JP2010088303A - Modified glycerol kinase having improved thermal stability - Google Patents

Modified glycerol kinase having improved thermal stability Download PDF

Info

Publication number
JP2010088303A
JP2010088303A JP2008258226A JP2008258226A JP2010088303A JP 2010088303 A JP2010088303 A JP 2010088303A JP 2008258226 A JP2008258226 A JP 2008258226A JP 2008258226 A JP2008258226 A JP 2008258226A JP 2010088303 A JP2010088303 A JP 2010088303A
Authority
JP
Japan
Prior art keywords
glycerol kinase
modified
amino acid
modified glycerol
kinase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008258226A
Other languages
Japanese (ja)
Other versions
JP5531272B2 (en
Inventor
Kenji Inagaki
賢二 稲垣
Masao Kitabayashi
北林  雅夫
Takahide Kishimoto
高英 岸本
Atsushi Sogabe
敦 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Toyobo Co Ltd
Original Assignee
Okayama University NUC
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC, Toyobo Co Ltd filed Critical Okayama University NUC
Priority to JP2008258226A priority Critical patent/JP5531272B2/en
Publication of JP2010088303A publication Critical patent/JP2010088303A/en
Application granted granted Critical
Publication of JP5531272B2 publication Critical patent/JP5531272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glycerol kinase having high thermal stability in addition to high durability to preservatives, and to provide a method for measuring neutral fat with the enzyme. <P>SOLUTION: There are provided the modified glycerol kinase having more improved thermal stability than that of a wild type glycerol kinase originated from a bacterium in genus Cellulomomas, and having an amino acid sequence having amino acids substituted at specific positions, a gene for the enzyme, a transformant having the same transduced therein, a neutral fat sensor using the enzyme, and a method for measuring a neutral fat. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、野生型グリセロールキナーゼより熱安定性を向上させた改変型グリセロールキナーゼに関し、特に、臨床検査薬として有用な改変型グリセロールキナーゼに関する。   The present invention relates to a modified glycerol kinase having improved thermal stability compared to wild-type glycerol kinase, and more particularly to a modified glycerol kinase useful as a clinical test agent.

グリセロールキナーゼ(EC 2.7.1.30)は、マグネシウムとATPに依存したリン酸化反応によりグリセロールをグリセロール−3−リン酸に変える反応を触媒する酵素である。グリセロールキナーゼは、1937年に、Kalckarによって、肝臓内に発見(例えば、非特許文献1参照)されて以来、ラット肝、ハト肝、キャンディダ・ミコデルマ(Candida mycoderma)、セルロモナス フラビゲナ(Cellulomonas flavigena)、サーマス フラバス(Thermus flavus)などからの精製が報告され(例えば、非特許文献2〜5および特許文献1参照)、生物全般に広く存在することが知られている。また、ヒト、バチルス・ズブチリス(Bacillus subtilis)、サッカロマイセス・セレビシエ(Saccharomyces cerevisiae)、サーマス フラバス(Thermus flavus)などからの遺伝子のクローニングが報告されている(例えば、非特許文献6〜9参照)。特に、エシェリヒア・コリー(Escherichia coli)において、該酵素は詳しく研究がなされており、1967年にHayashiらによって精製され(例えば、非特許文献10参照)、1988年にそのクローニングの報告がなされている(例えば、非特許文献11参照)。また、遺伝子調節の研究、アロステリック阻害剤による阻害の研究など、広い範囲においても既に研究されている。   Glycerol kinase (EC 2.7.1.30) is an enzyme that catalyzes a reaction for converting glycerol to glycerol-3-phosphate by phosphorylation dependent on magnesium and ATP. Glycerol kinase has been discovered in the liver by Kalkkar in 1937 (see, for example, Non-Patent Document 1). Purification from thermus flavus has been reported (for example, see Non-Patent Documents 2 to 5 and Patent Document 1), and is known to exist widely in all living organisms. In addition, cloning of genes from humans, Bacillus subtilis, Saccharomyces cerevisiae, Thermus flavus, etc. has been reported (see, for example, Non-Patent Documents 6 to 9). In particular, in Escherichia coli, the enzyme has been studied in detail. It was purified by Hayashi et al. In 1967 (see, for example, Non-Patent Document 10), and its cloning was reported in 1988. (For example, refer nonpatent literature 11). In addition, studies on gene regulation and inhibition by allosteric inhibitors have already been conducted in a wide range.

一方、グリセロールキナーゼは、産業分野への応用では、臨床検査薬用の原料酵素として利用されている。例えば、血中の中性脂肪の測定では、試料中の中性脂肪(トリグリセリド)をリパーゼで加水分解して生じたグリセロールをグリセロール−3−リン酸に変換する際にグリセロールキナーゼが利用されている。   On the other hand, glycerol kinase is used as a raw material enzyme for clinical test drugs in industrial applications. For example, in the measurement of neutral fat in blood, glycerol kinase is used to convert glycerol produced by hydrolyzing neutral fat (triglyceride) in a sample with lipase to glycerol-3-phosphate. .

中性脂肪測定用検査薬も含めた現在の生化学検査用臨床検査薬は、溶液状態の検査薬が主流となっており、原料の酵素に必要な特性として、検査薬溶液中での高い安定性が求められるようになっている。検査薬溶液中での酵素の安定性に寄与する特性としては、防腐剤に対する耐性が高いことが特に重要である。なぜなら、一般的に液状検査薬は長期の保存を可能にするため防腐剤を添加されており、この防腐剤が酵素を不安定化することがあるからである。   The current clinical chemistry tests for biochemical tests, including those for measuring triglycerides, are mainly in the state of solutions, and as a necessary characteristic of the enzyme of the raw material, high stability in the test solution Sex is required. It is particularly important that the resistance to the preservative is high as a characteristic that contributes to the stability of the enzyme in the test solution. This is because a liquid test agent is generally added with a preservative to enable long-term storage, and this preservative may destabilize the enzyme.

これまで高い熱安定性を持つ酵素が液状診断薬中で高い安定性を示すと考えられてきており、バチルス・ステアロサーモフィラス(Bacillus stearothermophilus)やサーマス・フラバス(Thermus flavus)など好熱菌由来のグリセロールキナーゼが液状診断薬用のグリセロールキナーゼとして汎用されていた。しかし、これらのグリセロールキナーゼは防腐剤に対する耐性が比較的低いという問題を有していた。   Enzymes with high thermostability have been considered to have high stability in liquid diagnostics, and thermophilic bacteria such as Bacillus stearothermophilus and Thermus flavus. The derived glycerol kinase has been widely used as a glycerol kinase for liquid diagnostic agents. However, these glycerol kinases have the problem of relatively low resistance to preservatives.

本発明者らは、セルロモナス属の細菌から、防腐剤に対する耐性の高いグリセロールキナーゼをコードする遺伝子を単離し、遺伝子組換え技術による該酵素の製造方法を確立し、該酵素の中性脂肪及びグリセロールの定量への利用を可能とすることに成功しているが、その反面、該グリセロールキナーゼは、上記好熱性細菌由来のグリセロールキナーゼと比べて熱安定性が低いという弱点を有していた(特許文献2参照)。そこで、別のアプローチとして好熱性細菌由来のグリセロールキナーゼをタンパク質工学的に改変し、高い熱安定性と防腐剤耐性を両立させる試みも行ってきた(特許文献3参照)。しかしながら、近年の臨床検査薬の海外普及などによる要求スペックの変化により、グリセロールキナーゼも一層の耐熱性、防腐剤耐性が要求されるようになり、更なる改良が望まれていた。
特開昭56−121484号公報 特開2004−121234号公報 特開2007−195453号公報 H.Kalckar著,「Enzymologia」,1937年,第2巻,p47 C.Bublitzら著,「J.Biol.Chem.」,1954年,第211巻,p951 E.P.Kennedy著,「Methods Enzymol.」,1962年,第5巻,p476 H.U.Bergmeyerら著,「Biochem.」,1961年,第333号,p471 H.S.Huangら著,「J.Ferment.Bioeng.」,1997年,第83号,p328 C.A.Sargentら著,「Hum.Mol.Genet.」,1994年,第3巻,p1317 C.Holmbergら著,「J.Gen.Microbiol.」,1990年,第136巻,p2367 P.Pavlikら著,「Curr.Genet.」,1993年,第24巻,p21 H.S.Huangら著,「Biochim.Biophys.Acta」,1998年,第1382巻,p186 S.Hayashiら著,「J.Biol.Chem.」1967年,第242巻,p1030 D.W.Pettigrewら著,「J.Biol.Chem.」1988年,第263巻,p135
The present inventors isolated a gene encoding glycerol kinase highly resistant to preservatives from bacteria of the genus Cellulomonas, established a method for producing the enzyme by gene recombination technology, and neutralized fat and glycerol of the enzyme However, the glycerol kinase has a weakness that it is less thermostable than the glycerol kinase derived from the thermophilic bacterium (patent) Reference 2). Therefore, as another approach, glycerol kinase derived from thermophilic bacteria has been modified by protein engineering to try to achieve both high thermal stability and antiseptic resistance (see Patent Document 3). However, due to changes in the required specifications due to the recent spread of clinical diagnostic drugs overseas, glycerol kinase has also been required to have higher heat resistance and preservative resistance, and further improvements have been desired.
JP-A-56-121484 JP 2004-121234 A JP 2007-195453 A H. Kalkkar, “Enzymologia”, 1937, Vol. 2, p47 C. Bublitz et al., “J. Biol. Chem.”, 1954, 211, p951. E. P. Kennedy, “Methods Enzymol.”, 1962, Vol. 5, p476 H. U. Bergmeyer et al., “Biochem.”, 1961, No. 333, p471. H. S. Huang et al., “J. Ferment. Bioeng.”, 1997, No. 83, p328. C. A. Sargent et al., “Hum. Mol. Genet.”, 1994, Volume 3, p1317. C. Holberg et al., “J. Gen. Microbiol.”, 1990, 136, p2367. P. Pavlik et al., “Curr. Genet.”, 1993, 24, p21. H. S. Huang et al., “Biochim. Biophys. Acta”, 1998, 1382, p186. S. Hayashi et al., “J. Biol. Chem.” 1967, Vol. 242, p1030. D. W. Pettigrew et al., “J. Biol. Chem.” 1988, 263, p135.

本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は、防腐剤に対する高い耐性に加えて高い熱安定性を有するグリセロールキナーゼを提供することである。   The present invention has been made in view of the current state of the prior art, and an object thereof is to provide a glycerol kinase having high thermal stability in addition to high resistance to preservatives.

本発明者らは、上記目的を達成するため鋭意検討した結果、防腐剤耐性に優れた野生型グリセロールキナーゼをタンパク質工学的に改変することにより、高い熱安定性および防腐剤耐性を有する改変型グリセロールキナーゼを得ることに成功し、本発明を完成させた。   As a result of intensive studies to achieve the above-described object, the present inventors have modified wild-type glycerol kinase having excellent antiseptic resistance by protein engineering, thereby providing a modified glycerol having high heat stability and antiseptic resistance. The present invention was completed by successfully obtaining a kinase.

すなわち、本発明によれば、セルロモナス属の細菌由来の野生型グリセロールキナーゼより熱安定性を向上させた改変型グリセロールキナーゼであって、配列表の配列番号2で示すアミノ酸配列の50位、および/または137位と138位、および/または163位と164位、および/または274位、および/または386位と388位においてアミノ酸置換が導入されたアミノ酸配列を有することを特徴とする改変型グリセロールキナーゼが提供される。   That is, according to the present invention, a modified glycerol kinase having improved thermal stability as compared with a wild-type glycerol kinase derived from a bacterium of the genus Cellulomonas, which is located at position 50 of the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing, and / or Or a modified glycerol kinase having an amino acid sequence introduced with amino acid substitutions at positions 137 and 138, and / or 163 and 164, and / or 274, and / or 386 and 388 Is provided.

本発明の好ましい実施態様によれば、アミノ酸置換は、Q50E、(G137A+P138S)、(N163T+T164I)、L274M、(T386I+F388Y)、(Q50E+L274M)、(Q50E+T386I+F388Y)、および(Q50E+L274M+T386I+F388Y)からなる群から選択される。   According to a preferred embodiment of the present invention, the amino acid substitution is selected from Q50E, (G137A + P138S), (N163T + T164I), L274M, (T386I + F388Y), (Q50E + L274M), (Q50E + T386I + F388Y), and (Q50E + L274M + T38F + T38F + T38 +).

本発明によれば、上記のいずれかに記載の改変型グリセロールキナーゼをコードする遺伝子、該遺伝子を含むベクター、該ベクターで形質転換された形質転換体、該形質転換体を培養することを特徴とする改変型グリセロールキナーゼの製造方法も提供される。   According to the present invention, a gene encoding the modified glycerol kinase according to any one of the above, a vector containing the gene, a transformant transformed with the vector, and culturing the transformant A method for producing the modified glycerol kinase is also provided.

また、本発明によれば、上記のいずれかに記載の改変型グリセロールキナーゼを使用する中性脂肪アッセイキット、中性脂肪センサー、または中性脂肪測定方法も提供される。   In addition, according to the present invention, there is also provided a neutral fat assay kit, a neutral fat sensor, or a neutral fat measurement method using any of the modified glycerol kinases described above.

本発明の改変型グリセロールキナーゼは、セルロモナス属の細菌に由来し、しかも、特定の位置にアミノ酸置換が導入されているため、高い防腐剤耐性に加えて高い熱安定性を示す。従って、本発明の改変型グリセロールキナーゼは、溶液状態で長期間安定に保存することができ、保存性に優れた臨床検査薬として有効に使用することができる。   The modified glycerol kinase of the present invention is derived from a bacterium belonging to the genus Cellulomonas, and has an amino acid substitution introduced at a specific position, and thus exhibits high thermal stability in addition to high preservative resistance. Therefore, the modified glycerol kinase of the present invention can be stably stored for a long time in a solution state, and can be effectively used as a clinical test agent having excellent storage stability.

本発明の改変型グリセロールキナーゼは、高い防腐剤耐性を有するが熱安定性に劣るセルロモナス属の細菌由来の野生型グリセロールキナーゼをタンパク質工学的に改変することによって安定性を向上させたものであり、具体的には、配列表の配列番号2で示すアミノ酸配列の特定の位置においてアミノ酸置換を導入することによって熱安定性を向上させたものである。   The modified glycerol kinase of the present invention has improved stability by modifying protein-engineered wild-type glycerol kinase derived from a bacterium of the genus Cellulomonas that has high antiseptic resistance but poor thermal stability, Specifically, the thermal stability is improved by introducing an amino acid substitution at a specific position of the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing.

本発明の改変型グリセロールキナーゼにおいて、アミノ酸置換を導入する位置は、配列表の配列番号で示すアミノ酸配列の50位、および/または137位と138位、および/または163位と164位、および/または274位、および/または386位と388位である。導入するアミノ酸置換は、アミノ酸置換導入後のグリセロールキナーゼの熱安定性が野生型グリセロールキナーゼの熱安定性より向上するようなものを実験により適宜決定すればよく、例えばQ50E、(G137A+P138S)、(N163T+T164I)、L274M、(T386I+F388Y)、(Q50E+L274M)、(Q50E+T386I+F388Y)、および(Q50E+L274M+T386I+F388Y)からなる群から選択することができる。   In the modified glycerol kinase of the present invention, amino acid substitutions are introduced at positions 50 and / or 137 and 138, and / or 163 and 164, and / or Or 274 and / or 386 and 388. The amino acid substitution to be introduced may be appropriately determined by experiment so that the thermal stability of the glycerol kinase after the introduction of the amino acid substitution is higher than that of the wild-type glycerol kinase. For example, Q50E, (G137A + P138S), (N163T + T164I) ), L274M, (T386I + F388Y), (Q50E + L274M), (Q50E + T386I + F388Y), and (Q50E + L274M + T386I + F388Y).

本発明における熱安定性を向上させた状態とは、例えば改変型タンパク質(a)および改変前のタンパク質(b)を各々適当な緩衝液中に溶解して、適用な温度で一定期間保存した後の残存活性率が(a)>(b)となるような状態をいう。
ここで、適当な温度で一定期間保存する条件とは、例えば、「60℃、15分間保存」などの加速(苛酷)試験の条件が選択されるが、時間が許せば、臨床検査薬が実際に長期保存される温度として汎用される2℃〜10℃の冷蔵条件下で6ヶ月以上の保存を選択しても良い。
また、適当な緩衝液とは、グリセロールキナーゼが作用するpH範囲で十分な緩衝能力を持つようにその種類と濃度を選べば特に限定されないが、例えば、50mMトリス緩衝液(pH8.0)、または、50mMのPIPES−NaOH緩衝液(pH7.0)などが選択される。診断薬用途を想定して、緩衝液は、界面活性剤、塩類、キレート剤、防腐剤などをさらに含んでいてもよい。
保存におけるグリセロールキナーゼの濃度は、特に限定されないが、通常の診断試薬に使用される濃度を想定した0.2〜30U/mlが好ましく選択される。さらに好ましくは1〜10U/mlである。
The state in which the thermal stability is improved in the present invention is, for example, after dissolving the modified protein (a) and the unmodified protein (b) in an appropriate buffer and storing them for a certain period at an appropriate temperature. Is a state in which the residual activity ratio of (a)> (b).
Here, the conditions for storing at an appropriate temperature for a certain period of time are, for example, accelerated (severe) test conditions such as “store at 60 ° C. for 15 minutes”. In addition, storage for 6 months or more may be selected under refrigerated conditions of 2 ° C. to 10 ° C., which are widely used as temperatures for long-term storage.
The appropriate buffer solution is not particularly limited as long as the type and concentration thereof are selected so as to have sufficient buffering ability in the pH range where glycerol kinase acts, but for example, 50 mM Tris buffer solution (pH 8.0), or , 50 mM PIPES-NaOH buffer (pH 7.0) and the like are selected. Assuming diagnostic use, the buffer may further contain a surfactant, salts, chelating agents, preservatives and the like.
The concentration of glycerol kinase in storage is not particularly limited, but is preferably selected from 0.2 to 30 U / ml assuming a concentration used for a normal diagnostic reagent. More preferably, it is 1-10 U / ml.

本発明の改変型グリセロールキナーゼの製造法は、特に限定されないが、以下に示すような手順で製造することが可能である。
まず、特開2004−121234号公報の教示に従って、セルロモナス・エスピーJCM2471株(理化学研究所 生物基盤研究部 微生物系統保存施設より購入可能)から染色体DNAを分離して、公知のグリセロールキナーゼの塩基配列を基に設計したPCR用プライマーを使用したPCRによりグリセロールキナーゼ遺伝子を増幅させ、配列表の配列番号1で示す塩基配列(配列番号2で示すアミノ酸配列をコードする遺伝子の配列)を得る。
The method for producing the modified glycerol kinase of the present invention is not particularly limited, but it can be produced by the following procedure.
First, in accordance with the teachings of JP-A No. 2004-121234, chromosomal DNA is isolated from Cellulomonas sp. JCM2471 strain (available for purchase from the Research Institute for Biological Systems, RIKEN Biological Research Institute), and the nucleotide sequence of a known glycerol kinase is determined. The glycerol kinase gene is amplified by PCR using PCR primers designed based on the base sequence, and the base sequence shown in SEQ ID NO: 1 in the sequence listing (the sequence of the gene encoding the amino acid sequence shown in SEQ ID NO: 2) is obtained.

次に、この塩基配列中の塩基のうち、配列番号2で示すアミノ酸配列の上述の特定の位置のアミノ酸に相当する塩基を改変することにより、配列番号2で示すアミノ酸配列の特定の位置にアミノ酸置換が導入されたアミノ酸配列をコードする遺伝子を作製する。この塩基の改変は、例えば、市販のキット(Transformer Mutagenesis Kit;Clonetech製,EXOIII/Mung Bean Deletion Kit;Stratagene製, Quick Change Site Directed Mutagenesis Kit;Stratagene製など)やPCR法を利用することに容易に行うことができる。   Next, among the bases in this base sequence, the amino acid at the specific position of the amino acid sequence shown in SEQ ID NO: 2 is modified by modifying the base corresponding to the amino acid at the specific position in the amino acid sequence shown in SEQ ID NO: 2. A gene encoding the amino acid sequence into which the substitution is introduced is prepared. This base modification can be performed by, for example, using a commercially available kit (Transformer Mutagenesis Kit; manufactured by Clonetech, EXOIII / Mung Bean Deletion Kit; manufactured by Stratagene, Quick Change Site Mutated Kit, using Quick Change Site Mutation Kit). It can be carried out.

次に、このようにして作製された遺伝子を、好適なプラスミドと連結して組換えベクターを作製し、このベクターで宿主微生物を形質転換させて、改変型グリセロールキナーゼを生産する形質転換体を得る。
この際のプラスミドとしては、例えば、エシェリヒア・コリー(Escherichia coli)を宿主微生物とする場合には、pBluescript、pUC18などが使用できる。宿主微生物としては、例えば、エシェリヒア・コリーDH5、エシェリヒア・コリーW3110、エシェリヒア・コリーC600などが利用できるが、宿主由来のグリセロールキナーゼの混入を避けるためには、特開2007−195453号公報で開示されているグリセロールキナーゼ欠損株のエシェリヒア・コリーKM1株などを用いることが好ましい。宿主微生物に組換えベクターを移入する方法としては、例えば、宿主微生物がエシェリヒア・コリーに属する微生物の場合には、カルシウムイオンの存在下で組換えDNAの移入を行う方法などを採用することができる。代わりに、エレクトロポレーション法や市販のコンピテントセル(例えばコンピテントハイJM109;東洋紡績製)を用いても良い。
Next, the gene thus prepared is ligated with a suitable plasmid to prepare a recombinant vector, and a host microorganism is transformed with this vector to obtain a transformant that produces modified glycerol kinase. .
As a plasmid at this time, for example, when Escherichia coli is used as a host microorganism, pBluescript, pUC18 and the like can be used. Examples of host microorganisms that can be used include Escherichia coli DH5, Escherichia coli W3110, and Escherichia coli C600. To avoid contamination with host-derived glycerol kinase, it is disclosed in Japanese Patent Application Laid-Open No. 2007-195453. It is preferable to use Escherichia coli KM1 strain which is a glycerol kinase deficient strain. As a method for transferring the recombinant vector into the host microorganism, for example, when the host microorganism is a microorganism belonging to Escherichia coli, a method of transferring the recombinant DNA in the presence of calcium ions can be employed. . Instead, an electroporation method or a commercially available competent cell (for example, competent high JM109; manufactured by Toyobo) may be used.

こうして得られた形質転換体である微生物は、栄養培地で培養されることにより、多量の改変型グリセロールキナーゼを安定して生産し得る。形質転換体である宿主微生物の培養形態は、宿主の栄養生理的性質を考慮して培養条件を選択すればよく、通常多くの場合は液体培養を行うが、工業的には通気攪拌培養を行うのが有利である。培地の栄養源としては、微生物の培養に通常用いられるものが広く使用される。炭素源としては、資化可能な炭素化合物であれば特に限定はなく、例えば、グルコース、シュークロース、ラクトース、マルトース、糖蜜、ピルビン酸などが使用される。窒素源としては、利用可能な窒素化合物であれば特定に限定はなく、例えば、ペプトン、肉エキス、酵母エキス、カゼイン加水分解物、大豆粕アルカリ分解物などが使用される。その他、リン酸塩、炭酸塩、硫酸塩、マグネシウム、カルシウム、カリウム、鉄、マンガン、亜鉛などの塩類、特定のアミノ酸、特定のビタミンなどが必要に応じて使用される。培養温度は、菌が発育し、改変型グリセロールキナーゼを生産する範囲で適宜変更し得るが、エシェリヒア・コリーの場合、好ましくは20〜42℃程度である。培養時間は、条件によって多少異なるが、改変型グリセロールキナーゼが最高収量に達する時期を見計らって適当な時期に培養を終了すればよく、通常は6〜48時間程度である。培地pHは、菌が発育し、改変型タンパク質を生産する範囲で適宜変更しうるが、特に好ましくはpH6.0〜9.0程度である。   The microorganism, which is the transformant thus obtained, can stably produce a large amount of modified glycerol kinase by being cultured in a nutrient medium. The culture form of the host microorganism, which is a transformant, may be selected in consideration of the nutritional physiological properties of the host. Usually, liquid culture is performed in many cases, but industrially, aeration and agitation culture are performed. Is advantageous. As a nutrient source of the medium, those commonly used for culturing microorganisms are widely used. The carbon source is not particularly limited as long as it is an assimitable carbon compound, and for example, glucose, sucrose, lactose, maltose, molasses, pyruvic acid and the like are used. The nitrogen source is not particularly limited as long as it is a nitrogen compound that can be used, and for example, peptone, meat extract, yeast extract, casein hydrolyzate, soybean cake alkaline decomposition product, and the like are used. In addition, phosphates, carbonates, sulfates, salts such as magnesium, calcium, potassium, iron, manganese, and zinc, specific amino acids, specific vitamins, and the like are used as necessary. The culture temperature can be appropriately changed within the range in which the bacteria grow and produce modified glycerol kinase. In the case of Escherichia coli, it is preferably about 20 to 42 ° C. Although the culture time varies somewhat depending on conditions, the culture may be terminated at an appropriate time in consideration of the time when the modified glycerol kinase reaches the maximum yield, and is usually about 6 to 48 hours. The medium pH can be appropriately changed within the range in which the bacteria grow and produce the modified protein, but is particularly preferably about pH 6.0 to 9.0.

培養終了後、培養物中の改変型グリセロールキナーゼを生産する菌体を含む培養液をそのまま採取して精製処理に供することもできるが、一般には常法に従って、改変型タンパク質が培養液中に存在する場合は、濾過、遠心分離などにより、改変型グリセロールキナーゼ含有溶液を微生物菌体から分離した後に精製処理に供すればよい。改変型タンパク質が菌体内に存在する場合は、得られた培養物から濾過または遠心分離などの手法により菌体を採取し、次いでこの菌体を機械的方法またはリゾチームなどの酵素的方法で破壊し、また必要に応じてEDTA等のキレート剤及び/または界面活性剤を添加して改変型グリセロールキナーゼを可溶化し、水溶液として分離採取すればよい。   After completion of the culture, the culture solution containing the cells producing the modified glycerol kinase in the culture can be collected as it is and subjected to purification treatment. Generally, however, the modified protein is present in the culture solution according to a conventional method. In that case, the modified glycerol kinase-containing solution may be separated from the microbial cells by filtration, centrifugation, etc., and then subjected to a purification treatment. When the modified protein is present in the microbial cells, the microbial cells are collected from the obtained culture by a technique such as filtration or centrifugation, and then the microbial cells are destroyed by a mechanical method or an enzymatic method such as lysozyme. If necessary, a chelating agent such as EDTA and / or a surfactant may be added to solubilize the modified glycerol kinase, and then separated and collected as an aqueous solution.

このようにして得られた改変型グリセロールキナーゼ含有溶液から本発明の改変型グリセロールキナーゼを精製するには、溶液を例えば、減圧濃縮、膜濃縮、さらに、硫酸アンモニム、硫酸ナトリウムなどの塩析処理、或いは親水性有機溶媒(例えばメタノール、エタノール、アセトンなど)による分別沈殿法に供して溶液中の改変型グリセロールキナーゼを沈殿せしめればよい。また、加温処理や等電点処理、吸着剤或いはゲル濾過剤などによるゲル濾過、吸着クロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィーも、有効な精製手段である。   In order to purify the modified glycerol kinase of the present invention from the thus obtained modified glycerol kinase-containing solution, the solution is concentrated, for example, under reduced pressure, membrane concentration, and further, salting out treatment such as ammonium sulfate, sodium sulfate, etc. Alternatively, the modified glycerol kinase in the solution may be precipitated by subjecting it to a fractional precipitation method using a hydrophilic organic solvent (eg, methanol, ethanol, acetone, etc.). Heating treatment, isoelectric point treatment, gel filtration with an adsorbent or gel filtration agent, adsorption chromatography, ion exchange chromatography, and affinity chromatography are also effective purification means.

以上のようにして精製された本発明の改変型グリセロールキナーゼは、従来公知の中性脂肪アッセイキット、中性脂肪センサー、または中性脂肪測定方法において従来のグリセロールキナーゼの代替として使用することができ、これらのキットやセンサーの保存性を高めることができる。   The modified glycerol kinase of the present invention purified as described above can be used as an alternative to the conventional glycerol kinase in the conventionally known neutral fat assay kit, neutral fat sensor, or neutral fat measurement method. The storability of these kits and sensors can be increased.

以下、本発明の実施例により具体的に説明する。なお、実施例で使用した試薬のうち、ATPはロシュ・ダイアグノスティックス社より購入したものを、牛血清アルブミンはシグマアルドリッチ社より購入したものを、4アミノアンチピリンは第一化学薬品社より購入したものを、グリセロール−3−リン酸酸化酵素(コード番号G3O−301)、ペルオキシダーゼ(コード番号PEO−301)は東洋紡績製のものを使用し、その他の試薬はナカライテスク社より購入したものを使用した。   Hereinafter, examples of the present invention will be described in detail. Of the reagents used in the examples, ATP was purchased from Roche Diagnostics, bovine serum albumin was purchased from Sigma-Aldrich, and 4 aminoantipyrine was purchased from Daiichi Chemicals. Glycerol-3-phosphate oxidase (code number G3O-301) and peroxidase (code number PEO-301) manufactured by Toyobo were used, and other reagents purchased from Nacalai Tesque were used. used.

実施例中、グリセロールキナーゼの活性は、以下のように測定した。グリセロールキナーゼの活性は、グリセロールを基質とし、グリセロール−3−リン酸の生成量によって測定した。0.23mM 4アミノアンチピリン、1.5mMフェノ−ル、2mM MgCl、0.15mMEDTA・2Na、0.2%牛血清アルブミン、4mM ATP、7U/mlグリセロール−3−リン酸酸化酵素、5U/mlペルオキシダーゼを含む100mM HEPES緩衝液(pH7.9)を調製し、これを測定のための原液とした。この測定原液3mlにグリセロールキナーゼ酵素溶液0.1mlを加えて混和した。37℃で約5分間予備加温した後、これに33mMグリセリン水溶液0.45mlを加え、混和後、37℃に制御された分光光度計で500nmの吸光度を3〜4分間記録し、その初期直線部分から1分間当たりの吸光度変化を求めた(ΔODtest)。盲検は酵素溶液の代わりに酵素希釈液(0.2%牛血清アルブミンを含む20mMリン酸カリウム緩衝液,pH7.5)0.1mlを使用し、上記同様に操作を行って1分間当りの吸光度変化を求めた(ΔODblank)。得られた吸光度変化量より、下記計算式に基づき、グリセロールキナーゼの酵素活性を算出した。なお、上記条件で1分間に1マイクロモルのグリセロールをリン酸化する酵素量を1単位(U)とした。
計算式:
活性値(U/ml)={(ΔODtest−ΔODblank)×3.55(ml)×希釈倍率}/{13.3×1/2×1.0(cm)×0.1(ml)}
3.55(ml):反応混液液量
13.3:キノン色素を上記測定条件下で測定した時のミリモル吸光係数
1/2:酵素反応で生成した過酸化水素の1分子から形成するキノン色素が1/2分子であることによる係数
1.0cm:セルの光路長
0.1(ml):酵素サンプル液量
In the examples, the activity of glycerol kinase was measured as follows. The activity of glycerol kinase was measured by the amount of glycerol-3-phosphate produced using glycerol as a substrate. 0.23 mM 4 aminoantipyrine, 1.5 mM phenol, 2 mM MgCl 2 , 0.15 mM EDTA · 2Na, 0.2% bovine serum albumin, 4 mM ATP, 7 U / ml glycerol-3-phosphate oxidase, 5 U / ml A 100 mM HEPES buffer solution (pH 7.9) containing peroxidase was prepared and used as a stock solution for measurement. To 3 ml of this measurement stock solution, 0.1 ml of glycerol kinase enzyme solution was added and mixed. After preheating at 37 ° C. for about 5 minutes, 0.45 ml of 33 mM glycerin aqueous solution was added thereto, and after mixing, the absorbance at 500 nm was recorded with a spectrophotometer controlled at 37 ° C. for 3 to 4 minutes. The change in absorbance per minute was determined from the portion (ΔODtest). In the blind test, 0.1 ml of an enzyme diluent (20 mM potassium phosphate buffer solution containing 0.2% bovine serum albumin, pH 7.5) was used instead of the enzyme solution, and the same operation was carried out as described above. Absorbance change was determined (ΔOD blank). From the obtained change in absorbance, the enzyme activity of glycerol kinase was calculated based on the following formula. The amount of enzyme that phosphorylates 1 micromole of glycerol per minute under the above conditions was defined as 1 unit (U).
a formula:
Activity value (U / ml) = {(ΔODtest−ΔODblank) × 3.55 (ml) × dilution ratio} / {13.3 × 1/2 × 1.0 (cm) × 0.1 (ml)}
3.55 (ml): reaction liquid mixture amount 13.3: millimolar extinction coefficient when quinone dye is measured under the above measurement conditions 1/2: quinone dye formed from one molecule of hydrogen peroxide generated by enzyme reaction Is a factor of 1.0 molecule: cell optical path length 0.1 (ml): enzyme sample liquid volume

実施例1:グリセロールキナーゼの発現プラスミドpCGK14の構築
特開2004−121234号公報に開示されている、セルロモナス・エスピーJCM2471株由来のグリセロールキナーゼをコードするDNA配列から推定されるアミノ酸配列と同じアミノ酸配列をコードするDNA配列であって、コドン使用が大腸菌での発現に最適となるように修正され、その5’末端側と3’側に、各々制限酵素NcoIとNotIの認識配列が付与されたDNAを人工的に合成した。この合成DNAをNcoIとNotIで切断して得たDNA断片と、プラスミドpSE380(インビトロゲン社製)をNcoIとNotIで切断したものとを、Ligation Highキットにて16℃,1時間反応させて連結して組換えプラスミドpCGK14を得、この組換えベクターで、エシェリヒア・コリーJM109株(E.coli JM109)のコンピテントセル(東洋紡績製)を形質転換し、100μg/mlのアンピシリンを含むLB寒天培地に塗布し、37℃,終夜培養して形質転換体を取得した。
Example 1: Construction of expression plasmid pCGK14 of glycerol kinase The same amino acid sequence as that deduced from the DNA sequence encoding glycerol kinase derived from Cellulomonas sp. JCM2471 disclosed in Japanese Patent Application Laid-Open No. 2004-121234 A coding DNA sequence, which is modified so that the codon usage is optimal for expression in E. coli, and the recognition sequences for restriction enzymes NcoI and NotI are added to the 5 ′ end side and 3 ′ side, respectively. Synthesized artificially. A DNA fragment obtained by cleaving this synthetic DNA with NcoI and NotI and a plasmid pSE380 (manufactured by Invitrogen) cleaved with NcoI and NotI were reacted with a Ligation High kit at 16 ° C. for 1 hour and ligated. A recombinant plasmid pCGK14 was obtained, and a competent cell (manufactured by Toyobo Co., Ltd.) of Escherichia coli JM109 strain was transformed with this recombinant vector, and an LB agar medium containing 100 μg / ml ampicillin And transformed to 37 ° C. overnight.

次いで、取得した形質転換体を、100μg/mlのアンピシリンを含むLB液体培地(5ml/30ml試験管仕込み)に植菌し、37℃で終夜振とう培養した。培養終了後、遠心分離により菌体を回収し、MagExtractor−Plasmid−キット(東洋紡績製)を用いてpCGK14を精製した。組換えプラスミドpCGK14のグリセロールキナーゼ遺伝子をコードするオープンリーディングフレームに該当する塩基配列を配列表の配列番号1に、また該塩基配列から推定されるグリセロールキナーゼのアミノ酸配列を配列表の配列番号2に示す。   Subsequently, the obtained transformant was inoculated into an LB liquid medium (5 ml / 30 ml test tube preparation) containing 100 μg / ml ampicillin and cultured with shaking at 37 ° C. overnight. After completion of the culture, the cells were collected by centrifugation, and pCGK14 was purified using a MagExtractor-Plasmid-kit (manufactured by Toyobo). The base sequence corresponding to the open reading frame encoding the glycerol kinase gene of the recombinant plasmid pCGK14 is shown in SEQ ID NO: 1 in the sequence listing, and the amino acid sequence of glycerol kinase deduced from the base sequence is shown in SEQ ID NO: 2 in the sequence listing. .

実施例2:改変型グリセロールキナーゼをコードする組換え発現プラスミドの構築(1)
(a)上記グリセロールキナーゼ遺伝子を含む組換えプラスミドpCGK14と、配列表の配列番号3記載の合成オリゴヌクレオチドおよびこれと相補的な合成オリゴヌクレオチドを用いて、QuickChangeTM Site−Directed Mutagenesis Kit(STRATAGENE製)を用いて、そのプロトコールに従って変異処理操作を行い、更に塩基配列を決定して、配列番号2記載のアミノ酸配列の50番目のグルタミンがグルタミン酸に置換された改変型グリセロールキナーゼをコードする組換えプラスミド(pCGK14M1)を取得した。
(b)また、pCGK14と、配列表の配列番号4記載の合成オリゴヌクレオチドおよびこれと相補的な合成オリゴヌクレオチドを用いて、QuickChangeTM Site−Directed Mutagenesis Kit(STRATAGENE製)を用いて、上記と同様の操作により、配列番号2記載のアミノ酸配列の137番目のグリシンと138番目のプロリンがそれぞれアラニンとセリンに置換された改変型グリセロールキナーゼをコードする組換えプラスミド(pCGK14M2)を取得した。
(c)また、pCGK14と、配列表の配列番号5記載の合成オリゴヌクレオチドおよびこれと相補的な合成オリゴヌクレオチドを用いて、QuickChangeTM Site−Directed Mutagenesis Kit(STRATAGENE製)を用いて、上記と同様の操作により、配列番号2記載のアミノ酸配列の163番目のアスパラギンと164番目のスレオニンがそれぞれスレオニンとイソロイシンに置換された改変型グリセロールキナーゼをコードする組換えプラスミド(pCGK14M3)を取得した。
(d)また、pCGK14と、配列表の配列番号6記載の合成オリゴヌクレオチドおよびこれと相補的な合成オリゴヌクレオチドを用いて、QuickChangeTM Site−Directed Mutagenesis Kit(STRATAGENE製)を用いて、上記と同様の操作により、配列番号2記載のアミノ酸配列の274番目のロイシンがメチオニンに置換された改変型グリセロールキナーゼをコードする組換えプラスミド(pCGK14M4)を取得した。
(e)また、pCGK14と、配列表の配列番号7記載の合成オリゴヌクレオチドおよびこれと相補的な合成オリゴヌクレオチドを用いて、QuickChangeTM Site−Directed Mutagenesis Kit(STRATAGENE製)を用いて、上記と同様の操作により、配列番号2記載のアミノ酸配列の386番目のスレオニンと388番目のフェニルアラニンがそれぞれイソロイシンとチロシンに置換された改変型グリセロールキナーゼをコードする組換えプラスミド(pCGK14M5)を取得した。
Example 2: Construction of a recombinant expression plasmid encoding a modified glycerol kinase (1)
(A) QuickChangeTM Site-Directed Mutagenesis Kit (manufactured by STRATAGENE) using the recombinant plasmid pCGK14 containing the glycerol kinase gene, a synthetic oligonucleotide described in SEQ ID NO: 3 in the sequence listing and a synthetic oligonucleotide complementary thereto. The recombinant plasmid (pCGK14M1) encoding a modified glycerol kinase in which the 50th glutamine of the amino acid sequence shown in SEQ ID NO: 2 is substituted with glutamic acid is subjected to a mutation treatment operation according to the protocol. ).
(B) In addition, using QuickChangeTM Site-Directed Mutagenesis Kit (manufactured by STRATAGENE) using pCGK14, a synthetic oligonucleotide described in SEQ ID NO: 4 in the sequence listing and a synthetic oligonucleotide complementary thereto, the same as above By the operation, a recombinant plasmid (pCGK14M2) encoding a modified glycerol kinase in which the 137th glycine and the 138th proline of the amino acid sequence shown in SEQ ID NO: 2 were respectively substituted with alanine and serine was obtained.
(C) In addition, using QuickChangeTM Site-Directed Mutagenesis Kit (manufactured by STRATAGENE) using pCGK14, a synthetic oligonucleotide described in SEQ ID NO: 5 in the sequence listing and a synthetic oligonucleotide complementary thereto, the same as above By the operation, a recombinant plasmid (pCGK14M3) encoding a modified glycerol kinase in which the 163rd asparagine and 164th threonine of the amino acid sequence shown in SEQ ID NO: 2 were respectively replaced with threonine and isoleucine was obtained.
(D) In addition, using QuickChangeTM Site-Directed Mutagenesis Kit (manufactured by STRATAGENE) using pCGK14, a synthetic oligonucleotide described in SEQ ID NO: 6 in the sequence listing and a synthetic oligonucleotide complementary thereto, the same as above By the operation, a recombinant plasmid (pCGK14M4) encoding a modified glycerol kinase in which the 274th leucine in the amino acid sequence shown in SEQ ID NO: 2 was replaced with methionine was obtained.
(E) In addition, using QuickChangeTM Site-Directed Mutagenesis Kit (manufactured by STRATAGENE) using pCGK14, the synthetic oligonucleotide described in SEQ ID NO: 7 in the sequence listing and a synthetic oligonucleotide complementary thereto, the same as above By the operation, a recombinant plasmid (pCGK14M5) encoding a modified glycerol kinase in which 386 threonine and 388 th phenylalanine of the amino acid sequence shown in SEQ ID NO: 2 were substituted with isoleucine and tyrosine, respectively, was obtained.

実施例3:改変型グリセロールキナーゼの製造(1)
pCGK14M1、pCGK14M2、pCGK14M3、pCGK14M4、pCGK14M5の各組換えプラスミドで、グリセロールキナーゼ欠損株であるエシェリヒア・コリーKM1株(特開平11−9279号公報参照)を、ジーン・パルサーを用いたエレクトロポレーション法により形質転換し、形質転換体をそれぞれ取得した。
Example 3: Production of modified glycerol kinase (1)
Recombinant plasmids pCGK14M1, pCGK14M2, pCGK14M3, pCGK14M4, and pCGK14M5, and a glycerol kinase-deficient Escherichia coli KM1 strain (see Japanese Patent Application Laid-Open No. 11-9279) was obtained by electroporation using a gene pulser. Each transformant was obtained by transformation.

5mlのTerrific培地を20ml容坂口フラスコに分注し、121℃、20分間オートクレーブを行い、放冷後、別途無菌濾過したアンピシリンとイソプロピル−β−D−チオガラクトシドをそれぞれ終濃度が100μl/mlと1mMになるように添加した。この培地に100μl/mlのアンピシリンを含むLB培地で予め37℃で12時間培養した各形質転換体の培養液を50μlを接種し、37℃で24時間振とう培養を行った。培養終了後、菌体を遠心分離により集菌し、50mMリン酸カリウム緩衝液(pH7.5)に懸濁した後、超音波にて破砕し、更に遠心分離を行い、改変型グリセロールキナーゼCGKM1、CGKM2、CGKM3、CGKM4、CGKM5を含む上清を粗酵素液として得た。   Dispense 5 ml of Terrific medium into a 20 ml Sakaguchi flask, autoclave at 121 ° C. for 20 minutes, allow to cool, and then separate ampicillin and isopropyl-β-D-thiogalactoside that were separately sterile filtered to a final concentration of 100 μl / ml. It added so that it might become 1 mM. 50 μl of the culture solution of each transformant previously cultured at 37 ° C. for 12 hours in LB medium containing 100 μl / ml ampicillin was inoculated into this medium, and cultured with shaking at 37 ° C. for 24 hours. After completion of the culture, the cells are collected by centrifugation, suspended in 50 mM potassium phosphate buffer (pH 7.5), crushed with ultrasonic waves, further centrifuged, and modified glycerol kinase CGKM1, A supernatant containing CGKM2, CGKM3, CGKM4, and CGKM5 was obtained as a crude enzyme solution.

比較例1:野生型グリセロールキナーゼの製造
比較例として、pCGK14によりエシェリヒア・コリーKM1株を形質転換し、実施例3の方法と同様にして形質転換体を培養し、培養液からグリセロールキナーゼを抽出して野生型グリセロールキナーゼを取得した。
Comparative Example 1: Production of wild type glycerol kinase As a comparative example, Escherichia coli KM1 strain was transformed with pCGK14, the transformant was cultured in the same manner as in Example 3, and glycerol kinase was extracted from the culture solution. Wild type glycerol kinase was obtained.

実施例4:グリセロールキナーゼ改変体の評価(1)
実施例3で取得した改変型グリセロールキナーゼ(CGKM1、CGKM2、CGKM3、CGKM4、CGKM5)および比較例1で取得した野生型グリセロールキナーゼをそれぞれ、40℃〜70℃の範囲で各15分間熱処理した後の残存酵素活性率(%)を測定し、各温度処理による残存活性率のプロットから残存活性率が50%になる温度(Tm(℃))を算出した。その結果を以下の表1に示す。表1から判るように、実施例3で取得した改変型グリセロールキナーゼは、改変前の野生型グリセロールキナーゼと比べて熱安定性が向上していることが確認された。
Example 4: Evaluation of modified glycerol kinase (1)
After heat-treating the modified glycerol kinase obtained in Example 3 (CGKM1, CGKM2, CGKM3, CGKM4, CGKM5) and the wild-type glycerol kinase obtained in Comparative Example 1 for 15 minutes each in the range of 40 ° C to 70 ° C. The residual enzyme activity rate (%) was measured, and the temperature at which the residual activity rate reached 50% (Tm (° C.)) was calculated from the plot of the residual activity rate by each temperature treatment. The results are shown in Table 1 below. As can be seen from Table 1, it was confirmed that the modified glycerol kinase obtained in Example 3 had improved thermal stability compared to the wild-type glycerol kinase before modification.

Figure 2010088303
Figure 2010088303

実施例5:改変型グリセロールキナーゼをコードする組換えプラスミドの構築(2)
(a)実施例2で取得した改変型グリセロールキナーゼをコードする組換えプラスミドpCGK14M1と、配列表の配列番号6記載の合成オリゴヌクレオチドおよびこれと相補的な合成オリゴヌクレオチドを用いて、実施例2と同様の操作により、配列番号2記載のアミノ酸配列の50番目のグルタミンと274番目のロイシンがそれぞれグルタミン酸とメチオニンに置換された改変型グリセロールキナーゼをコードする組換えプラスミド(pCGK14M6)を取得した。
(b)また、pCGK14M1と、配列表の配列番号7記載の合成オリゴヌクレオチドおよびこれと相補的な合成オリゴヌクレオチドを用いて、実施例2と同様の操作により、配列番号2記載のアミノ酸配列の50番目のグルタミン、386番目のスレオニンおよび388番目のフェニルアラニンがそれぞれグルタミン酸、イソロイシンおよびチロシンに置換された改変型グリセロールキナーゼをコードする組換えプラスミド(pCGK14M7)を取得した。
(c)また、上記(b)で取得したpCGK14M7と、配列表の配列番号6記載の合成オリゴヌクレオチドおよびこれと相補的な合成オリゴヌクレオチドを用いて、実施例2と同様の操作により、配列番号2記載のアミノ酸配列の50番目のグルタミン、274番目のロイシン、386番目のスレオニンおよび388番目のフェニルアラニンがそれぞれグルタミン酸、メチオニン、イソロイシンおよびチロシンに置換された改変型グリセロールキナーゼをコードする組換えプラスミド(pCGK14M8)を取得した。
Example 5: Construction of recombinant plasmid encoding modified glycerol kinase (2)
(A) Using the recombinant plasmid pCGK14M1 encoding the modified glycerol kinase obtained in Example 2, the synthetic oligonucleotide described in SEQ ID NO: 6 in the sequence listing and a synthetic oligonucleotide complementary thereto, Example 2 By the same operation, a recombinant plasmid (pCGK14M6) encoding a modified glycerol kinase in which the 50th glutamine and 274th leucine of the amino acid sequence shown in SEQ ID NO: 2 were respectively replaced with glutamic acid and methionine was obtained.
(B) In addition, by using pCGK14M1, a synthetic oligonucleotide described in SEQ ID NO: 7 in the sequence listing and a synthetic oligonucleotide complementary thereto, by the same operation as in Example 2, the amino acid sequence 50 described in SEQ ID NO: 2 A recombinant plasmid (pCGK14M7) encoding a modified glycerol kinase in which the first glutamine, the 386th threonine and the 388th phenylalanine were replaced by glutamic acid, isoleucine and tyrosine, respectively, was obtained.
(C) In addition, using the pCGK14M7 obtained in (b) above, the synthetic oligonucleotide described in SEQ ID NO: 6 in the sequence listing and the synthetic oligonucleotide complementary thereto, 2. A recombinant plasmid (pCGK14M8) encoding a modified glycerol kinase in which the 50th glutamine, 274th leucine, 386th threonine and 388th phenylalanine of the amino acid sequence described in 2 are substituted with glutamic acid, methionine, isoleucine and tyrosine, respectively. ).

実施例6:改変型グリセロールキナーゼの製造(2)
pCGK14M6、pCGK14M7、pCGK14M8の各組換えプラスミドで、エシェリヒア・コリーKM1株(特開平11−9279号公報参照)を実施例3と同様の手順で形質転換して、形質転換体を取得し、実施例3と同様の手順で培養、抽出することにより、各改変型グリセロールキナーゼCGKM6、CGKM7、CGKM8の粗酵素標品を取得した。
Example 6: Production of modified glycerol kinase (2)
A transformant was obtained by transforming Escherichia coli KM1 strain (see JP-A-11-9279) with the recombinant plasmids pCGK14M6, pCGK14M7, and pCGK14M8 in the same manner as in Example 3. By culturing and extracting in the same procedure as in 3, crude enzyme preparations of each modified glycerol kinase CGKM6, CGKM7, and CGKM8 were obtained.

実施例7:改変型グリセロールキナーゼの評価(2)
実施例6で取得した改変型グリセロールキナーゼ(CGKM6、CGKM7、CGKM8)をそれぞれ、40℃〜70℃の範囲で各15分間熱処理した後の残存酵素活性率(%)を測定し、各温度処理による残存活性率のプロットから残存活性率が50%になる温度(Tm(℃))を算出した。その結果を、実施例3で取得した改変型グリセロールキナーゼCGKM1、CGKM4、CGKM5のTmおよび比較例1で取得した野生型グリセロールキナーゼのTmのデータと共に表2に示す。表2から判るように、実施例6で取得した改変型グリセロールキナーゼCGKM6、CGKM7、CGKM8は、改変前の野生型グリセロールキナーゼおよび実施例3で取得した改変型グリセロールキナーゼCGKM1、CGKM4、CGKM5と比べて熱安定性が向上していることが確認された。
Example 7: Evaluation of modified glycerol kinase (2)
Each of the modified glycerol kinases (CGKM6, CGKM7, and CGKM8) obtained in Example 6 was measured for the remaining enzyme activity (%) after heat treatment for 15 minutes in the range of 40 ° C to 70 ° C. The temperature (Tm (° C.)) at which the residual activity rate becomes 50% was calculated from the plot of the residual activity rate. The results are shown in Table 2 together with Tm data of modified glycerol kinases CGKM1, CGKM4, and CGKM5 obtained in Example 3 and Tm of wild type glycerol kinase obtained in Comparative Example 1. As can be seen from Table 2, the modified glycerol kinases CGKM6, CGKM7, and CGKM8 obtained in Example 6 are compared with the wild-type glycerol kinase before modification and the modified glycerol kinases CGKM1, CGKM4, and CGKM5 obtained in Example 3. It was confirmed that the thermal stability was improved.

Figure 2010088303
Figure 2010088303

本発明のグリセロールキナーゼは、高い防腐剤耐性に加えて高い熱安定性を有するため、グリセロールキナーゼの液体状態での長期安定保存が要求される中性脂肪アッセイキットや中性脂肪センサーなどの臨床検査薬の分野において貢献するところ大である。   Since the glycerol kinase of the present invention has high heat stability in addition to high preservative resistance, clinical tests such as a neutral fat assay kit and a neutral fat sensor that require long-term stable storage of glycerol kinase in a liquid state It is a great place to contribute in the field of medicine.

配列番号1は、実施例1で作製したプラスミドpCGK14に含まれるグリセロールキナーゼ遺伝子の配列である。
配列番号2は、配列番号1の遺伝子によってコードされるグリセロールキナーゼのアミノ酸配列である。
配列番号3〜7は、実施例2または5で変異処理のために使用した合成オリゴヌクレオチドの配列である。
SEQ ID NO: 1 is the sequence of the glycerol kinase gene contained in the plasmid pCGK14 prepared in Example 1.
SEQ ID NO: 2 is the amino acid sequence of glycerol kinase encoded by the gene of SEQ ID NO: 1.
SEQ ID NOs: 3 to 7 are the synthetic oligonucleotide sequences used for the mutation treatment in Example 2 or 5.

Claims (9)

セルロモナス属の細菌由来の野生型グリセロールキナーゼより熱安定性を向上させた改変型グリセロールキナーゼであって、配列表の配列番号2で示すアミノ酸配列の50位、および/または137位と138位、および/または163位と164位、および/または274位、および/または386位と388位においてアミノ酸置換が導入されたアミノ酸配列を有することを特徴とする改変型グリセロールキナーゼ。   A modified glycerol kinase having improved thermal stability compared to wild-type glycerol kinase derived from a bacterium of the genus Cellulomonas, wherein position 50 and / or position 137 and position 138 of the amino acid sequence shown in SEQ ID NO: 2 in the sequence listing, and A modified glycerol kinase characterized by having an amino acid sequence introduced with amino acid substitutions at positions 163 and 164, and / or 274, and / or 386 and 388. アミノ酸置換が、Q50E、(G137A+P138S)、(N163T+T164I)、L274M、(T386I+F388Y)、(Q50E+L274M)、(Q50E+T386I+F388Y)、および(Q50E+L274M+T386I+F388Y)からなる群から選択されることを特徴とする、請求項1に記載の改変型グリセロールキナーゼ。   Amino acid substitutions are Q50E, (G137A + P138S), (N163T + T164I), L274M, (T386I + F388Y), (Q50E + L274M), (Q50E + T386I + F388Y), and (Q50E + L274M + T386I + F388) Modified glycerol kinase. 請求項1または2のいずれかに記載の改変型グリセロールキナーゼをコードすることを特徴とする遺伝子。   A gene encoding the modified glycerol kinase according to claim 1 or 2. 請求項3に記載の遺伝子を含むことを特徴とする組換えベクター。   A recombinant vector comprising the gene according to claim 3. 請求項4に記載の組換えベクターで形質転換されたことを特徴とする形質転換体。   A transformant transformed with the recombinant vector according to claim 4. 請求項5に記載の形質転換体を培養することを特徴とする改変型グリセロールキナーゼの製造方法。   A method for producing a modified glycerol kinase, comprising culturing the transformant according to claim 5. グリセロールキナーゼを使用する中性脂肪アッセイキットであって、グリセロールキナーゼとして請求項1または2に記載の改変型グリセロールキナーゼを使用することを特徴とする中性脂肪アッセイキット。   A neutral fat assay kit using glycerol kinase, wherein the modified glycerol kinase according to claim 1 or 2 is used as glycerol kinase. グリセロールキナーゼを使用する中性脂肪センサーであって、グリセロールキナーゼとして請求項1または2に記載の改変型グリセロールキナーゼを使用することを特徴とする中性脂肪センサー。   A neutral fat sensor using glycerol kinase, wherein the modified glycerol kinase according to claim 1 or 2 is used as glycerol kinase. グリセロールキナーゼを使用する中性脂肪測定方法であって、グリセロールキナーゼとして請求項1または2に記載の改変型グリセロールキナーゼを使用することを特徴とする中性脂肪測定方法。   A method for measuring neutral fat using glycerol kinase, wherein the modified glycerol kinase according to claim 1 or 2 is used as glycerol kinase.
JP2008258226A 2008-10-03 2008-10-03 Modified glycerol kinase with improved thermal stability Active JP5531272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008258226A JP5531272B2 (en) 2008-10-03 2008-10-03 Modified glycerol kinase with improved thermal stability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008258226A JP5531272B2 (en) 2008-10-03 2008-10-03 Modified glycerol kinase with improved thermal stability

Publications (2)

Publication Number Publication Date
JP2010088303A true JP2010088303A (en) 2010-04-22
JP5531272B2 JP5531272B2 (en) 2014-06-25

Family

ID=42251686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008258226A Active JP5531272B2 (en) 2008-10-03 2008-10-03 Modified glycerol kinase with improved thermal stability

Country Status (1)

Country Link
JP (1) JP5531272B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121234A (en) * 2002-09-10 2004-04-22 Toyobo Co Ltd New glycerol kinase, gene of the same and method for producing the glycerol kinase by using the gene
JP2007195453A (en) * 2006-01-26 2007-08-09 Toyobo Co Ltd Glycerol kinase variant

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121234A (en) * 2002-09-10 2004-04-22 Toyobo Co Ltd New glycerol kinase, gene of the same and method for producing the glycerol kinase by using the gene
JP2007195453A (en) * 2006-01-26 2007-08-09 Toyobo Co Ltd Glycerol kinase variant

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6013032977; 'Journal of Molecular Biology' 2006, Vol.355, pp.664-674 *
JPN6013032979; 'FEBS Journal' 2008.05, Vol.275, pp.2632-2643 *
JPN6013032981; 'Journal of Bioscience and Bioengineering' 2001, Vol.91, No.6, pp.551-556 *
JPN6013032983; 'Protein Engineering' 2001, Vol.14, No.9, pp.663-667 *

Also Published As

Publication number Publication date
JP5531272B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5169991B2 (en) Modified flavin adenine dinucleotide-dependent glucose dehydrogenase
US7476525B2 (en) Modified pyrroloquinoline quinone (PQQ) dependent glucose dehydrogenase with superior substrate specificity and stability
JPWO2009087929A1 (en) Novel glucose dehydrogenase
JP6455430B2 (en) Xanthine oxidase gene and the amino acid sequence encoding it
JP2004344145A (en) Pyrroloquinoline quinone (pqq) dependent modified glucosedehydrogenase substance excellent in substrate specificity and stability
JP5531272B2 (en) Modified glycerol kinase with improved thermal stability
JP4816103B2 (en) Glycerol kinase variant
JP5289801B2 (en) Protein with uricase activity
JP2006254730A (en) New aspartic acid dehydrogenase
JP2009207372A (en) Dehydrogenase for saccharides and method for using the same
US5686294A (en) Protein having heat-resistant malate dehydrogenase activity
JP4798521B2 (en) Sugar phosphorylating agent and sugar phosphorylation method
JP4415247B2 (en) Novel glycerol kinase, gene and method for producing glycerol kinase using the gene
JP4245229B2 (en) Stable hexokinase and process for producing the same
WO2021149675A1 (en) 3-hydroxybutyrate dehydrogenase and method for producing same
US7618800B2 (en) Glycerol kinase, which has high resistance against preservative
JP2008022766A (en) Method for increasing specific activity of uricase and modified uricase having improved specific activity
JP2023526433A (en) Reductase enzymes and methods of making and using reductase enzymes
JP4963888B2 (en) Stable uricase formulation
JP5162870B2 (en) Stable NADH dehydrogenase
JP3112146B2 (en) Protein with thermostable malate dehydrogenase activity
JP2006034165A (en) Method for producing pqqgdh
JP2006081407A (en) Method for producing pqq-dependent glucose dehydrogenase
JPH119279A (en) Gene for encoding glycerol kinase
JP2005124411A (en) Thermostable lactate oxidase

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140327

R150 Certificate of patent or registration of utility model

Ref document number: 5531272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250