熱する。高誘電損失体7は周囲を断熱材5で被覆してあるので、高誘電損失体7で発生した熱はヒートパイプ6と高周波ヒータ8に流れるが、ヒートパイプ6の方が数10倍の熱伝導率を有するため、殆どの熱がヒートパイプ6に逃げ、キャビティ面21の一部を構成する前端面61の温度が上昇して、前端面61が接する成形品の部分が温度低下するのを防ぐことができる。
この保温効果によって成形品が所定の形状に忠実に形成された後に、金型を冷却して成形品を取り出す。冷却時間が長いと次の仕込みができないので、冷却時間の長さは生産性に影響を与える重要な要因である。
When a high frequency current is supplied to the high frequency heater 8 and an AC electric field is applied, the high dielectric loss body 7 generates heat. Since the periphery of the high dielectric loss body 7 is covered with the heat insulating material 5, the heat generated in the high dielectric loss body 7 flows to the heat pipe 6 and the high frequency heater 8. Since it has conductivity, most of the heat escapes to the heat pipe 6, the temperature of the front end face 61 constituting a part of the cavity surface 21 rises, and the temperature of the part of the molded product that the front end face 61 contacts decreases. Can be prevented.
After the molded product is faithfully formed in a predetermined shape by this heat retention effect, the mold is cooled and the molded product is taken out. If the cooling time is long, the next charge cannot be made, so the length of the cooling time is an important factor affecting the productivity.

本実施例の高誘電損失体7は金型1全体に比較して非常に熱容量が小さいので、外表面に強制対流空気を当てるだけで瞬時に冷却され温度が低下し、ヒートパイプ6の高い熱輸送効率により、成形品は速やかに冷却される。
なお、図には表示しないが、高周波ヒータ8に冷却管を添設して水や油などの冷却流体を通すようにすれば、成形後の冷却を極めて迅速に行うことができる。
なお、上記説明は、金型のキャビティ部分について溶融材料の加熱冷却をする場合について行ったが、ランナーやゲートなど溶融材料が接する面であれば同じ構成によって同じ作用効果を得られることはいうまでもない。また熱伝達体としてヒートパイプを利用しているが、金型材料より熱伝導率の高い金属材料を用いても、これに類した効果を得ることができる。
Since the high dielectric loss body 7 of this embodiment has a very small heat capacity as compared with the mold 1 as a whole, it is cooled instantly by simply applying forced convection air to the outer surface, and the temperature is lowered. Due to the transport efficiency, the molded product is quickly cooled.
Although not shown in the drawing, if a cooling pipe is attached to the high-frequency heater 8 so that a cooling fluid such as water or oil is allowed to pass through, cooling after molding can be performed very quickly.
In addition, although the said description was performed about the case where molten material is heated and cooled about the cavity part of a metal mold | die, as long as it is a surface where molten materials, such as a runner and a gate, contact, it can say that the same effect can be acquired by the same structure. Nor. Further, although a heat pipe is used as the heat transfer body, an effect similar to this can be obtained even when a metal material having a higher thermal conductivity than the mold material is used.

本実施例の精密成形金型によれば、金型内の溶融材料が接する面に熱伝導率の高いスポットを多数形成して、そのスポット毎に温度管理することができるので、溶融材料をキャビティ形状に良好に型合せさせて、精密な成形品を効率よく製造することができる。また、スポットに熱輸送能力が極めて高いヒートパイプの前端面を当てるときは、スポットの温度は極めて迅速に管理され、成形後の冷却も早い。さらに、キャビティ面近くには小型で単純な構成物を配して、キャビティ面から離れた位置にヒータや制御機器を配設すればよいので、微細で精密な成形品を対象とするときも比較的容易に金型を構成することができる。   According to the precision molding die of the present embodiment, a large number of spots with high thermal conductivity can be formed on the surface of the mold where the molten material contacts, and the temperature can be controlled for each spot. A precise molded product can be manufactured efficiently by matching the shape well. In addition, when the front end surface of a heat pipe having an extremely high heat transport capability is applied to the spot, the temperature of the spot is managed very quickly, and the cooling after molding is quick. Furthermore, it is only necessary to place small and simple components near the cavity surface, and to place heaters and control equipment at positions away from the cavity surface. Therefore, the mold can be configured easily.

なお、ヒートパイプにおける熱移動の方向はヒートパイプ両端の温度差の正負に従って自動的に切り替えられるので、特別な切り替え装置を用いる必要がなく制御が簡便である。
また、熱源に高周波誘導発熱を用いているので、発熱密度が高く熱効率が高い。しかも金型内の構造が簡潔でしかも要素を小型化できるので、精密成形に適している。
さらに、金型表面の局所毎に熱移動を迅速に行うことができるので、高速かつ緻密さが利点の数値制御に対して非常に適合した技術であり、情報技術を高度に駆使した加工技術としての金型の熱移動制御に活用することができる。
In addition, since the direction of the heat transfer in the heat pipe is automatically switched according to the sign of the temperature difference between both ends of the heat pipe, it is not necessary to use a special switching device and the control is simple.
Further, since high frequency induction heat generation is used as a heat source, the heat generation density is high and the heat efficiency is high. Moreover, since the structure in the mold is simple and the elements can be miniaturized, it is suitable for precision molding.
Furthermore, because heat transfer can be performed quickly on each part of the mold surface, it is a technology that is very suitable for numerical control with the advantage of high speed and precision, and as a processing technology that makes full use of information technology It can be used for heat transfer control of molds.

以上詳細に説明した通り、本発明の精密成形金型によれば、簡単な構造で金型の各部において要求される加熱冷却を適切に施すことができるので、欠陥のない精密成形品を得ることができる。また、溶融材料が接する面における温度分布を制御することができるので、高速かつ緻密な数値制御や高度な情報技術を用いた加工を実現させる要素として利用することができる。   As described above in detail, according to the precision molding die of the present invention, heating and cooling required in each part of the die can be appropriately performed with a simple structure, and thus a precision molded product having no defects can be obtained. Can do. Further, since the temperature distribution on the surface in contact with the molten material can be controlled, it can be used as an element for realizing high-speed and precise numerical control and processing using advanced information technology.

本発明の1実施例における精密成形金型の概念を説明する断面図である。It is sectional drawing explaining the concept of the precision molding die in one Example of this invention. 図1の金型の割型の平面図である。It is a top view of the split mold of the metal mold | die of FIG.

符号の説明Explanation of symbols

1 精密成形金型
2 割型
21 キャビティ面
22 裏面
3 割型
4 キャビティ(溶融材料あるいは成形品)
5 断熱材
6 ヒートパイプ(熱伝達柱)
61 前端面
7 高誘電損失体
8 高周波ヒータ
9 高周波電源
1 Precision molding mold 20 Split mold 21 Cavity surface 22 Back surface 30 Split mold 4 Cavity (molten material or molded product)
5 Insulation 6 Heat pipe (heat transfer column)
61 Front end face 7 High dielectric loss body 8 High frequency heater 9 High frequency power supply

Claims (5)

金型の溶融材料に接する面に前端面を近接させ、外周を断熱した熱伝達柱を多数配置し、該熱伝達柱の他端部に温度調整可能な熱源を配置した精密成形金型において、熱伝達柱の溶融材料に接する面に近接させた前端面は前記溶融材料に接する表面に直接露出して表面の一部となることを特徴とする精密成形金型。 In the precision molding mold in which the front end face is brought close to the surface in contact with the molten material of the mold, a large number of heat transfer columns with the outer periphery insulated are arranged, and a heat source capable of adjusting the temperature is arranged at the other end of the heat transfer column , A precision molding die, wherein a front end surface of a heat transfer column that is close to a surface in contact with a molten material is directly exposed to a surface in contact with the molten material and becomes a part of the surface . 前記金型が割型の金型であって、該割型金型の一方におけるキャビティの表面の全面に亘って前記熱伝達柱の前端面を配置することを特徴とする請求項1記載の精密成形金型。   2. The precision according to claim 1, wherein the mold is a split mold, and the front end surface of the heat transfer column is arranged over the entire surface of the cavity in one of the split molds. Molding mold. 前記熱伝達柱はヒートパイプであることを特徴とする請求項1または2記載の精密成形金型。   3. The precision molding die according to claim 1, wherein the heat transfer column is a heat pipe. 前記熱源は前記熱伝達柱の後端部に配設された高誘電損失材料であって、該高誘電損失材料は高周波発振源により発熱することを特徴とする請求項1から3のいずれかに記載の精密成形金型。   The heat source is a high dielectric loss material disposed at a rear end portion of the heat transfer column, and the high dielectric loss material generates heat from a high frequency oscillation source. Described precision mold. 前記熱源はさらに冷却管を備えて冷却水を通水して冷却することを特徴とする請求項4記載の精密成形金型。   The precision molding die according to claim 4, wherein the heat source further includes a cooling pipe and cools the cooling water by passing water.
JP2003375877A 2003-11-05 2003-11-05 Precision mold Expired - Lifetime JP3896461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375877A JP3896461B2 (en) 2003-11-05 2003-11-05 Precision mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375877A JP3896461B2 (en) 2003-11-05 2003-11-05 Precision mold

Publications (2)

Publication Number Publication Date
JP2005138366A JP2005138366A (en) 2005-06-02
JP3896461B2 true JP3896461B2 (en) 2007-03-22

Family

ID=34687122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375877A Expired - Lifetime JP3896461B2 (en) 2003-11-05 2003-11-05 Precision mold

Country Status (1)

Country Link
JP (1) JP3896461B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108341B2 (en) 2010-03-09 2015-08-18 Akebono Brake Industry Co., Ltd. Compression molding apparatus and molding die

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4848318B2 (en) 2007-06-20 2011-12-28 株式会社日立産機システム Mold control method
KR100950030B1 (en) * 2008-06-09 2010-03-29 주식회사 우전앤한단 Non-contact high-frequency induction heating apparatus for plastic mold
JP6058253B2 (en) * 2011-02-16 2017-01-11 日本航空電子工業株式会社 Thermal relay, heating / cooling device, heat cycle injection molding device, and heat cycle injection molding method
EP2842711B1 (en) 2013-08-26 2018-10-10 Airbus Operations GmbH Apparatus and method for producing a composite material aircraft component
CN103551508A (en) * 2013-11-14 2014-02-05 邵宏 Energy-saving lower metal die with heat radiating function
CN103658591B (en) * 2013-11-30 2017-04-26 雄邦压铸(南通)有限公司 Temperature maintainer of die-casting mould
US9914275B1 (en) 2014-11-20 2018-03-13 Akebono Brake Industry Co., Ltd. Thermally-conductive hot press assembly
WO2017065715A1 (en) * 2015-10-13 2017-04-20 Floteks Plastik Sanayi Ve Ticaret Anonim Sirketi A mold heating system which increases production speed for rotational molding technology
TR201715990A2 (en) * 2017-10-17 2018-01-22 Floteks Plastik Sanayi Ve Ticaret Anonim Sirketi SPECIAL MOLD HEATING SYSTEM FOR BRINGING DEEP MATCHES TO DESIRED HEAT IN ROTATION TECHNOLOGY
CN108973034A (en) * 2018-09-01 2018-12-11 苏州百盛精密工业有限公司 The cooling branching block of integrated form and its production technology
US10987831B2 (en) * 2019-05-24 2021-04-27 The Boeing Company Dies for forming a part and associated systems and methods
KR102368774B1 (en) * 2020-01-06 2022-03-02 리얼룩앤컴퍼니 주식회사 Mold device that can control temperature by part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9108341B2 (en) 2010-03-09 2015-08-18 Akebono Brake Industry Co., Ltd. Compression molding apparatus and molding die

Also Published As

Publication number Publication date
JP2005138366A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP3896461B2 (en) Precision mold
US20060246166A1 (en) Injection molding system and method for using the same
KR100850308B1 (en) Synthetic resin molding mold
JP2008529858A (en) Mold equipment for injection molding machines
JP2006321233A (en) Thermal shroud and method for manufacturing the thermal shroud
CN101549546B (en) Temperature changing unit of micro injection molding die
JP2977303B2 (en) Low pressure casting method and apparatus
JP6953441B2 (en) Mold heating method and equipment
JP7403753B2 (en) Die-casting equipment and method for manufacturing die-cast products
KR100768329B1 (en) Mold for molding nano/micro surface structure
JP4714491B2 (en) Manufacturing method of resin molded product, mold for resin molding, plastic optical element and display device, and image forming apparatus
JP5936543B2 (en) Control pin and spout system for heating molten metal supply spout structure
KR100604973B1 (en) Method of manufacturing micro mold parts
JP2837990B2 (en) Cooling device for plastic molds
JP2009202348A (en) Molding equipment
CN108322946B (en) Electric heating type full-closed loop heating device
JP2008137275A (en) Mold apparatus and method for manufacturing molded article
KR20170140497A (en) Mold device using high-frequency induction heating
JPH11115013A (en) Plastic injection molding method
JP2622326B2 (en) Method and apparatus for controlling mold temperature distribution in injection molding
JP2006150749A (en) Lens molding method and mold
JPH11156907A (en) Method and apparatus for molding micro structured body
JPH09155870A (en) Plastic molding apparatus
JP2005329649A (en) Injection molding mold
JPH08267211A (en) Method for controlling deformation of plunger sleeve for die casting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

R150 Certificate of patent or registration of utility model

Ref document number: 3896461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term