JP2010087048A - Support structure for optical element, aligner using the same, and method of manufacturing device - Google Patents

Support structure for optical element, aligner using the same, and method of manufacturing device Download PDF

Info

Publication number
JP2010087048A
JP2010087048A JP2008251821A JP2008251821A JP2010087048A JP 2010087048 A JP2010087048 A JP 2010087048A JP 2008251821 A JP2008251821 A JP 2008251821A JP 2008251821 A JP2008251821 A JP 2008251821A JP 2010087048 A JP2010087048 A JP 2010087048A
Authority
JP
Japan
Prior art keywords
support member
optical element
support
diameter side
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008251821A
Other languages
Japanese (ja)
Inventor
Setsuo Yoshida
節男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008251821A priority Critical patent/JP2010087048A/en
Publication of JP2010087048A publication Critical patent/JP2010087048A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lens Barrels (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a support structure for an optical element that reduces deformation of the optical element due to variation in ambient temperature or an influence of a processing error or assembling error of a constituent member. <P>SOLUTION: The support structure for the optical element includes a first support member 2 which supports an optical element 1, a second support member 3 which supports the first support member 2 on an internal-diameter side, and an elastic member 4 which is disposed between the first support member 2 and second support member 3 in a diameter direction and has its inner-diameter side coupled with the first support member 2 and can elastically deform in the diameter direction, and the second support member 3 is in point contact with an outer-diameter side surface portion of the elastic member 4 in the diameter direction at a plurality of places. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学要素の支持構造、それを用いた露光装置及びデバイスの製造方法に関するものである。   The present invention relates to a support structure for an optical element, an exposure apparatus using the same, and a device manufacturing method.

半導体露光装置は、回路パターンを有する原版(レチクル)を基板(シリコンウエハ)に転写する装置である。転写する際には、レチクルのパターンをウエハ上に結像させるために光学装置が用いられるが、高集積な回路を作成するために、光学装置には高い解像力が要求される。そのために、半導体露光装置用の光学装置は、光学収差を小さく抑える必要がある。   The semiconductor exposure apparatus is an apparatus that transfers an original (reticle) having a circuit pattern to a substrate (silicon wafer). When transferring, an optical device is used to form an image of the reticle pattern on the wafer. However, in order to create a highly integrated circuit, the optical device is required to have a high resolving power. Therefore, an optical apparatus for a semiconductor exposure apparatus needs to suppress optical aberration to a small value.

このようなことから、半導体露光装置用の光学装置においては、光学装置を構成するレンズ、ミラー等の光学要素の材質や膜に関する諸特性の均一性や、光学要素の光学面形状の加工精度、組立精度が必要である。   For this reason, in an optical apparatus for a semiconductor exposure apparatus, the uniformity of various characteristics relating to the material and film of the optical element such as the lens and mirror constituting the optical apparatus, and the processing accuracy of the optical surface shape of the optical element, Assembly accuracy is required.

光学装置に用いられる光学要素を保持する支持部材は、金属などで形成されるのが一般的であり、光学要素と異なる材質のものが使用される。   The support member for holding the optical element used in the optical device is generally formed of metal or the like, and a material different from the optical element is used.

しかしながら、環境温度などの変化に起因して、光学要素や支持部材が形状変化をするため、光学要素と支持部材との収差が変化することがある。そこで、近年、環境温度の変化、更には、組み付けの際に発生する歪みに起因するレンズ面の変形を軽減することを目的として、収差が小さく、高い解像度を得ることが可能な光学装置の支持構造が提案されている。   However, since the optical element and the support member change in shape due to changes in the environmental temperature and the like, the aberration between the optical element and the support member may change. Therefore, in recent years, for the purpose of reducing the deformation of the lens surface due to changes in environmental temperature and further distortion generated during assembly, support of an optical device capable of obtaining high resolution with low aberrations. A structure has been proposed.

例えば、特許文献1の支持構造は、光学要素を支持する第1の支持部材と、該第1の支持部材を支持する第2の支持部材との間に径方向に弾性変形可能な弾性部材を備えている。この支持構造では、環境温度が変化すると、弾性部材の板状のばね部が曲げ変形を起こし、光学要素に発生する変形等を軽減する。
特開2001−343576号公報
For example, the support structure of Patent Document 1 includes an elastic member that is elastically deformable in a radial direction between a first support member that supports an optical element and a second support member that supports the first support member. I have. In this support structure, when the environmental temperature changes, the plate-like spring portion of the elastic member undergoes bending deformation, and the deformation generated in the optical element is reduced.
JP 2001-343576 A

しかしながら、特許文献1を適用した従来の光学要素の支持構造は、構成する各部材に加工誤差や組立て誤差があると、組立てた時点で、第1の支持部材、若しくは、第1の支持部材に保持された光学要素が変形するという問題がある。   However, in the conventional optical element support structure to which Patent Document 1 is applied, if each component member has a processing error or an assembly error, the first support member or the first support member is attached to the first support member at the time of assembly. There is a problem that the held optical element is deformed.

まず、径方向における加工誤差や組立て誤差の影響に着目する。特許文献1における弾性部材は、径方向において、弾性部材を構成する板の中央部で面接触にて第2の支持部材に結合されている。従って、弾性部材に加工誤差が生じている場合や、弾性部材を取り付ける際に組立て誤差が発生した場合、弾性部材が第2の支持部材に面接触していると、上記各種誤差が、弾性部材と結合している第1の支持部材の変形に直接影響する。そして、このような第1の支持部材の変形は、第1の支持部材に支持された光学要素の変形の原因となりうる。   First, attention is paid to the influence of machining errors and assembly errors in the radial direction. In the radial direction, the elastic member in Patent Document 1 is coupled to the second support member by surface contact at the center of the plate constituting the elastic member. Therefore, when a processing error occurs in the elastic member, or when an assembly error occurs when the elastic member is attached, if the elastic member is in surface contact with the second support member, the above various errors may occur. Directly affecting the deformation of the first support member associated with the. Such deformation of the first support member can cause deformation of the optical element supported by the first support member.

更に、光軸方向における加工誤差や組立て誤差の影響に着目する。特許文献1における弾性部材は、光軸方向において、面接触にて第2の支持部材に支持されている。以下、弾性部材の光軸方向における加工誤差の影響について、詳しく説明する。   Furthermore, attention is paid to the influence of processing errors and assembly errors in the optical axis direction. The elastic member in Patent Document 1 is supported by the second support member by surface contact in the optical axis direction. Hereinafter, the influence of the machining error in the optical axis direction of the elastic member will be described in detail.

図9は、特許文献1において、弾性部材に加工誤差がある場合の光学要素の変形を示す模式図(側面図)である。従来の光学要素の支持構造100は、光学要素(投影レンズ)111と、光学要素111を支持する第1の支持部材112と、を備えている。また、光学要素の支持構造100は、第1の支持部材112を内径側で支持する第2の支持部材113と、内径側が第1の支持部材112と結合し、外径側が第2の支持部材113と結合し、径方向に弾性変形可能な弾性部材114とを備える。   FIG. 9 is a schematic diagram (side view) showing the deformation of the optical element when there is a processing error in the elastic member in Patent Document 1. The conventional optical element support structure 100 includes an optical element (projection lens) 111 and a first support member 112 that supports the optical element 111. The optical element support structure 100 includes a second support member 113 that supports the first support member 112 on the inner diameter side, an inner diameter side coupled to the first support member 112, and an outer diameter side that corresponds to the second support member. 113 and an elastic member 114 that is elastically deformable in the radial direction.

ここで、例えば、図9(a)に示すように、1つの弾性部材114において、その弾性部材114を構成し、第2の支持部材113と結合する結合部114bに、水平方向に対して傾斜角θを有する加工誤差が発生していると仮定する。この場合、第1の支持部材112と第2の支持部材113とを接続すると、図9(b)に示すように、結合部114bの傾きに起因し、第1の支持部材112がたわみ、その結果、光学要素111の変形が生じてしまう。   Here, for example, as shown in FIG. 9A, in one elastic member 114, the elastic member 114 is configured, and the coupling portion 114 b coupled to the second support member 113 is inclined with respect to the horizontal direction. Assume that a machining error having an angle θ has occurred. In this case, when the first support member 112 and the second support member 113 are connected, as shown in FIG. 9B, the first support member 112 bends due to the inclination of the coupling portion 114b. As a result, the optical element 111 is deformed.

このような光学要素の変形という問題は、光学要素の光学面の精度を悪化させ、光学性能を低下させてしまう。加えて、特許文献1を適用した従来の光学要素の支持構造は、良好な光学性能を得るために、各構成部材の加工精度、及び、組立て精度を高くする必要があり、コストアップしてしまう。   Such a problem of deformation of the optical element deteriorates the accuracy of the optical surface of the optical element and degrades the optical performance. In addition, the conventional optical element support structure to which Patent Document 1 is applied needs to increase the processing accuracy and assembly accuracy of each constituent member in order to obtain good optical performance, which increases costs. .

本発明は、このような状況を鑑みてなされたものであり、少なくとも径方向における構成部材の加工誤差若しくは組立て誤差の影響による光学要素の変形を低減した光学要素の支持構造を提供することを目的とする。更には、該支持構造を用いて光学収差の少ない露光装置等の光学装置を構成し、該装置による半導体デバイス等の製造方法を提供することを目的とする。   The present invention has been made in view of such a situation, and an object of the present invention is to provide a support structure for an optical element in which deformation of the optical element due to an influence of a processing error or an assembly error of a component member in at least a radial direction is reduced. And It is another object of the present invention to provide an optical apparatus such as an exposure apparatus with little optical aberration using the support structure, and to provide a method for manufacturing a semiconductor device or the like using the apparatus.

上記課題を解決するために、光学要素を支持する第1の支持部材と、第1の支持部材を内径側で支持する第2の支持部材と、径方向において第1の支持部材と第2の支持部材の間に位置し、内径側が前記第1の支持部材と結合する、径方向に弾性変形可能な弾性部材とを備え、第2の支持部材は、径方向において弾性部材の外径側側面部と複数の箇所で点接触していることを特徴とする。   In order to solve the above problems, a first support member that supports the optical element, a second support member that supports the first support member on the inner diameter side, and the first support member and the second support member in the radial direction. An elastic member that is elastically deformable in a radial direction and is located between the support members, the inner diameter side of which is coupled to the first support member; and the second support member is a radially outer side surface of the elastic member in the radial direction It is point-contacted with the part in several places.

本発明によれば、以下の効果を奏することができる。
(1)光学要素及び該光学要素の支持部材等の構成部材の加工誤差や、組立て誤差の影響により起こる光学要素の変形を低減することができる。
(2)本発明の光学要素の支持構造を採用することにより、光学要素の変形による光学収差が低減するため、高性能な露光装置を提供し、また、高品質な半導体デバイスを製造することができる。
According to the present invention, the following effects can be obtained.
(1) It is possible to reduce the deformation of the optical element caused by the influence of the processing error of the optical element and the structural member such as a support member of the optical element, and the assembly error.
(2) By adopting the optical element support structure of the present invention, optical aberration due to deformation of the optical element is reduced, so that a high-performance exposure apparatus can be provided and a high-quality semiconductor device can be manufactured. it can.

以下、本発明を実施するための最良の形態について図面等を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

(第1実施形態)
図1は、本発明である光学要素の支持構造の模式図であり、光学要素の中心より半分に切断した断面立体図である。更に、図2は、当該光学要素の支持構造の展開図である。本発明の光学要素の支持構造10は、光学要素1と、第1の支持部材2と、第2の支持部材3と、弾性部材4とを備える。
(First embodiment)
FIG. 1 is a schematic diagram of a support structure for an optical element according to the present invention, and is a three-dimensional sectional view cut in half from the center of the optical element. Further, FIG. 2 is a development view of the support structure of the optical element. The optical element support structure 10 of the present invention includes an optical element 1, a first support member 2, a second support member 3, and an elastic member 4.

光学要素1は、レンズ、或いはミラー等の光学素子である。本実施形態では、光学要素1は、レンズであり、該レンズの材質は、石英ガラス、或いは螢石ガラスが好適である。   The optical element 1 is an optical element such as a lens or a mirror. In the present embodiment, the optical element 1 is a lens, and the material of the lens is preferably quartz glass or meteorite glass.

第1の支持部材2は、リング状の部材であり、光学要素1を内径側で支持する。支持部材2の内径側には、光学要素1の外径部を収容するように、内周全面に渡り、リングの中心に対して逆L字型の溝部がある。該溝部の水平面には、軸方向上向きに突起した、角形若しくは半球形の凸部である突起部2aを、円周方向に略等間隔で複数の箇所、例えば3ヶ所設けている。更に、第1の支持部材2の外径側には、後述する弾性部材4を収納する切り欠き部を、円周方向に略等間隔で複数の箇所、例えば3ヶ所設けている。なお、突起部2a及び上記切り欠き部の設置個数は、特に限定するものではない。   The first support member 2 is a ring-shaped member and supports the optical element 1 on the inner diameter side. On the inner diameter side of the support member 2, there is an inverted L-shaped groove portion with respect to the center of the ring over the entire inner circumference so as to accommodate the outer diameter portion of the optical element 1. On the horizontal surface of the groove, a plurality of, for example, three protrusions 2a, which are convex in the shape of a square or hemisphere, protruding upward in the axial direction are provided at substantially equal intervals in the circumferential direction. Furthermore, on the outer diameter side of the first support member 2, a plurality of, for example, three notches for accommodating an elastic member 4 described later are provided at substantially equal intervals in the circumferential direction. In addition, the installation number of the projection part 2a and the said notch part is not specifically limited.

第1の支持部材2の材質は、光学要素1の材質と近似の熱膨張係数を有する。例えば、光学要素1の材質が石英ガラスである場合は、第1の支持部材2の材質は、ニッケル合金、酸化マグネシウムと酸化シリコンなどからなるコージライト系のセラミックス材料が好適である。あるいは、第1の支持部材2の材質は、アルミナ或いは窒化シリコンなどのセラミック材料、更には、低熱膨張ガラスであるゼロジュール(登録商標)などが好適である。また、例えば、光学要素1の材質が螢石ガラスである場合は、第1の支持部材2の材質は、真鍮などの銅合金、18−8ステンレス鋼などの鉄、クロム、ニッケルによる合金、或いは、アルミニウムを主成分とした合金などが好適である。   The material of the first support member 2 has a thermal expansion coefficient close to that of the optical element 1. For example, when the material of the optical element 1 is quartz glass, the material of the first support member 2 is preferably a cordierite ceramic material made of nickel alloy, magnesium oxide, silicon oxide, or the like. Alternatively, the material of the first support member 2 is preferably a ceramic material such as alumina or silicon nitride, and further, Zero Joule (registered trademark) which is a low thermal expansion glass. For example, when the material of the optical element 1 is meteorite glass, the material of the first support member 2 is a copper alloy such as brass, an alloy such as 18-8 stainless steel, chromium, nickel, or the like. An alloy containing aluminum as a main component is suitable.

第2の支持部材3は、リング状の部材であり、第1の支持部材2を内径側で支持する。第2の支持部材3の内径側には、第1の支持部材2の外径部を収容するように、内周全面に渡り、リングの中心に対して逆L字型の溝部がある。該溝部の水平面には、軸方向上向きに突起した角形若しくは半球形の凸部である突起部3aを、円周方向に略等間隔で3ヶ所設けている。更に、前記溝部の垂直面(内径側側面部)には、リングの中心方向に突起した半球形の凸部である突起部(突起体)3bを、円周方向に略等間隔で3ヶ所設けている。突起部3a及び突起部3bは、それぞれ後述する弾性部材4との接続位置に対応して、円周方向に同間隔に位置する。なお、突起部3a及び突起部3bの設置個数は、特に限定するものではない。また、第2の支持部材3の材質は、鉄材、好ましくは、18−8ステンレス鋼などの合金である。   The second support member 3 is a ring-shaped member, and supports the first support member 2 on the inner diameter side. On the inner diameter side of the second support member 3, there is an inverted L-shaped groove portion with respect to the center of the ring over the entire inner circumference so as to accommodate the outer diameter portion of the first support member 2. On the horizontal surface of the groove, there are provided three protrusions 3a which are square or hemispherical protrusions protruding upward in the axial direction at substantially equal intervals in the circumferential direction. Further, on the vertical surface (inner diameter side surface portion) of the groove portion, three protrusions (projections) 3b, which are hemispherical protrusions protruding in the center direction of the ring, are provided at substantially equal intervals in the circumferential direction. ing. The protrusion 3a and the protrusion 3b are located at the same interval in the circumferential direction corresponding to the connection position with the elastic member 4 described later. In addition, the installation number of the projection part 3a and the projection part 3b is not specifically limited. The material of the second support member 3 is an iron material, preferably an alloy such as 18-8 stainless steel.

弾性部材4は、板状のバネ部材(板ばね部)と、板ばね部の両端部に設けられた、第1の支持部材2に結合する固定部4aと、板ばね部の中央部に設けられた、第2の支持部材3と接する接触部4bとからなる弾性変形可能な部材である(後述の図3参照)。即ち、弾性部材4は、支持構造10において、リングの径方向に低い弾性力を有する構造となる。弾性部材4の材質は、第1の支持部材2と同一の材質が望ましいが、ステンレス鋼などのばね用金属材や、ジルコニウムなどの非金属類など、他の材質を用いてもよい。なお、本実施形態では、弾性部材4を構成する板ばね部と固定部4a、及び接触部4bは、一体成形であるが、それぞれ別体で形成し、接着若しくはボルト結合等によって弾性部材4を形成してもよい。   The elastic member 4 is provided in a plate-like spring member (plate spring portion), a fixing portion 4a coupled to the first support member 2 provided at both ends of the leaf spring portion, and a central portion of the leaf spring portion. This is an elastically deformable member comprising a contact portion 4b in contact with the second support member 3 (see FIG. 3 described later). That is, the elastic member 4 has a structure having a low elastic force in the radial direction of the ring in the support structure 10. The material of the elastic member 4 is preferably the same material as that of the first support member 2, but other materials such as a spring metal material such as stainless steel and a non-metal material such as zirconium may be used. In the present embodiment, the leaf spring portion, the fixing portion 4a, and the contact portion 4b that constitute the elastic member 4 are integrally formed. However, the elastic member 4 is formed separately and bonded to each other by bonding or bolting. It may be formed.

次に、光学要素の支持構造10を構成する各部材の接続について説明する。ここで、光学要素1は、光軸が重力方向と一致するように配置する。   Next, the connection of each member which comprises the support structure 10 of an optical element is demonstrated. Here, the optical element 1 is arranged so that the optical axis coincides with the direction of gravity.

まず、光学要素1は、図2における光軸方向(重力方向)下面が第1の支持部材2の突起部2aと点接触により当接すると共に、外径部を第1の支持部材2の内径側側面に接着させることにより、第1の支持部材2に固定される。   First, the optical element 1 has its lower surface in the optical axis direction (gravity direction) in FIG. 2 in contact with the protrusion 2a of the first support member 2 by point contact, and the outer diameter portion of the optical element 1 on the inner diameter side of the first support member 2 It is fixed to the first support member 2 by adhering to the side surface.

図3は、図1の断面立体図において、弾性部材4の断面周辺を拡大した図である。図3に示すように、第1の支持部材2は、光軸方向下面を第2の支持部材3の突起部3aに点接触支持される。また、第1の支持部材2と第2の支持部材3との径方向の間には、弾性部材4を設置する。第1の支持部材2は、弾性部材4の接触部4bの外径側側面部を、該外径側側面部と対峙した、第2の支持部材3の突起部3bに径方向で点接触させることで第2の支持部材3に支持される。ここで、弾性部材4は、固定部4aにて第1の支持部材2にネジ結合されている。更に、弾性部材4は、第1の支持部材2が第2の支持部材3内に組込まれたとき、第2の支持部材3の突起部3bに押されて変形し、突起部3bを外径側に押す力を発生する。これにより、第1の支持部材2は、弾性部材4の発生する力により水平方向の移動を制限され、重力と弾性部材4の発生する力による摩擦力により重力方向の移動を制限される。   FIG. 3 is an enlarged view of the periphery of the cross section of the elastic member 4 in the cross-sectional three-dimensional view of FIG. As shown in FIG. 3, the first support member 2 is supported by point contact with the protrusion 3 a of the second support member 3 on the lower surface in the optical axis direction. In addition, an elastic member 4 is installed between the first support member 2 and the second support member 3 in the radial direction. The first support member 2 causes the outer diameter side surface portion of the contact portion 4b of the elastic member 4 to make point contact in the radial direction with the protruding portion 3b of the second support member 3 facing the outer diameter side surface portion. Thus, the second support member 3 is supported. Here, the elastic member 4 is screwed to the first support member 2 at the fixing portion 4a. Further, when the first support member 2 is incorporated into the second support member 3, the elastic member 4 is pushed and deformed by the protrusion 3 b of the second support member 3, and the protrusion 3 b is deformed to the outer diameter. Generates a pushing force to the side. As a result, the first support member 2 is restricted from moving in the horizontal direction by the force generated by the elastic member 4, and restricted from moving in the gravitational direction by the frictional force generated by gravity and the force generated by the elastic member 4.

次に、光学要素の支持構造10の作用及び効果について説明する。   Next, the operation and effect of the support structure 10 for optical elements will be described.

本実施形態では、光学要素1と、該光学要素1を支持する第1の支持部材2の材質は、それぞれ近似の熱膨張係数を有し、更には、光学要素1を光軸方向で3ヶ所の突起部2aで支持している。従って、環境温度の変化により、光学要素1及び第1の支持部材2に膨張或いは収縮が発生しても、光学要素1は、単純膨張或いは単純収縮に近い形状変化となり、光学性能に有害な面形状の変化を抑えることができる。   In the present embodiment, the optical element 1 and the material of the first support member 2 that supports the optical element 1 have approximate thermal expansion coefficients, respectively. Furthermore, the optical element 1 is provided at three locations in the optical axis direction. It is supported by the protrusion 2a. Therefore, even if expansion or contraction occurs in the optical element 1 and the first support member 2 due to a change in environmental temperature, the optical element 1 becomes a shape change close to simple expansion or simple contraction, which is harmful to optical performance. Changes in shape can be suppressed.

また、第1の支持部材2と第2の支持部材3とが異なる熱膨張係数を有する材料で形成されている場合は、環境温度の変化により、異なる膨張或いは収縮を起こすことがある。この場合、本発明によれば、弾性部材4の板ばね部が曲げ変形を起こすことによって、これらの熱膨張差を吸収することができる。更に、第1の支持部材2は、第2の支持部材3とは直接結合しておらず、3ヶ所の突起部3a、及び3ヶ所の突起部3bで点接触支持されている。従って、突起部3a及び突起部3bの接触部で滑りが発生し、第1の支持部材2が単純膨張或いは単純収縮に近い変形を起こすので、第1の支持部材2と第2の支持部材3は、互いに受ける形状変化の影響を最小限とすることができる。   In addition, when the first support member 2 and the second support member 3 are formed of materials having different thermal expansion coefficients, different expansion or contraction may occur due to a change in environmental temperature. In this case, according to the present invention, the plate spring portion of the elastic member 4 is bent and deformed, so that these thermal expansion differences can be absorbed. Further, the first support member 2 is not directly coupled to the second support member 3 and is supported by point contact at the three protrusions 3a and the three protrusions 3b. Accordingly, slip occurs at the contact portion between the protruding portion 3a and the protruding portion 3b, and the first support member 2 undergoes deformation close to simple expansion or simple contraction. Therefore, the first support member 2 and the second support member 3 are deformed. Can minimize the effects of shape changes on each other.

また、外力等により第2の支持部材3に変形が加えられた場合には、弾性部材4の板ばね部が曲げ変形を起こすことによって、第1の支持部材2、及び第1の支持部材2に支持された光学要素1に伝わる変形を減少させる。従って、光学要素1の光学性能に有害な面形状の変化を抑えることができる。   In addition, when the second support member 3 is deformed by an external force or the like, the first support member 2 and the first support member 2 are caused by bending deformation of the leaf spring portion of the elastic member 4. The deformation transmitted to the optical element 1 supported on the substrate is reduced. Therefore, it is possible to suppress changes in the surface shape that are harmful to the optical performance of the optical element 1.

更に、第1の支持部材2と第2の支持部材3は、単に突起部3a及び突起部3bにおいて、点接触により支持されているので、各部材の加工精度や組み立て精度の影響で生じる組み立て時の第1の支持部材2の変形を小さくすることができる。従って、第1の支持部材2に支持された光学要素1の変形を抑え、光学要素1の光学面の精度悪化による光学性能の劣化を減少させることができる。   Furthermore, since the first support member 2 and the second support member 3 are simply supported by point contact at the protrusion 3a and the protrusion 3b, the assembly is caused by the effects of processing accuracy and assembly accuracy of each member. The deformation of the first support member 2 can be reduced. Therefore, the deformation of the optical element 1 supported by the first support member 2 can be suppressed, and the deterioration of the optical performance due to the deterioration of the accuracy of the optical surface of the optical element 1 can be reduced.

(第2実施形態)
図4は、本発明の第2の実施形態である光学要素の支持構造を示す図であり、弾性部材4の断面周辺を拡大した図である。図4において、図3に示す部材と同一の部材には同一の符号を付し、その説明を省略する。
(Second Embodiment)
FIG. 4 is a diagram showing a support structure for an optical element according to the second embodiment of the present invention, and is an enlarged view of the periphery of the cross section of the elastic member 4. 4, the same members as those shown in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態の特徴は、第2の支持部材13の形状が、第1の実施形態の第2の支持部材3の形状と異なる点にある。即ち、第2の支持部材13の内径部には、第1の支持部材2の外径部を収容するように、内周全面に渡り、リングの中心に対して逆L字型の溝部が形成されている点は同一である。しかしながら、第1の支持部材2を支持する該溝部の水平面は、水平方向に短く形成され、軸方向上向きに突起した角形若しくは半球形の突起部13aは、第1の支持部材2とは直接接触せず、第1の支持部材2に結合する弾性部材4を点接触支持する。結果的に、第1の支持部材2と第2の支持部材13は、光軸方向及び水平方向共に非接触であり、第1の支持部材2の自重は、弾性部材4が受けることになる。   The feature of this embodiment is that the shape of the second support member 13 is different from the shape of the second support member 3 of the first embodiment. That is, an inverted L-shaped groove is formed on the inner diameter of the second support member 13 over the entire inner circumference so as to accommodate the outer diameter of the first support member 2. The points are the same. However, the horizontal surface of the groove that supports the first support member 2 is formed to be short in the horizontal direction, and the square or hemispherical protrusion 13a protruding upward in the axial direction is in direct contact with the first support member 2. Instead, the elastic member 4 coupled to the first support member 2 is supported by point contact. As a result, the first support member 2 and the second support member 13 are not in contact with each other in the optical axis direction and the horizontal direction, and the weight of the first support member 2 is received by the elastic member 4.

従って、第1の支持部材2と第2の支持部材13とが異なる熱膨張係数を有する材料で形成されている場合、環境温度の変化により、異なる膨張或いは収縮を起こすことになるが、弾性部材4の板ばね部が曲げ変形を起こすことによって、熱膨張差を吸収する。加えて、本実施形態では、第1の支持部材2は、第2の支持部材13と直接接触していないので、第1の支持部材2は、第1実施形態と比較し、更に効率よく単純膨張或いは単純収縮に近い変形を起こす。結果的に、第1の支持部材2と第2の支持部材13は、互いに受ける形状変化の影響を、より最小限とすることができる。   Therefore, when the first support member 2 and the second support member 13 are formed of materials having different thermal expansion coefficients, different expansion or contraction occurs due to a change in environmental temperature. The plate spring portion 4 absorbs the thermal expansion difference by causing bending deformation. In addition, in the present embodiment, since the first support member 2 is not in direct contact with the second support member 13, the first support member 2 is more efficient and simple compared to the first embodiment. Causes deformation close to expansion or simple contraction. As a result, the first support member 2 and the second support member 13 can minimize the influence of the shape change received on each other.

(第3実施形態)
図5及び図6は、本発明の第3の実施形態である光学要素の支持構造を示す図であり、弾性部材4の断面周辺を拡大した図である。図5及び図6において、図3に示す部材と同一の部材には同一の符号を付し、その説明を省略する。
(Third embodiment)
5 and 6 are views showing a support structure for an optical element according to the third embodiment of the present invention, and are enlarged views of the cross-sectional periphery of the elastic member 4. 5 and 6, the same members as those shown in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted.

本実施形態の特徴は、上記実施形態における、溝部の垂直面(内径側側面部)に設けられた突起部(突起体)が、ねじ部材30で構成されている点にある。   The feature of the present embodiment is that the protrusion (projection body) provided on the vertical surface (inner diameter side surface portion) of the groove portion in the above embodiment is configured by the screw member 30.

まず、図5において、第2の支持部材33の突起部33aは、第1実施形態における図3の突起部3aと同様に、第1の支持部材2を点接触支持する。同様に、図6において、第2の支持部材34の突起部34aは、第2実施形態における図4の突起部13aと同様に、弾性部材4を点接触支持する。   First, in FIG. 5, the protrusion 33 a of the second support member 33 supports the first support member 2 in a point-contact manner, similarly to the protrusion 3 a of FIG. 3 in the first embodiment. Similarly, in FIG. 6, the protrusion 34 a of the second support member 34 supports the elastic member 4 in a point-contact manner in the same manner as the protrusion 13 a of FIG. 4 in the second embodiment.

また、第2の支持部材33、34には、外径側から内径側へ径方向に貫通するねじ穴33b、34bが設けられ、それぞれ、ねじ部材30に設けられたねじ部30aと係合している。ねじ部材30の先端部30bは、半球状に形成されており、弾性部材4の接触部4bの外径側側面部に点接触している。また、ねじ部材30は、第2の支持部材33、34の外径外側より、工具等により回転可能である。ねじ部材30を回転すると、第2の支持部材のねじ穴33b、34bに沿って径方向に移動し、ねじ部材30の先端部30bが弾性部材4の接触部4bを押す量が変化する。ねじ部材30は、弾性部材4を押しているとき、ねじ部材30の回転軸方向の力を受けて、ねじ部30aが発生する摩擦力により、その回転位置を保持する。なお、別途、ねじ部材30の回転位置を固定するロック構造を追加してもよい。   Further, the second support members 33 and 34 are provided with screw holes 33b and 34b penetrating in a radial direction from the outer diameter side to the inner diameter side, and are engaged with the screw portions 30a provided in the screw member 30, respectively. ing. The tip portion 30 b of the screw member 30 is formed in a hemispherical shape, and is in point contact with the outer diameter side surface portion of the contact portion 4 b of the elastic member 4. Further, the screw member 30 can be rotated by a tool or the like from the outside of the outer diameter of the second support members 33 and 34. When the screw member 30 is rotated, the screw member 33 moves in the radial direction along the screw holes 33b and 34b of the second support member, and the amount by which the tip portion 30b of the screw member 30 pushes the contact portion 4b of the elastic member 4 changes. When the elastic member 4 is being pressed, the screw member 30 receives a force in the direction of the rotation axis of the screw member 30 and holds the rotational position by the frictional force generated by the screw portion 30a. In addition, you may add the lock structure which fixes the rotation position of the screw member 30 separately.

従って、本実施形態において、ねじ部材30の回転位置が保持されている状態では、図5に示す支持構造は、第1の実施形態と、更に、図6に示す支持構造は、第2の実施形態と、それぞれ実質的に同じ構造であり、前述と同じ効果が得られる。   Therefore, in this embodiment, in a state where the rotational position of the screw member 30 is maintained, the support structure shown in FIG. 5 is the same as that of the first embodiment, and the support structure shown in FIG. The form and the structure are substantially the same, and the same effect as described above can be obtained.

ここで、第1及び第2の実施形態において、第1支持部材2に支持された光学要素1は、該支持構造が組立てられた時、光学要素1の光軸に直交する平面内で、該支持構造に構成された全ての弾性部材4による力が平衡する位置に静止する。つまり、支持構造の組立て後は、光学要素1の位置を外部より変更することはできない。   Here, in the first and second embodiments, the optical element 1 supported by the first support member 2 is in a plane perpendicular to the optical axis of the optical element 1 when the support structure is assembled. It stops at a position where the forces of all the elastic members 4 configured in the support structure are balanced. That is, after the support structure is assembled, the position of the optical element 1 cannot be changed from the outside.

これに対して、本実施形態では、該支持構造の組立て後に、ねじ部材30を第2支持部材33、34の外径外側から回転させ、ねじ部材30の先端部30bが弾性部材4の接触部4bを押す量を変化させることが可能である。これにより、該支持構造を構成する全ての弾性部材4の力の平衡状態が崩れ、第1支持部材2に支持された光学要素1は、新たな平衡状態となる位置へ移動する。即ち、ねじ部材30を外部より回転させることにより、光学要素1の位置を変化させることができる。   On the other hand, in this embodiment, after the assembly of the support structure, the screw member 30 is rotated from the outside of the outer diameter of the second support members 33 and 34, and the tip portion 30 b of the screw member 30 is the contact portion of the elastic member 4. It is possible to change the amount of pressing 4b. Thereby, the balance state of the force of all the elastic members 4 constituting the support structure is broken, and the optical element 1 supported by the first support member 2 moves to a position where a new equilibrium state is obtained. That is, the position of the optical element 1 can be changed by rotating the screw member 30 from the outside.

以上、本実施形態では、前述の実施形態の効果に加えて、支持構造の組立て後に、外部から光学要素1を光軸に直交する面内で移動させることができ、光学要素1の位置ずれによる光学性能劣化を補正することが可能となる。   As described above, in the present embodiment, in addition to the effects of the above-described embodiments, after the support structure is assembled, the optical element 1 can be moved from the outside in a plane orthogonal to the optical axis. Optical performance deterioration can be corrected.

(第4実施形態)
(露光装置)
図7は、本発明の光学要素の支持構造10を適用した半導体露光装置の概略図である。
(Fourth embodiment)
(Exposure equipment)
FIG. 7 is a schematic view of a semiconductor exposure apparatus to which the optical element support structure 10 of the present invention is applied.

半導体露光装置60は、一般に、レチクル50を搭載するレチクルステージ51と、ウエハ55を搭載するウエハステージ53とを備えている。半導体露光装置60は、さらに、露光用の照明光を照射する照明光学系54と、ウエハ55に対して照明光を投影する投影光学系52と、該投影光学系52を支持するフレーム56とを備える。   The semiconductor exposure apparatus 60 generally includes a reticle stage 51 on which a reticle 50 is mounted and a wafer stage 53 on which a wafer 55 is mounted. The semiconductor exposure apparatus 60 further includes an illumination optical system 54 that irradiates exposure illumination light, a projection optical system 52 that projects the illumination light onto the wafer 55, and a frame 56 that supports the projection optical system 52. Prepare.

まず、レチクルステージ51に搭載されたレチクル50に照明光学系54から露光用の照明光が照射される。照明光源は、例えば、波長193nmのエキシマレーザ光である。照射領域は、スリット状であり、レチクル50のパターン領域の一部をカバーする。このスリット部に相当するパターンは、フレーム56に搭載されている投影光学系52により、例えば1/4に縮小されてウエハ55上に投影される。投影光学系52に対してレチクル50とウエハ55とを走査することにより、レチクル50のパターン領域をウエハ55上の感光剤に転写する。この走査露光は、ウエハ55上の複数の転写領域(ショット)に対して繰り返し行う。   First, the illumination light for exposure is irradiated from the illumination optical system 54 to the reticle 50 mounted on the reticle stage 51. The illumination light source is, for example, excimer laser light having a wavelength of 193 nm. The irradiation area has a slit shape and covers a part of the pattern area of the reticle 50. The pattern corresponding to the slit portion is reduced to 1/4, for example, and projected onto the wafer 55 by the projection optical system 52 mounted on the frame 56. By scanning the reticle 50 and the wafer 55 with respect to the projection optical system 52, the pattern area of the reticle 50 is transferred to the photosensitive agent on the wafer 55. This scanning exposure is repeatedly performed on a plurality of transfer regions (shots) on the wafer 55.

ここで、高精度の半導体製品を得るには、投影光学系52は、高い解像性能が必要となる。従って、投影光学系52に対して、本発明の光学要素の支持構造10を適用することにより、環境温度の変化や、また、各部材の加工精度及び組み立て精度の影響に起因した光学要素1の変形を最小限とし、光学性能の劣化が起こり難い半導体露光装置を提供できる。また、投影光学系52が、フレーム56の変形に起因して変形を受けた場合でも、光学要素1の光学面精度が悪化することによる光学性能の劣化の起こり難く、高性能な半導体露光装置を提供できる。なお、照明光学系54に対して、本発明の光学要素の支持構造10を適用しても、同様の効果を奏することができる。   Here, in order to obtain a highly accurate semiconductor product, the projection optical system 52 needs high resolution performance. Therefore, by applying the optical element support structure 10 of the present invention to the projection optical system 52, the optical element 1 can be affected by changes in environmental temperature and the effects of processing accuracy and assembly accuracy of each member. It is possible to provide a semiconductor exposure apparatus that minimizes deformation and hardly deteriorates in optical performance. Further, even when the projection optical system 52 is deformed due to the deformation of the frame 56, the optical performance of the optical element 1 is hardly deteriorated due to the deterioration of the optical surface accuracy. Can be provided. Even if the optical element support structure 10 of the present invention is applied to the illumination optical system 54, the same effect can be obtained.

(第5実施形態)
(デバイスの製造方法)
次に、上述の露光装置を利用したデバイスの製造方法の実施形態について説明する。
(Fifth embodiment)
(Device manufacturing method)
Next, an embodiment of a device manufacturing method using the above-described exposure apparatus will be described.

半導体素子、液晶表示素子、撮像素子(CCDなど)、薄膜磁気ヘッドなどのデバイスは、レジスト(感光剤)が塗布された基板(ウエハ、ガラスプレート等)を、上述の露光装置を用いて露光する工程をまず経る。続いて、露光された前記基板を現像する工程と、その他の周知の工程と、を行うことによってデバイスが製造される。当該周知の工程は、例えば、酸化、成膜、蒸着、ドーピング、平坦化、エッチング、レジスト剥離、ダイシング、ボンディング、及びパッケージング等の少なくとも1つの工程を含む。   Devices such as semiconductor elements, liquid crystal display elements, image sensors (CCDs, etc.), thin film magnetic heads, etc., expose a substrate (wafer, glass plate, etc.) coated with a resist (photosensitive agent) using the above-described exposure apparatus. The process goes through first. Subsequently, a device is manufactured by performing a process of developing the exposed substrate and other known processes. The known process includes at least one process such as oxidation, film formation, vapor deposition, doping, planarization, etching, resist stripping, dicing, bonding, and packaging.

(その他の実施形態)
なお、上記実施形態では、第1の支持部材2は、弾性部材4を介し、第2の支持部材3の半球形の突起部3bに点接触支持されるものとしたが、本発明は、これに限定されるものではない。
(Other embodiments)
In the above embodiment, the first support member 2 is point-contacted and supported by the hemispherical protrusion 3b of the second support member 3 via the elastic member 4, but the present invention is not limited to this. It is not limited to.

図8は、本発明の他の実施形態である光学要素の支持構造の拡大図である。例えば、第2の支持部材の半球形の突起部3bの代替として、図8に示すように、ボール(球体)20を埋め込み、該ボール20を介した転がり支持としても同様の効果が得られる。ボール20は、第2の支持部材3の溝部の垂直面に、半球形の凹部を切削にて設け、該凹部にボール20の一部を接着により結合する。ここで、ボール20の材質は、第2の支持部材3の材質と同一が望ましいが、特に限定するものではない。   FIG. 8 is an enlarged view of a support structure for an optical element according to another embodiment of the present invention. For example, as an alternative to the hemispherical protrusion 3b of the second support member, a similar effect can be obtained by embedding a ball (sphere) 20 and rolling support via the ball 20 as shown in FIG. In the ball 20, a hemispherical concave portion is formed by cutting on a vertical surface of the groove portion of the second support member 3, and a part of the ball 20 is bonded to the concave portion by adhesion. Here, the material of the ball 20 is preferably the same as that of the second support member 3, but is not particularly limited.

更に、半球形の突起部3bを、第2の支持部材3ではなく、該第2の支持部材3の内径側側面部と対峙した、弾性部材4の接触部4bの外径側側面部に設ける構成もあり得る。この場合でも、上記実施形態と同様の効果が得られる。   Further, the hemispherical protrusion 3b is provided not on the second support member 3 but on the outer diameter side surface of the contact portion 4b of the elastic member 4 facing the inner diameter side surface of the second support member 3. There can also be a configuration. Even in this case, the same effect as the above-described embodiment can be obtained.

尚、本発明はその精神、またはその主要な特徴から逸脱することなく、様々な形で実現する事が出来る。従って、前述の実施形態はあらゆる点に於いて単なる例示に過ぎず、限定的に解釈してはならない。   The present invention can be implemented in various forms without departing from the spirit or main features thereof. Accordingly, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner.

本発明の第1の実施形態である光学要素の支持構造の模式図である。It is a schematic diagram of the support structure of the optical element which is the 1st Embodiment of this invention. 本発明の第1の実施形態である光学要素の支持構造の展開図である。It is an expanded view of the support structure of the optical element which is the 1st Embodiment of this invention. 本発明の第1の実施形態である光学要素の支持構造の拡大図である。It is an enlarged view of the support structure of the optical element which is the 1st Embodiment of this invention. 本発明の第2の実施形態である光学要素の支持構造の拡大図である。It is an enlarged view of the support structure of the optical element which is the 2nd Embodiment of this invention. 本発明の第3の実施形態である光学要素の支持構造の拡大図である。It is an enlarged view of the support structure of the optical element which is the 3rd Embodiment of this invention. 本発明の第3の実施形態である光学要素の支持構造の拡大図である。It is an enlarged view of the support structure of the optical element which is the 3rd Embodiment of this invention. 本発明の光学要素の支持構造を適用した半導体露光装置の概略図である。It is the schematic of the semiconductor exposure apparatus to which the support structure of the optical element of this invention is applied. 本発明の他の実施形態である光学要素の支持構造の拡大図である。It is an enlarged view of the support structure of the optical element which is other embodiment of this invention. 従来の光学要素の支持構造を示す模式図(側面図)である。It is a schematic diagram (side view) which shows the support structure of the conventional optical element.

符号の説明Explanation of symbols

1 光学要素
2 第1の支持部材
2a 突起部
3 第2の支持部材
3a 突起部
3b 突起部(突起体)
4 弾性部材
10 光学要素の支持構造
13 第2の支持部材
13a 突起部
13b 突起部(突起体)
20 ボール(突起体)
30 ねじ部材
30a ねじ部
30b 接触部
33 第2の支持部材
33a 突起部
33b ねじ穴
34 第2の支持部材
34a 突起部
34b ねじ穴
50 レチクル
52 投影光学系
54 照明光学系
55 基板
DESCRIPTION OF SYMBOLS 1 Optical element 2 1st support member 2a Projection part 3 2nd support member 3a Projection part 3b Projection part (projection body)
4 Elastic Member 10 Optical Element Support Structure 13 Second Support Member 13a Protrusion 13b Protrusion (Protrusion)
20 balls (projections)
30 Screw member 30a Screw portion 30b Contact portion 33 Second support member 33a Protrusion portion 33b Screw hole 34 Second support member 34a Protrusion portion 34b Screw hole 50 Reticle 52 Projection optical system 54 Illumination optical system 55 Substrate

Claims (14)

光学要素を支持する第1の支持部材と、
前記第1の支持部材を内径側で支持する第2の支持部材と、
径方向において前記第1の支持部材と前記第2の支持部材の間に位置し、内径側が前記第1の支持部材と結合する、径方向に弾性変形可能な弾性部材とを備え、
前記第2の支持部材は、径方向において前記弾性部材の外径側側面部と複数の箇所で点接触していることを特徴とする光学要素の支持構造。
A first support member that supports the optical element;
A second support member for supporting the first support member on the inner diameter side;
An elastic member which is located between the first support member and the second support member in the radial direction and whose inner diameter side is coupled to the first support member and which is elastically deformable in the radial direction;
The support structure for an optical element, wherein the second support member is in point contact with the outer diameter side surface portion of the elastic member in a plurality of locations in the radial direction.
前記弾性部材は、両端部が前記第1の支持部材と結合し、中央部の外径側側面部が前記第2の支持部材と点接触する、複数の板状のバネ部材で構成されることを特徴とする請求項1に記載の光学要素の支持構造。   The elastic member is composed of a plurality of plate-like spring members whose both ends are coupled to the first support member and whose outer-diameter side surface portion is in point contact with the second support member. The support structure for an optical element according to claim 1. 径方向において前記弾性部材の外径側側面部と対峙する前記第2の支持部材の内径側側面部、若しくは、径方向において該第2の支持部材の内径側側面部と対峙する該弾性部材の外径側側面部のいずれかに複数の突起体を有し、
前記第2の支持部材は、前記複数の突起体が該複数の突起体と対峙する側面部と点接触することにより、前記第1の支持部材を支持することを特徴とする請求項1または2に記載の光学要素の支持構造。
The inner diameter side surface portion of the second support member facing the outer diameter side surface portion of the elastic member in the radial direction, or the elastic member facing the inner diameter side surface portion of the second support member in the radial direction. Having a plurality of protrusions on any of the outer diameter side surfaces,
The said 2nd support member supports the said 1st support member by making point contact with the side part which the said several protrusion body opposes this some protrusion body, The said 1st support member is characterized by the above-mentioned. 2. A support structure for the optical element according to 1.
前記突起体は、半球形の凸部であることを特徴とする請求項3に記載の光学要素の支持構造。   The optical element supporting structure according to claim 3, wherein the protrusion is a hemispherical convex portion. 前記突起体は、球体であり、該球体の一部が前記第2の支持部材に埋め込まれていることを特徴とする請求項3に記載の光学要素の支持構造。   The optical element support structure according to claim 3, wherein the protrusion is a sphere, and a part of the sphere is embedded in the second support member. 前記突起体は、径方向に移動が可能であることを特徴とする請求項3に記載の光学要素の支持構造。   The optical element supporting structure according to claim 3, wherein the protrusion is movable in a radial direction. 前記突起体は、前記第2の支持部材の内径側側面部に設けられたねじ穴に係合するねじ部材であることを特徴とする請求項6に記載の光学要素の支持構造。   The optical element support structure according to claim 6, wherein the protrusion is a screw member that engages with a screw hole provided on an inner diameter side surface portion of the second support member. 前記第2の支持部材は、光軸方向において前記第1の支持部材と複数の箇所で点接触していることを特徴とする請求項1〜7のいずれか1項に記載の光学要素の支持構造。   The optical element support according to any one of claims 1 to 7, wherein the second support member is in point contact with the first support member at a plurality of locations in the optical axis direction. Construction. 前記第2の支持部材は、光軸方向において前記第1の支持部材と複数の箇所で点接触する、複数の突起部が設けられた面を有することを特徴とする請求項8に項記載の光学要素の支持構造。   9. The second support member according to claim 8, wherein the second support member has a surface provided with a plurality of protrusions that make point contact with the first support member at a plurality of locations in the optical axis direction. Support structure for optical elements. 前記第2の支持部材は、光軸方向において前記弾性部材と複数の箇所で点接触していることを特徴とする請求項1〜7のいずれか1項に記載の光学要素の支持構造。   The optical element support structure according to claim 1, wherein the second support member is in point contact with the elastic member at a plurality of locations in the optical axis direction. 前記第2の支持部材は、光軸方向において前記第1の支持部材と複数の箇所で点接触する、複数の突起部が設けられた面を有することを特徴とする請求項10に記載の光学要素の支持構造。   11. The optical device according to claim 10, wherein the second support member has a surface provided with a plurality of protrusions that make point contact with the first support member at a plurality of locations in the optical axis direction. Element support structure. 前記突起部は、角形若しくは半球形の凸部であることを特徴とする請求項9または11に記載の光学要素の支持構造。   The optical element supporting structure according to claim 9, wherein the protrusion is a square or hemispherical convex portion. 光源からの光でレチクルを照明する照明光学系と、前記レチクルのパターンを基板の上に投影する投影光学系とを備える露光装置であって、
前記照明光学系及び前記投影光学系のうち少なくとも1つは、請求項1〜12のいずれか1項に記載の光学要素の支持構造を有することを特徴とする露光装置。
An exposure apparatus comprising: an illumination optical system that illuminates a reticle with light from a light source; and a projection optical system that projects a pattern of the reticle onto a substrate,
An exposure apparatus, wherein at least one of the illumination optical system and the projection optical system has the optical element support structure according to any one of claims 1 to 12.
請求項13に記載の露光装置を用いて基板を露光する工程と、
前記基板を現像する工程と、
を有することを特徴とするデバイスの製造方法。
Exposing the substrate using the exposure apparatus according to claim 13;
Developing the substrate;
A device manufacturing method characterized by comprising:
JP2008251821A 2008-09-29 2008-09-29 Support structure for optical element, aligner using the same, and method of manufacturing device Pending JP2010087048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251821A JP2010087048A (en) 2008-09-29 2008-09-29 Support structure for optical element, aligner using the same, and method of manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251821A JP2010087048A (en) 2008-09-29 2008-09-29 Support structure for optical element, aligner using the same, and method of manufacturing device

Publications (1)

Publication Number Publication Date
JP2010087048A true JP2010087048A (en) 2010-04-15

Family

ID=42250760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251821A Pending JP2010087048A (en) 2008-09-29 2008-09-29 Support structure for optical element, aligner using the same, and method of manufacturing device

Country Status (1)

Country Link
JP (1) JP2010087048A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015146329A (en) * 2010-08-27 2015-08-13 ギガフォトン株式会社 Window unit, window device, laser device, and extreme ultraviolet light generation device
US10310357B2 (en) 2016-02-24 2019-06-04 Canon Kabushiki Kaisha Optical apparatus including elastic damping member
JP7425162B2 (en) 2021-11-18 2024-01-30 天培 蒙 Lens assembly, its attachment/detachment tool, and lens set

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015146329A (en) * 2010-08-27 2015-08-13 ギガフォトン株式会社 Window unit, window device, laser device, and extreme ultraviolet light generation device
US10310357B2 (en) 2016-02-24 2019-06-04 Canon Kabushiki Kaisha Optical apparatus including elastic damping member
JP7425162B2 (en) 2021-11-18 2024-01-30 天培 蒙 Lens assembly, its attachment/detachment tool, and lens set

Similar Documents

Publication Publication Date Title
JP5043468B2 (en) Holding device
JP4809987B2 (en) Support structure for optical element, exposure apparatus using the same, and method for manufacturing semiconductor device
US7352520B2 (en) Holding device and exposure apparatus using the same
JP5663064B2 (en) Optical element unit and optical element support method
JP5013906B2 (en) Optical element holding device
JP2006100315A (en) Holding mechanism, optical apparatus, and process for fabricating device
US9557560B2 (en) Mirror unit and exposure apparatus
JP4541338B2 (en) Lithographic apparatus
JP2004258273A (en) Holding device
TWI739834B (en) Mounting arrangement for an optical imaging arrangement
JP2010087048A (en) Support structure for optical element, aligner using the same, and method of manufacturing device
JP2004062091A (en) Holding apparatus, aligner, and device manufacturing method
US20040218289A1 (en) Mirror holding mechanism in exposure apparatus, and device manufacturing method
JP2002141270A (en) Exposing system
JP2011059482A (en) Support device, optical device, exposure device and method of manufacturing device
JP4956680B2 (en) Support structure for optical element, exposure apparatus using the same, and method for manufacturing semiconductor device
US7583453B2 (en) Optical element holding structure, exposure apparatus, and device manufacturing method
JP5335372B2 (en) Optical element support apparatus, exposure apparatus using the same, and device manufacturing method
JP2003241051A (en) Support means for optical element, optical system relying on the support means for the optical element, exposure device, and device manufacturing method
TWI682247B (en) Optical device, projection optical system, exposure apparatus, and article manufacturing method
US20110065051A1 (en) Supporting device, optical apparatus, exposure apparatus, and device manufacturing method
JP2003021769A (en) Optical element holding device, exposure device, device manufacturing method, and device
JP2003307660A (en) Optical element holding device and exposure device using the same
JP2001124968A (en) Optical element holding method, optical element holding mechanism and exposure device utilizing optical element group held by optical element holding mechanism
JP2004093663A (en) Supporting means of optical element, optical apparatus such as optical system by supporting means of optical element and aligner, and device manufacturing method