JP2010088378A - Temperature controlling device in greenhouse, and temperature controlling system in greenhouse - Google Patents

Temperature controlling device in greenhouse, and temperature controlling system in greenhouse Download PDF

Info

Publication number
JP2010088378A
JP2010088378A JP2008263035A JP2008263035A JP2010088378A JP 2010088378 A JP2010088378 A JP 2010088378A JP 2008263035 A JP2008263035 A JP 2008263035A JP 2008263035 A JP2008263035 A JP 2008263035A JP 2010088378 A JP2010088378 A JP 2010088378A
Authority
JP
Japan
Prior art keywords
temperature
greenhouse
air
soil
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008263035A
Other languages
Japanese (ja)
Inventor
Junichi Matsutomo
淳一 松友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HASHIMOTO SANGYO KK
Original Assignee
HASHIMOTO SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HASHIMOTO SANGYO KK filed Critical HASHIMOTO SANGYO KK
Priority to JP2008263035A priority Critical patent/JP2010088378A/en
Publication of JP2010088378A publication Critical patent/JP2010088378A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature controlling device in a greenhouse, facilitating temperature control in soil, and achieving energy saving. <P>SOLUTION: The temperature controlling device 50 in a greenhouse includes a greenhouse 8 arranged in a standing condition on soil and shading an inner space from outside air, and temperature controlling equipments 52 controlling an air temperature in the greenhouse 8 and a soil temperature in the greenhouse 8. The temperature controlling equipments 52 include an air duct 5 buried in soil, a temperature controlling tube 6 arranged in the air duct 5 and heating or cooling air in the air duct 5, an inlet fan 4 set on an inlet port of the air duct 5 and inhaling air in the greenhouse 8 into the air duct 5, a heat exchanger 7 set on an exhaust port of the air duct 5 and performing heating or cooling by transferring heat between two fluid bodies through a partition of the temperature controlling tube 6, and an exhaust fan 9 set closely contacting the heat exchanger 7 and discharging air in the air duct 5 into the greenhouse 8. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、温室内温度制御装置、及び温室内温度制御システムに関し、さらに詳しくは、温室内の温度と土壌の温度管理を一括して制御する温室内温度制御装置とシステムに関するものである。   The present invention relates to a greenhouse temperature control device and a greenhouse temperature control system, and more particularly to a greenhouse temperature control device and system that collectively control the temperature in the greenhouse and the temperature management of the soil.

施設園芸農家では、温室や暖房設備等を用いて作物に最も適した環境や温度域を人工的に作り出すことにより、1年を通して多品種の作物を栽培することが可能である。しかし、燃料価格の上昇による生産コストの増加は、農家経営に大きな影響を与えている。また、地球温暖化防止策としての温室ガスの排出量の削減も重要な課題となっている。そのため、施設園芸農家においては、生産管理、生産設備の省エネルギ対策が非常に重要となっており、併せて、省エネルギ対策の実践による農家経営の改善も必要に迫られている。
特許文献1には、ボイラの排熱と土壌に埋設したヒートパイプにより集熱した熱源により温室内を暖房し、土壌を熱源パイプにより加熱する農業用熱暖房装置について開示されている。
特開2003−185368公報
A horticultural horticultural farmer can cultivate a wide variety of crops throughout the year by artificially creating an environment and temperature range most suitable for the crops using a greenhouse or heating equipment. However, the increase in production costs due to rising fuel prices has had a major impact on farm management. In addition, reducing greenhouse gas emissions as a measure to prevent global warming has become an important issue. For this reason, energy management measures for production management and production facilities are very important for institutional horticultural farmers, and it is also necessary to improve farm management by implementing energy conservation measures.
Patent Document 1 discloses an agricultural heat heating apparatus that heats the inside of a greenhouse with heat exhausted from a boiler and a heat source collected by a heat pipe embedded in the soil, and heats the soil with the heat source pipe.
JP 2003-185368 A

しかしながら、従来の施設園芸では、冬季における暖房手段として、石油ヒータが一般に用いられているが、エネルギ効率が低いため莫大な燃料経費がかかるばかりでなく、温室ガスの排出量削減といった課題に対して貢献度が低いといった問題がある。
また、特許文献1に開示されている従来技術は、エネルギ源として石油が使われるため、上記従来の施設園芸と同様の課題を抱えている。また、ヒートパイプや熱源パイプを使用することにより、暖房効率を高めることはできるが、熱源パイプを土壌に直接埋設しているため、熱の伝達速度が遅いといった問題がある。
本発明は、かかる課題に鑑みてなされたものであり、土壌中に埋設した空気ダクト内に温度制御管を配設すると共に、空気ダクトに空気放出孔を設け、温度制御された空気ダクト内の空気を、空気放出孔を介して土壌中に放出することにより、土壌内への温度制御を容易とすると共に、省エネルギを実現した温室内温度制御装置を提供することを目的とする。
However, in conventional facility horticulture, oil heaters are generally used as a heating means in the winter season. However, the energy efficiency is low and not only enormous fuel costs are required, but also the problem of reducing greenhouse gas emissions. There is a problem that the degree of contribution is low.
Moreover, since the prior art currently disclosed by patent document 1 uses petroleum as an energy source, it has the subject similar to the said conventional horticulture. Moreover, although the heating efficiency can be increased by using a heat pipe or a heat source pipe, there is a problem that the heat transfer speed is slow because the heat source pipe is directly embedded in the soil.
The present invention has been made in view of such a problem, and a temperature control pipe is provided in an air duct embedded in soil, and an air discharge hole is provided in the air duct, so that the temperature in the air duct is controlled. An object of the present invention is to provide a temperature control device in a greenhouse that realizes energy saving while facilitating temperature control into the soil by discharging air into the soil through an air discharge hole.

本発明はかかる課題を解決するために、請求項1は、土壌上に立設されて内部空間を外気と遮蔽する温室と、該温室内の空気温度及び該温室内の土壌温度を制御する温度制御設備と、を備えた温室内温度制御装置であって、前記温度制御設備は、吸気口と排気口を夫々前記温室内に位置させた状態で土壌中に埋設された空気ダクトと、該空気ダクト内に配設されて加熱、又は冷却用の流体を搬送することにより該空気ダクト内の空気を加熱又は冷却する温度制御管と、前記空気ダクト内に前記温室内の空気を吸引する吸気ファンと、前記空気ダクトの排気口に設置され前記温度制御管の隔壁を通じて前記空気ダクト内の空気と温度制御管内の流体間で熱の授受を行わせて加熱又は冷却を行なう熱交換器と、前記空気ダクト内の空気を前記温室内に排気する排気ファンと、を備え、前記空気ダクトに前記温度制御管により加熱又は冷却された空気を土壌中に放出する空気放出孔を備えたことを特徴とする。
本発明の最も大きな特徴は、空気ダクト内に温度制御管を配設すると共に、空気ダクトに温度制御管により加熱又は冷却された空気を土壌内に放出する空気放出孔を備えた点である。そして、温度制御管から放出される温度により加熱又は冷却された空気を排気ファンにより排気し、温室内を循環して吸気ファンにより再び空気ダクトに流入させる。このとき、吸気ファンにより吸入された空気は圧力が高いため、空気放出孔から土壌に放出される。これにより、土壌への熱伝達を早めて、且つ均一に伝達させることができる。
In order to solve this problem, the present invention provides a greenhouse that stands on the soil and shields the internal space from the outside air, an air temperature in the greenhouse, and a temperature that controls the soil temperature in the greenhouse. A temperature control device in a greenhouse comprising the control equipment, wherein the temperature control equipment includes an air duct embedded in the soil with an air inlet and an air outlet located in the greenhouse, and the air A temperature control pipe disposed in the duct for heating or cooling the air in the air duct by conveying a heating or cooling fluid, and an air intake fan for sucking the air in the greenhouse into the air duct And a heat exchanger that heats or cools by transferring heat between the air in the air duct and the fluid in the temperature control pipe through the partition wall of the temperature control pipe installed at the exhaust port of the air duct, and The air in the air duct And an exhaust fan for exhausting, the air heated or cooled by the temperature control pipe to the air duct, characterized in that an air release hole which releases into the soil.
The most significant feature of the present invention is that a temperature control pipe is provided in the air duct and an air discharge hole is provided in the air duct for discharging air heated or cooled by the temperature control pipe into the soil. Then, the air heated or cooled by the temperature discharged from the temperature control pipe is exhausted by the exhaust fan, circulated in the greenhouse, and again flows into the air duct by the intake fan. At this time, since the air sucked by the intake fan has a high pressure, it is discharged to the soil from the air discharge hole. Thereby, heat transfer to the soil can be accelerated and transmitted uniformly.

請求項2は、温水又は冷却水の何れかを選択的に切り替えて前記温度制御管に流入させる切替器を備えたことを特徴とする。
空気ダクトには空気が流れているため、温度制御管の表面温度が空気に伝達して加熱又は冷却する。従って、温度制御管の温度により空気の温度が左右される。本発明では、温水又は冷却水の何れかを選択的に切り替えて温度制御管に流入させる切替器を備え、温室の温度を上昇させるときは温水を流し、温室の温度を低下させるときは冷却水を流すように作動させる。これにより、温室の温度を広い範囲で制御することができる。
請求項3は、前記空気放出孔を開放又は閉止する放出孔開閉手段を備えことを特徴とする。
温室では畝ごとに異なる作物を栽培することがある。作物は種類により土壌温度が同じとは限らない。そこで本発明では、空気放出孔を開放又は閉止する放出孔開閉手段を備え、土壌の温度を畝ごとに制御する。これにより、作物ごと、或いは畝ごとに土壌温度をきめ細かく制御することができる。
According to a second aspect of the present invention, there is provided a switch for selectively switching either hot water or cooling water to flow into the temperature control pipe.
Since air flows through the air duct, the surface temperature of the temperature control pipe is transmitted to the air to be heated or cooled. Therefore, the temperature of the air depends on the temperature of the temperature control tube. In the present invention, there is provided a switch for selectively switching either hot water or cooling water to flow into the temperature control pipe, flowing hot water when raising the temperature of the greenhouse, and cooling water when lowering the temperature of the greenhouse. Actuate to flow. Thereby, the temperature of a greenhouse can be controlled in a wide range.
According to a third aspect of the present invention, there is provided a discharge hole opening / closing means for opening or closing the air discharge hole.
In the greenhouse, different crops may be cultivated for each basket. Depending on the type of crop, the soil temperature is not always the same. Therefore, in the present invention, a discharge hole opening / closing means for opening or closing the air discharge hole is provided, and the temperature of the soil is controlled for each basket. Thereby, the soil temperature can be finely controlled for each crop or for each basket.

請求項4は、請求項1乃至3の何れか一項に記載の温室内温度制御装置と、前記温室内の空気温度を検出する温度センサと、前記土壌温度を検出する土壌温度センサと、前記各温度センサにより検出された温度に基づいて前記吸気ファン、前記排気ファン、及び前記放出孔開閉手段を制御する制御部と、を備えたことを特徴とする。
温室内温度制御設備を制御するためには、温室内と土壌の温度を検知するセンサが必要である。これらのセンサからの情報は制御部に入力され、制御部は各温度情報に基づいて吸気ファン、排気ファン、又は放出孔開閉手段に係る動作を制御する。ここでいう動作とは、ファンの回転又は停止や放出孔開閉手段の開閉動作をいう。これにより、温室全体の温度管理をシステムとして自動管理することができる。
請求項5は、前記制御部は、前記温度センサが検出した温度が所定の温度範囲に達していない場合、前記吸気ファン及び排気ファンを同時に動作させることを特徴とする。
温室内の温度が所定の温度(作物に最適な温度範囲)に達していない場合は、吸気と排気の両ファンを回転して温室内の空気を循環させる。これにより、温室内の温度を即座に所定温度に到達させることができる。
A fourth aspect of the present invention provides the greenhouse temperature control device according to any one of claims 1 to 3, a temperature sensor that detects an air temperature in the greenhouse, a soil temperature sensor that detects the soil temperature, and the And a control unit that controls the intake fan, the exhaust fan, and the discharge hole opening / closing means based on the temperature detected by each temperature sensor.
In order to control the temperature control equipment in the greenhouse, a sensor for detecting the temperature in the greenhouse and the soil is necessary. Information from these sensors is input to the control unit, and the control unit controls operations related to the intake fan, the exhaust fan, or the discharge hole opening / closing means based on each temperature information. The operation here means rotation or stop of the fan or opening / closing operation of the discharge hole opening / closing means. Thereby, the temperature management of the whole greenhouse can be automatically managed as a system.
According to a fifth aspect of the present invention, when the temperature detected by the temperature sensor does not reach a predetermined temperature range, the control unit operates the intake fan and the exhaust fan simultaneously.
When the temperature in the greenhouse does not reach the predetermined temperature (the optimum temperature range for the crop), both the intake and exhaust fans are rotated to circulate the air in the greenhouse. Thereby, the temperature in a greenhouse can be reached to predetermined temperature immediately.

請求項6は、前記制御部は、前記温度センサが検出した温度が所定の温度範囲に達している場合、前記排気ファンを停止することを特徴とする。
温室内の温度が所定温度に達している場合は、排気ファンを停止して温室内の空気の循環を停止する。これにより、現状の温度を維持すると共に、ファンの電力を削減することができる。
請求項7は、前記制御部は、前記土壌温度センサが検出した温度が所定の温度範囲に達している場合、前記吸気ファンを停止することを特徴とする。
吸気ファンの主たる機能は、空気ダクト内の気圧を高めて、空気放出孔から温度制御された空気を放出し易くするためである。従って、土壌温度センサが検出した温度が所定の温度範囲に達している場合は、土壌への放出を弱めるために吸気ファンを停止する。これにより、土壌の温度制御をきめ細かく行なうと共に、ファンの電力を削減することができる。
請求項8は、前記放出孔開閉手段を前記空気放出孔の全てに取り付けた場合、前記制御部は、前記土壌温度センサが検出した温度が所定の温度範囲に達している場合、該土壌温度センサ近傍の空気放出孔を閉止するように前記放出孔開閉手段を制御することを特徴とする。
作物ごとに土壌温度を個別に管理するためには、放出孔開閉手段を空気放出孔の全てに取り付ける必要がある。そして土壌温度センサをそれぞれの作物の近傍に複数配置する。土壌温度センサが検出した温度が所定の温度範囲に達している場合、この土壌温度センサ近傍の空気放出孔を閉止する。これにより、畝全体の土壌温度管理をきめ細かく行うことができる。
According to a sixth aspect of the present invention, the control unit stops the exhaust fan when the temperature detected by the temperature sensor reaches a predetermined temperature range.
When the temperature in the greenhouse reaches a predetermined temperature, the exhaust fan is stopped to stop the circulation of air in the greenhouse. As a result, the current temperature can be maintained and the power of the fan can be reduced.
According to a seventh aspect of the present invention, the control unit stops the intake fan when the temperature detected by the soil temperature sensor reaches a predetermined temperature range.
The main function of the intake fan is to increase the air pressure in the air duct and to easily release the temperature-controlled air from the air discharge hole. Therefore, when the temperature detected by the soil temperature sensor reaches a predetermined temperature range, the intake fan is stopped to weaken the release to the soil. Thereby, while controlling temperature of soil finely, the electric power of a fan can be reduced.
According to an eighth aspect of the present invention, when the discharge hole opening / closing means is attached to all of the air discharge holes, the control unit detects the soil temperature sensor when the temperature detected by the soil temperature sensor reaches a predetermined temperature range. The discharge hole opening / closing means is controlled to close a nearby air discharge hole.
In order to individually manage the soil temperature for each crop, it is necessary to attach release hole opening / closing means to all the air discharge holes. A plurality of soil temperature sensors are arranged in the vicinity of each crop. When the temperature detected by the soil temperature sensor reaches a predetermined temperature range, the air discharge hole near the soil temperature sensor is closed. Thereby, the soil temperature control of the whole straw can be performed finely.

本発明によれば、空気ダクト内に温度制御管を配設すると共に、空気ダクトに温度制御管により加熱又は冷却された空気を土壌内に放出する空気放出孔を備え、温度制御管から放出される温度により加熱又は冷却された空気を排気ファンにより排気し、温室内を循環して吸気ファンにより再び空気ダクトに流入させ、吸気ファンにより吸入された空気の圧力を高めて、空気放出孔から土壌に放出するので、土壌への熱伝達を早めて、且つ均一に伝達させることができる。
また、温水又は冷却水の何れかを選択的に切り替えて温度制御管に流入させる切替器を備え、温室の温度を上昇させるときは温水を流し、温室の温度を低下させるときは冷却水を流すように作動させるので、温室の温度を広い範囲で制御することができる。
また、空気放出孔を開放又は閉止する放出孔開閉手段を備え、土壌の温度を畝ごとに制御するので、作物ごと、或いは畝ごとに土壌温度をきめ細かく制御することができる。
また、温室内と土壌の温度を検知するセンサからの情報は制御部に入力され、制御部は各温度情報に基づいて吸気ファン、排気ファン、又は放出孔開閉手段に係る動作を制御するので、温室全体の温度管理をシステムとして自動管理することができる。
According to the present invention, the temperature control pipe is disposed in the air duct, and the air duct is provided with an air discharge hole for discharging air heated or cooled by the temperature control pipe into the soil, and is released from the temperature control pipe. The air heated or cooled at a certain temperature is exhausted by an exhaust fan, circulated in the greenhouse, re-introduced into the air duct by the intake fan, and the pressure of the air sucked by the intake fan is increased, and the soil is discharged from the air discharge hole. The heat transfer to the soil can be accelerated and evenly transmitted.
In addition, a switch is provided that selectively switches between hot water and cooling water and flows into the temperature control pipe. When the temperature of the greenhouse is raised, warm water is allowed to flow, and when the greenhouse temperature is lowered, cooling water is allowed to flow. The temperature of the greenhouse can be controlled over a wide range.
Moreover, since the discharge hole opening / closing means for opening or closing the air discharge hole is provided and the temperature of the soil is controlled for each basket, the soil temperature can be finely controlled for each crop or for each basket.
In addition, information from sensors that detect the temperature in the greenhouse and soil is input to the control unit, and the control unit controls the operation related to the intake fan, the exhaust fan, or the discharge hole opening and closing means based on each temperature information, The temperature management of the entire greenhouse can be automatically managed as a system.

また、温室内の温度が所定の温度(作物に最適な温度範囲)に達していない場合は、吸気と排気の両ファンを回転して温室内の空気を循環させるので、温室内の温度を即座に所定温度に到達させることができる。
また、温室内の温度が所定温度に達している場合は、排気ファンを停止して温室内の空気の循環を停止するので、現状の温度を維持することができる。これにより、現状の温度を維持すると共に、ファンの電力を削減することができる。
また、土壌温度センサが検出した温度が所定の温度範囲に達している場合は、土壌への放出を弱めるために吸気ファンを停止するので、土壌の温度制御をきめ細かく行なうと共に、ファンの電力を削減することができる。
また、土壌温度センサが検出した温度が所定の温度範囲に達している場合、この土壌温度センサ近傍の空気放出孔を閉止するので、畝全体の土壌温度管理をきめ細かく行うことができる。
If the temperature in the greenhouse does not reach the specified temperature (the optimum temperature range for the crop), the air in the greenhouse is circulated by rotating both the intake and exhaust fans, so that the temperature in the greenhouse can be quickly adjusted. Can reach a predetermined temperature.
When the temperature in the greenhouse reaches a predetermined temperature, the exhaust fan is stopped and the circulation of air in the greenhouse is stopped, so that the current temperature can be maintained. As a result, the current temperature can be maintained and the power of the fan can be reduced.
In addition, when the temperature detected by the soil temperature sensor reaches the specified temperature range, the intake fan is stopped to weaken the release to the soil, so the temperature of the soil is finely controlled and the power of the fan is reduced. can do.
In addition, when the temperature detected by the soil temperature sensor reaches a predetermined temperature range, the air discharge hole in the vicinity of the soil temperature sensor is closed, so that the soil temperature management of the entire paddle can be finely performed.

以下、本発明を図に示した実施形態を用いて詳細に説明する。但し、この実施形態に記載される構成要素、種類、組み合わせ、形状、その相対配置などは特定的な記載がない限り、この発明の範囲をそれのみに限定する主旨ではなく単なる説明例に過ぎない。
図1は本発明の第1の実施形態に係る温室内温度制御装置の構成を示す図である。図1(a)は側断面図、(b)は上面図である。この温室内温度制御装置50は、土壌上に立設されて内部空間を外気と遮蔽する温室8と、温室8内の空気温度及び温室8内の土壌温度を制御する温度制御設備52と、を備えた温室内温度制御装置50であって、温度制御設備52は、吸気口と排気口を夫々温室8内に位置させた状態で土壌中に埋設された空気ダクト5と、空気ダクト5内に配設されて加熱、又は冷却用の流体を搬送することにより空気ダクト5内の空気を加熱又は冷却する温度制御管6と、空気ダクト5内に温室8内の空気を吸引する吸気ファン4と、空気ダクト5の排気口に設置され温度制御管6の隔壁を通じて空気ダクト5内の空気と温度制御管6内の流体間で熱の授受を行わせて加熱又は冷却を行なう熱交換器7と、熱交換器7と密着して設置され空気ダクト5内の空気を温室8内に排気する排気ファン9と、を備え、本実施形態では、夜間電力により水を加熱して給湯するヒートポンプ給湯器1の温水を貯湯槽2に貯留して、必要時に温度制御管6に貯湯槽2の温水を供給する。また、空気ダクト5に温度制御管6により加熱された空気を土壌11中に放出する空気放出孔12を備えている。また、本温室内温度制御装置50をシステムとして稼働するために、温度センサ10(上部温度センサ10a、下部温度センサ10b、土壌温度センサ10c)を備えている。また、温室8内の空気を攪拌するための循環ファン3を備えても構わない。尚、図示は省略するが、熱交換器7により熱交換された温水は再び貯湯槽2に戻されて使用される。
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings. However, the components, types, combinations, shapes, relative arrangements, and the like described in this embodiment are merely illustrative examples and not intended to limit the scope of the present invention only unless otherwise specified. .
FIG. 1 is a diagram showing a configuration of a greenhouse temperature control apparatus according to the first embodiment of the present invention. FIG. 1A is a side sectional view, and FIG. 1B is a top view. The greenhouse temperature control device 50 includes a greenhouse 8 that stands on the soil and shields the internal space from the outside air, and a temperature control facility 52 that controls the air temperature in the greenhouse 8 and the soil temperature in the greenhouse 8. A temperature control device 50 provided in the greenhouse, the temperature control facility 52 includes an air duct 5 embedded in the soil with the air inlet and the air outlet located in the greenhouse 8, and the air duct 5. A temperature control pipe 6 that heats or cools the air in the air duct 5 by conveying a fluid for heating or cooling, and an intake fan 4 that sucks air in the greenhouse 8 into the air duct 5; A heat exchanger 7 installed at the exhaust port of the air duct 5 and performing heating or cooling by transferring heat between the air in the air duct 5 and the fluid in the temperature control pipe 6 through the partition wall of the temperature control pipe 6; The air duct 5 is installed in close contact with the heat exchanger 7 And an exhaust fan 9 that exhausts air into the greenhouse 8. In this embodiment, the hot water of the heat pump water heater 1 that supplies water by heating water with nighttime power is stored in the hot water tank 2, and temperature control is performed when necessary. Hot water from the hot water tank 2 is supplied to the pipe 6. In addition, the air duct 5 is provided with an air discharge hole 12 through which air heated by the temperature control pipe 6 is discharged into the soil 11. Moreover, in order to operate this greenhouse temperature control apparatus 50 as a system, the temperature sensor 10 (the upper temperature sensor 10a, the lower temperature sensor 10b, and the soil temperature sensor 10c) is provided. Moreover, you may provide the circulation fan 3 for stirring the air in the greenhouse 8. FIG. In addition, although illustration is abbreviate | omitted, the hot water heat-exchanged by the heat exchanger 7 is returned to the hot water tank 2 again, and is used.

次に本実施形態に係る温室内温度制御装置50の概略動作について説明する。給湯器1は夜間電力を使用して水道水(或いは地下水)をヒートポンプ給湯器1により加熱して所定の温度(70℃〜90℃)に加熱して貯湯槽2に貯留する。貯湯槽2には図示を省略するが、温水を温度制御管6に流すポンプが備えられ、そのポンプの圧力により、温度制御管6内に温水を循環させる。また、温度制御管6は空気ダクト5内に配設されているので、温度制御管6の表面の熱により温められる。また、温室8内の空気を暖めるために、吸気ファン4と排気ファン9を同時に動作させる。これにより、空気ダクト5内の暖められた空気13が空気放出孔12を介して土壌11に放出されと共に、熱交換器7により更に暖められて温室8内に排気される。この動作を繰り返すことにより、土壌11と温室8内の空気が暖められる。また、暖められた空気は、温室8の上部に溜まるため、循環ファン3により空気を攪拌することにより、より全体の温度分布を均一化することができる。
図1(b)では、温度制御管6を2本に分離して、それぞれに空気ダクト5、吸気ファン4、排気ファン9、及び熱交換器7を備えているが、空気ダクト5を連結して、吸気口と排気口にそれぞれ吸気ファン4、排気ファン9、及び熱交換器7を備える構成でも構わない。
Next, schematic operation of the greenhouse temperature control apparatus 50 according to the present embodiment will be described. The hot water heater 1 uses nighttime electric power to heat tap water (or groundwater) with the heat pump water heater 1, heat it to a predetermined temperature (70 ° C. to 90 ° C.), and store it in the hot water tank 2. Although not shown in the figure, the hot water tank 2 is provided with a pump for flowing hot water to the temperature control pipe 6, and the hot water is circulated in the temperature control pipe 6 by the pressure of the pump. Further, since the temperature control pipe 6 is disposed in the air duct 5, it is heated by the heat of the surface of the temperature control pipe 6. In order to warm the air in the greenhouse 8, the intake fan 4 and the exhaust fan 9 are operated simultaneously. As a result, the heated air 13 in the air duct 5 is released to the soil 11 through the air discharge holes 12, and is further heated by the heat exchanger 7 and exhausted into the greenhouse 8. By repeating this operation, the air in the soil 11 and the greenhouse 8 is warmed. Moreover, since the warmed air accumulates in the upper part of the greenhouse 8, by stirring the air with the circulation fan 3, the entire temperature distribution can be made more uniform.
In FIG. 1 (b), the temperature control pipe 6 is divided into two, and each is provided with an air duct 5, an intake fan 4, an exhaust fan 9, and a heat exchanger 7. Thus, a configuration in which the intake fan 4, the exhaust fan 9, and the heat exchanger 7 are provided in the intake port and the exhaust port, respectively, may be used.

本発明の最も大きな特徴は、空気ダクト5内に温度制御管6を配設すると共に、空気ダクト5に温度制御管6により加熱された空気を土壌11内に放出する空気放出孔12を備えた点である。そして、温度制御管6から放出される温度により加熱された空気を排気ファン9により排気し、温室8内を循環して吸気ファン4により再び空気ダクト5に流入させる。このとき、吸気ファン4により吸入された空気は圧力が高いため、空気放出孔12から土壌11に放出される。これにより、土壌11への熱伝達を早めて、且つ均一に伝達させることができる。   The most significant feature of the present invention is that a temperature control pipe 6 is disposed in the air duct 5 and an air discharge hole 12 is provided in the air duct 5 for discharging air heated by the temperature control pipe 6 into the soil 11. Is a point. Then, air heated by the temperature discharged from the temperature control pipe 6 is exhausted by the exhaust fan 9, circulated in the greenhouse 8, and again flows into the air duct 5 by the intake fan 4. At this time, since the air sucked by the intake fan 4 has a high pressure, it is discharged from the air discharge hole 12 to the soil 11. Thereby, heat transfer to the soil 11 can be accelerated and transmitted uniformly.

図2は本発明の第2の実施形態に係る温室内温度制御装置の構成を示す図である。同じ構成要素には図1と同じ参照番号を付して説明する。図2が図1と異なる点は、貯湯槽2と温度制御管6との間に、温水又は冷却水の何れかを選択的に切り替えて温度制御管6に流入させる切替器14を備えたことである。切替器14には、配管15を介して地下水16を汲み上げて温度制御管6に供給する図示しないポンプが備えられている。
即ち、空気ダクト5には空気が流れているため、温度制御管6の表面温度が空気に伝達して加熱又は冷却する。従って、温度制御管6の温度により空気の温度が左右される。本実施形態では、温水又は冷却水の何れかを選択的に切り替えて温度制御管6に流入させる切替器14を備え、温室8の温度を上昇させるときは温水を流し、温室8の温度を低下させるときは冷却水を流すように作動させる。これにより、温室8の温度を広い範囲で制御することができる。
FIG. 2 is a diagram showing a configuration of a greenhouse temperature control apparatus according to the second embodiment of the present invention. The same components will be described with the same reference numerals as in FIG. 2 differs from FIG. 1 in that a switch 14 is provided between the hot water tank 2 and the temperature control pipe 6 to selectively switch either hot water or cooling water into the temperature control pipe 6. It is. The switch 14 is provided with a pump (not shown) that draws groundwater 16 through the pipe 15 and supplies it to the temperature control pipe 6.
That is, since air flows through the air duct 5, the surface temperature of the temperature control pipe 6 is transmitted to the air to be heated or cooled. Accordingly, the temperature of the air depends on the temperature of the temperature control pipe 6. In this embodiment, the switch 14 which selectively switches either warm water or cooling water and flows into the temperature control pipe 6 is provided. When the temperature of the greenhouse 8 is raised, warm water is flowed and the temperature of the greenhouse 8 is lowered. Operate the cooling water to flow. Thereby, the temperature of the greenhouse 8 can be controlled in a wide range.

図3は空気放出孔12を開放又は閉止する放出孔開閉器(放出孔開閉手段)53の一例を示す図である。図3(a)は断面図、図3(b)は開閉動作を説明する図である。図3(a)のように、放出孔開閉器53は、空気ダクト5に設けられた空気放出孔12に取り付けられ、枠体20と枠体20内を回転する回転板27と回転板27を回転させるソレノイド23から構成されている。回転板27は軸21によりソレノイド23の軸22に回動可能に取り付けられている。図3(b)を参照して放出孔開閉器53の概略動作について説明する。図3(b)はソレノイド23を動作させて放出孔開閉器53を閉止した状態を示す図である。この状態では、枠体20の開口部24と回転板27の開口部25は位置が一致しないため、回転体27により枠体20の開口部24は閉止されている。次に、ソレノイド23の動作を停止すると、バネ26の力で矢印Bの方向に軸22が移動し、その結果、回転板27の軸21が回転して回転板27が矢印Aの方向に回転することにより、回転板27の開口部25と枠体20の開口部24が一致して放出孔開閉器53を開放状態にする。
即ち、温室8では畝ごとに異なる作物を栽培することがある。作物は種類により土壌温度が同じとは限らない。そこで本発明では、空気放出孔12を開放又は閉止する放出孔開閉器53を備え、土壌11の温度を畝ごとに制御する。これにより、作物ごと、或いは畝ごとに土壌温度をきめ細かく制御することができる。
FIG. 3 is a view showing an example of a discharge hole switch (discharge hole opening / closing means) 53 that opens or closes the air discharge hole 12. FIG. 3A is a cross-sectional view, and FIG. 3B is a diagram for explaining an opening / closing operation. As shown in FIG. 3A, the discharge hole switch 53 is attached to the air discharge hole 12 provided in the air duct 5, and includes the frame body 20, the rotating plate 27 that rotates in the frame body 20, and the rotating plate 27. The solenoid 23 is rotated. The rotating plate 27 is rotatably attached to the shaft 22 of the solenoid 23 by the shaft 21. The general operation of the discharge hole switch 53 will be described with reference to FIG. FIG. 3B is a diagram showing a state in which the solenoid 23 is operated to close the discharge hole switch 53. In this state, the opening 24 of the frame 20 and the opening 25 of the rotating plate 27 do not coincide with each other, and therefore the opening 24 of the frame 20 is closed by the rotating body 27. Next, when the operation of the solenoid 23 is stopped, the shaft 22 is moved in the direction of the arrow B by the force of the spring 26. As a result, the shaft 21 of the rotating plate 27 is rotated and the rotating plate 27 is rotated in the direction of the arrow A. As a result, the opening 25 of the rotating plate 27 and the opening 24 of the frame 20 are aligned to open the discharge hole switch 53.
That is, in the greenhouse 8, different crops may be cultivated for each basket. Depending on the type of crop, the soil temperature is not always the same. Therefore, in the present invention, a discharge hole switch 53 that opens or closes the air discharge hole 12 is provided, and the temperature of the soil 11 is controlled for each basket. Thereby, the soil temperature can be finely controlled for each crop or for each basket.

図4は本発明に係る温室内温度制御システムの構成を示すブロック図である。この温室内温度制御システム60は、温室8内の空気温度を検出する上部温度センサ10a、下部温度センサ10bと、土壌温度を検出する土壌温度センサ10cと、各温度センサにより検出された温度に基づいて図1又は図2に記載の温室内温度制御装置50、51に係る吸気ファン4、排気ファン9、及び放出孔開閉器53を制御する制御部30と、を備えて構成されている。尚、切替器は制御部30を介して動作させてもよいし、制御部30を介さずに手動にて動作させても構わない。
即ち、温室内温度制御設備50、51を制御するためには、温室8内と土壌11の温度を検知する温度センサ10(10a〜10c)が必要である。これらの温度センサからの情報は制御部30に入力され、制御部30は各温度情報に基づいて吸気ファン4、排気ファン9、又は放出孔開閉器53に係る動作を制御する。ここでいう動作とは、ファンの回転又は停止や放出孔開閉器53の開閉動作をいう。これにより、温室全体の温度管理をシステムとして自動管理することができる。
FIG. 4 is a block diagram showing the configuration of the greenhouse temperature control system according to the present invention. The greenhouse temperature control system 60 is based on an upper temperature sensor 10a and a lower temperature sensor 10b that detect an air temperature in the greenhouse 8, a soil temperature sensor 10c that detects a soil temperature, and a temperature detected by each temperature sensor. 1 or 2, the control unit 30 that controls the intake fan 4, the exhaust fan 9, and the discharge hole switch 53 according to the greenhouse temperature control devices 50 and 51 shown in FIG. 1 or 2 is configured. The switch may be operated via the control unit 30 or may be manually operated without the control unit 30.
That is, in order to control the temperature control facilities 50 and 51 in the greenhouse, the temperature sensors 10 (10a to 10c) that detect the temperatures of the greenhouse 8 and the soil 11 are necessary. Information from these temperature sensors is input to the control unit 30, and the control unit 30 controls the operation related to the intake fan 4, the exhaust fan 9, or the discharge hole switch 53 based on each temperature information. The operation here refers to the rotation or stop of the fan or the opening / closing operation of the discharge hole switch 53. Thereby, the temperature management of the whole greenhouse can be automatically managed as a system.

図5は本発明の第1の実施形態に係る温室内温度制御システムの動作を説明するフローチャートである。夜間電力を使用するために、その時間帯になると(S1でYES)、給湯器1が動作して水道水又は地下水を加熱する(S2)。加熱された温水は貯湯器2により貯留され、貯湯器2が満タンになるまで貯留される(S3)。貯湯器2が満タンになると(S3でYES)、給湯器1を停止する(S4)。このとき貯湯器2には70℃〜90℃の温水が貯留される。次に、貯湯器2が満タンになると、温度制御管6に給湯を開始する(S5)。その後、制御部30は上部温度センサ10aと下部温度センサ10bの温度情報を検知して所定値の温度に達しているか否かを検証する(S6)。もし、所定温度に達していなければ(S6でNO)、吸気ファン4と排気ファン9を動作させる(S7)。これにより、温室8内に温風が循環される。一方、ステップS6で所定温度に達している場合(S6でYES)、排気ファン9を停止して温室8に温風を送風することを停止する(S10)。次に、土壌温度センサ10cの温度情報を検知して所定値の温度に達しているか否かを検証する(S8)。もし、達していなければ(S8でNO)ステップS5に戻る。ステップS8で所定値に達していれば(S9でYES)、吸気ファン4を停止して、温風を土壌11中に放出する圧力を低下させる(S9)。   FIG. 5 is a flowchart for explaining the operation of the greenhouse temperature control system according to the first embodiment of the present invention. In order to use nighttime electric power, when it becomes the time zone (YES in S1), the water heater 1 operates to heat tap water or groundwater (S2). The heated hot water is stored by the hot water storage device 2 and stored until the hot water storage device 2 is full (S3). When the water heater 2 is full (YES in S3), the water heater 1 is stopped (S4). At this time, hot water of 70 ° C. to 90 ° C. is stored in the hot water storage device 2. Next, when the water heater 2 is full, hot water supply to the temperature control pipe 6 is started (S5). Thereafter, the control unit 30 detects temperature information of the upper temperature sensor 10a and the lower temperature sensor 10b and verifies whether or not the temperature reaches a predetermined value (S6). If the predetermined temperature has not been reached (NO in S6), the intake fan 4 and the exhaust fan 9 are operated (S7). Thereby, warm air is circulated in the greenhouse 8. On the other hand, if the predetermined temperature has been reached in step S6 (YES in S6), the exhaust fan 9 is stopped and the supply of warm air to the greenhouse 8 is stopped (S10). Next, the temperature information of the soil temperature sensor 10c is detected and it is verified whether or not the temperature reaches a predetermined value (S8). If not reached (NO in S8), the process returns to step S5. If the predetermined value has been reached in step S8 (YES in S9), the intake fan 4 is stopped and the pressure at which the warm air is discharged into the soil 11 is reduced (S9).

図6は本発明の第2の実施形態に係る温室内温度制御システムの動作を説明するフローチャートである。夜間電力を使用するために、その時間帯になると(S20でYES)、給湯器1が動作して水道水又は地下水を加熱する(S21)。加熱された温水は貯湯器2により貯留され、貯湯器2が満タンになるまで貯留される(S22)。貯湯器2が満タンになると(S22でYES)、給湯器1を停止する(S23)。このとき貯湯器2には70℃〜90℃の温水が貯留される。次に、貯湯器2が満タンになると、温度制御管6に給湯を開始する(S24)。その後、制御部30は上部温度センサ10aと下部温度センサ10bの温度情報を検知して所定値の温度に達しているか否かを検証する(S25)。もし、所定温度に達していなければ(S25でNO)、吸気ファン4と排気ファン9を動作させる(S26)。これにより、温室8内に温風が循環される。一方、ステップS25で所定温度に達している場合(S25でYES)、排気ファン9を停止して温室8に温風を送風することを停止する(S29)。次に、土壌温度センサ10cの温度情報を検知して所定値の温度に達しているか否かを検証する(S27)。もし、達していなければ(S27でNO)ステップS24に戻る。ステップS27で所定値に達していれば(S27でYES)、放出孔開閉器53を動作して空気放出孔12を閉止して土壌11中に放出する空気を停止する(S28)。   FIG. 6 is a flowchart for explaining the operation of the greenhouse temperature control system according to the second embodiment of the present invention. In order to use nighttime electric power, when it is the time zone (YES in S20), the water heater 1 operates to heat tap water or groundwater (S21). The heated hot water is stored by the hot water storage device 2 and stored until the hot water storage device 2 is full (S22). When the water heater 2 is full (YES at S22), the water heater 1 is stopped (S23). At this time, hot water of 70 ° C. to 90 ° C. is stored in the hot water storage device 2. Next, when the water heater 2 is full, hot water supply to the temperature control pipe 6 is started (S24). Thereafter, the control unit 30 detects temperature information of the upper temperature sensor 10a and the lower temperature sensor 10b and verifies whether or not the temperature reaches a predetermined value (S25). If the predetermined temperature has not been reached (NO in S25), the intake fan 4 and the exhaust fan 9 are operated (S26). Thereby, warm air is circulated in the greenhouse 8. On the other hand, if the predetermined temperature has been reached in step S25 (YES in S25), the exhaust fan 9 is stopped and the blowing of warm air to the greenhouse 8 is stopped (S29). Next, the temperature information of the soil temperature sensor 10c is detected, and it is verified whether or not the temperature reaches a predetermined value (S27). If not reached (NO in S27), the process returns to step S24. If the predetermined value is reached in step S27 (YES in S27), the discharge hole switch 53 is operated to close the air discharge hole 12 and stop the air discharged into the soil 11 (S28).

図7は図6のフローチャートを更に詳細に説明するための説明図である。一般的には、温室では、各種の作物を畝毎に分けて栽培する場合がある。そのとき、作物によって土壌温度が異なる場合がある。そこで各畝に空気ダクト5a〜5dを配設し、夫々の畝に土壌温度センサ10cを夫々配設する。当然、どの土壌温度センサがどの畝の土壌温度を検知するかは予め決定しておく。また、各畝に配設された空気ダクトにある空気放出孔12に夫々放出孔開閉器53を配置する。この放出孔開閉器53も、当然どの放出孔開閉器53がどの畝の空気ダクトに配置したかを予め決定しておく。また、放出孔開閉器53ごとに制御してもよいし、畝ごとに放出孔開閉器53を制御しても構わない。このように構成しておくことにより、図6のステップS28で空気放出孔を閉止する場合に、制御部30は各畝毎に最適な温度を土壌温度センサにより検知して、その温度情報に基づいて畝ごとの放出孔開閉器をきめ細かく制御することができる。   FIG. 7 is an explanatory diagram for explaining the flowchart of FIG. 6 in more detail. Generally, in a greenhouse, various crops may be cultivated separately for each basket. At that time, the soil temperature may differ depending on the crop. Therefore, the air ducts 5a to 5d are provided in each cage, and the soil temperature sensor 10c is provided in each cage. Naturally, it is determined in advance which soil temperature sensor detects which soil temperature. Moreover, the discharge hole switch 53 is arrange | positioned at the air discharge hole 12 in the air duct arrange | positioned at each cage | basket, respectively. Of course, this discharge hole switch 53 also determines in advance which discharge hole switch 53 is disposed in which air duct. Moreover, you may control for every discharge hole switch 53, and you may control the discharge hole switch 53 for every basket. With this configuration, when the air discharge hole is closed in step S28 of FIG. 6, the control unit 30 detects the optimum temperature for each basket by the soil temperature sensor, and based on the temperature information. It is possible to finely control the release hole switch for each basket.

本発明の第1の実施形態に係る温室内温度制御装置の構成を示す図である。It is a figure which shows the structure of the greenhouse temperature control apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る温室内温度制御装置の構成を示す図である。It is a figure which shows the structure of the greenhouse temperature control apparatus which concerns on the 2nd Embodiment of this invention. 空気放出孔12を開放又は閉止する放出孔開閉器(放出孔開閉手段)53の一例を示す図である。It is a figure which shows an example of the discharge hole switch (discharge hole opening / closing means) 53 which opens or closes the air discharge hole. 本発明に係る温室内温度制御システムの構成を示すブロック図である。It is a block diagram which shows the structure of the greenhouse temperature control system which concerns on this invention. 本発明の第1の実施形態に係る温室内温度制御システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the greenhouse temperature control system which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る温室内温度制御システムの動作を説明するフローチャートである。It is a flowchart explaining operation | movement of the greenhouse temperature control system which concerns on the 2nd Embodiment of this invention. 図6のフローチャートを更に詳細に説明するための説明図である。FIG. 7 is an explanatory diagram for explaining the flowchart of FIG. 6 in more detail.

符号の説明Explanation of symbols

1 ヒートポンプ給湯器、2 貯湯槽、3 循環ファン、4 吸気ファン、5 空気ダクト、6 温度制御管、7 熱交換器、8 温室、9 排気ファン、10 温度センサ、11 土壌、12 空気放出孔、13 空気、14 切替器、15 配管、16 地下水、30 制御部、50、51 温室内温度制御装置、60 温室内温度制御システム   DESCRIPTION OF SYMBOLS 1 Heat pump water heater, 2 Hot water tank, 3 Circulation fan, 4 Intake fan, 5 Air duct, 6 Temperature control pipe, 7 Heat exchanger, 8 Greenhouse, 9 Exhaust fan, 10 Temperature sensor, 11 Soil, 12 Air discharge hole, 13 Air, 14 Switch, 15 Piping, 16 Groundwater, 30 Control unit, 50, 51 Greenhouse temperature control device, 60 Greenhouse temperature control system

Claims (8)

土壌上に立設されて内部空間を外気と遮蔽する温室と、該温室内の空気温度及び該温室内の土壌温度を制御する温度制御設備と、を備えた温室内温度制御装置であって、
前記温度制御設備は、吸気口と排気口を夫々前記温室内に位置させた状態で土壌中に埋設された空気ダクトと、該空気ダクト内に配設されて加熱、又は冷却用の流体を搬送することにより該空気ダクト内の空気を加熱又は冷却する温度制御管と、前記空気ダクト内に前記温室内の空気を吸引する吸気ファンと、前記空気ダクトの排気口に設置され前記温度制御管の隔壁を通じて前記空気ダクト内の空気と温度制御管内の流体間で熱の授受を行わせて加熱又は冷却を行なう熱交換器と、前記空気ダクト内の空気を前記温室内に排気する排気ファンと、を備え、
前記空気ダクトに前記温度制御管により加熱又は冷却された空気を土壌中に放出する空気放出孔を備えたことを特徴とする温室内温度制御装置。
A greenhouse temperature control device comprising a greenhouse standing on the soil and shielding the internal space from the outside air, and a temperature control facility for controlling the air temperature in the greenhouse and the soil temperature in the greenhouse,
The temperature control facility includes an air duct embedded in the soil with an intake port and an exhaust port located in the greenhouse, and a heating or cooling fluid disposed in the air duct. A temperature control pipe that heats or cools the air in the air duct, an air intake fan that sucks air in the greenhouse into the air duct, and an air outlet installed in the exhaust duct of the air duct. A heat exchanger for heating or cooling by transferring heat between the air in the air duct and the fluid in the temperature control pipe through the partition; and an exhaust fan for exhausting the air in the air duct into the greenhouse. With
The greenhouse temperature control device, wherein the air duct is provided with an air discharge hole for discharging air heated or cooled by the temperature control pipe into the soil.
温水又は冷却水の何れかを選択的に切り替えて前記温度制御管に流入させる切替器を備えたことを特徴とする請求項1に記載の温室内温度制御装置。   The greenhouse temperature control device according to claim 1, further comprising a switch for selectively switching either hot water or cooling water to flow into the temperature control pipe. 前記空気放出孔を開放又は閉止する放出孔開閉手段を備えことを特徴とする請求項1又は2に記載の温室内温度制御装置。   The greenhouse temperature control device according to claim 1 or 2, further comprising discharge hole opening / closing means for opening or closing the air discharge hole. 請求項1乃至3の何れか一項に記載の温室内温度制御装置と、前記温室内の空気温度を検出する温度センサと、土壌温度を検出する土壌温度センサと、前記各温度センサにより検出された温度に基づいて前記吸気ファン、前記排気ファン、及び前記放出孔開閉手段を制御する制御部と、を備えたことを特徴とする温室内温度制御システム。   The greenhouse temperature control device according to any one of claims 1 to 3, a temperature sensor that detects an air temperature in the greenhouse, a soil temperature sensor that detects a soil temperature, and each of the temperature sensors. And a control unit for controlling the intake fan, the exhaust fan, and the discharge hole opening / closing means based on a predetermined temperature. 前記制御部は、前記温度センサが検出した温度が所定の温度範囲に達していない場合、前記吸気ファン及び排気ファンを同時に動作させることを特徴とする請求項4に記載の温室内温度制御システム。   5. The greenhouse temperature control system according to claim 4, wherein when the temperature detected by the temperature sensor does not reach a predetermined temperature range, the controller operates the intake fan and the exhaust fan simultaneously. 前記制御部は、前記温度センサが検出した温度が所定の温度範囲に達している場合、前記排気ファンを停止することを特徴とする請求項4又は5に記載の温室内温度制御システム。   6. The greenhouse temperature control system according to claim 4, wherein when the temperature detected by the temperature sensor reaches a predetermined temperature range, the control unit stops the exhaust fan. 前記制御部は、前記土壌温度センサが検出した温度が所定の温度範囲に達している場合、前記吸気ファンを停止することを特徴とする請求項4又は5に記載の温室内温度制御システム。   6. The greenhouse temperature control system according to claim 4, wherein when the temperature detected by the soil temperature sensor has reached a predetermined temperature range, the control unit stops the intake fan. 前記放出孔開閉手段を前記空気放出孔の全てに取り付けた場合、前記制御部は、前記土壌温度センサが検出した温度が所定の温度範囲に達している場合、該土壌温度センサ近傍の空気放出孔を閉止するように前記放出孔開閉手段を制御することを特徴とする請求項4に記載の温室内温度制御システム。   When the discharge hole opening / closing means is attached to all of the air discharge holes, the control unit, when the temperature detected by the soil temperature sensor has reached a predetermined temperature range, the air discharge hole near the soil temperature sensor The greenhouse temperature control system according to claim 4, wherein the discharge hole opening / closing means is controlled to close the discharge hole.
JP2008263035A 2008-10-09 2008-10-09 Temperature controlling device in greenhouse, and temperature controlling system in greenhouse Pending JP2010088378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008263035A JP2010088378A (en) 2008-10-09 2008-10-09 Temperature controlling device in greenhouse, and temperature controlling system in greenhouse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008263035A JP2010088378A (en) 2008-10-09 2008-10-09 Temperature controlling device in greenhouse, and temperature controlling system in greenhouse

Publications (1)

Publication Number Publication Date
JP2010088378A true JP2010088378A (en) 2010-04-22

Family

ID=42251753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008263035A Pending JP2010088378A (en) 2008-10-09 2008-10-09 Temperature controlling device in greenhouse, and temperature controlling system in greenhouse

Country Status (1)

Country Link
JP (1) JP2010088378A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103141343A (en) * 2013-03-07 2013-06-12 嘉兴职业技术学院 Soil heating system
KR101458711B1 (en) * 2013-06-24 2014-11-05 정종기 Air house structure for soil improvement
KR20160013771A (en) * 2014-07-28 2016-02-05 김동운 heat exchange system for vinyl house
KR20160050331A (en) * 2014-10-29 2016-05-11 대한민국(농촌진흥청장) Crops partially cooling & heating system
KR101770390B1 (en) * 2015-11-20 2017-08-22 이영재 House heating and cooling device using the geothermal
CN108293524A (en) * 2018-03-15 2018-07-20 黑龙江鸿盛农业科技开发股份有限公司 A kind of temperature of green house soil adjusts pipeline and regulating device
KR102046647B1 (en) * 2018-12-17 2019-11-19 김천호 Boiler system for heating house
KR102137081B1 (en) * 2019-05-31 2020-07-23 주식회사 전국냉난방연합 Cultivation under structure cooling system
KR102256518B1 (en) * 2020-09-10 2021-05-26 농업회사법인 홀리그라운드 주식회사 Plant production plant management system
RU2808175C1 (en) * 2023-05-11 2023-11-24 Олег Всеволодович Бондарев Air ducts system for creation of favorable conditions for plant production in greenhouse with regulation of air and soil temperature

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103141343A (en) * 2013-03-07 2013-06-12 嘉兴职业技术学院 Soil heating system
KR101458711B1 (en) * 2013-06-24 2014-11-05 정종기 Air house structure for soil improvement
KR20160013771A (en) * 2014-07-28 2016-02-05 김동운 heat exchange system for vinyl house
KR101644162B1 (en) 2014-07-28 2016-07-29 김동운 heat exchange system for vinyl house
KR20160050331A (en) * 2014-10-29 2016-05-11 대한민국(농촌진흥청장) Crops partially cooling & heating system
KR101719772B1 (en) * 2014-10-29 2017-03-28 대한민국 Crops partially cooling heating system
KR101770390B1 (en) * 2015-11-20 2017-08-22 이영재 House heating and cooling device using the geothermal
CN108293524A (en) * 2018-03-15 2018-07-20 黑龙江鸿盛农业科技开发股份有限公司 A kind of temperature of green house soil adjusts pipeline and regulating device
KR102046647B1 (en) * 2018-12-17 2019-11-19 김천호 Boiler system for heating house
KR102137081B1 (en) * 2019-05-31 2020-07-23 주식회사 전국냉난방연합 Cultivation under structure cooling system
KR102256518B1 (en) * 2020-09-10 2021-05-26 농업회사법인 홀리그라운드 주식회사 Plant production plant management system
RU2808175C1 (en) * 2023-05-11 2023-11-24 Олег Всеволодович Бондарев Air ducts system for creation of favorable conditions for plant production in greenhouse with regulation of air and soil temperature

Similar Documents

Publication Publication Date Title
JP2010088378A (en) Temperature controlling device in greenhouse, and temperature controlling system in greenhouse
CN101586854B (en) Heat dissipation system, control method and machinery room
US8661840B2 (en) Liquid circulation heating system
KR101479685B1 (en) Regenerative greenhouse heating system
JP5991632B2 (en) Underground heat storage type air conditioner
KR101486946B1 (en) Constant temperature and constant humidity apparatus
JP2019500565A (en) Heat pumping method and system
JP2019500566A (en) Heat pumping method and system
KR101707045B1 (en) Glasshouse heating and cooling systems
JP2010068748A (en) Temperature controlling device of underground heat exchange system
CN102705887A (en) Instantaneous hot-water system
KR101350974B1 (en) Indoor air circulating system
JP2007327679A (en) Hot water supply system
JP2012163239A (en) Geothermal heat utilization apparatus
KR100934094B1 (en) Control apparatus of air temperature in green house
KR20140147385A (en) Greenhouse for Air conditioning unit installation Heat-pump system
CN106288224A (en) The antifrost heat recovery system of new wind outside a kind of preheating chamber
JP2005221101A (en) Ventilation system utilizing nature energy
JP2005024140A (en) Air conditioning system of building, and air conditioning/hot-water supply system of building
KR101351840B1 (en) Greenhouse for air conditioning unit installation heat-pump system
CN104748576A (en) Sealed type cooling tower capable of automatically controlling temperature
KR20100034112A (en) Heating and cooling device for green house
KR102283880B1 (en) Low Power and High Efficiency Plant Factory for saving energy
JP4784230B2 (en) Sauna equipment
KR101527426B1 (en) Multifunctional Cooling-Heating System