JP2010086914A - Nonaqueous electrolytic solution - Google Patents

Nonaqueous electrolytic solution Download PDF

Info

Publication number
JP2010086914A
JP2010086914A JP2008257727A JP2008257727A JP2010086914A JP 2010086914 A JP2010086914 A JP 2010086914A JP 2008257727 A JP2008257727 A JP 2008257727A JP 2008257727 A JP2008257727 A JP 2008257727A JP 2010086914 A JP2010086914 A JP 2010086914A
Authority
JP
Japan
Prior art keywords
fluorine
solvent
electrolytic solution
electrolyte salt
fluorinated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008257727A
Other languages
Japanese (ja)
Other versions
JP5359163B2 (en
Inventor
Meiten Ko
明天 高
Hideo Sakata
英郎 坂田
Hitomi Nakazawa
瞳 中澤
Michiru Kagawa
みちる 賀川
Akiyoshi Yamauchi
昭佳 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2008257727A priority Critical patent/JP5359163B2/en
Publication of JP2010086914A publication Critical patent/JP2010086914A/en
Application granted granted Critical
Publication of JP5359163B2 publication Critical patent/JP5359163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolytic solution in which improvement of charge-discharge efficiency and improvement of charge-discharge cycle characteristics for a long period are achieved, and which is suitable for a lithium secondary battery. <P>SOLUTION: The nonaqueous electrolytic solution is provided which contains (A) fluorine-contained ester solvent expressed by a formula: RfCH<SB>2</SB>COOR (in the formula, Rf is a fluoroalkyl group of carbon numbers 1 to 4; R is an alkyl group of carbon numbers 1 to 4), (B) electrolyte salt dissolving solvent (I) containing fluorine-contained solvent except the fluorine-contained ester (A), and an electrolyte salt (II). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウム二次電池用に適した非水電解液に関する。   The present invention relates to a nonaqueous electrolytic solution suitable for a lithium secondary battery.

負極と電解液の反応を抑制することにより安全性を向上させる働きを有する負極表面被覆材として、たとえば、式(I):
1CFXCOOR2 (I)
(式中、R1は水素原子、フッ素原子または炭素数1〜3の水素原子がフッ素原子で置換されていてもよいアルキル基;Xは水素原子またはフッ素原子;ただし、R1がフッ素原子またはパーフルオロアルキル基の場合はXは水素原子;R2は炭素数1〜2のアルキル基である)
で示される含フッ素エステル溶媒(I)が知られている(たとえば、特許文献1参照)。この含フッ素エステル溶媒(I)は、耐酸化性も高く、粘性も低いだけでなく、含フッ素溶媒でありながらも塩の溶解性がよいという特色がある。
As a negative electrode surface covering material having a function of improving safety by suppressing the reaction between the negative electrode and the electrolytic solution, for example, the formula (I):
R 1 CFXCOOR 2 (I)
(Wherein R 1 is a hydrogen atom, a fluorine atom or an alkyl group in which a hydrogen atom having 1 to 3 carbon atoms may be substituted with a fluorine atom; X is a hydrogen atom or a fluorine atom; provided that R 1 is a fluorine atom or In the case of a perfluoroalkyl group, X is a hydrogen atom; R 2 is an alkyl group having 1 to 2 carbon atoms)
The fluorine-containing ester solvent (I) shown by these is known (for example, refer patent document 1). This fluorine-containing ester solvent (I) is characterized by not only high oxidation resistance and low viscosity, but also good salt solubility despite being a fluorine-containing solvent.

特開平11−86901号公報Japanese Patent Laid-Open No. 11-86901

しかし、特許文献1に記載されている非水電解液は還元性が比較的低いため、充放電効率(クーロン効率)のさらなる向上が望まれる。また、長期間の充放電サイクルによる非水電解液の劣化にも改善の余地がある。   However, since the non-aqueous electrolyte described in Patent Document 1 has a relatively low reducing property, further improvement in charge / discharge efficiency (Coulomb efficiency) is desired. There is also room for improvement in the deterioration of the non-aqueous electrolyte due to a long charge / discharge cycle.

本発明は、充放電効率の向上および長期間の充放電サイクル特性の向上が図れ、リチウム二次電池に好適な非水電解液を提供することを目的とする。   An object of the present invention is to provide a non-aqueous electrolyte suitable for a lithium secondary battery, which can improve charge / discharge efficiency and long-term charge / discharge cycle characteristics.

本発明は、
(A)式(A):
RfCH2COOR (A)
(式中、Rfは炭素数1〜4のフルオロアルキル基;Rは炭素数1〜4のアルキル基、)
で示される含フッ素エステル溶媒、および
(B)含フッ素エステル(A)以外の含フッ素溶媒
を含む電解質塩溶解用溶媒(I)、ならびに
電解質塩(II)
を含む非水電解液に関する。
The present invention
(A) Formula (A):
RfCH 2 COOR (A)
(Wherein Rf is a fluoroalkyl group having 1 to 4 carbon atoms; R is an alkyl group having 1 to 4 carbon atoms)
And (B) a solvent for dissolving an electrolyte salt containing a fluorine-containing solvent other than the fluorine-containing ester (A) (I), and an electrolyte salt (II)
It relates to the nonaqueous electrolyte solution containing.

含フッ素エステル溶媒(A)としては、HCF2CH2COOCH3、CF3CH2COOCH3、HCF2COOC25およびCF3CH2COOC25よりなる群から選ばれる少なくとも1種が好ましい。 The fluorine-containing ester solvent (A) is preferably at least one selected from the group consisting of HCF 2 CH 2 COOCH 3 , CF 3 CH 2 COOCH 3 , HCF 2 COOC 2 H 5 and CF 3 CH 2 COOC 2 H 5. .

前記含フッ素溶媒(B)は、含フッ素エーテル(B1)、含フッ素エステル(A)以外の含フッ素エステル(B2)および含フッ素カーボネート(B3)よりなる群から選ばれる少なくとも1種であることが、さらには含フッ素鎖状エーテル(B1a)、含フッ素環状エステル(B2b)、含フッ素鎖状カーボネート(B3a)および含フッ素環状カーボネート(B3b)よりなる群から選ばれる少なくとも1種であることが好ましい。   The fluorine-containing solvent (B) is at least one selected from the group consisting of fluorine-containing ethers (B1), fluorine-containing esters (B2) other than fluorine-containing esters (A), and fluorine-containing carbonates (B3). Furthermore, it is preferably at least one selected from the group consisting of fluorine-containing chain ether (B1a), fluorine-containing cyclic ester (B2b), fluorine-containing chain carbonate (B3a) and fluorine-containing cyclic carbonate (B3b). .

本発明の非水電解液において、含フッ素エステル溶媒(A)と含フッ素溶媒(B)との合計量が電解質塩溶解用溶媒(I)の60体積%以上であるとき、安全性がさらに向上する。   In the nonaqueous electrolytic solution of the present invention, when the total amount of the fluorinated ester solvent (A) and the fluorinated solvent (B) is 60% by volume or more of the electrolyte salt dissolving solvent (I), the safety is further improved. To do.

また本発明において、電解質塩溶解用溶媒(I)は、さらに非フッ素系溶媒(C)を含んでいてもよい。   In the present invention, the electrolyte salt dissolving solvent (I) may further contain a non-fluorinated solvent (C).

電解質塩(II)としては、LiPF6、LiN(SO2CF32およびLiN(SO2252よりなる群から選ばれる少なくとも1種であることが、長期の充放電サイクル特性が良好な点から好ましい。 The electrolyte salt (II) should be at least one selected from the group consisting of LiPF 6 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2 for long-term charge / discharge cycle characteristics. Is preferable from the viewpoint of good.

本発明の非水電解液はリチウム二次電池用として有用である。   The nonaqueous electrolytic solution of the present invention is useful for a lithium secondary battery.

本発明はまた、正極、負極、セパレータおよび本発明の非水電解液を備えるリチウム二次電池にも関する。   The present invention also relates to a lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and the non-aqueous electrolyte of the present invention.

本発明の非水電解液によれば、負極表面に強固な被膜を形成できるため被膜がはがれにくく耐酸化性に優れており、さらに充放電効率および長期の充放電サイクル耐性にも優れている。   According to the nonaqueous electrolytic solution of the present invention, a strong coating can be formed on the negative electrode surface, and thus the coating is difficult to peel off, and the oxidation resistance is excellent, and the charge / discharge efficiency and the long-term charge / discharge cycle resistance are also excellent.

さらに、本発明の非水電解液を用いることにより、良好な電池特性(充放電効率および長期の充放電サイクル特性)やイオン伝導度、安全性などを有するリチウム二次電池を提供することも可能になる。   Furthermore, by using the non-aqueous electrolyte of the present invention, it is also possible to provide a lithium secondary battery having good battery characteristics (charge / discharge efficiency and long-term charge / discharge cycle characteristics), ionic conductivity, safety, etc. become.

本発明の非水電解液は、特定の成分を含む電解質塩溶解用溶媒(I)と電解質塩(II)とを含有する。   The nonaqueous electrolytic solution of the present invention contains an electrolyte salt dissolving solvent (I) containing a specific component and an electrolyte salt (II).

電解質塩溶解用溶媒(I)は、特定の含フッ素エステル溶媒(A)および含フッ素溶媒(B)を含む。   The electrolyte salt dissolving solvent (I) includes a specific fluorine-containing ester solvent (A) and a fluorine-containing solvent (B).

以下、各溶媒成分(A)および(B)について説明する。   Hereinafter, each solvent component (A) and (B) is demonstrated.

(A)含フッ素エステル溶媒:
含フッ素エステル溶媒(A)を含有させることにより、負極表面に被膜を形成することで電解液と負極の反応を抑制できるため安全性を向上させ、粘性を低く、塩の溶解性および耐酸化性を高くすることができるうえ、さらに、充放電効率および長期の充放電サイクル特性といった電池特性を改善できる。
(A) Fluorinated ester solvent:
By containing the fluorinated ester solvent (A), the film can be formed on the negative electrode surface to suppress the reaction between the electrolytic solution and the negative electrode, thereby improving safety, lowering the viscosity, solubility of the salt, and oxidation resistance. In addition, the battery characteristics such as charge / discharge efficiency and long-term charge / discharge cycle characteristics can be improved.

含フッ素エステル溶媒(A)は、式(A):
RfCH2COOR (A)
(式中、Rfは炭素数1〜4のフルオロアルキル基;Rは炭素数1〜4のアルキル基)
で示されるものである。
The fluorine-containing ester solvent (A) has the formula (A):
RfCH 2 COOR (A)
(Wherein Rf is a fluoroalkyl group having 1 to 4 carbon atoms; R is an alkyl group having 1 to 4 carbon atoms)
It is shown by.

好ましい含フッ素エステル溶媒(A)の具体例としては、たとえばHCF2CH2COOCH3、HCF2CH2COOC25、CF3CH2COOCH3およびCF3CH2COOC25よりなる群から選ばれる少なくとも1種、特にCF3CH2COOCH3が、負極上に最も熱安定性の高い皮膜を形成でき、粘性が低く、塩を溶解させやすい点、負荷特性の向上効果が高い点から好ましい。 Specific examples of the preferred fluorine-containing ester solvent (A) include, for example, a group consisting of HCF 2 CH 2 COOCH 3 , HCF 2 CH 2 COOC 2 H 5 , CF 3 CH 2 COOCH 3 and CF 3 CH 2 COOC 2 H 5. At least one selected, particularly CF 3 CH 2 COOCH 3, is preferable because it can form a film with the highest thermal stability on the negative electrode, has low viscosity, easily dissolves salts, and has a high effect of improving load characteristics. .

含フッ素エステル溶媒(A)のフッ素含有率は、0.5〜80質量%、さらには0.5〜50質量%であることが、負荷特性および安全性の向上効果が大きい点から好ましい
本発明の非水電解液において、電解質塩溶解用溶媒(I)中の含フッ素エステル溶媒(A)の含有率は、電解質塩溶解用溶媒(I)全体に対して、5〜80体積%が、負極上に熱安定性の高い皮膜が効率よく形成できる点から好ましい。さらには10〜70体積%が、特に10〜60体積%が好ましい。
The fluorine content of the fluorine-containing ester solvent (A) is preferably 0.5 to 80% by mass, and more preferably 0.5 to 50% by mass because the effect of improving load characteristics and safety is great. In the non-aqueous electrolyte, the content of the fluorine-containing ester solvent (A) in the electrolyte salt dissolving solvent (I) is 5 to 80% by volume with respect to the entire electrolyte salt dissolving solvent (I). It is preferable because a film having high thermal stability can be efficiently formed thereon. Furthermore, 10-70 volume% is preferable, and 10-60 volume% is especially preferable.

(B)含フッ素溶媒:
含フッ素溶媒(B)としては、含フッ素鎖状エーテル(B1a)などの含フッ素エーテル(B1)や、前記含フッ素エステル溶媒(A)以外の含フッ素鎖状エステル(B2a)、含フッ素環状エステル(B2b)などの含フッ素エステル(B2)や、含フッ素鎖状カーボネート(B3a)、含フッ素環状カーボネート(B3b)などの含フッ素カーボネート(B3)などがあげられ、これらのなかから1種以上を選択して使用することができる。
(B) Fluorine-containing solvent:
Examples of the fluorinated solvent (B) include a fluorinated ether (B1) such as a fluorinated chain ether (B1a), a fluorinated chain ester (B2a) other than the fluorinated ester solvent (A), and a fluorinated cyclic ester. Fluorinated esters (B2) such as (B2b), fluorinated carbonates (B3) such as fluorinated chain carbonates (B3a), and fluorinated cyclic carbonates (B3b), etc. You can select and use.

これらのうち、含フッ素鎖状エーテル(B1a)、含フッ素鎖状エステル(B2a)および含フッ素鎖状カーボネート(B3a)は自己消火作用を有しているため、これらを含フッ素エステル溶媒(A)と併用すると安全性が向上する。また、前記含フッ素エステル溶媒(A)が形成した表面被膜を溶解させにくいため、高温でも本発明の非水電解液と負極の反応を抑制することができる。また、これらは表面張力が低いためにレート特性を向上させる働きがある。さらに、これらは含フッ素溶媒であるため、塩の溶解性が低く、また粘度も同等の非フッ素系溶媒と比較すると高くなるが、含フッ素エステル溶媒(A)を含有することにより、非フッ素系溶媒と比較しても、塩の溶解性を向上させ、粘性を低減することができ、良好なイオン伝導度を得ることができる。   Of these, the fluorine-containing chain ether (B1a), the fluorine-containing chain ester (B2a), and the fluorine-containing chain carbonate (B3a) have a self-extinguishing action, so that they are used as the fluorine-containing ester solvent (A). When used in combination, safety is improved. Moreover, since it is difficult to dissolve the surface film formed by the fluorine-containing ester solvent (A), the reaction between the nonaqueous electrolytic solution of the present invention and the negative electrode can be suppressed even at a high temperature. Moreover, since these have low surface tension, they have a function of improving rate characteristics. Furthermore, since these are fluorine-containing solvents, the solubility of the salt is low and the viscosity is higher than that of the equivalent non-fluorine-based solvent, but by containing the fluorine-containing ester solvent (A), the non-fluorine-based solvent is contained. Even if compared with a solvent, the solubility of a salt can be improved, viscosity can be reduced, and favorable ionic conductivity can be obtained.

含フッ素鎖状エーテル(B1a)は、耐酸化性や難燃性が高い、自己消火性を有し、レート特性を改善できるという利点を有する。   The fluorine-containing chain ether (B1a) has the advantages that it has high oxidation resistance and flame retardancy, has self-extinguishing properties, and can improve rate characteristics.

含フッ素鎖状エーテル(B1a)としては、たとえば、特開平8−37024号公報、特開平9−97627号公報、特開平11−26015号公報、特開2000−294281号公報、特開2001−52737号公報、特開平11−307123号公報などに記載された化合物があげられる。   Examples of the fluorine-containing chain ether (B1a) include, for example, JP-A-8-37024, JP-A-9-97627, JP-A-11-26015, JP-A-2000-294281, JP-A-2001-52737. And the compounds described in JP-A-11-307123 and the like.

なかでも、式(B1a1):
Rf1ORf2 (B1a1)
(式中、Rf1およびRf2は同じかまたは異なり、いずれも炭素数1〜8、好ましくは炭素数1〜4のアルキル基または含フッ素アルキル基であり、Rf1とRf2の少なくとも一方は含フッ素アルキル基である)
で示される含フッ素鎖状エーテル(B1a1)が、他溶媒との相溶性が良好で適切な沸点を有する点から好ましい。
Among them, the formula (B1a1):
Rf 1 ORf 2 (B1a1)
(In the formula, Rf 1 and Rf 2 are the same or different and both are alkyl groups having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms or fluorine-containing alkyl groups, and at least one of Rf 1 and Rf 2 is (It is a fluorine-containing alkyl group)
Is preferable from the viewpoint of good compatibility with other solvents and an appropriate boiling point.

特に、Rf1としては、たとえば、CHF2CF2CH2−、CHF2CF2CF2CH2−、CHF2CF2CF2CF2CH2−、CF3CF2CH2−、CF3CHFCF2CH2−、CHF2CF(CF3)CH2−、CF3CF2CH2CH2−などがあげられ、また、Rf2としては、たとえば、−CF2CHF2、−CF2CHFCF3、−CF2CF2CHF2、−CH2CH2CF3、−CH2CHFCF3、−CH2CH2CF2CF3などがあげられる。なかでもRf1、Rf2がいずれも炭素数1〜4、特には3〜4の含フッ素アルキル基であることが、イオン伝導性が良好な点から好ましい。 In particular, as Rf 1 , for example, CHF 2 CF 2 CH 2 —, CHF 2 CF 2 CF 2 CH 2 —, CHF 2 CF 2 CF 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 —, CF 3 CHFCF 2 CH 2 —, CHF 2 CF (CF 3 ) CH 2 —, CF 3 CF 2 CH 2 CH 2 — and the like are exemplified, and examples of Rf 2 include —CF 2 CHF 2 , —CF 2 CHFCF 3. , -CF 2 CF 2 CHF 2, -CH 2 CH 2 CF 3, -CH 2 CHFCF 3, such as -CH 2 CH 2 CF 2 CF 3 and the like. Among them Rf 1, Rf 2 is 1 to 4 carbon atoms either, especially be a 3-4 fluorinated alkyl group, preferably a ionic conductivity viewpoint of satisfactory.

含フッ素鎖状エーテル(B1a)の好ましい具体例としては、たとえば、CHF2CF2CH2OCF2CHFCF3、CHF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CHFCF3、CF3CF2CH2OCF2CF2H、CHF2CF2CH2OCH2CHFCF3、CF3CF2CH2OCH2CHFCF3などの、Rf1、Rf2ともに含フッ素アルキル基であるものがあげられ、なかでも、CHF2CF2CH2OCF2CHFCF3、CF3CF2CH2OCF2CHFCF3が、他溶媒との相溶性が良好でレート特性も良好な点から特に好ましい。 Preferable specific examples of the fluorine-containing chain ether (B1a) include, for example, CHF 2 CF 2 CH 2 OCF 2 CHFCF 3 , CHF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CHFCF 3 , CF 3 CF 2 CH 2 OCF 2 CF 2 H, CHF 2 CF 2 CH 2 OCH 2 CHFCF 3 , CF 3 CF 2 CH 2 OCH 2 CHFCF 3, etc., wherein both Rf 1 and Rf 2 are fluorine-containing alkyl groups Of these, CHF 2 CF 2 CH 2 OCF 2 CHFCF 3 and CF 3 CF 2 CH 2 OCF 2 CHFCF 3 are particularly preferred because they have good compatibility with other solvents and good rate characteristics.

また、式(B1a2):
Rf1OR3 (B1a2)
(式中、R3は炭素数1〜6のアルキル基であり、Rf1は式(B1a1)と同じである)
または式(B1a3):
4ORf2 (B1a3)
(式中、R4は炭素数1〜6のアルキル基であり、Rf2は式(B1a1)と同じである)
で示される含フッ素鎖状エーテルも好ましい。
Formula (B1a2):
Rf 1 OR 3 (B1a2)
(Wherein R 3 is an alkyl group having 1 to 6 carbon atoms, and Rf 1 is the same as in formula (B1a1))
Or the formula (B1a3):
R 4 ORf 2 (B1a3)
(Wherein R 4 is an alkyl group having 1 to 6 carbon atoms, and Rf 2 is the same as in formula (B1a1))
The fluorine-containing chain ether represented by the formula is also preferred.

これらの含フッ素鎖状エーテル(B1a2)や含フッ素鎖状エーテル(B1a3)は、耐酸化性や自己消化性は含フッ素鎖状エーテル(B1a1)には劣るものの、塩の溶解性に優れるために好ましい。   These fluorine-containing chain ethers (B1a2) and fluorine-containing chain ethers (B1a3) are inferior to the fluorine-containing chain ether (B1a1) in oxidation resistance and self-digestibility, but are excellent in salt solubility. preferable.

含フッ素鎖状エーテル(B1a2)および含フッ素鎖状エーテル(B1a3)において、R3、R4としては、炭素数1〜6のアルキル基が好ましく、具体的には、−CH3、−C25、−C37、−CH(CH32などが例示できる。 In the fluorine-containing chain ether (B1a2) and the fluorine-containing chain ether (B1a3), R 3 and R 4 are preferably an alkyl group having 1 to 6 carbon atoms, specifically, —CH 3 , —C 2. H 5, -C 3 H 7, -CH (CH 3) 2 , and others.

含フッ素鎖状エーテル(B1a2)および含フッ素鎖状エーテル(B1a3)としては、たとえば、CHF2CF2OC25、CF3CHFCF2OC25、CHF2CF2OCH3、CF3CHFCF2OCH3、CHF2CF2OCH(CH32、CF3CHFCF2OCH(CH32などが好ましいものとしてあげられる。 Examples of the fluorinated chain ether (B1a2) and the fluorinated chain ether (B1a3) include CHF 2 CF 2 OC 2 H 5 , CF 3 CHFCF 2 OC 2 H 5 , CHF 2 CF 2 OCH 3 , and CF 3 CHFCF. Preferred examples include 2 OCH 3 , CHF 2 CF 2 OCH (CH 3 ) 2 , and CF 3 CHFCF 2 OCH (CH 3 ) 2 .

含フッ素エステル(A)以外の含フッ素鎖状エステル(B2a)は、耐酸化性や難燃性が高く、レート特性を改善できるという利点を有する。   The fluorine-containing chain ester (B2a) other than the fluorine-containing ester (A) has an advantage that it has high oxidation resistance and flame retardancy and can improve rate characteristics.

含フッ素鎖状エステル(B2a)としては、式(B2a1):
Rf3COORf4 (B2a1)
(式中、Rf3およびRf4は同じかまたは異なり、Rf3は炭素数1〜8、好ましくは炭素数1〜4のアルキル基または含フッ素アルキル基であり、Rf4は炭素数1〜8、好ましくは炭素数1〜4の含フッ素アルキル基であり、Rf3とRf4の少なくとも一方は含フッ素アルキル基である)
で示される含フッ素エステル(B2a1)が、難燃性が高く、かつ他溶媒との相溶性が良好な点から好ましい。
As the fluorine-containing chain ester (B2a), the formula (B2a1):
Rf 3 COORf 4 (B2a1)
Wherein Rf 3 and Rf 4 are the same or different, Rf 3 is an alkyl group or a fluorinated alkyl group having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms, and Rf 4 is 1 to 8 carbon atoms. Preferably a fluorine-containing alkyl group having 1 to 4 carbon atoms, and at least one of Rf 3 and Rf 4 is a fluorine-containing alkyl group)
The fluorine-containing ester (B2a1) represented by is preferable from the viewpoint of high flame retardancy and good compatibility with other solvents.

Rf3としては、たとえば、CF3−、C25−、CHF2CF2−、CHF2−、CH3CF2−、CF3CH2−などがあげられ、なかでも、CF3−、C25−が、レート特性が良好な点から特に好ましい。 Examples of Rf 3 include CF 3 —, C 2 F 5 —, CHF 2 CF 2 —, CHF 2 —, CH 3 CF 2 —, CF 3 CH 2 —, among others, CF 3 —, C 2 F 5 -is particularly preferable from the viewpoint of good rate characteristics.

Rf4としては、たとえば、−CF3、−C25、−CH2CF3、−C24CF3、−CH(CF32、−CH2CF2CHFCF3、−CH225、−CH2CF2CHF2、−C2425、−CH237などがあげられ、なかでも、−CH2CF3、−CH225、−CH(CF32、−CH2CF2CHF2が、他溶媒との相溶性が良好な点から特に好ましい。 The Rf 4, for example, -CF 3, -C 2 F 5 , -CH 2 CF 3, -C 2 H 4 CF 3, -CH (CF 3) 2, -CH 2 CF 2 CHFCF 3, -CH 2 C 2 F 5 , —CH 2 CF 2 CHF 2 , —C 2 H 4 C 2 F 5 , —CH 2 C 3 F 7, and the like, among others, —CH 2 CF 3 , —CH 2 C 2 F 5 , —CH (CF 3 ) 2 and —CH 2 CF 2 CHF 2 are particularly preferred from the viewpoint of good compatibility with other solvents.

含フッ素鎖状エステル(B2a1)の好ましい具体例としては、たとえば、CF3COOCH2CF3、CF3COOC24CF3、CF3COOCH225、CF3COOCH2CF2CHF2、CF3COOCH(CF32などの、Rf3、Rf4ともに含フッ素アルキル基であるものがあげられ、なかでも、CF3COOCH2CF3、CF3COOCH225、CF3COOCH2CF2CHF2、CF3COOCH(CF32が、他溶媒との相溶性およびレート特性が良好な点から特に好ましい。 Preferable specific examples of the fluorine-containing chain ester (B2a1) include, for example, CF 3 COOCH 2 CF 3 , CF 3 COOC 2 H 4 CF 3 , CF 3 COOCH 2 C 2 F 5 , CF 3 COOCH 2 CF 2 CHF 2 , CF 3 COOCH (CF 3 ) 2 and the like, both of Rf 3 and Rf 4 are fluorine-containing alkyl groups. Among them, CF 3 COOCH 2 CF 3 , CF 3 COOCH 2 C 2 F 5 , CF 3 COOCH 2 CF 2 CHF 2 and CF 3 COOCH (CF 3 ) 2 are particularly preferred from the viewpoint of good compatibility with other solvents and good rate characteristics.

また、式(B2a2):
Rf3COOR5 (B2a2)
(式中、R5は炭素数1〜4のアルキル基であり、Rf3は式(B2a1)と同じである)
または式(B2a3):
6COORf4 (B2a3)
(式中、R6は水素原子または炭素数1〜4のアルキル基であり、Rf4は式(B2a1)と同じである)
で示される含フッ素鎖状エステルも好ましい。
Also, the formula (B2a2):
Rf 3 COOR 5 (B2a2)
(Wherein R 5 is an alkyl group having 1 to 4 carbon atoms, and Rf 3 is the same as in formula (B2a1))
Or formula (B2a3):
R 6 COORf 4 (B2a3)
(Wherein R 6 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and Rf 4 is the same as in formula (B2a1)).
A fluorine-containing chain ester represented by

これらの含フッ素鎖状エステル(B2a2)や(B2a3)は含フッ素鎖状エステル(B2a1)よりも自己消火性は低いが、加水分解性が高く、サイクル安定性が良好な点で好ましい。   These fluorine-containing chain esters (B2a2) and (B2a3) have lower self-extinguishing properties than the fluorine-containing chain esters (B2a1), but are preferable in terms of high hydrolyzability and good cycle stability.

なお、含フッ素鎖状エステル(B2a2)には、前記式(I):
1CFXCOOR2 (I)
(式中、R1は水素原子、フッ素原子または炭素数1〜3の水素原子がフッ素原子で置換されていてもよいアルキル基;Xは水素原子またはフッ素原子;ただし、R1がフッ素原子またはパーフルオロアルキル基の場合はXは水素原子;R2は炭素数1〜2のアルキル基である)
で示される含フッ素エステル溶媒(I)も含まれる。
The fluorine-containing chain ester (B2a2) includes the formula (I):
R 1 CFXCOOR 2 (I)
(Wherein R 1 is a hydrogen atom, a fluorine atom or an alkyl group in which a hydrogen atom having 1 to 3 carbon atoms may be substituted with a fluorine atom; X is a hydrogen atom or a fluorine atom; provided that R 1 is a fluorine atom or In the case of a perfluoroalkyl group, X is a hydrogen atom; R 2 is an alkyl group having 1 to 2 carbon atoms)
The fluorine-containing ester solvent (I) shown by these is also included.

含フッ素鎖状エステル(B2a2)および含フッ素鎖状エステル(B2a3)としては、たとえば、CHF2COOCH3、CF3CHFCOOCH3、CHF2COOC25、CF3CHFCOOC25、CH3CF2COOCH3、CH3CF2COOC25、CF3COOCH3、CF3COOC25、CF3COOCH(CH32、C25COOCH3、C25COOC25、C25COOCH(CH32、HCOOCF3、HCOOC25、CH3COOCH2CF3、CH3COOCH225、CH3COOCH2CF2CHF2、C25COOCH2CF3、C25COOCH225、C25COOCH2CF2CHF2などが好ましいものとしてあげられる。 The fluorine-containing chain ester (B2A2) and fluorine-containing chain ester (B2A3), for example, CHF 2 COOCH 3, CF 3 CHFCOOCH 3, CHF 2 COOC 2 H 5, CF 3 CHFCOOC 2 H 5, CH 3 CF 2 COOCH 3 , CH 3 CF 2 COOC 2 H 5 , CF 3 COOCH 3 , CF 3 COOC 2 H 5 , CF 3 COOCH (CH 3 ) 2 , C 2 F 5 COOCH 3 , C 2 F 5 COOC 2 H 5 , C 2 F 5 COOCH (CH 3) 2, HCOOCF 3, HCOOC 2 F 5, CH 3 COOCH 2 CF 3, CH 3 COOCH 2 C 2 F 5, CH 3 COOCH 2 CF 2 CHF 2, C 2 H 5 COOCH 2 CF 3 , C 2 H 5 COOCH 2 C 2 F 5 , C 2 H 5 COOCH 2 CF 2 CHF 2 and the like are preferable.

含フッ素エステル(B2)として、含フッ素環状エステル(B2b)も使用できる。   A fluorine-containing cyclic ester (B2b) can also be used as the fluorine-containing ester (B2).

含フッ素環状エステル(B2b)は、含フッ素エステル溶媒(A)と併用することで、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の高い溶解性という効果が得られる。   The fluorine-containing cyclic ester (B2b) can be used in combination with the fluorine-containing ester solvent (A) to exhibit particularly excellent properties such as a high dielectric constant and high withstand voltage, and also has the effect of high solubility of the electrolyte salt. It is done.

含フッ素環状エステル(B2b)としては、たとえば、式(B2b1):

Figure 2010086914
(式中、X1〜X6は同じかまたは異なり、いずれも水素原子、フッ素原子、塩素原子、−CH3または含フッ素メチル基;ただし、X1〜X6の少なくとも1つは含フッ素メチル基である)
で示される含フッ素ラクトン(B2b1)があげられる。 Examples of the fluorine-containing cyclic ester (B2b) include a formula (B2b1):
Figure 2010086914
(In the formula, X 1 to X 6 are the same or different and all are hydrogen atom, fluorine atom, chlorine atom, —CH 3 or fluorine-containing methyl group; provided that at least one of X 1 to X 6 is fluorine-containing methyl Base)
And a fluorine-containing lactone (B2b1) represented by

1〜X6における含フッ素メチル基は、−CH2F、−CHF2または−CF3であり、−CF3が、耐電圧性が良好な点から好ましい。 The fluorine-containing methyl group in X 1 to X 6 is —CH 2 F, —CHF 2 or —CF 3 , and —CF 3 is preferable from the viewpoint of good voltage resistance.

含フッ素メチル基は、X1〜X6の全てに置換していてもよいし、1個だけに置換していてもよい。なかでも、1〜3個、特に1〜2個置換していることが、電解質塩の溶解性が良好な点から好ましい。 In the fluorine-containing methyl group, all of X 1 to X 6 may be substituted, or only one may be substituted. Especially, it is preferable from the point with the favorable solubility of electrolyte salt to substitute 1-3, especially 1-2.

含フッ素メチル基の置換位置は特に限定されないが、X3および/またはX4が、特にX3またはX4が含フッ素メチル基、なかでも−CF3であることが、合成収率が良好なことから好ましい。含フッ素メチル基以外のX1〜X6は、水素原子、フッ素原子、塩素原子または−CH3であり、特に、水素原子が、電解質塩の溶解性が良好な点から好ましい。 The substitution position of fluorine-containing methyl group is not particularly limited, X 3 and / or X 4 are, in particular, X 3 or X 4 is a fluorine-containing methyl group, it is inter alia -CF 3, a good synthesis yield Therefore, it is preferable. X 1 to X 6 other than the fluorine-containing methyl group are a hydrogen atom, a fluorine atom, a chlorine atom or —CH 3 , and a hydrogen atom is particularly preferable from the viewpoint of good solubility of the electrolyte salt.

含フッ素ラクトン(B2b1)としては、前記式(B2b1)で示されるもの以外にも、たとえば、式(B2b2):

Figure 2010086914
(式中、AおよびBはいずれか一方がCX1213(X12およびX13は同じかまたは異なり、いずれも水素原子、フッ素原子、塩素原子、−CF3、−CH3または水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基である)であり、他方は酸素原子;Rf7は含フッ素エーテル基、含フッ素アルコキシ基または炭素数2以上の含フッ素アルキル基;X7およびX8は同じかまたは異なり、いずれも水素原子、フッ素原子、塩素原子、−CF3または−CH3;X9〜X11は同じかまたは異なり、いずれも水素原子、フッ素原子、塩素原子または水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基;n=0または1)
で示される含フッ素ラクトン(B2b2)などもあげられる。 As the fluorine-containing lactone (B2b1), in addition to those represented by the formula (B2b1), for example, the formula (B2b2):
Figure 2010086914
(In the formula, either one of A and B is CX 12 X 13 (X 12 and X 13 are the same or different, and each is a hydrogen atom, a fluorine atom, a chlorine atom, —CF 3 , —CH 3 or a hydrogen atom) And the other is an oxygen atom; Rf 7 is a fluorine-containing ether group, a fluorine-containing alkoxy group, or a carbon number of 2 or more. X 7 and X 8 are the same or different, all are a hydrogen atom, a fluorine atom, a chlorine atom, —CF 3 or —CH 3 ; X 9 to X 11 are the same or different and both are hydrogen An alkyl group in which the atom, fluorine atom, chlorine atom or hydrogen atom may be substituted by a halogen atom and may contain a hetero atom in the chain; n = 0 or 1)
And a fluorine-containing lactone (B2b2) represented by

式(B2b2)で示される含フッ素ラクトン(B2b2)としては、式(B2b2a):

Figure 2010086914
(式中、A、B、Rf7、X7、X8およびX9は式(B2b2)と同じである)
で示される5員環構造を有する含フッ素ラクトン(B2b2a)が、合成が容易である点、化学的安定性が良好な点から好ましい。 As the fluorine-containing lactone (B2b2) represented by the formula (B2b2), the formula (B2b2a):
Figure 2010086914
(In the formula, A, B, Rf 7 , X 7 , X 8 and X 9 are the same as those in formula (B2b2)).
The fluorine-containing lactone (B2b2a) having a five-membered ring structure represented by is preferable from the viewpoint of easy synthesis and good chemical stability.

式(B2b2a)で示される含フッ素ラクトン(B2b2a)には、AとBの組合せにより、式(B2b2b):

Figure 2010086914
(式中、Rf7、X7、X8、X9、X12およびX13は式(B2b2)と同じ)
で示される含フッ素ラクトン(B2b2b)と、式(B2b2c):
Figure 2010086914
(式中、Rf7、X7、X8、X9、X12およびX13は式(B2b2)と同じ)
で示される含フッ素ラクトン(B2b2c)がある。 In the fluorine-containing lactone (B2b2a) represented by the formula (B2b2a), a combination of A and B, the formula (B2b2b):
Figure 2010086914
(Wherein Rf 7 , X 7 , X 8 , X 9 , X 12 and X 13 are the same as those in formula (B2b2))
And a fluorine-containing lactone (B2b2b) represented by the formula (B2b2c):
Figure 2010086914
(Wherein Rf 7 , X 7 , X 8 , X 9 , X 12 and X 13 are the same as those in formula (B2b2))
Is a fluorine-containing lactone (B2b2c).

これらのなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明における電解液としての特性が向上する点から、

Figure 2010086914
が好ましい。 Among these, the point that the excellent characteristics such as high dielectric constant and high withstand voltage can be exhibited especially, and the characteristics as the electrolytic solution in the present invention are improved in that the solubility of the electrolyte salt and the reduction of internal resistance are good. From
Figure 2010086914
Is preferred.

その他、含フッ素環状エステル(B2b)としては、

Figure 2010086914
なども使用できる。 In addition, as the fluorine-containing cyclic ester (B2b),
Figure 2010086914
Etc. can also be used.

含フッ素溶媒(B)としては、含フッ素カーボネート(B3)も使用できる。含フッ素カーボネート(B3)としては、含フッ素鎖状カーボネート(B3a)および含フッ素環状カーボネート(B3b)があげられる。   As the fluorine-containing solvent (B), fluorine-containing carbonate (B3) can also be used. Examples of the fluorinated carbonate (B3) include a fluorinated chain carbonate (B3a) and a fluorinated cyclic carbonate (B3b).

含フッ素鎖状カーボネート(B3a)は、耐酸化性や難燃性が高く、レート特性を改善できるという利点を有する。   The fluorine-containing chain carbonate (B3a) has an advantage that it has high oxidation resistance and flame retardancy and can improve rate characteristics.

含フッ素鎖状カーボネート(B3a)としては、式(B3a1):
Rf5OCOORf6 (B3a1)
(式中、Rf5およびRf6は同じかまたは異なり、いずれも炭素数1〜8、好ましくは炭素数1〜4のアルキル基または含フッ素アルキル基であり、Rf5とRf6の少なくとも一方は含フッ素アルキル基である)
で示される含フッ素鎖状カーボネート(B3a1)が、難燃性が高く、かつレート特性が良好な点から好ましい。
As the fluorine-containing chain carbonate (B3a), the formula (B3a1):
Rf 5 OCOORf 6 (B3a1)
(In the formula, Rf 5 and Rf 6 are the same or different and both are alkyl groups having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms or fluorine-containing alkyl groups, and at least one of Rf 5 and Rf 6 is (It is a fluorine-containing alkyl group)
The fluorine-containing chain carbonate (B3a1) represented by is preferable from the viewpoint of high flame retardancy and good rate characteristics.

Rf5およびRf6としては、たとえば、CF3−、C25−、(CF32CH−、CF3CH2−、C25CH2−、CHF2CF2CH2−、CF3CHFCF2CH2−などがあげられ、なかでも、CF3CH2−、C25CH2−が、粘性が適切で、他溶媒との相溶性およびレート特性が良好な点から特に好ましい。 Examples of Rf 5 and Rf 6 include CF 3- , C 2 F 5- , (CF 3 ) 2 CH-, CF 3 CH 2- , C 2 F 5 CH 2- , CHF 2 CF 2 CH 2- , CF 3 CHFCF 2 CH 2 — and the like. Among them, CF 3 CH 2 — and C 2 F 5 CH 2 — are particularly suitable because they have appropriate viscosity, good compatibility with other solvents, and good rate characteristics. preferable.

含フッ素鎖状カーボネート(B3a1)の好ましい具体例としては、たとえば、CF3CH2OCOOCH2CF3、C25CH2OCOOCH225、C25CH2OCOOCH3、CF3CH2OCOOCH3などの、Rf5、Rf6ともに含フッ素アルキル基であるものがあげられ、なかでも、CF3CH2OCOOCH2CF3、C25CH2OCOOCH225が、粘性が適切で、難燃性、他溶媒との相溶性およびレート特性が良好な点から特に好ましい。また、たとえば、特開平6−21992号公報、特開2000−327634号公報、特開2001−256983号公報などに記載された化合物もあげられる。 Preferable specific examples of the fluorine-containing chain carbonate (B3a1) include, for example, CF 3 CH 2 OCOOCH 2 CF 3 , C 2 F 5 CH 2 OCOOCH 2 C 2 F 5 , C 2 F 5 CH 2 OCOOCH 3 and CF 3. Examples include CH 2 OCOOCH 3 and the like in which both Rf 5 and Rf 6 are fluorine-containing alkyl groups. Among them, CF 3 CH 2 OCOOCH 2 CF 3 , C 2 F 5 CH 2 OCOOCH 2 C 2 F 5 are It is particularly preferable from the viewpoints of suitable viscosity, good flame retardancy, compatibility with other solvents, and rate characteristics. Examples thereof include compounds described in JP-A-6-21992, JP-A-2000-327634, JP-A-2001-256983, and the like.

また、式(B3a2):
Rf5OCOOR7 (B3a2)
(式中、R7は炭素数1〜6のアルキル基であり、Rf5は式(B3a1)と同じである)
または式(B3a3):
8OCOORf6 (B3a3)
(式中、R8は炭素数1〜6のアルキル基であり、Rf6は式(B3a1)と同じである)
で示される含フッ素鎖状カーボネートも好ましい。
Moreover, Formula (B3a2):
Rf 5 OCOOR 7 (B3a2)
(Wherein R 7 is an alkyl group having 1 to 6 carbon atoms, and Rf 5 is the same as in formula (B3a1))
Or formula (B3a3):
R 8 OCOORf 6 (B3a3)
(Wherein R 8 is an alkyl group having 1 to 6 carbon atoms, and Rf 6 is the same as in formula (B3a1))
The fluorine-containing chain carbonate shown by these is also preferable.

これらの含フッ素鎖状カーボネート(B3a2)や含フッ素鎖状カーボネート(B3a3)は含フッ素鎖状カーボネート(B3a1)よりも耐酸化性や自己消火性は低いが、塩の溶解性が良好な点で好ましい。   These fluorine-containing chain carbonates (B3a2) and fluorine-containing chain carbonates (B3a3) have lower oxidation resistance and self-extinguishing properties than fluorine-containing chain carbonates (B3a1), but they have good salt solubility. preferable.

含フッ素鎖状カーボネート(B3a2)および含フッ素鎖状カーボネート(B3a3)において、R7、R8としては、炭素数1〜6のアルキル基が好ましく、具体的には、−CH3、−C25、−C37、−CH(CH32などが例示できる。 In the fluorine-containing chain carbonate (B3a2) and the fluorine-containing chain carbonate (B3a3), R 7 and R 8 are preferably an alkyl group having 1 to 6 carbon atoms, specifically, —CH 3 , —C 2. H 5, -C 3 H 7, -CH (CH 3) 2 , and others.

含フッ素鎖状カーボネート(B3a2)および含フッ素鎖状カーボネート(B3a3)としては、たとえば、CF3CH2OCOOCH3、CF3CH2OCOOC25、C25CH2OCOOCH3、C25CH2OCOOC25、CHF2CF2CH2OCOOCH3、CHF2CF2CH2OCOOC25、CF3CHFCF2CH2OCOOCH3、CF3CHFCF2CH2OCOOC25などが好ましいものとしてあげられる。 Examples of the fluorine-containing chain carbonate (B3a2) and the fluorine-containing chain carbonate (B3a3) include CF 3 CH 2 OCOOCH 3 , CF 3 CH 2 OCOOC 2 H 5 , C 2 F 5 CH 2 OCOOCH 3 , and C 2 F. 5 CH 2 OCOOC 2 H 5 , CHF 2 CF 2 CH 2 OCOOCH 3 , CHF 2 CF 2 CH 2 OCOOC 2 H 5 , CF 3 CHFCF 2 CH 2 OCOOCH 3 , CF 3 CHFCF 2 CH 2 OCOOC 2 H 5 etc. are preferred It is given as a thing.

含フッ素環状カーボネート(B3b)は、式(B3b):

Figure 2010086914
(式中、X14〜X17は同じかまたは異なり、いずれも水素原子、フッ素原子、−CF3、−CHF2、−CH2F、−CF2CF3、−CH2CF3、−CH2CF2CF3、−CH2CF(CF32または−CH2OCH225;ただし、X14〜X17の少なくとも1つはフッ素原子、−CF3、−CF2CF3、−CH2CF3、−CH2CF2CF3または−CH2OCH2CF2CF3である)
で示されるものが好ましい。 The fluorine-containing cyclic carbonate (B3b) has the formula (B3b):
Figure 2010086914
(In the formula, X 14 to X 17 are the same or different and all are a hydrogen atom, a fluorine atom, —CF 3 , —CHF 2 , —CH 2 F, —CF 2 CF 3 , —CH 2 CF 3 , —CH. 2 CF 2 CF 3 , —CH 2 CF (CF 3 ) 2 or —CH 2 OCH 2 C 2 F 5 ; provided that at least one of X 14 to X 17 is a fluorine atom, —CF 3 , —CF 2 CF 3 , —CH 2 CF 3 , —CH 2 CF 2 CF 3, or —CH 2 OCH 2 CF 2 CF 3 )
Is preferred.

ここで、X14〜X17の少なくとも1つがフッ素原子である含フッ素環状カーボネート(B3b)は、負極表面に強固な薄膜を形成できるので、被膜がはがれにくく、本発明の非水電解液と負極の反応を抑制でき、さらに、耐酸化性やサイクル特性を向上させることができる。また、この含フッ素環状カーボネート(B3b)は、他の含フッ素溶媒(B)とまざりやすいという利点も有する。 Here, since the fluorine-containing cyclic carbonate (B3b) in which at least one of X 14 to X 17 is a fluorine atom can form a strong thin film on the negative electrode surface, the coating is difficult to peel off, and the nonaqueous electrolytic solution and the negative electrode of the present invention Reaction can be suppressed, and oxidation resistance and cycle characteristics can be improved. Moreover, this fluorine-containing cyclic carbonate (B3b) also has an advantage that it can be easily mixed with other fluorine-containing solvents (B).

また、X14〜X17の少なくとも1つが−CF3、−CHF2、−CH2F、−CF2CF3、−CH2CF3、−CH2CF2CF3または−CH2OCH225である含フッ素環状カーボネート(B3b)は、耐酸化性や誘電率が高く、粘性が低くできる。さらに、この含フッ素環状カーボネート(B3b)は、他の含フッ素溶媒(B)とまざりやすいという利点も有する。 Further, at least one of X 14 to X 17 is —CF 3 , —CHF 2 , —CH 2 F, —CF 2 CF 3 , —CH 2 CF 3 , —CH 2 CF 2 CF 3, or —CH 2 OCH 2 C. The fluorine-containing cyclic carbonate (B3b) that is 2 F 5 has high oxidation resistance and dielectric constant, and can have low viscosity. Furthermore, this fluorine-containing cyclic carbonate (B3b) also has an advantage that it can be easily mixed with other fluorine-containing solvents (B).

14〜X17は、水素原子、フッ素原子、−CF3、−CHF2、−CH2F、−C25、−CH2CF3、−CH2CF2CF3、−CH2CF(CF32または−CH2OCH225であり、誘電率、粘性が良好で、他の溶媒との相溶性に優れる点からフッ素原子、−CF3、−CH2CF3、−CH2CF2CF3が好ましい。 X 14 to X 17 is a hydrogen atom, a fluorine atom, -CF 3, -CHF 2, -CH 2 F, -C 2 F 5, -CH 2 CF 3, -CH 2 CF 2 CF 3, -CH 2 CF (CF 3 ) 2 or —CH 2 OCH 2 C 2 F 5 , fluorine atom, —CF 3 , —CH 2 CF 3 , from the viewpoint of excellent dielectric constant, viscosity, and compatibility with other solvents. -CH 2 CF 2 CF 3 are preferred.

式(B3b)において、フッ素原子、−CF3、−CF2CF3、−CH2CF3、−CH2CF2CF3または−CH2OCH2CF2CF3は、X14〜X17のすべてに置換していてもよいし、1箇所のみに置換していてもよい。なかでも、誘電率、耐酸化性が良好な点から、置換箇所は1〜2個が好ましい。 In the formula (B3b), a fluorine atom, —CF 3 , —CF 2 CF 3, —CH 2 CF 3 , —CH 2 CF 2 CF 3, or —CH 2 OCH 2 CF 2 CF 3 is represented by X 14 to X 17 . All may be substituted, or only one place may be substituted. Among these, from the point that the dielectric constant and oxidation resistance are good, the number of substitution sites is preferably 1 to 2.

含フッ素環状カーボネート(B3b)のなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明におけるリチウム二次電池としての特性が向上する点から、次のものが好ましい。   Among the fluorine-containing cyclic carbonates (B3b), the lithium secondary in the present invention is particularly advantageous in that it has excellent characteristics such as high dielectric constant and high withstand voltage, and also has good solubility of electrolyte salt and reduction of internal resistance. From the viewpoint of improving the characteristics as a battery, the following are preferable.

耐電圧が高く、電解質塩の溶解性も良好な含フッ素環状カーボネート(B3b)としては、たとえば、

Figure 2010086914
などがあげられる。 As the fluorine-containing cyclic carbonate (B3b) having a high withstand voltage and good solubility of the electrolyte salt, for example,
Figure 2010086914
Etc.

他にも、含フッ素環状カーボネート(B3b)としては、

Figure 2010086914
なども使用できる。 In addition, as the fluorine-containing cyclic carbonate (B3b),
Figure 2010086914
Etc. can also be used.

これらの含フッ素溶媒(B)のなかでも、含フッ素エーテル(B1)、含フッ素エステル(B2)および含フッ素カーボネート(B3)よりなる群から選ばれる少なくとも1種が、特には含フッ素鎖状エーテル(B1a)、含フッ素環状エステル(B2b)、含フッ素鎖状カーボネート(B3a)および含フッ素環状カーボネート(B3b)よりなる群から選ばれる少なくとも1種が、電池特性が良好な点から好ましい。   Among these fluorinated solvents (B), at least one selected from the group consisting of fluorinated ethers (B1), fluorinated esters (B2), and fluorinated carbonates (B3), in particular, fluorinated chain ethers. At least one selected from the group consisting of (B1a), a fluorine-containing cyclic ester (B2b), a fluorine-containing chain carbonate (B3a) and a fluorine-containing cyclic carbonate (B3b) is preferable from the viewpoint of good battery characteristics.

本発明の非水電解液において、電解質塩溶解用溶媒(I)中の含フッ素溶媒(B)の含有率は、電解質塩溶解用溶媒(I)全体に対して、5〜80体積%が耐酸化性および安全性が良好な点から好ましい。さらには10〜70体積%が、特に20〜60体積%が好ましい。なお、含フッ素溶媒(B)として、複数の溶媒を使用する場合、含フッ素溶媒(B)の含有率は、その合計量である。   In the nonaqueous electrolytic solution of the present invention, the content of the fluorine-containing solvent (B) in the electrolyte salt dissolving solvent (I) is 5 to 80% by volume with respect to the entire electrolyte salt dissolving solvent (I). From the viewpoint of good chemical properties and safety. Furthermore, 10 to 70 volume% is preferable, and 20 to 60 volume% is particularly preferable. In addition, when using a some solvent as a fluorine-containing solvent (B), the content rate of a fluorine-containing solvent (B) is the total amount.

本発明の非水電解液において、電解質塩溶解用溶媒(I)には、前記含フッ素エステル溶媒(A)および含フッ素溶媒(B)以外にも、非フッ素系溶媒(C)として、非フッ素系鎖状エステル(C1a)や非フッ素系環状エステル(C1b)などの非フッ素系エステル(C1)、非フッ素系鎖状カーボネート(C2a)や非フッ素系環状カーボネート(C2b)などの非フッ素系カーボネート(C2)などを使用することもできる。この際、これらの非フッ素系溶媒(C)は、含フッ素エステル溶媒(A)と含フッ素溶媒(B)による効果を損なわない範囲で含んでよいが、電池特性の向上の点からその含有率は、電解質塩溶解用溶媒(I)中に5〜75体積%が、特には10〜65体積%が、さらには10〜40体積%が好ましい。   In the non-aqueous electrolyte solution of the present invention, the electrolyte salt dissolving solvent (I) includes, in addition to the fluorine-containing ester solvent (A) and the fluorine-containing solvent (B), a non-fluorine solvent (C). Non-fluorinated carbonates such as non-fluorinated esters (C1), such as non-fluorinated cyclic carbonates (C2b), and non-fluorinated esters such as non-fluorinated cyclic carbonates (C2b). (C2) or the like can also be used. At this time, these non-fluorinated solvents (C) may be contained within a range that does not impair the effects of the fluorinated ester solvent (A) and the fluorinated solvent (B). Is preferably 5 to 75% by volume, particularly 10 to 65% by volume, more preferably 10 to 40% by volume in the solvent (I) for dissolving the electrolyte salt.

非フッ素系鎖状エステル(C1a)を使用すると、低温特性を向上させることができるという利点がある。   Use of the non-fluorinated chain ester (C1a) has an advantage that the low-temperature characteristics can be improved.

非フッ素系鎖状エステル(C1a)としては、式(C1a):
9COOR10 (C1a)
(式中、R9およびR10は同じかまたは異なり、R9は炭素数1〜2のアルキル基、R10は炭素数1〜4のアルキル基である)
で示される化合物が、低粘性で誘電率が高く、表面張力が低い点から好ましい。
As the non-fluorine chain ester (C1a), the formula (C1a):
R 9 COOR 10 (C1a)
(Wherein R 9 and R 10 are the same or different, R 9 is an alkyl group having 1 to 2 carbon atoms, and R 10 is an alkyl group having 1 to 4 carbon atoms)
Is preferable from the viewpoint of low viscosity, high dielectric constant, and low surface tension.

非フッ素系鎖状エステル(C1a)の好ましい具体例としては、たとえば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどがあげられ、なかでも、酢酸メチル、酢酸エチルが、粘性が低く、表面張力が低く、サイクル特性を向上させる点から好ましい。ただし、耐酸化性が低いという難点がある。   Preferable specific examples of the non-fluorine chain ester (C1a) include, for example, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, and the like. Among them, methyl acetate, ethyl acetate However, it is preferable from the viewpoint of low viscosity, low surface tension, and improved cycle characteristics. However, there is a difficulty that oxidation resistance is low.

非フッ素系環状エステル(C1b)を使用すると、電解質塩(II)の溶解性の向上、耐酸化性の向上、イオン解離性の向上といった効果が得られる。   When the non-fluorinated cyclic ester (C1b) is used, effects such as improved solubility of the electrolyte salt (II), improved oxidation resistance, and improved ion dissociation can be obtained.

非フッ素系環状エステル(C1b)としては、たとえば、γ−ブチロラクトン、γ−バレロラクトン、β−ブチロラクトン、β−プロピオラクトン、δ−バレロラクトン、ε−カプロラクトンなどがあげられ、なかでも、γ−ブチロラクトン、γ−バレロラクトンが、イオン解離性、誘電率が良好な点から好ましい。   Examples of the non-fluorine-based cyclic ester (C1b) include γ-butyrolactone, γ-valerolactone, β-butyrolactone, β-propiolactone, δ-valerolactone, ε-caprolactone, and the like. Butyrolactone and γ-valerolactone are preferred because of their good ion dissociation and dielectric constant.

非フッ素系鎖状カーボネート(C2a)を使用すると、低温特性を向上させることができるという利点がある。   The use of non-fluorinated chain carbonate (C2a) has the advantage that the low-temperature characteristics can be improved.

非フッ素系鎖状カーボネート(C2a)としては、式(C2a):
11OCOOR12 (C2a)
(式中、R11およびR12は同じかまたは異なり、いずれも炭素数1〜4のアルキル基である)
で示される化合物が、低粘性、他溶媒との相溶性が良好な点から好ましい。
As the non-fluorine chain carbonate (C2a), the formula (C2a):
R 11 OCOOR 12 (C2a)
(Wherein, R 11 and R 12 are the same or different and both are alkyl groups having 1 to 4 carbon atoms)
Is preferable from the viewpoint of low viscosity and good compatibility with other solvents.

非フッ素系鎖状カーボネート(C2a)の具体例としては、たとえば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネートなどがあげられ、なかでも、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが、他溶媒との相溶性、レート特性が良好な点から好ましい。   Specific examples of the non-fluorine chain carbonate (C2a) include, for example, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate and the like. Among them, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and the like. The compatibility with the solvent and the rate characteristic are preferable from the viewpoint of good.

非フッ素系環状カーボネート(C2b)を使用すると、電解質塩(II)の溶解性の向上、イオン解離性の向上といった効果が得られる。   When non-fluorine-based cyclic carbonate (C2b) is used, effects such as improved solubility of the electrolyte salt (II) and improved ion dissociation can be obtained.

非フッ素系環状カーボネート(C2b)としては、エチレンカーボネート、プロピレンカーボネートよりなる群から選ばれる少なくとも1種が、イオン解離性、低粘性、誘電率が良好な点から好ましい。   As the non-fluorinated cyclic carbonate (C2b), at least one selected from the group consisting of ethylene carbonate and propylene carbonate is preferable from the viewpoint of good ion dissociation, low viscosity, and dielectric constant.

他にも、非フッ素系溶媒としては、シクロヘキシルベンゼン、ビフェニルなどは安全性向上、特に過充電安全性向上を必要とする場合は使用することもでき添加量は電解質塩溶解用溶媒(I)に対して0.5〜5質量%で添加すれば良い。また、ビニレンカーボネートはサイクル特性向上を必要とする場合は使用することもできその添加量は電解質塩溶解用溶媒(I)に対して0.5〜2質量%であることが好ましい。   In addition, as non-fluorinated solvents, cyclohexylbenzene, biphenyl, etc. can be used when safety improvement, especially overcharge safety improvement is required, and the amount added can be added to the electrolyte salt dissolving solvent (I). It may be added at 0.5 to 5% by mass. In addition, vinylene carbonate can be used when cycle characteristic improvement is required, and the addition amount thereof is preferably 0.5 to 2% by mass with respect to the electrolyte salt dissolving solvent (I).

特に耐酸化性の向上が要求される場合は、上記(C1a)〜(C2b)などであげた非フッ素系溶媒(C)を使用せずに非水電解液を構成することが望ましい。すなわち、含フッ素系の溶媒(A)と(B)の合計含有量が高くなるほど耐酸化性を向上させることができる。特に含フッ素エステル溶媒(A)と含フッ素溶媒(B)との合計量が電解質塩溶解用溶媒(I)の60体積%以上、さらには80体積%以上とするときに、優れた耐酸化性の向上効果が奏される。   In particular, when improvement in oxidation resistance is required, it is desirable to constitute the non-aqueous electrolyte without using the non-fluorinated solvent (C) mentioned in (C1a) to (C2b) above. That is, the oxidation resistance can be improved as the total content of the fluorine-containing solvents (A) and (B) increases. Excellent oxidation resistance especially when the total amount of the fluorinated ester solvent (A) and the fluorinated solvent (B) is 60% by volume or more, more preferably 80% by volume or more of the solvent (I) for dissolving the electrolyte salt. The improvement effect is exhibited.

以下、本発明の非水電解液における電解質塩溶解用溶媒(I)の好ましい具体例について説明する。   Hereinafter, preferred specific examples of the solvent (I) for dissolving the electrolyte salt in the nonaqueous electrolytic solution of the present invention will be described.

(1)サイクル特性および安全性を向上させ、コストを抑制できる電解質塩溶解用溶媒(I)
含フッ素エステル溶媒(A):5〜80体積%、
14〜X17の少なくとも1つがフッ素原子である含フッ素環状カーボネート(B3b):10〜50体積%、
ジエチルカーボネート、ジメチルカーボネートまたはエチルメチルカーボネート:10〜50体積%、
エチレンカーボネートまたはプロピレンカーボネート:10〜50体積%。
(1) Solvent for dissolving electrolyte salt (I) capable of improving cycle characteristics and safety and suppressing cost
Fluorinated ester solvent (A): 5 to 80% by volume,
Fluorine-containing cyclic carbonate (B3b) in which at least one of X 14 to X 17 is a fluorine atom: 10 to 50% by volume,
Diethyl carbonate, dimethyl carbonate or ethyl methyl carbonate: 10 to 50% by volume,
Ethylene carbonate or propylene carbonate: 10 to 50% by volume.

さらにサイクル特性を向上させたい場合はビニレンカーボネートを0.5〜2質量%で添加すれば良い。また、安全性向上、特に過充電特性を向上させたい場合はシクロヘキシルベンゼン、モノフルオロベンゼン、ジフルオロアニソール、ビフェニルの少なくとも1種を0.5〜5質量%で添加すればよい。   Further, when it is desired to improve the cycle characteristics, vinylene carbonate may be added at 0.5 to 2% by mass. In order to improve safety, particularly overcharge characteristics, at least one of cyclohexylbenzene, monofluorobenzene, difluoroanisole, and biphenyl may be added at 0.5 to 5 mass%.

(2)自己消火性を有する成分を含有し、負極表面の皮膜をはがれにくくし、安全性を向上できる電解質塩溶解用溶媒(I)
含フッ素エステル溶媒(A):5〜80体積%、
含フッ素鎖状エーテル(B1a)、含フッ素鎖状エステル(B2a)または含フッ素鎖状カーボネート(B3a):10〜50体積%、
ジエチルカーボネート、ジメチルカーボネートまたはエチルメチルカーボネート:10〜50体積%、
エチレンカーボネートまたはプロピレンカーボネート:10〜50体積%。
(2) Solvent for dissolving electrolyte salt (I) containing a component having self-extinguishing properties, making it difficult to peel off the film on the negative electrode surface and improving safety
Fluorinated ester solvent (A): 5 to 80% by volume,
Fluorine-containing chain ether (B1a), fluorine-containing chain ester (B2a) or fluorine-containing chain carbonate (B3a): 10 to 50% by volume,
Diethyl carbonate, dimethyl carbonate or ethyl methyl carbonate: 10 to 50% by volume,
Ethylene carbonate or propylene carbonate: 10 to 50% by volume.

さらにサイクル特性を向上させたい場合はビニレンカーボネートを0.5〜2質量%で添加すれば良い。また、安全性向上、特に過充電特性を向上させたい場合はシクロヘキシルベンゼン、モノフルオロベンゼン、ジフルオロアニソール、ビフェニルの少なくとも1種を0.5〜5質量%で添加すればよい。   Further, when it is desired to improve the cycle characteristics, vinylene carbonate may be added at 0.5 to 2% by mass. In order to improve safety, particularly overcharge characteristics, at least one of cyclohexylbenzene, monofluorobenzene, difluoroanisole, and biphenyl may be added at 0.5 to 5 mass%.

(3)自己消火性を有する成分を含有し、負極表面の皮膜をはがれにくくし、安全性を向上でき、さらに、耐酸化性も向上できる電解質塩溶解用溶媒(I)
含フッ素エステル溶媒(A):5〜80体積%、
含フッ素鎖状エーテル(B1a)、含フッ素鎖状エステル(B2a)または含フッ素鎖状カーボネート(B3a):10〜50体積%、
14〜X17の少なくとも1つがフッ素原子である含フッ素環状カーボネート(B3b):0.5〜5体積%、
14〜X17の少なくとも1つが−CF3、−CHF2、−CH2F、−C25、−CH2CF3または−CH2OCH225である含フッ素環状カーボネート(B3b):5〜30体積%
エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネートなど:0〜40体積%。
(3) Solvent for dissolving electrolyte salt (I) containing a component having self-extinguishing properties, making it difficult to peel off the film on the negative electrode surface, improving safety, and improving oxidation resistance
Fluorinated ester solvent (A): 5 to 80% by volume,
Fluorine-containing chain ether (B1a), fluorine-containing chain ester (B2a) or fluorine-containing chain carbonate (B3a): 10 to 50% by volume,
Fluorine-containing cyclic carbonate (B3b) in which at least one of X 14 to X 17 is a fluorine atom: 0.5 to 5% by volume,
Fluorinated cyclic carbonate in which at least one of X 14 to X 17 is —CF 3 , —CHF 2 , —CH 2 F, —C 2 F 5, —CH 2 CF 3, or —CH 2 OCH 2 C 2 F 5 B3b): 5 to 30% by volume
Ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, etc .: 0 to 40% by volume.

さらにサイクル特性を向上させたい場合はビニレンカーボネートを0.5〜2質量%で添加すればよい。また、安全性向上、特に過充電特性を向上させたい場合はシクロヘキシルベンゼン、モノフルオロベンゼン、ジフルオロアニソール、ビフェニルの少なくとも1種を0.5〜5質量%で添加すればよい。   In order to further improve the cycle characteristics, vinylene carbonate may be added at 0.5 to 2% by mass. In order to improve safety, particularly overcharge characteristics, at least one of cyclohexylbenzene, monofluorobenzene, difluoroanisole, and biphenyl may be added at 0.5 to 5 mass%.

つぎに電解質塩(II)について説明する。   Next, the electrolyte salt (II) will be described.

本発明の非水電解液に使用する電解質塩(II)としては、たとえばLiBF4、LiAsF6、LiClO4、LiPF6、LiN(SO2CF32、LiN(SO2252などがあげられ、サイクル特性が良好な点から、LiPF6、LiN(SO2CF32およびLiN(SO2252よりなる群から選ばれる少なくとも1種の電解質塩が好ましい。また、たとえばLiPF6とLiN(SO2CF32を併用してもよい。 Examples of the electrolyte salt (II) used in the nonaqueous electrolytic solution of the present invention include LiBF 4 , LiAsF 6 , LiClO 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2. In view of good cycle characteristics, at least one electrolyte salt selected from the group consisting of LiPF 6 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2 is preferable. Further, for example, LiPF 6 and LiN (SO 2 CF 3 ) 2 may be used in combination.

本発明の非水電解液において、電解質塩(II)の濃度は、要求される電池特性を達成するためには、0.8モル/リットル以上、さらには1.0モル/リットル以上が好ましい。上限は電解質塩溶解用溶媒(I)にもよるが、通常1.5モル/リットルである。   In the nonaqueous electrolytic solution of the present invention, the concentration of the electrolyte salt (II) is preferably 0.8 mol / liter or more, more preferably 1.0 mol / liter or more in order to achieve the required battery characteristics. The upper limit is usually 1.5 mol / liter, although it depends on the electrolyte salt dissolving solvent (I).

本発明において必要に応じて界面活性剤を配合することができる。界面活性剤の配合量は、充放電サイクル特性を低下させずに非水電解液の表面張力を低下させるという点から、溶媒(I)全体に対して5質量%以下であり、さらには3質量%以下、特に0.05〜2質量%が好ましい。   In this invention, surfactant can be mix | blended as needed. The compounding amount of the surfactant is 5% by mass or less with respect to the entire solvent (I), and further 3% from the viewpoint of reducing the surface tension of the nonaqueous electrolytic solution without reducing the charge / discharge cycle characteristics. % Or less, particularly 0.05 to 2% by mass.

界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよいが、含フッ素界面活性剤が、サイクル特性、レート特性が良好な点から好ましい。   As the surfactant, any of a cationic surfactant, an anionic surfactant, a nonionic surfactant, and an amphoteric surfactant may be used, but the fluorine-containing surfactant has good cycle characteristics and rate characteristics. It is preferable from the point.

本発明の非水電解液は、以上のような構成を備えることから、不燃性(難燃性)でかつ電池特性(充放電効率、充放電サイクル特性)に優れる。さらに本発明の電解液によれば、低温でも相分離し難いこと、耐熱性に優れること、電解質塩の溶解性が高いこと、電池容量が向上し、レート特性に優れることを期待することもできる。   Since the nonaqueous electrolytic solution of the present invention has the above-described configuration, it is nonflammable (flame retardant) and excellent in battery characteristics (charge / discharge efficiency and charge / discharge cycle characteristics). Furthermore, according to the electrolytic solution of the present invention, it can be expected that phase separation is difficult even at low temperatures, heat resistance is high, electrolyte salt solubility is high, battery capacity is improved, and rate characteristics are excellent. .

本発明の非水電解液は、容量やレート特性を向上させる点から、リチウム二次電池用として好適であり、正極、負極、セパレータと本発明の非水電解液を備えるリチウム二次電池を提供できる。   The non-aqueous electrolyte of the present invention is suitable for lithium secondary batteries from the viewpoint of improving capacity and rate characteristics, and provides a lithium secondary battery comprising a positive electrode, a negative electrode, a separator and the non-aqueous electrolyte of the present invention. it can.

正極に使用する正極活物質としては特に制限されないが、コバルト系複合酸化物、ニッケル系複合酸化物、マンガン系複合酸化物、鉄系複合酸化物およびバナジウム系複合酸化物よりなる群から選ばれる少なくとも1種を用いるとき、エネルギー密度の高く、高出力のリチウム二次電池となることから好ましい。   The positive electrode active material used for the positive electrode is not particularly limited, but at least selected from the group consisting of cobalt-based composite oxides, nickel-based composite oxides, manganese-based composite oxides, iron-based composite oxides, and vanadium-based composite oxides. When using 1 type, it is preferable from becoming a high output lithium secondary battery with a high energy density.

コバルト系複合酸化物としては、LiCoO2が例示され、ニッケル系複合酸化物としては、LiNiO2が例示され、マンガン系複合酸化物としては、LiMnO2が例示される。また、LiCoxNi1-x2(0<x<1)やLiCoxMn1-x2(0<x<1)、LiNixMn1-x2(0<x<1)、LiNixMn2-x4(0<x<2)、LiNi1-x-yCoxMny2(0<x<1、0<y<1、0<x+y<1)で表されるCoNi、CoMn、NiMn、NiCoMnの複合酸化物でも良い。これらのリチウム含有複合酸化物は、Co、Ni、Mnなどの金属元素の一部が、Mg、Al、Zr、Ti、Crなどの1種以上の金属元素で置換されたものであってもよい。 An example of the cobalt-based composite oxide is LiCoO 2 , an example of the nickel-based composite oxide is LiNiO 2 , and an example of the manganese-based composite oxide is LiMnO 2 . LiCo x Ni 1-x O 2 (0 <x <1), LiCo x Mn 1-x O 2 (0 <x <1), LiNi x Mn 1-x O 2 (0 <x <1), LiNi x Mn 2-x O 4 (0 <x <2), CoNi represented by LiNi 1-xy Co x Mn y O 2 (0 <x <1,0 <y <1,0 <x + y <1) , CoMn, NiMn, and NiCoMn composite oxides may be used. In these lithium-containing composite oxides, a part of metal elements such as Co, Ni, and Mn may be substituted with one or more metal elements such as Mg, Al, Zr, Ti, and Cr. .

また、鉄系複合酸化物としては、たとえばLiFeO2、LiFePO4が例示され、バナジウム系複合酸化物としては、たとえばV25が例示される。 In addition, examples of the iron-based composite oxide include LiFeO 2 and LiFePO 4 , and examples of the vanadium-based composite oxide include V 2 O 5 .

正極活物質として、上記の複合酸化物のなかでも、容量を高くすることができる点から、ニッケル系複合酸化物またはコバルト系複合酸化物が好ましい。特に小型リチウム二次電池では、コバルト系複合酸化物を用いることはエネルギー密度が高い点と安全性の面から望ましい。本発明において特にハイブリッド自動車用や分散電源用の大型リチウム二次電池に使用される場合は、高出力が要求されるため、正極活物質の粒子は二次粒子が主体となり、その二次粒子の平均粒子径が40μm以下で平均一次粒子径1μm以下の微粒子を0.5〜7.0体積%含有することが好ましい。   As the positive electrode active material, among the above complex oxides, a nickel complex oxide or a cobalt complex oxide is preferable because the capacity can be increased. In particular, in a small lithium secondary battery, it is desirable to use a cobalt-based composite oxide from the viewpoint of high energy density and safety. In the present invention, particularly when used in a large-sized lithium secondary battery for a hybrid vehicle or a distributed power source, a high output is required, so the particles of the positive electrode active material are mainly secondary particles, and the secondary particles It is preferable to contain 0.5 to 7.0% by volume of fine particles having an average particle size of 40 μm or less and an average primary particle size of 1 μm or less.

平均一次粒子径が1μm以下の微粒子を含有させることにより電解液との接触面積が大きくなり電極と電解液の間でのリチウムイオンの拡散をより早くすることができ出力性能を向上させることができる。   By containing fine particles having an average primary particle diameter of 1 μm or less, the contact area with the electrolytic solution is increased, and the diffusion of lithium ions between the electrode and the electrolytic solution can be accelerated, and the output performance can be improved. .

本発明で負極に使用する負極活物質は炭素材料があげられ、リチウムイオンを挿入可能な金属酸化物や金属窒化物などもあげられる。炭素材料としては天然黒鉛、人造黒鉛、熱分解炭素類、コークス類、メソカーボンマイクロビーズ、炭素ファイバー、活性炭、ピッチ被覆黒鉛などがあげられ、リチウムイオンを挿入可能な金属酸化物としては、スズやケイ素、チタンを含む金属化合物、たとえば酸化スズ、酸化ケイ素、チタン酸リチウムなどがあげられ、金属窒化物としては、Li2.6Co0.4Nなどがあげられる。 Examples of the negative electrode active material used for the negative electrode in the present invention include carbon materials, and also include metal oxides and metal nitrides into which lithium ions can be inserted. Examples of carbon materials include natural graphite, artificial graphite, pyrolytic carbons, cokes, mesocarbon microbeads, carbon fibers, activated carbon, and pitch-coated graphite. Metal oxides capable of inserting lithium ions include tin and Examples of the metal compound include silicon and titanium, such as tin oxide, silicon oxide, and lithium titanate. Examples of the metal nitride include Li 2.6 Co 0.4 N.

正極活物質と負極活物質との組合せとしては、正極活物質がコバルト酸リチウムで負極活物質が黒鉛の組合せ、正極活物質がニッケル系複合酸化物で負極活物質が黒鉛の組合せが容量が増大する点から好ましい。   As a combination of the positive electrode active material and the negative electrode active material, the positive electrode active material is lithium cobaltate and the negative electrode active material is graphite. The positive electrode active material is nickel-based composite oxide and the negative electrode active material is graphite. This is preferable.

本発明に使用できるセパレータは特に制限はなく、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン−プロピレンコポリマーフィルム、微孔性ポリプロピレン/ポリエチレン2層フィルム、微孔性ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルムなどがあげられる。また、Liデントライトによって起こる短絡などを防止して安全性の向上を図るために作られたセパレータ上にアラミド樹脂を塗布したフィルム、またはポリアミドイミドおよびアルミナフィラーを含む樹脂をセパレータ上に塗布したフィルムなどもあげられる。   The separator that can be used in the present invention is not particularly limited, and is a microporous polyethylene film, a microporous polypropylene film, a microporous ethylene-propylene copolymer film, a microporous polypropylene / polyethylene bilayer film, a microporous polypropylene / polyethylene / Examples thereof include a polypropylene three-layer film. In addition, a film in which an aramid resin is coated on a separator made to prevent a short circuit caused by Li dentlite and improve safety, or a film in which a resin containing polyamideimide and an alumina filler is coated on a separator Etc.

また、本発明の非水電解液は、不燃性であることから、上記のハイブリッド自動車用や分散電源用の大型リチウム二次電池用の非水電解液として特に有用であるが、そのほか小型のリチウムイオン電池、アルミニウム電解コンデンサ用電解液、電気二重層キャパシタ用電解液などの非水電解液としても有用である。   In addition, since the non-aqueous electrolyte of the present invention is nonflammable, it is particularly useful as a non-aqueous electrolyte for the above-described hybrid automobile and large-sized lithium secondary battery for a distributed power source. It is also useful as a non-aqueous electrolyte such as an ion battery, an electrolytic solution for an aluminum electrolytic capacitor, and an electrolytic solution for an electric double layer capacitor.

つぎに本発明を実施例に基づいて具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to such examples.

なお、本発明で採用した測定法は以下のとおりである。
(1)NMR:BRUKER社製のAC−300を使用。
19F−NMR:
測定条件:282MHz(トリクロロフルオロメタン=0ppm)
1H−NMR:
測定条件:300MHz(テトラメチルシラン=0ppm)
(2)IR分析:Perkin Elmer社製フーリエ変換赤外分光光度計1760Xで室温にて測定した。
In addition, the measuring method employ | adopted by this invention is as follows.
(1) NMR: AC-300 manufactured by BRUKER is used.
19 F-NMR:
Measurement conditions: 282 MHz (trichlorofluoromethane = 0 ppm)
1 H-NMR:
Measurement conditions: 300 MHz (tetramethylsilane = 0 ppm)
(2) IR analysis: Measured at room temperature with a Fourier transform infrared spectrophotometer 1760X manufactured by Perkin Elmer.

合成例1(成分A1)
500ml容の2口フラスコにカリウムメトキシド(4.14g:59.1mmol:3.3当量)とジエチルエーテル(200mL)を加え撹拌を行った。その後滴下ロートを用いて室温下で2,2,3−トリブロモ−1,1,1−トリフルオロプロパン(6.0g:17.9mmol)

Figure 2010086914
のジエチルエーテル(50mL)溶液を滴下した。滴下終了後15分間撹拌を行った。その後1NHCl水溶液を用いてクエンチを行った。上層の目的生成物を採取し、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。その後溶媒のジエチルエーテルを留去し蒸留により精製を行い、目的生成物である3,3,3−トリフルオロプロピオン酸メチル(1.78g:12.5mmol)
Figure 2010086914
を収率70%(純度99.8%)で無色液体として得た。純度はゲルクロマトグラフィ(GC)とNMRにより算出した。 Synthesis example 1 (component A1)
Potassium methoxide (4.14 g: 59.1 mmol: 3.3 equivalents) and diethyl ether (200 mL) were added to a 500 ml two-necked flask and stirred. Then, 2,2,3-tribromo-1,1,1-trifluoropropane (6.0 g: 17.9 mmol) at room temperature using a dropping funnel
Figure 2010086914
Of diethyl ether (50 mL) was added dropwise. Stirring was performed for 15 minutes after completion of the dropping. Thereafter, quenching was performed using 1N HCl aqueous solution. The target product in the upper layer was collected, washed with saturated brine, and dried over magnesium sulfate. Then, the solvent diethyl ether was distilled off and the residue was purified by distillation. The desired product, methyl 3,3,3-trifluoropropionate (1.78 g: 12.5 mmol)
Figure 2010086914
Was obtained as a colorless liquid in a yield of 70% (purity 99.8%). The purity was calculated by gel chromatography (GC) and NMR.

この生成物を19F−NMRおよび1H−NMR分析により分析した。
19F−NMR:(neat):−63.9ppm〜−63.6(3F)
1H−NMR:(neat):1.25〜1.35ppm(3H)、4.21〜4.25ppm(2H)
The product was analyzed by 19 F-NMR and 1 H-NMR analysis.
19 F-NMR: (neat): -63.9 ppm to -63.6 (3F)
1 H-NMR: (neat): 1.25 to 1.35 ppm (3H), 4.21 to 4.25 ppm (2H)

合成例2(成分A2)
500ml容の2口フラスコにカリウムエトキシド(5.0g:59.1mmol:3.3当量)とジエチルエーテル(200mL)を加え撹拌を行った。その後滴下ロートを用いて室温下で2,2,3−トリブロモ−1,1,1−トリフルオロプロパン(6.0g:17.9mmol)

Figure 2010086914
のジエチルエーテル(50mL)溶液を滴下した。滴下終了後15分間撹拌を行った。その後1NHCl水溶液を用いてクエンチを行った。上層の目的生成物を採取し、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。その後溶媒のジエチルエーテルを留去し蒸留により精製を行い、目的生成物である3,3,3−トリフルオロプロピオン酸エチル(1.68g:10.7mmol)
Figure 2010086914
を収率60%(純度99.8%)で無色液体として得た。純度はGCとNMRにより算出した。 Synthesis example 2 (component A2)
Potassium ethoxide (5.0 g: 59.1 mmol: 3.3 equivalents) and diethyl ether (200 mL) were added to a 500 ml two-necked flask and stirred. Then, 2,2,3-tribromo-1,1,1-trifluoropropane (6.0 g: 17.9 mmol) at room temperature using a dropping funnel
Figure 2010086914
Of diethyl ether (50 mL) was added dropwise. Stirring was performed for 15 minutes after completion of the dropping. Thereafter, quenching was performed using 1N HCl aqueous solution. The target product in the upper layer was collected, washed with saturated brine, and dried over magnesium sulfate. Then, the solvent diethyl ether was distilled off and the residue was purified by distillation. The target product, ethyl 3,3,3-trifluoropropionate (1.68 g: 10.7 mmol)
Figure 2010086914
Was obtained as a colorless liquid in a yield of 60% (purity 99.8%). The purity was calculated by GC and NMR.

この生成物を19F−NMRおよび1H−NMR分析により分析した。
19F−NMR:(neat):−63.9ppm〜−63.6(3F)
1H−NMR:(neat):1.25〜1.35ppm(3H)、3.14〜3.17ppm(2H)、4.21〜4.25ppm(2H)
The product was analyzed by 19 F-NMR and 1 H-NMR analysis.
19 F-NMR: (neat): -63.9 ppm to -63.6 (3F)
1 H-NMR: (neat): 1.25 to 1.35 ppm (3H), 3.14 to 3.17 ppm (2H), 4.21 to 4.25 ppm (2H)

つぎに非水電解液二次電池の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。   Next, examples of the non-aqueous electrolyte secondary battery will be described, but the present invention is not limited to these examples.

なお、以下の実施例および比較例で使用した各化合物は以下のとおりである。   In addition, each compound used in the following Examples and Comparative Examples is as follows.

成分(A)
(A1):CF3CH2COOCH3(合成例1)
(A2):CF3CH2COOC25(合成例2)
Ingredient (A)
(A1): CF 3 CH 2 COOCH 3 (Synthesis Example 1)
(A2): CF 3 CH 2 COOC 2 H 5 (Synthesis Example 2)

成分(B)
(B1a):CHF2CF2CH2OCF2CHFCF3
(B2a):CF3COOCH2CF2CHF2
(B3a):CF3CH2OCOOCH2CF3
(B2b):

Figure 2010086914
(B3b):
Figure 2010086914
Ingredient (B)
(B1a): CHF 2 CF 2 CH 2 OCF 2 CHFCF 3
(B2a): CF 3 COOCH 2 CF 2 CHF 2
(B3a): CF 3 CH 2 OCOOCH 2 CF 3
(B2b):
Figure 2010086914
(B3b):
Figure 2010086914

成分(C)
(C1a):プロピオン酸メチル
(C1b):γ−ブチルラクトン
(C2a):エチルメチルカーボネート
(C2b):エチレンカーボネート
Ingredient (C)
(C1a): methyl propionate (C1b): γ-butyllactone (C2a): ethyl methyl carbonate (C2b): ethylene carbonate

実施例1
成分(A1)と成分(B1a)を50/50体積%比となるように混合し、この電解質塩溶解用溶媒にさらに電解質塩としてLiN(SO2CF2CF32を0.8モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の電解液を調製した。
Example 1
The component (A1) and the component (B1a) are mixed so as to have a ratio of 50/50% by volume, and LiN (SO 2 CF 2 CF 3 ) 2 is further added as an electrolyte salt to this electrolyte salt dissolving solvent at 0.8 mol / The solution was added to a concentration of 1 liter and sufficiently stirred at 25 ° C. to prepare the electrolytic solution of the present invention.

実施例2〜16
実施例1と同様にして、成分(A)、成分(B)および成分(C)を表1に示す組成となるように混合し、この電解質塩溶解用溶媒にさらに表1〜2に示す電解質塩を加え、本発明の電解液を調製した。
Examples 2-16
In the same manner as in Example 1, the components (A), (B) and (C) were mixed so as to have the composition shown in Table 1, and the electrolytes shown in Tables 1 and 2 were further added to this electrolyte salt dissolving solvent. Salt was added to prepare the electrolytic solution of the present invention.

比較例1
実施例1と同様にして、電解質塩溶解用溶媒として成分(C)のみを使用し、さらに表2に示す電解質塩を加え、比較用の電解液を調製した。
Comparative Example 1
In the same manner as in Example 1, only the component (C) was used as the solvent for dissolving the electrolyte salt, and the electrolyte salt shown in Table 2 was further added to prepare a comparative electrolytic solution.

実施例1〜16および比較例1の非水電解液について、以下の要領で充放電試験(放電容量、レート特性、サイクル特性、充放電(クーロン)効率)、および安全性試験(釘刺し試験、加熱試験、短絡試験、過充電試験)を行った。結果を表1〜2に示す。   For the non-aqueous electrolytes of Examples 1 to 16 and Comparative Example 1, a charge / discharge test (discharge capacity, rate characteristics, cycle characteristics, charge / discharge (Coulomb) efficiency) and a safety test (nail penetration test, (Heating test, short circuit test, overcharge test). The results are shown in Tables 1-2.

[充放電試験]
実際にコイン電池を作成し電池特性を評価した。
[Charge / discharge test]
A coin battery was actually made and the battery characteristics were evaluated.

(正極の作製)
LiCoO2とカーボンブラックとポリフッ化ビニリデン(呉羽化学(株)製。商品名KF−1000)を90/3/7(質量%比)で混合した正極活物質をN−メチル−2−ピロリドンに分散してスラリー状としたものを正極集電体(厚さ15μmのアルミニウム箔)上に均一に塗布し、乾燥後、直径13.0mmの円盤に打ち抜いて正極を作製した。
(Preparation of positive electrode)
A positive electrode active material prepared by mixing LiCoO 2 , carbon black, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd., trade name KF-1000) at 90/3/7 (mass% ratio) is dispersed in N-methyl-2-pyrrolidone. Then, the slurry was applied uniformly on a positive electrode current collector (aluminum foil having a thickness of 15 μm), dried, and then punched into a disc having a diameter of 13.0 mm to produce a positive electrode.

(負極の作製)
人造黒鉛粉末(日立化成(株)製。商品名MAG−D)に、蒸留水で分散させたスチレン−ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥後、直径13.0mmの円盤に打ち抜いて負極を作製した。
(Preparation of negative electrode)
To artificial graphite powder (manufactured by Hitachi Chemical Co., Ltd., trade name MAG-D), styrene-butadiene rubber dispersed with distilled water is added to a solid content of 6% by mass and mixed with a disperser to form a slurry. Was applied uniformly on a negative electrode current collector (copper foil having a thickness of 10 μm), dried, and then punched into a disc having a diameter of 13.0 mm to produce a negative electrode.

(コイン型リチウム二次電池の作製)
正極集電体を兼ねるステンレススチール製の缶体に上記正極を収容し、その上に直径17mmのポリエチレン製のセパレータ(セルガード(株)製。商品名セルガード3501)を重ねさらに上記負極を載置し、実施例および比較例で製造した電解液を含浸させる。この缶体と負極集電体を兼ねる封口板とを絶縁用ガスケットを介してかしめて密封し、コイン型リチウム二次電池を作製した。
(Production of coin-type lithium secondary battery)
The positive electrode is housed in a stainless steel can that also serves as a positive electrode current collector, and a polyethylene separator having a diameter of 17 mm (manufactured by Celgard Co., Ltd., trade name Celguard 3501) is layered thereon, and the negative electrode is further placed thereon. The electrolytic solutions produced in Examples and Comparative Examples are impregnated. The can body and a sealing plate serving also as a negative electrode current collector were caulked and sealed through an insulating gasket to produce a coin-type lithium secondary battery.

(放電容量)
充放電電流をCで表示した場合、3.5mAを1Cとして下記の充放電測定条件で測定を行う。評価は、比較例1の放電容量の結果を100とした指数で行う。
充放電条件
充電:0.5C、4.2Vにて充電電流が1/10Cになるまでを保持(CC・CV充電)
放電:1C 2.5Vcut(CC放電)
(Discharge capacity)
When the charge / discharge current is indicated by C, measurement is performed under the following charge / discharge measurement conditions with 3.5 mA as 1C. The evaluation is performed using an index with the result of the discharge capacity of Comparative Example 1 as 100.
Charge / Discharge Condition Charging: Holds the charge current at 1 / 10C at 0.5C / 4.2V (CC / CV charge)
Discharge: 1C 2.5Vcut (CC discharge)

(充放電効率)
充放電効率とは下記の式で求められる。
充放電効率(%)=(1サイクル目の放電量/1サイクル目の充電量)×100
(Charge / discharge efficiency)
The charge / discharge efficiency is obtained by the following formula.
Charge / discharge efficiency (%) = (discharge amount in the first cycle / charge amount in the first cycle) × 100

(レート特性)
充電については上記の条件で0.5C・4.2Vで充電電流が1/10Cになるまで充電し0.3C相当の電流で2.5Vまで放電し、放電容量を求めた。引き続き、0.5C・4.2Vで充電電流が1/10Cになるまで充電し、5C相当の電流で2.5Vになるまで放電し、放電容量を求めた。この5Cでの放電容量と、上記の0.3Cでの放電容量との比から、レート特性を評価した。レート特性は下記の計算式で求められた値をレート特性として記載する。
レート特性(%)=5C放電容量(mAh)/0.3C放電容量(mAh)×100
(Rate characteristics)
Regarding charging, the battery was charged at 0.5 C · 4.2 V under the above conditions until the charging current became 1/10 C, discharged to 2.5 V at a current equivalent to 0.3 C, and the discharge capacity was determined. Subsequently, the battery was charged at 0.5 C · 4.2 V until the charging current became 1/10 C, and discharged at a current equivalent to 5 C until it reached 2.5 V, and the discharge capacity was determined. The rate characteristics were evaluated from the ratio of the discharge capacity at 5C and the above discharge capacity at 0.3C. For the rate characteristic, a value obtained by the following calculation formula is described as the rate characteristic.
Rate characteristic (%) = 5C discharge capacity (mAh) /0.3C discharge capacity (mAh) × 100

(サイクル特性)
サイクル特性については上記の充放電条件で充放電試験を行い100サイクルの放電容量を測定する。サイクル特性については下記の計算式で求められた値をサイクル維持率として記載する。
サイクル維持率(%)=100サイクル放電容量(mAh)/1サイクル放電容量(mAh)×100
(Cycle characteristics)
As for the cycle characteristics, a charge / discharge test is performed under the above charge / discharge conditions, and a discharge capacity of 100 cycles is measured. For the cycle characteristics, the value obtained by the following calculation formula is described as the cycle retention rate.
Cycle maintenance ratio (%) = 100 cycle discharge capacity (mAh) / 1 cycle discharge capacity (mAh) × 100

[安全性試験]
(円筒型電池の作成)
LiCoO2とカーボンブラックとポリフッ化ビニリデン(呉羽化学(株)製。商品名KF−1000)を92/3/5(質量%比)で混合した正極活物質をN−メチル−2−ピロリドンに分散してスラリー状としたものを正極集電体(厚さ15μmのアルミニウム箔)上に均一に塗布し、乾燥して正極合剤層を形成し、その後、ローラプレス機により圧縮成形した後、切断し、リード体を溶接して、帯状の正極を作製した。
[Safety test]
(Cylindrical battery creation)
A positive electrode active material obtained by mixing LiCoO 2 , carbon black, and polyvinylidene fluoride (manufactured by Kureha Chemical Co., Ltd., trade name KF-1000) at 92/3/5 (mass% ratio) is dispersed in N-methyl-2-pyrrolidone. Then, the slurry is applied uniformly on a positive electrode current collector (aluminum foil having a thickness of 15 μm), dried to form a positive electrode mixture layer, and then compression-molded with a roller press and then cut. The lead body was then welded to produce a strip-shaped positive electrode.

別途、人造黒鉛粉末(日立化成(株)製。商品名MAG−D)に、蒸留水で分散させたスチレン−ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極を作製した。   Separately, styrene-butadiene rubber dispersed with distilled water is added to artificial graphite powder (manufactured by Hitachi Chemical Co., Ltd., trade name MAG-D) so that the solid content becomes 6% by mass, and mixed with a disperser. After applying the slurry in a uniform manner on a negative electrode current collector (copper foil having a thickness of 10 μm), drying, forming a negative electrode mixture layer, and then compression molding with a roller press machine and cutting, It dried and welded the lead body and produced the strip | belt-shaped negative electrode.

ついで、帯状の正極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して帯状の負極に重ね、渦巻状に巻回して渦巻状巻回構造の積層電極体とした。その際、正極集電材の粗面側が外周側になるようにして巻回した。その後、この電極体を外径18mmの有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った。   Next, the belt-like positive electrode was overlapped with the belt-like negative electrode through a microporous polyethylene film (separator) having a thickness of 20 μm and wound in a spiral shape to obtain a laminated electrode body having a spiral winding structure. In that case, it wound so that the rough surface side of the positive electrode current collector could be the outer peripheral side. Thereafter, the electrode body was filled in a bottomed cylindrical battery case having an outer diameter of 18 mm, and the positive and negative lead bodies were welded.

ついで、実施例および比較例で調製した電解液を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、封口し、予備充電、エージングを行い、筒形のリチウム二次電池を作製した。   Next, the electrolyte solutions prepared in Examples and Comparative Examples were injected into the battery case, and after the electrolyte solution sufficiently penetrated into the separator, etc., sealed, precharged, and aged, a cylindrical lithium secondary battery was obtained. Produced.

(試験方法)
円筒型電池について、つぎの4種類の難燃性試験を行う。
(Test method)
The following four types of flame retardancy tests are performed on the cylindrical battery.

(釘刺し試験)
4.3Vまで円筒型電池を充電したのち、直径3mmの釘を円筒型電池に貫通させて、円筒型電池の発火・破裂の有無を調べる。
(Nail penetration test)
After charging the cylindrical battery to 4.3 V, a 3 mm diameter nail is passed through the cylindrical battery, and the cylindrical battery is examined for ignition or rupture.

(加熱試験)
4.25Vまで円筒型電池を充電したのち、5℃/分で室温から150℃まで上げその後、150℃で放置させ円筒型電池の発火・破裂の有無を調べる。
(Heating test)
After charging the cylindrical battery to 4.25 V, the temperature is raised from room temperature to 150 ° C. at 5 ° C./min, and then left at 150 ° C. to check whether the cylindrical battery is ignited or ruptured.

(短絡試験)
4.3Vまで円筒型電池を充電した後、正極と負極を銅線で短絡させ、ラミネートセルの発火の有無を調べる。
(Short-circuit test)
After charging the cylindrical battery to 4.3 V, the positive electrode and the negative electrode are short-circuited with a copper wire, and the presence or absence of ignition of the laminate cell is examined.

(過充電試験)
円筒型電池を1CmA相当の電流値で3.0Vまで放電し12Vを上限電圧として1CmA相当の電流値での過充電を行い、発火・破裂の有無を調べる。
(Overcharge test)
The cylindrical battery is discharged to 3.0 V at a current value equivalent to 1 CmA, overcharged at a current value equivalent to 1 CmA with 12 V as the upper limit voltage, and the presence or absence of ignition / rupture is examined.

評価は、いずれの試験においても、発火(破裂)がない場合を○、発火(破裂)した場合を×とする。   In any of the tests, the case where there is no ignition (rupture) is indicated by ◯, and the case where ignition (explosion) is indicated by x.

Figure 2010086914
Figure 2010086914

Figure 2010086914
Figure 2010086914

表1〜2より実施例1〜16は比較例1と比較して電池特性、安全性が向上していることがわかる。   From Tables 1 and 2, it can be seen that Examples 1 to 16 are improved in battery characteristics and safety as compared with Comparative Example 1.

Claims (9)

(A)式(A):
RfCH2COOR (A)
(式中、Rfは炭素数1〜4のフルオロアルキル基;Rは炭素数1〜4のアルキル基)
で示される含フッ素エステル溶媒、および
(B)含フッ素エステル(A)以外の含フッ素溶媒
を含む電解質塩溶解用溶媒(I)、ならびに
電解質塩(II)
を含む非水電解液。
(A) Formula (A):
RfCH 2 COOR (A)
(Wherein Rf is a fluoroalkyl group having 1 to 4 carbon atoms; R is an alkyl group having 1 to 4 carbon atoms)
And (B) a solvent for dissolving an electrolyte salt containing a fluorine-containing solvent other than the fluorine-containing ester (A) (I), and an electrolyte salt (II)
Non-aqueous electrolyte containing.
含フッ素エステル溶媒(A)が、HCF2CH2COOCH3、CF3CH2COOCH3、HCF2COOC25およびCF3CH2COOC25よりなる群から選ばれる少なくとも1種である請求項1記載の非水電解液。 The fluorine-containing ester solvent (A) is at least one selected from the group consisting of HCF 2 CH 2 COOCH 3 , CF 3 CH 2 COOCH 3 , HCF 2 COOC 2 H 5 and CF 3 CH 2 COOC 2 H 5 Item 4. A nonaqueous electrolytic solution according to Item 1. 含フッ素溶媒(B)が、含フッ素エーテル(B1)、含フッ素エステル(A)以外の含フッ素エステル(B2)および含フッ素カーボネート(B3)よりなる群から選ばれる少なくとも1種である請求項1または2記載の非水電解液。 2. The fluorine-containing solvent (B) is at least one selected from the group consisting of fluorine-containing ethers (B1), fluorine-containing esters (B2) other than fluorine-containing esters (A), and fluorine-containing carbonates (B3). Or the nonaqueous electrolyte of 2. 含フッ素溶媒(B)が、含フッ素鎖状エーテル(B1a)、含フッ素環状エステル(B2b)、含フッ素鎖状カーボネート(B3a)および含フッ素環状カーボネート(B3b)よりなる群から選ばれる少なくとも1種である請求項1〜3のいずれかに記載の非水電解液。 The fluorine-containing solvent (B) is at least one selected from the group consisting of a fluorine-containing chain ether (B1a), a fluorine-containing cyclic ester (B2b), a fluorine-containing chain carbonate (B3a), and a fluorine-containing cyclic carbonate (B3b). The nonaqueous electrolytic solution according to any one of claims 1 to 3. 含フッ素エステル溶媒(A)と含フッ素溶媒(B)との合計量が電解質塩溶解用溶媒(I)の60体積%以上である請求項4記載の非水電解液。 The nonaqueous electrolytic solution according to claim 4, wherein the total amount of the fluorinated ester solvent (A) and the fluorinated solvent (B) is 60% by volume or more of the electrolyte salt dissolving solvent (I). 電解質塩溶解用溶媒(I)が、さらに、非フッ素系溶媒(C)を含む請求項1〜5のいずれかに記載の非水電解液。 The nonaqueous electrolytic solution according to claim 1, wherein the electrolyte salt dissolving solvent (I) further contains a non-fluorinated solvent (C). 電解質塩(II)が、LiPF6、LiN(SO2CF32およびLiN(SO2252よりなる群から選ばれる少なくとも1種である請求項1〜6のいずれかに記載の非水電解液。 The electrolyte salt (II) is at least one selected from the group consisting of LiPF 6 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2. Non-aqueous electrolyte. リチウム二次電池用である請求項1〜7のいずれかに記載の非水電解液。 The nonaqueous electrolytic solution according to any one of claims 1 to 7, which is used for a lithium secondary battery. 正極、負極、セパレータおよび請求項1〜8のいずれかに記載の非水電解液を備えるリチウム二次電池。 A lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and the nonaqueous electrolytic solution according to claim 1.
JP2008257727A 2008-10-02 2008-10-02 Non-aqueous electrolyte Active JP5359163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008257727A JP5359163B2 (en) 2008-10-02 2008-10-02 Non-aqueous electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008257727A JP5359163B2 (en) 2008-10-02 2008-10-02 Non-aqueous electrolyte

Publications (2)

Publication Number Publication Date
JP2010086914A true JP2010086914A (en) 2010-04-15
JP5359163B2 JP5359163B2 (en) 2013-12-04

Family

ID=42250658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008257727A Active JP5359163B2 (en) 2008-10-02 2008-10-02 Non-aqueous electrolyte

Country Status (1)

Country Link
JP (1) JP5359163B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132060A1 (en) * 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
WO2012165207A1 (en) * 2011-05-31 2012-12-06 三洋電機株式会社 Nonaqueous electrolyte battery
WO2013146359A1 (en) * 2012-03-27 2013-10-03 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
WO2015159824A1 (en) * 2014-04-18 2015-10-22 旭硝子株式会社 Nonaqueous electrolyte solution for secondary battery, and lithium-ion secondary battery
CN105580188A (en) * 2013-09-24 2016-05-11 旭硝子株式会社 Monaqueous liquid electrolyte for use in secondary battery, and lithium-ion secondary battery
US20160141720A1 (en) * 2013-09-24 2016-05-19 Asahi Glass Company, Limited Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery
JP2017103240A (en) * 2012-11-22 2017-06-08 エルジー・ケム・リミテッド Electrolyte for lithium secondary batteries, and lithium secondary battery including the same
WO2018061301A1 (en) * 2016-09-30 2018-04-05 パナソニック株式会社 Nonaqueous electrolyte and nonaqueous-electrolyte secondary cell
WO2018123259A1 (en) * 2016-12-26 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2018179883A1 (en) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
EP2722924B1 (en) * 2011-06-15 2018-11-28 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous solvent and non-aqueous electrolytic solution for electrical storage devices, and electrical storage device, lithium secondary battery and electric double-layer capacitor each utilizing said non-aqueous solvent and said non-aqueous electrolytic solution
US10211482B2 (en) 2014-12-30 2019-02-19 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery employing the same
US10505225B2 (en) 2014-12-30 2019-12-10 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery employing the same
US10658699B2 (en) 2014-12-30 2020-05-19 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery employing the same
US10707529B2 (en) 2014-12-30 2020-07-07 Samsung Electronics Co., Ltd. Lithium secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100342A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Lithium secondary battery
JP2007019012A (en) * 2005-06-10 2007-01-25 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery
JP2008135273A (en) * 2006-11-28 2008-06-12 Sony Corp Electrolyte and battery
WO2008102493A1 (en) * 2007-02-20 2008-08-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte for rechargeable battery and rechargeable battery with nonaqueous electrolyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100342A (en) * 2001-09-25 2003-04-04 Hitachi Ltd Lithium secondary battery
JP2007019012A (en) * 2005-06-10 2007-01-25 Mitsubishi Chemicals Corp Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery
JP2008135273A (en) * 2006-11-28 2008-06-12 Sony Corp Electrolyte and battery
WO2008102493A1 (en) * 2007-02-20 2008-08-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte for rechargeable battery and rechargeable battery with nonaqueous electrolyte

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132976A1 (en) * 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
US10749208B2 (en) 2011-03-28 2020-08-18 Nec Corporation Secondary battery and electrolyte liquid
CN103460491A (en) * 2011-03-28 2013-12-18 日本电气株式会社 Secondary battery and electrolyte
WO2012132060A1 (en) * 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
JPWO2012132976A1 (en) * 2011-03-28 2014-07-28 日本電気株式会社 Secondary battery and electrolyte
JPWO2012165207A1 (en) * 2011-05-31 2015-02-23 三洋電機株式会社 Non-aqueous electrolyte battery
WO2012165207A1 (en) * 2011-05-31 2012-12-06 三洋電機株式会社 Nonaqueous electrolyte battery
EP2722924B1 (en) * 2011-06-15 2018-11-28 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous solvent and non-aqueous electrolytic solution for electrical storage devices, and electrical storage device, lithium secondary battery and electric double-layer capacitor each utilizing said non-aqueous solvent and said non-aqueous electrolytic solution
CN103875116A (en) * 2012-03-27 2014-06-18 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
WO2013146359A1 (en) * 2012-03-27 2013-10-03 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
US9236636B2 (en) 2012-03-27 2016-01-12 Asahi Glass Company, Limited Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery
JP5488768B2 (en) * 2012-03-27 2014-05-14 旭硝子株式会社 Nonaqueous electrolyte for secondary battery and lithium ion secondary battery
JP2017103240A (en) * 2012-11-22 2017-06-08 エルジー・ケム・リミテッド Electrolyte for lithium secondary batteries, and lithium secondary battery including the same
CN105580188A (en) * 2013-09-24 2016-05-11 旭硝子株式会社 Monaqueous liquid electrolyte for use in secondary battery, and lithium-ion secondary battery
US20160141720A1 (en) * 2013-09-24 2016-05-19 Asahi Glass Company, Limited Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery
US9960450B2 (en) * 2013-09-24 2018-05-01 Asahi Glass Company, Limited Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery
WO2015159824A1 (en) * 2014-04-18 2015-10-22 旭硝子株式会社 Nonaqueous electrolyte solution for secondary battery, and lithium-ion secondary battery
US10658699B2 (en) 2014-12-30 2020-05-19 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery employing the same
US10505225B2 (en) 2014-12-30 2019-12-10 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery employing the same
US10211482B2 (en) 2014-12-30 2019-02-19 Samsung Electronics Co., Ltd. Electrolyte for lithium secondary battery and lithium secondary battery employing the same
US10707529B2 (en) 2014-12-30 2020-07-07 Samsung Electronics Co., Ltd. Lithium secondary battery
US10903523B2 (en) 2016-09-30 2021-01-26 Panasonic Corporation Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JPWO2018061301A1 (en) * 2016-09-30 2019-07-11 パナソニック株式会社 Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
CN109565082A (en) * 2016-09-30 2019-04-02 松下电器产业株式会社 Nonaqueous electrolyte and non-aqueous electrolyte secondary battery
WO2018061301A1 (en) * 2016-09-30 2018-04-05 パナソニック株式会社 Nonaqueous electrolyte and nonaqueous-electrolyte secondary cell
WO2018123259A1 (en) * 2016-12-26 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
JPWO2018123259A1 (en) * 2016-12-26 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
CN110062976A (en) * 2016-12-26 2019-07-26 大金工业株式会社 Electrolyte, electrochemical appliance, lithium ion secondary battery and component
EP3522288A4 (en) * 2016-12-26 2020-08-26 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
US11043698B2 (en) 2016-12-26 2021-06-22 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
CN110062976B (en) * 2016-12-26 2022-03-15 大金工业株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
JPWO2018179883A1 (en) * 2017-03-29 2020-02-06 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
CN110392952A (en) * 2017-03-29 2019-10-29 松下知识产权经营株式会社 Non-aqueous electrolyte secondary battery
WO2018179883A1 (en) * 2017-03-29 2018-10-04 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5359163B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5359163B2 (en) Non-aqueous electrolyte
JP5223919B2 (en) Non-aqueous electrolyte
JP5369589B2 (en) Nonaqueous electrolyte containing fluorine-containing formate solvent
JP5401836B2 (en) Solvent for dissolving electrolyte salt of lithium secondary battery
JP5444717B2 (en) Non-aqueous electrolyte
JP5168807B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP2008257988A (en) Non-aqueous electrolytic solution
JP2008192504A (en) Nonaqueous electrolyte
US20150004501A1 (en) Non-aqueous electrolyte and battery
JP2008218387A (en) Non-aqueous electrolytic solution
JP5545291B2 (en) Non-aqueous electrolyte for lithium secondary battery
JP2010146740A (en) Electrolytic solution
JP5321685B2 (en) Solvent for non-aqueous electrolyte of lithium secondary battery
JP5309704B2 (en) Solvent for non-aqueous electrolyte of lithium secondary battery
JP5573639B2 (en) Non-aqueous electrolyte for lithium secondary battery
JP2013069512A (en) Nonaqueous electrolytic solution, lithium ion secondary battery, and module
JP5849526B2 (en) Nonaqueous electrolyte, lithium ion secondary battery, and module
JP5382248B2 (en) Overcharge prevention agent, non-aqueous electrolyte, and lithium ion secondary battery
JP2013045728A (en) Nonaqueous electrolyte, lithium ion secondary battery, and module
JP4787477B2 (en) Non-aqueous electrolyte battery electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery
JP2012216387A (en) Electrochemical device and nonaqueous electrolyte for electrochemical device
JP2006059682A (en) Additive for electrolyte of nonaqueous electrolyte battery, nonaqueous electrolyte for battery, and nonaqueous electrolyte battery
JP2013045645A (en) Nonaqueous electrolyte, lithium ion secondary battery, and module
JP2013045646A (en) Nonaqueous electrolyte, lithium ion secondary battery, and module

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100514

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20101020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R151 Written notification of patent or utility model registration

Ref document number: 5359163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151