WO2015159824A1 - Nonaqueous electrolyte solution for secondary battery, and lithium-ion secondary battery - Google Patents

Nonaqueous electrolyte solution for secondary battery, and lithium-ion secondary battery Download PDF

Info

Publication number
WO2015159824A1
WO2015159824A1 PCT/JP2015/061262 JP2015061262W WO2015159824A1 WO 2015159824 A1 WO2015159824 A1 WO 2015159824A1 JP 2015061262 W JP2015061262 W JP 2015061262W WO 2015159824 A1 WO2015159824 A1 WO 2015159824A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mass
carbon atoms
fluorine
secondary battery
Prior art date
Application number
PCT/JP2015/061262
Other languages
French (fr)
Japanese (ja)
Inventor
祐 小野崎
室谷 英介
豊和 遠田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2015159824A1 publication Critical patent/WO2015159824A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte for a secondary battery and a lithium ion secondary battery.
  • Non-aqueous electrolytes capable of obtaining a lithium ion secondary battery with good battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency).
  • a lithium salt and a liquid composition wherein the liquid composition is at least one fluorine-containing solvent selected from the group consisting of a fluorine-containing ether compound, a fluorine-containing chain carboxylic acid ester compound, and a fluorine-containing chain carbonate compound;
  • a nonaqueous electrolytic solution containing a cyclic carboxylic acid ester compound and an unsaturated cyclic carbonate and / or a fluorinated cyclic carbonate Patent Document 1.
  • the battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency) of the lithium ion secondary battery are still insufficient.
  • a non-aqueous electrolyte that can further improve the battery characteristics is desired.
  • An object of the present invention is to provide a non-aqueous electrolyte for a secondary battery capable of obtaining a lithium ion secondary battery excellent in battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency), and battery characteristics (cycle characteristics, rate characteristics). It is to provide a lithium ion secondary battery having excellent initial charge / discharge efficiency.
  • a fluorine-containing solvent (A) containing a seed wherein the liquid composition comprises at least one selected from the group consisting of a fluorine-containing ether compound, a fluorine-containing chain carboxylic acid ester compound and a fluorine-containing chain carbonate compound;
  • a non-aqueous electrolyte for a secondary battery having a ratio of 0.01 to 20% by mass.
  • M is a boron atom or phosphorus atom
  • R 1 is an optionally substituted alkylene group having 1 to 10 carbon atoms
  • X is a halogen atom
  • n is 0 to It is an integer of 4
  • m is 0 or 1
  • p is 1 or 2.
  • R 14 to R 17 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the lithium salt is a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), a compound represented by the following formula (1-3), 1-4) and a non-secondary battery for a secondary battery according to any one of [1] to [3], comprising at least one selected from the group consisting of a compound represented by 1-4) and a compound represented by the following formula (1-5): Water electrolyte.
  • the ratio of the mass of the compound represented by the formula (1) to the total mass of the nonaqueous electrolytic solution is 0.01 to 10% by mass, and any one of [1] to [4] Nonaqueous electrolyte for secondary batteries.
  • the fluorine-containing ether compound is at least one selected from the group consisting of a compound represented by the following formula (2) and a compound represented by the following formula (3): [1] to [5] A non-aqueous electrolyte for a secondary battery.
  • R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a fluorinated alkyl group having 1 to 10 carbon atoms, or a fluorinated group having 3 to 10 carbon atoms.
  • R 8 to R 13 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, an alkyl group having 1 to 2 carbon atoms, a fluorinated alkyl group having 1 to 2 carbon atoms, or an etheric oxygen atom having 2 carbon atoms.
  • q is an integer of 0 to 3.
  • the fluorine-containing ether compound is CF 3 CH 2 OCF 2 CHF 2 , CF 3 CH 2 OCF 2 CHFCF 3 , CHF 2 CF 2 CH 2 OCF 2 CHF 2 , CH 3 CH 2 CH 2 OCF 2 CHF 2 , it is at least one selected from the group consisting of CH 3 CH 2 OCF 2 CHF 2 and CHF 2 CF 2 CH 2 OCF 2 CHFCF 3, [1] ⁇ any of the non-aqueous electrolyte solution for a secondary battery [7] .
  • the nonaqueous electrolytic solution for a secondary battery according to any one of [1] to [8], wherein the fluorine-containing solvent (A) is the fluorine-containing ether compound.
  • Non-aqueous electrolyte For the secondary battery according to any one of [1] to [12], wherein the ratio of the mass of the cyclic carboxylic acid ester compound (B) to the total mass of the non-aqueous electrolyte is 4 to 60% by mass.
  • Non-aqueous electrolyte A negative electrode using as an active material at least one selected from the group consisting of a positive electrode having a material capable of inserting and extracting lithium ions as an active material, and a lithium metal, a lithium alloy, and a carbon material capable of inserting and extracting lithium ions.
  • a non-aqueous electrolyte for secondary batteries according to any one of [1] to [13].
  • a lithium ion secondary battery excellent in battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency) can be obtained.
  • the lithium ion secondary battery of the present invention is excellent in battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency).
  • non-aqueous electrolyte is an electrolyte that does not substantially contain water, and even if water is included, the water content of the secondary battery using the non-aqueous electrolyte does not deteriorate in performance. It means an electrolyte solution in a range of amounts.
  • the amount of water that can be contained in the non-aqueous electrolyte is preferably 500 ppm by mass or less, more preferably 100 ppm by mass or less, and particularly preferably 50 ppm by mass or less with respect to the total mass of the non-aqueous electrolyte.
  • the lower limit of the moisture content is 0 mass ppm.
  • the “liquid composition” includes a fluorine-containing solvent (A), a cyclic carboxylic acid ester compound (B), and a saturated cyclic carbonate compound (C) having no fluorine atom.
  • the nonaqueous electrolytic solution in the present invention contains an electrolyte, a fluorine-containing solvent (A), a cyclic carboxylic acid ester compound (B), and a saturated cyclic carbonate compound (C) having no fluorine atom as essential components.
  • the “fluorinated ether compound” means a chain or cyclic compound having an ether bond and having a fluorine atom.
  • the “fluorinated chain carboxylic acid ester compound” means a chain compound having an ester bond in a chain structure and not having a ring structure having an ester bond and having a fluorine atom.
  • “Fluorine-containing chain carbonate compound” is a chain structure having a carbonate bond represented by —O—C ( ⁇ O) —O—, having no ring structure having a carbonate bond, and having a fluorine atom Means a chain-like compound having
  • the “fluorinated alkane compound” means a compound in which one or more hydrogen atoms of an alkane are substituted with fluorine atoms, and hydrogen atoms remain.
  • cyclic carboxylic acid ester compound means a cyclic compound having an ester bond as a part of the ring skeleton.
  • saturated cyclic carbonate compound having no fluorine atom means that a ring skeleton is composed of a carbon atom and an oxygen atom, and a carbonate bond represented by —O—C ( ⁇ O) —O— is formed as a part of the ring skeleton.
  • Fluorinated and “fluorinated” mean that some or all of the hydrogen atoms bonded to the carbon atom are replaced with fluorine atoms.
  • the “fluorinated alkyl group” means a group in which part or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms.
  • the partially fluorinated groups are hydrogen atoms and fluorine atoms.
  • the “perfluoroalkyl group” means a group in which all hydrogen atoms of an alkyl group are substituted with fluorine atoms.
  • Carbon-carbon unsaturated bond means a carbon-carbon double bond or a carbon-carbon triple bond.
  • the non-aqueous electrolyte for secondary batteries of the present invention includes an electrolyte and a liquid composition, and includes other components as necessary.
  • the lower limit of the ionic conductivity at 25 ° C. of the nonaqueous electrolytic solution is preferably 0.30 S / m. If the ionic conductivity at 25 ° C. of the non-aqueous electrolyte is 0.30 S / m or more, the battery characteristics of the secondary battery are further improved.
  • At least one of the electrolytes is a lithium salt.
  • the electrolyte may be a lithium salt alone or a combination of a lithium salt and an electrolyte other than the lithium salt.
  • Examples of the electrolyte other than the lithium salt include sodium salt or potassium salt of monofluorophosphoric acid or difluorophosphoric acid, NaPF 6 and the like.
  • the lithium salt dissociates in the non-aqueous electrolyte and supplies lithium ions.
  • the nonaqueous electrolytic solution contains the following compound (1) as an essential component as a lithium salt.
  • M is a boron atom or phosphorus atom
  • R 1 is an optionally substituted alkylene group having 1 to 10 carbon atoms
  • X is a halogen atom
  • n is 0 to It is an integer of 4
  • m is 0 or 1
  • p is 1 or 2.
  • n When M is a boron atom and p is 1, n is 2. When M is a boron atom and p is 2, n is 0. When M is a phosphorus atom and p is 1, n is 4. When M is a phosphorus atom and p is 2, n is 2. When p is 2, both m may be 0, both may be 1, one may be 0 and the other may be 1. When p is 2 and two m's are both 1, the two R 1 groups may be different from each other or the same group.
  • Examples of the substituent for R 1 include a halogen atom, a chain or cyclic alkyl group, an aryl group, a sulfonyl group, a cyano group, a hydroxyl group, and an alkoxy group.
  • X is preferably a fluorine atom or a chlorine atom, particularly preferably a fluorine atom.
  • the compound (1) one type may be used alone, or two or more types may be used in combination.
  • the non-aqueous electrolyte contains the compound (1) as a lithium salt
  • the non-aqueous electrolyte is excellent in battery characteristics such as cycle characteristics and rate characteristics.
  • the compound (1) decomposes on the negative electrode during charging of the secondary battery, and forms a lithium ion conductive film (SEI) having a small interface resistance on the negative electrode surface.
  • SEI lithium ion conductive film
  • vinylene carbonate etc. are known as a film formation agent which forms such SEI. Since the compound (1) can form a favorable SEI having a lower interface resistance than conventional film forming agents such as vinylene carbonate, it becomes a non-aqueous electrolyte excellent in battery characteristics such as cycle characteristics and rate characteristics. Conceivable.
  • the lithium salt is at least one selected from the group consisting of the following compounds (1-1) to (1-5) from the viewpoint of easily obtaining a non-aqueous electrolyte excellent in battery characteristics such as cycle characteristics and rate characteristics. It is preferable to contain.
  • the lithium salt may contain other lithium salts other than the compound (1).
  • Other lithium salts include LiPF 6 , Li 2 PO 3 F, LiPO 2 F 2 , the following compound (11) (where k is an integer of 1 to 5), FSO 2 N (Li) SO 2 F , CF 3 SO 2 N (Li ) SO 2 CF 3, CF 3 CF 2 SO 2 N (Li) SO 2 CF 2 CF 3, CF 3 CFHSO 2 N (Li) SO 2 CFHCF 3, LiClO 4, LiBF 4 , etc. Is mentioned.
  • LiPF 6 is preferably contained. That is, as the lithium salt, a combination of the compound (1) and LiPF 6 is particularly preferable. When LiPF 6 is included as the lithium salt, the ionic conductivity is good and the battery characteristics are excellent. Another lithium salt may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the liquid composition contains a fluorinated solvent (A), a cyclic carboxylic acid ester compound (B), and a saturated cyclic carbonate compound (C) having no fluorine atom.
  • the fluorine-containing solvent (A) is a fluorine-containing solvent containing at least one selected from the group consisting of fluorine-containing ether compounds, fluorine-containing chain carboxylic acid ester compounds and fluorine-containing chain carbonate compounds.
  • the fluorine-containing solvent (A) is a solvent having a fluorine atom in the molecule and is excellent in flame retardancy.
  • a fluorine-containing solvent (A) may be used individually by 1 type, and may be used in combination of 2 or more type. When the number of fluorine-containing solvents (A) is two or more, the ratio can be arbitrarily determined.
  • the fluorine-containing solvent (A) preferably contains a fluorine-containing ether compound from the viewpoint of the solubility of the lithium salt, the flame retardancy, and the ionic conductivity of the non-aqueous electrolyte.
  • the fluorine-containing ether compound is at least one selected from the group consisting of the following compound (2) and the following compound (3) from the viewpoints of lithium salt solubility, flame retardancy, and ionic conductivity of the non-aqueous electrolyte. Species are preferred.
  • a fluorine-containing ether compound may be used individually by 1 type, and may be used in combination of 2 or more type. When the number of fluorine-containing ether compounds is two or more, the ratio can be arbitrarily determined.
  • R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a fluorinated alkyl group having 1 to 10 carbon atoms, carbon A fluorinated cycloalkyl group having 3 to 10 carbon atoms, an alkyl group having 2 to 10 carbon atoms having an etheric oxygen atom, or a fluorinated alkyl group having 2 to 10 carbon atoms having an etheric oxygen atom.
  • R 2 and R 3 is a fluorinated alkyl group having 1 to 10 carbon atoms, a fluorinated cycloalkyl group having 3 to 10 carbon atoms, or a carbon number having 2 to 10 carbon atoms having an etheric oxygen atom.
  • Y represents an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkylene group having 2 to 5 carbon atoms having an etheric oxygen atom, or etheric oxygen A fluorinated alkylene group having 2 to 5 carbon atoms and having an atom.
  • Examples of the alkyl group and the alkyl group having an etheric oxygen atom in the compound (2) include a linear structure, a branched structure, or a group having a cyclic structure (cycloalkylalkyl group and the like).
  • R 2 and R 3 in the compound (2) is a fluorinated alkyl group having 1 to 10 carbon atoms, a fluorinated cycloalkyl group having 3 to 10 carbon atoms, or a carbon number having an etheric oxygen atom. 2 to 10 fluorinated alkyl groups.
  • R 2 and R 3 are these groups, the solubility of the lithium salt in the non-aqueous electrolyte and the flame retardancy of the non-aqueous electrolyte are excellent.
  • R 2 and R 3 in the compound (2) may be the same or different.
  • R 2 and R 3 are all fluorinated alkyl groups having 1 to 10 carbon atoms from the viewpoint of lithium salt solubility, flame retardancy, and ionic conductivity of the non-aqueous electrolyte.
  • Compound (2-A) Compound (2-A) wherein R 2 is a fluorinated alkyl group having 2 to 10 carbon atoms having an etheric oxygen atom, and R 3 is a fluorinated alkyl group having 1 to 10 carbon atoms B); or a compound (2-C) in which R 2 is a fluorinated alkyl group having 1 to 10 carbon atoms and R 3 is an alkyl group having 1 to 10 carbon atoms.
  • Compound (2-A) or compound (2-C) is more preferable, and compound (2-A) is particularly preferable.
  • the total number of carbon atoms in the compound (2) is preferably 4 to 10 and more preferably 4 to 8 from the viewpoint that the boiling point is too low when the amount is too small and the viscosity increases when the amount is too large.
  • the molecular weight of the compound (2) is preferably 150 to 800, more preferably 150 to 500, and particularly preferably 200 to 500 from the viewpoint that if the molecular weight is too small, the boiling point is too low, and if it is too large, the viscosity becomes high.
  • the number of etheric oxygen atoms in the compound (2) is preferably 1 to 4, more preferably 1 or 2, and even more preferably 1. The number of etheric oxygen atoms in the compound (2) affects flammability.
  • the fluorine content is the ratio of the total mass of fluorine atoms to the molecular weight.
  • both of R 2 and R 3 the compound partially fluorinated alkyl group of which a hydrogen atom is preferred, R 2 and A compound in which either one or both of the terminals of R 3 is CHF 2 is more preferable.
  • Specific examples of the compound (2-A) and the compound (2-B), and specific examples of the fluorinated ether compound other than the compound (2-A) and the compound (2-B) include International Publication No. 2009/133899. And the like.
  • CF 3 CH 2 OCF 2 CHF 2 (produced by Asahi Glass Co., Ltd., Asahi Clin AE-) has excellent lithium salt solubility, flame retardancy, low viscosity, and low boiling point. 3000), CF 3 CH 2 OCF 2 CHFCF 3, CHF 2 CF 2 CH 2 OCF 2 CHF 2, CH 3 CH 2 CH 2 OCF 2 CHF 2, CH 3 CH 2 OCF 2 CHF 2 and CHF 2 CF 2 CH 2 OCF
  • at least one selected from the group consisting of 2 CHFCF 3 is selected from the group consisting of CF 3 CH 2 OCF 2 CHF 2 , CHF 2 CF 2 CH 2 OCF 2 CHF 2 and CHF 2 CF 2 CH 2 OCF 2 CHFCF 3 At least one selected from the above is particularly preferred.
  • Y in the compound (3) may have a linear structure or a branched structure.
  • Y is preferably an alkylene group having 1 to 5 carbon atoms, more preferably an alkylene group having 2 to 4 carbon atoms.
  • the alkylene group preferably has a linear structure or a branched structure.
  • the side chain is preferably an alkyl group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms having an etheric oxygen atom.
  • the compound (3) is selected from the group consisting of —CH 2 —, —CH 2 CH 2 —, —CH (CH 3 ) CH 2 — and —CH 2 CH 2 CH 2 — in the formula (3). And one or both of the compound in which Y is —CH 2 CH 2 — and the compound in which Y is —CH (CH 3 ) CH 2 — is more preferable, and Y is —CH 2. CH 2 -, compound and Y is -CH (CH 3) CH 2 - is still more preferably one of a compound. Specific examples of the compound (3) include a compound represented by the following formula.
  • fluorinated ether compound compound (2) alone, compound (3) alone, or a mixture of compound (2) and compound (3) is preferred, and compound (2) alone is more preferred.
  • a compound (2) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a compound (3) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Fluorine-containing chain carboxylic acid ester compound preferably contains the following compound (4), more preferably only the compound (4), from the viewpoints of viscosity, boiling point and the like.
  • a fluorine-containing chain carboxylic acid ester compound may be used individually by 1 type, and may be used in combination of 2 or more type. When the number of fluorine-containing chain carboxylic acid ester compounds is two or more, the ratio can be arbitrarily determined. When the compound (4) is included, the compound (4) may be used alone or in combination of two or more.
  • R 4 and R 5 are each independently an alkyl group having 1 to 3 carbon atoms or a fluorinated alkyl group having 1 to 3 carbon atoms, and one or both of R 4 and R 5 are 1 to 3 fluorinated alkyl groups.
  • Examples of the alkyl group and the fluorinated alkyl group in the compound (4) include a linear structure and a branched structure, respectively.
  • One or both of R 4 and R 5 are preferably a fluorinated alkyl group having 1 to 3 carbon atoms. By making one or both of R 4 and R 5 into a fluorinated alkyl group having 1 to 3 carbon atoms, the compound (4) is excellent in oxidation resistance and flame retardancy.
  • R 4 and R 5 in the compound (4) may be the same or different.
  • R 4 is preferably a methyl group, an ethyl group, a difluoromethyl group, a trifluoromethyl group, a tetrafluoroethyl group, or a pentafluoroethyl group from the viewpoint of viscosity, boiling point, or availability of the compound, and a difluoromethyl group, Or a trifluoromethyl group is more preferable.
  • R 5 is a methyl group, an ethyl group, a trifluoromethyl group, a 2-fluoroethyl group, a 2,2-difluoroethyl group, or 2,2,2-in terms of viscosity, boiling point, or availability of the compound.
  • a trifluoroethyl group is preferred, a methyl group, an ethyl group, or a 2,2,2-trifluoroethyl group is more preferred, and a methyl group or an ethyl group is more preferred.
  • the total number of carbon atoms in the compound (4) is preferably from 3 to 8, more preferably from 3 to 6, and even more preferably from 3 to 5 from the viewpoint that if the amount is too small, the boiling point is too low and if the amount is too large, the viscosity increases.
  • the molecular weight of the compound (4) is preferably from 100 to 300, more preferably from 100 to 250, and particularly preferably from 100 to 200 from the viewpoint that if the molecular weight is too small, the boiling point is too low, and if it is too large, the viscosity increases.
  • the fluorine content in the compound (4) is preferably 25% by mass or more and more preferably 30% by mass or more from the viewpoint of excellent flame retardancy. Moreover, since the affinity of lithium salt will fall and phase separation will become easy when there is too much, 55 mass% or less is preferable and 50 mass% or less is more preferable.
  • the compound (4) include acetic acid (2,2,2-trifluoroethyl), methyl difluoroacetate, ethyl difluoroacetate, ethyl trifluoroacetate and the like. From the viewpoint of availability and battery performance such as cycle characteristics, methyl difluoroacetate and ethyl trifluoroacetate are preferable.
  • Fluorine-containing chain carbonate compound preferably contains the following compound (5), more preferably only the compound (5), from the viewpoints of viscosity and boiling point.
  • a fluorine-containing chain carbonate compound may be used individually by 1 type, and may be used in combination of 2 or more type. When the number of fluorine-containing chain carbonate compounds is two or more, the ratio can be arbitrarily determined. When the compound (5) is contained, the compound (5) may be used alone or in combination of two or more.
  • R 6 and R 7 are each independently an alkyl group having 1 to 3 carbon atoms or a fluorinated alkyl group having 1 to 3 carbon atoms, and one or both of R 6 and R 7 are 1 to 3 fluorinated alkyl groups.
  • Examples of the alkyl group and the fluorinated alkyl group in the compound (5) include a linear structure and a branched structure, respectively.
  • One or both of R 6 and R 7 is a fluorinated alkyl group having 1 to 3 carbon atoms. By making one or both of R 6 and R 7 a fluorinated alkyl group having 1 to 3 carbon atoms, the solubility of the lithium salt in the non-aqueous electrolyte and the flame retardancy are excellent.
  • R 6 and R 7 in the compound (5) may be the same or different.
  • the compound (5) is preferably a compound in which both R 6 and R 7 are fluorinated alkyl groups having 1 to 3 carbon atoms from the viewpoint of viscosity, boiling point, or availability of the compound.
  • R 6 and R 7 are preferably CF 3 CH 2 — or CHF 2 CF 2 CH 2 —.
  • the total number of carbon atoms in the compound (5) is preferably 4 to 10 and more preferably 4 to 7 from the viewpoint that if the amount is too small, the boiling point is too low and if the amount is too large, the viscosity becomes high.
  • the molecular weight of the compound (5) is preferably from 180 to 400, more preferably from 200 to 350, particularly preferably from 210 to 300 from the viewpoint that if the molecular weight is too small, the boiling point is too low, and if it is too large, the viscosity increases. From the point which is excellent in a flame retardance, 25 mass% or more is preferable and, as for the fluorine content in a compound (5), 30 mass% or more is more preferable. Moreover, since the affinity of lithium salt will fall and phase separation will become easy when there is too much, 60 mass% or less is preferable and 50 mass% or less is more preferable.
  • the compound (5) include bis (2,2,2-trifluoroethyl) carbonate and bis (2,2,3,3-tetrafluoropropyl) carbonate.
  • Bis (2,2,2-trifluoroethyl) carbonate is preferred from the viewpoint of battery performance such as viscosity, availability, and output characteristics.
  • the fluorine-containing solvent (A) may contain a fluorine-containing alkane compound as a fluorine-containing solvent other than the fluorine-containing ether compound, the fluorine-containing chain carboxylic acid ester compound, and the fluorine-containing chain carbonate compound.
  • a fluorine-containing alkane compound as a fluorine-containing solvent other than the fluorine-containing ether compound, the fluorine-containing chain carboxylic acid ester compound, and the fluorine-containing chain carbonate compound.
  • the fluorine-containing alkane compound is preferably a fluorine-containing alkane compound having 4 to 12 carbon atoms. If the fluorine-containing alkane compound has 4 or more carbon atoms, the vapor pressure of the non-aqueous electrolyte is lowered. If the fluorine-containing alkane compound has 12 or less carbon atoms, the solubility of the lithium salt is good.
  • the fluorine content in the fluorine-containing alkane compound is preferably 50 to 80% by mass. If the fluorine content in the fluorine-containing alkane compound is 50% by mass or more, the flame retardancy is excellent. If the fluorine content in the fluorine-containing alkane compound is 80% by mass or less, the solubility of the lithium salt is easily maintained.
  • fluorinated alkane compound a compound having a linear structure is preferable, and nC 4 F 9 CH 2 CH 3 , nC 6 F 13 CH 2 CH 3 , nC 6 F 13 H, nC 8 F 17 H, and the like.
  • a fluorine-containing alkane compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • Cyclic carboxylic acid ester compound (B) When the liquid composition contains the cyclic carboxylic acid ester compound, the lithium salt is uniformly dissolved in the fluorine-containing solvent (A). In addition, the inclusion of the cyclic carboxylic acid ester compound (B) makes it difficult for the non-aqueous electrolyte and the electrode to react, and thermal runaway in the secondary battery is less likely to occur.
  • a cyclic carboxylic acid ester compound (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • cyclic carboxylic acid ester compound (B) a saturated cyclic carboxylic acid ester compound having no carbon-carbon unsaturated bond in the molecule is preferable from the viewpoint of stability to redox reaction.
  • the ring structure in the cyclic carboxylic acid ester compound (B) is preferably a 4- to 10-membered ring, more preferably a 4- to 7-membered ring, further preferably a 5- to 6-membered ring from the viewpoint of easy availability, and particularly a 5-membered ring. preferable.
  • the ring structure of the cyclic carboxylic acid ester compound (B) is preferably a ring structure having one ester bond from the viewpoint of viscosity and stability to redox reaction.
  • the cyclic carboxylic acid ester compound (B) may be a compound in which one or more hydrogen atoms of the alkylene group are substituted with a substituent.
  • the substituent include a fluorine atom, a chlorine atom, an alkyl group, and a fluorinated alkyl group.
  • the alkyl group preferably has 1 to 2 carbon atoms
  • the fluorinated alkyl group preferably has 1 to 2 carbon atoms.
  • the cyclic carboxylic acid ester compound (B) preferably contains the following compound (6) from the viewpoints of stability to redox reaction, structural stability, and viscosity, and more preferably comprises only the compound (6). preferable.
  • a compound (6) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • R 8 to R 13 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, an alkyl group having 1 to 2 carbon atoms, a fluorinated alkyl group having 1 to 2 carbon atoms, or a carbon number having an etheric oxygen atom. 2 to 3 alkyl groups, and q is an integer of 0 to 3.
  • R 8 to R 13 may be the same or different.
  • R 8 to R 13 are preferably a hydrogen atom, a methyl group, or a fluorine atom, more preferably a hydrogen atom or a methyl group, from the viewpoints of stability to redox reaction, viscosity, and availability of the compound.
  • q is preferably 1 to 2 and more preferably 1 from the viewpoint of viscosity and availability of the compound.
  • Compound (6) includes cyclic ester compounds such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -hexanolactone, ⁇ -valerolactone, and ⁇ -caprolactone, and carbon atoms forming the ring of the cyclic ester compound.
  • cyclic ester compounds such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -hexanolactone, ⁇ -valerolactone, and ⁇ -caprolactone
  • carbon atoms forming the ring of the cyclic ester compound or an alkyl group having 2 to 3 carbon atoms in which at least one hydrogen atom has a fluorine atom, a chlorine atom, an alkyl group having 1 to 2 carbon atoms, a fluorinated alkyl group having 1 to 2 carbon atoms, or an etheric oxygen atom
  • the compound substituted by is mentioned.
  • At least one selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone and ⁇ -caprolactone is preferable, and ⁇ -butyrolactone is particularly preferable because it is easily available and has a high effect of suppressing thermal runaway.
  • the non-aqueous electrolyte contains battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge) It becomes a non-aqueous electrolyte excellent in efficiency.
  • the saturated cyclic carbonate compound (C) having no fluorine atom may be used alone or in combination of two or more.
  • the saturated cyclic carbonate compound (C) having no fluorine atom preferably contains the following compound (7) from the viewpoint of battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency), and consists only of the compound (7). It is more preferable.
  • a compound (7) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • R 14 to R 17 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Examples of the alkyl group in the compound (7) include a linear structure and a branched structure.
  • R 14 to R 17 may be the same or different.
  • R 14 to R 17 are preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group, from the viewpoint of battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency).
  • Specific examples of the compound (7) include ethylene carbonate, propylene carbonate, butylene carbonate and the like. From the viewpoint of battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency), ethylene carbonate is preferred.
  • the nonaqueous electrolytic solution is a lithium salt, a fluorine-containing solvent (A), a cyclic carboxylic acid ester compound (B), and a saturated cyclic carbonate compound having no fluorine atom (as required) within a range not impairing the effects of the present invention.
  • a fluorine-containing solvent A
  • B cyclic carboxylic acid ester compound
  • a saturated cyclic carbonate compound having no fluorine atom (as required) within a range not impairing the effects of the present invention.
  • Other compounds other solvents, additives, etc.
  • the nonaqueous electrolytic solution may contain a solvent other than the fluorine-containing solvent (A), the cyclic carboxylic acid ester compound (B), and the saturated cyclic carbonate compound (C) having no fluorine atom.
  • a solvent other than the fluorine-containing solvent (A), the cyclic carboxylic acid ester compound (B), and the saturated cyclic carbonate compound (C) having no fluorine atom examples include fluorine-containing saturated cyclic carbonate compounds, saturated chain carbonate compounds having no fluorine atom, and saturated cyclic sulfone compounds.
  • fluorine-containing saturated cyclic carbonate compound examples include 4-fluoro-1,3-dioxolane-2-one, 4-trifluoromethyl-1,3-dioxolane-2-one, and 4,5-difluoro-1,3-dioxolane. -2-one and the like.
  • saturated chain carbonate compound having no fluorine atom examples include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like.
  • saturated cyclic sulfone compound examples include sulfolane and 3-methylsulfolane.
  • the non-aqueous electrolyte may contain conventionally known additives as necessary.
  • the additive include an overcharge inhibitor, a dehydrating agent, a deoxidizing agent, a property improving aid, and a surfactant.
  • Overcharge prevention agent aromatic compounds (biphenyl, alkylbiphenyl, terphenyl, terphenyl partially hydrogenated, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran, etc.), aromatic compounds Partially fluorinated products (2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene, etc.), fluorine-containing anisole compounds (2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroaniol, etc.) ).
  • An overcharge inhibitor may be used individually by 1 type, and may use 2 or more types together.
  • Dehydrating agent examples include molecular sieves, mirabilite, magnesium sulfate, calcium hydride, sodium hydride, potassium hydride, lithium aluminum hydride and the like.
  • the liquid composition or other solvent used for the non-aqueous electrolyte those obtained by rectification after dehydration with a dehydrating agent are preferable. Moreover, what performed only the dehydration by the said dehydrating agent without performing rectification may be used.
  • the characteristic improving aid is for improving capacity maintenance characteristics and cycle characteristics after high temperature storage.
  • Examples of the property improving aid include unsaturated cyclic carbonate compounds (dimethyl vinylene carbonate, vinylene carbonate, vinyl ethylene carbonate, 4-acetylin-1,3-dioxolan-2-one, 3-methyl-4-vinylethylene carbonate, 4,5-divinylethylene carbonate, 4,5-bis (2-methylvinyl) ethylene carbonate, etc.), sulfur-containing compounds (ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methyl methanesulfonate, Busulfan, sulfolene, dimethylsulfone, dibutyldisulfide, dicyclohexyldisulfide, tetramethylthiuram monosulfide, N, N-dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide,
  • the surfactant assists the impregnation of the non-aqueous electrolyte into the electrode mixture or separator.
  • any of cationic surfactants, anionic surfactants, nonionic surfactants and amphoteric surfactants may be used.
  • Anionic surfactants are easily available and have a high surfactant effect. Agents are preferred.
  • As the surfactant a fluorine-containing surfactant is preferable from the viewpoint of high oxidation resistance and good cycle characteristics and rate characteristics.
  • Surfactant may be used individually by 1 type and may use 2 or more types together.
  • [Ratio of each component] (Ratio of lithium salt) 5 mass% is preferable, as for the lower limit of the ratio of the mass of lithium salt with respect to the total mass of nonaqueous electrolyte solution, 7 mass% is more preferable, and 8 mass% is further more preferable.
  • the upper limit of the ratio of the mass of the lithium salt to the total mass of the non-aqueous electrolyte is preferably 25% by mass, more preferably 20% by mass, and even more preferably 17% by mass. If the ratio of lithium salt is more than the said lower limit, the ionic conductivity of a non-aqueous electrolyte will become high. If the proportion of the lithium salt is not more than the above upper limit value, the lithium salt is easily dissolved uniformly in the liquid composition, and the lithium salt does not precipitate even under low temperature conditions.
  • the lower limit of the ratio of the number of moles of the compound (1) to the total number of moles of the lithium salt is preferably 0.05 mol%, more preferably 0.1 mol%, still more preferably 0.5 mol%, and particularly preferably 1 mol%.
  • the upper limit of the ratio of the number of moles of the compound (1) to the total number of moles of the lithium salt is preferably 95 mol%, more preferably 80 mol%, further preferably 60 mol%, and particularly preferably 40 mol%.
  • the lower limit value of the ratio of the number of moles of LiPF 6 to the total number of moles of lithium salt is preferably 5 mol%, more preferably 20 mol%, further preferably 40 mol%, and more preferably 60 mol%. Is particularly preferred.
  • the upper limit of the ratio of the number of moles of LiPF 6 to the total number of moles of lithium salt is preferably 99.95 mol%, more preferably 99.9 mol%, further preferably 99.5 mol%, and particularly preferably 99 mol%.
  • the proportion of LiPF 6 is more than the lower limit, easily obtained high superior practicality in ionic conductivity non-aqueous electrolyte. If the ratio of LiPF 6 is less than or equal to the above upper limit value, a nonaqueous electrolytic solution excellent in battery characteristics such as cycle characteristics and rate characteristics can be easily obtained by relatively increasing the content of the compound (1).
  • the lower limit value of the ratio of the total number of moles of the compound (1) and LiPF 6 to the total number of moles of the lithium salt is preferably 50 mol%, and more preferably 80 mol%.
  • the upper limit of the ratio of the total number of moles of the compound (1) and LiPF 6 with respect to the total number of moles of the lithium salt is 100 mol%.
  • the lower limit of the ratio of the mass of the compound (1) to the total mass of the nonaqueous electrolytic solution is preferably 0.01% by mass, more preferably 0.02% by mass, further preferably 0.1% by mass, Mass% is particularly preferred. 10 mass% is preferable, as for the upper limit of the ratio of the mass of the compound (1) with respect to the total mass of nonaqueous electrolyte solution, 8 mass% is more preferable, and 5 mass% is further more preferable. If the ratio of compound (1) is more than the said lower limit, it will become easy to obtain the nonaqueous electrolyte solution excellent in battery characteristics, such as a cycle characteristic and a rate characteristic. If the ratio of the compound (1) is not less than the above upper limit value, the lithium salt is easily dissolved uniformly in the liquid composition, and the lithium salt does not precipitate even at low temperature conditions.
  • the lower limit of the ratio of the mass of the fluorinated solvent (A) to the total mass of the nonaqueous electrolytic solution is preferably 30% by mass, more preferably 45% by mass, further preferably 50% by mass, and particularly preferably 55% by mass.
  • the upper limit of the ratio of the mass of the fluorinated solvent (A) to the total mass of the nonaqueous electrolytic solution is preferably 80% by mass, more preferably 75% by mass, further preferably 73% by mass, and particularly preferably 70% by mass.
  • the non-aqueous electrolyte is excellent in flame retardancy, has low positive electrode reactivity and negative electrode reactivity, hardly causes thermal runaway, and has high high voltage resistance.
  • the ratio of the fluorine-containing solvent (A) is not more than the upper limit value, the lithium salt is easily dissolved uniformly, and the lithium salt does not easily precipitate at a low temperature, so that the ionic conductivity is hardly lowered.
  • the lower limit of the ratio of the mass of the fluorinated solvent (A) to the total mass of the liquid composition is preferably 45 mass%, more preferably 50 mass%, further preferably 55 mass%, particularly preferably 60 mass%.
  • the upper limit of the ratio of the mass of the fluorinated solvent (A) to the total mass of the liquid composition is preferably 90% by mass, more preferably 85% by mass, further preferably 80% by mass, and particularly preferably 75% by mass. If the proportion of the fluorinated solvent (A) is not less than the lower limit, the non-aqueous electrolyte is excellent in flame retardancy, has low positive electrode reactivity and negative electrode reactivity, hardly causes thermal runaway, and has high high voltage resistance. Have If the ratio of the fluorine-containing solvent (A) is not more than the upper limit value, the lithium salt is easily dissolved uniformly, and the lithium salt does not easily precipitate at a low temperature, so that the ionic conductivity is hardly lowered.
  • the lower limit of the ratio of the mass of the fluorinated ether compound to the total mass of the fluorinated solvent (A) is preferably 25 mass%, more preferably 30 mass%. , 50% by mass is more preferable, 60% by mass is further preferable, and 70% by mass is particularly preferable.
  • the upper limit of the ratio of the mass of the fluorinated ether compound to the total mass of the fluorinated solvent (A) is 100% by mass.
  • the fluorine-containing solvent (A) is particularly preferably composed only of a fluorine-containing ether compound from the viewpoints of the solubility of the lithium salt, the flame retardance of the non-aqueous electrolyte, and the ionic conductivity.
  • the lower limit of the ratio of the mass of the fluorine-containing ether compound to the total mass of the non-aqueous electrolyte is preferably 10% by mass, and 20% by mass. Is more preferable, 30% by mass is further preferable, 45% by mass is further preferable, and 50% by mass is particularly preferable.
  • the upper limit of the ratio of the mass of the fluorine-containing ether compound to the total mass of the nonaqueous electrolytic solution is preferably 80% by mass, more preferably 75% by mass, further preferably 73% by mass, and particularly preferably 70% by mass.
  • the lower limit of the ratio of the mass of the fluorinated chain carboxylic acid ester compound to the total mass of the fluorinated solvent (A) is 0.01 mass. % Is preferred.
  • the upper limit of the ratio of the mass of the fluorinated chain carboxylic acid ester compound to the total mass of the fluorinated solvent (A) is preferably 50 mass%, more preferably 40 mass%, further preferably 30 mass%, more preferably 20 mass%. Is particularly preferred.
  • the lower limit of the ratio of the mass of the fluorine-containing chain carbonate compound to the total mass of the fluorine-containing solvent (A) is preferably 0.01% by mass.
  • the upper limit of the ratio of the mass of the fluorinated chain carbonate compound to the total mass of the fluorinated solvent (A) is preferably 50 mass%, more preferably 40 mass%, further preferably 30 mass%, particularly preferably 20 mass%. preferable.
  • the ratio of the mass of the fluorinated alkane compound to the total mass of the nonaqueous electrolytic solution is preferably from 0.01 to 5 mass%.
  • the ratio of the fluorine-containing alkane compound is 0.01% by mass or more, the vapor pressure is low and the flame retardancy is excellent.
  • the proportion of the fluorine-containing alkane compound is 5% by mass or less, the solubility of the lithium salt is easily maintained.
  • the fluorine-containing solvent (A) is used in combination with a fluorine-containing ether compound and at least one selected from a fluorine-containing chain carboxylic acid ester compound, a fluorine-containing chain carbonate compound and a fluorine-containing alkane compound, the ratio thereof is as follows: It can be decided arbitrarily.
  • the lower limit of the ratio of the mass of the cyclic carboxylic acid ester compound (B) to the total mass of the non-aqueous electrolyte is preferably 4% by mass, more preferably 7% by mass, still more preferably 10% by mass, and particularly preferably 15% by mass. preferable.
  • the upper limit of the ratio of the mass of the cyclic carboxylic acid ester compound (B) to the total mass of the nonaqueous electrolytic solution is preferably 60% by mass, more preferably 45% by mass, still more preferably 40% by mass, and particularly preferably 35% by mass. preferable.
  • the ratio of the cyclic carboxylic acid ester compound (B) is equal to or higher than the lower limit, the non-aqueous electrolyte uniformly dissolves the lithium salt, the reactivity between the non-aqueous electrolyte and the electrode is small, and thermal runaway occurs. Hateful. If the ratio of the cyclic carboxylic acid ester compound (B) is not more than the upper limit value, the non-aqueous electrolyte is excellent in flame retardancy.
  • the lower limit of the ratio N B / N Li of the total number of moles N B of the cyclic carboxylic acid ester compound (B) to the total number of moles N Li of lithium atoms derived from the lithium salt contained in the non-aqueous electrolyte is 1. 5 is preferable, 2 is more preferable, 2.5 is more preferable, and 3 is particularly preferable.
  • the upper limit value of N B / N Li is preferably 5.5, more preferably 5, more preferably 4.5, and particularly preferably 4.2.
  • N B / N Li is equal to or greater than the lower limit, the non-aqueous electrolyte uniformly dissolves the lithium salt, the reactivity between the non-aqueous electrolyte and the electrode is small, and thermal runaway hardly occurs.
  • N B / N Li is not more than the above upper limit value, the non-aqueous electrolyte is excellent in flame retardancy.
  • the ratio of the mass of the saturated cyclic carbonate compound (C) having no fluorine atom to the total mass of the nonaqueous electrolytic solution is 0.01 to 20% by mass.
  • the lower limit of the mass of the saturated cyclic carbonate compound (C) having no fluorine atom relative to the total mass of the nonaqueous electrolytic solution is preferably 0.05% by mass, more preferably 0.1% by mass, and 0.5% by mass. Particularly preferred.
  • the upper limit of the ratio of the mass of the saturated cyclic carbonate compound (C) having no fluorine atom to the total mass of the nonaqueous electrolytic solution is preferably 15% by mass, more preferably 13% by mass, and particularly preferably 10% by mass. If the ratio of the saturated cyclic carbonate compound (C) having no fluorine atom is not less than the lower limit value, a nonaqueous electrolytic solution excellent in battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency) is easily obtained. If the ratio of the saturated cyclic carbonate compound (C) having no fluorine atom is not more than the above upper limit value, the viscosity of the electrolytic solution does not become too high, and the electrolytic solution is excellent in rate characteristics.
  • the upper limit of the ratio of the mass of the other solvent to the total mass of the non-aqueous electrolyte is preferably 30% by mass, more preferably 20% by mass, and further 15% by mass 10% by mass is preferable.
  • the lower limit of the ratio of the mass of the other solvent to the total mass of the non-aqueous electrolyte is 0% by mass. If the ratio of the other solvent is not more than the upper limit value, it is easy to suppress the reaction between the other solvent and the electrode, and a non-aqueous electrolyte solution having excellent stability can be obtained. Moreover, since it is easy to increase content of a fluorine-containing solvent (A), the nonaqueous electrolyte solution excellent in the flame retardance is easy to be obtained.
  • the ratio of the mass of the fluorine-containing saturated cyclic carbonate compound to the total mass of the non-aqueous electrolyte is preferably 0.01 to 20% by mass, and 0.01 to 15 % By mass is more preferable, 0.01 to 10% by mass is further preferable, 0.01 to 5% by mass is further preferable, and 0.01 to 3% by mass is particularly preferable. If the ratio of a fluorine-containing saturated cyclic carbonate compound is below an upper limit, a fluorine-containing saturated cyclic carbonate compound and an electrode will be hard to react, and nonaqueous electrolyte solution is excellent in stability and flame retardance.
  • the ratio of the mass of the saturated chain carbonate compound having no fluorine atom to the total mass of the non-aqueous electrolyte is 0.01 to 30% by mass. Is preferable, and 0.01 to 20% by mass is more preferable. If the ratio of the saturated chain carbonate compound having no fluorine atom is not more than the upper limit value, the saturated chain carbonate compound having no fluorine atom and the electrode are unlikely to react, and the non-aqueous electrolyte is stable and flame retardant. Excellent.
  • the ratio of the mass of the saturated cyclic sulfone compound to the total mass of the nonaqueous electrolytic solution is preferably 0.01 to 20% by mass, more preferably 0.01 to 15% by mass. 0.01 to 10% by mass is more preferable, and 0.01 to 5% by mass is particularly preferable. If the ratio of the saturated cyclic sulfone compound is not more than the above upper limit value, the saturated cyclic sulfone compound and the electrode are unlikely to react with each other, and the non-aqueous electrolyte is excellent in stability and flame retardancy.
  • the ratio of the mass of the overcharge inhibitor to the total mass of the non-aqueous electrolyte is preferably 0.01 to 5% by mass. If the ratio of the non-aqueous electrolyte is equal to or higher than the lower limit, it becomes easier to suppress the secondary battery from bursting and firing due to overcharging, and the secondary battery can be used more stably.
  • the ratio of the mass of the characteristic improving auxiliary to the total mass of the non-aqueous electrolytic solution is preferably 0.01 to 5% by mass.
  • the upper limit of the ratio of the mass of the surfactant to the total mass of the non-aqueous electrolyte is preferably 5% by mass, more preferably 3% by mass, and further 2% by mass preferable.
  • the lower limit of the ratio of the mass of the surfactant to the total mass of the non-aqueous electrolyte is preferably 0.05% by mass.
  • the lithium salt contains the compound (1), and the liquid composition contains the saturated cyclic carbonate compound (C) having no fluorine atom, so that the surface of the electrode active material Therefore, it is estimated that a lithium ion secondary battery excellent in battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency) can be obtained.
  • the lithium ion secondary battery of the present invention has a positive electrode, a negative electrode, and the non-aqueous electrolyte of the present invention.
  • Examples of the positive electrode include an electrode in which a positive electrode layer containing a positive electrode active material, a conductivity-imparting agent, and a binder is formed on a current collector.
  • the positive electrode active material may be any material that can occlude and release lithium ions.
  • known positive electrode active materials for lithium ion secondary batteries can be employed.
  • positive electrode active materials include lithium-containing transition metal oxides, lithium-containing transition metal composite oxides using two or more transition metals, transition metal oxides, transition metal sulfides, metal oxides, olivine-type metal lithium salts, etc. Is mentioned.
  • a positive electrode active material may be used individually by 1 type, and may use 2 or more types together.
  • lithium-containing transition metal oxide examples include lithium cobalt oxide (LiCoO 2 and the like), lithium nickel oxide (LiNiO 2 and the like), lithium manganese oxide (LiMnO 2 , LiMn 2 O 4 , Li 2 MnO 3 and the like). Can be mentioned.
  • the metal contained in the lithium-containing transition metal composite oxide Al, V, Ti, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, Yb and the like are preferable.
  • Some of the transition metal atoms that are the main components of these lithium transition metal composite oxides are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, and Yb.
  • transition metal oxide examples include TiO 2 , MnO 2 , MoO 3 , V 2 O 5 , V 6 O 13 and the like.
  • transition metal sulfide examples include TiS 2 , FeS, and MoS 2 .
  • metal oxide examples include SnO 2 and SiO 2 .
  • Olivine type metal lithium salt Li L M 3 x M 4 y O z F g ( however, M 3 is, Fe (II), Co ( II), Mn (II), Ni (II), V (II) Or Cu (II), M 4 is P or Si, and 0 ⁇ L ⁇ 3, 1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 3, 4 ⁇ z ⁇ 12, 0 ⁇ g ⁇ 1. ) Or a complex thereof.
  • Examples of the olivine type metal lithium salt include the following.
  • a material in which a substance having a composition different from that of the main constituent of the positive electrode active material is attached to the surface of the positive electrode active material can also be used.
  • Surface adhering substances include oxides (aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, etc.), sulfates (lithium sulfate, sodium sulfate, potassium sulfate, Magnesium sulfate, calcium sulfate, aluminum sulfate, etc.), carbonates (lithium carbonate, calcium carbonate, magnesium carbonate, etc.) and the like.
  • the lower limit of the amount of the surface adhering substance relative to the positive electrode active material is preferably 0.1 mass ppm, more preferably 1 mass ppm, and particularly preferably 10 mass ppm. 20 mass% is preferable, the upper limit of the quantity of the surface adhesion substance with respect to a positive electrode active material is more preferable, 10 mass% is more preferable, and 5 mass% is especially preferable.
  • the surface adhering substance can suppress the oxidation reaction of the nonaqueous electrolytic solution on the surface of the positive electrode active material, and can improve the battery life.
  • lithium-containing transition metal oxides LiCoO 2 , LiNiO 2 , LiMnO 2, etc.
  • LiCoO 2 , LiNiO 2 , LiMnO 2, etc. based on ⁇ -NaCrO 2 structure, spinel from the viewpoint of high discharge voltage and high electrochemical stability.
  • a lithium-containing transition metal oxide (LiMn 2 O 4 or the like) having a mold structure as a base is preferable.
  • Conductivity imparting agent examples include carbon materials, metal substances (such as Al), and conductive oxide powders.
  • binder examples include resin binders (such as polyvinylidene fluoride) and rubber binders (hydrocarbon rubber, fluororubber, etc.).
  • resin binders such as polyvinylidene fluoride
  • rubber binders hydrocarbon rubber, fluororubber, etc.
  • Examples of the current collector include a metal thin film mainly composed of Al or the like.
  • Examples of the negative electrode include an electrode in which a negative electrode layer containing a powdered negative electrode active material, a conductivity-imparting agent, and a binder is formed on a current collector.
  • a negative electrode active material can maintain a shape by itself (for example, when it is a lithium metal thin film), a negative electrode can be formed only with a negative electrode active material.
  • Examples of the negative electrode active material include at least one selected from the group consisting of a lithium metal, a lithium alloy, and a carbon material capable of inserting and extracting lithium ions.
  • Examples of the lithium alloy include a Li—Si alloy, a Li—Al alloy, a Li—Pb alloy, and a Li—Sn alloy.
  • Examples of the carbon material include graphite, coke, and hard carbon.
  • Examples of the current collector include a metal thin film mainly composed of Cu or the like.
  • a separator is interposed between the positive electrode and the negative electrode to prevent a short circuit.
  • the separator include a porous film.
  • a non-aqueous electrolyte is used by impregnating the porous membrane.
  • you may use as a gel electrolyte what impregnated the porous film with the nonaqueous electrolyte solution, and was made to gelatinize.
  • porous film one that is stable with respect to the non-aqueous electrolyte and excellent in liquid retention can be used.
  • a porous film a porous sheet or a nonwoven fabric is preferable. You may use what laminated
  • the material for the porous film include fluororesins (polyvinylidene fluoride, polytetrafluoroethylene, copolymers of ethylene and tetrafluoroethylene, etc.), polyimides, polyolefins (polyethylene, polypropylene, etc.), oxidation resistance, air permeability, Polyolefin is preferable from the viewpoint of availability.
  • an inorganic fine particle layer may be provided on the surface of either or both of the separator and the electrode.
  • the inorganic fine particles include silica, alumina, titania, magnesia and the like.
  • Examples of the material for the battery outer package include nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, a resin material, and a film material.
  • the shape of the lithium ion secondary battery may be selected according to the application, and may be any shape such as a coin shape, a cylindrical shape, a square shape, and a laminate shape. Moreover, the shape of a positive electrode and a negative electrode can be suitably selected according to the shape of a secondary battery.
  • the charging voltage of the lithium ion secondary battery of the present invention is preferably 4.25 V or more, more preferably 4.30 V or more, further preferably 4.35 V or more, and particularly preferably 4.40 V or more in terms of the potential with respect to lithium.
  • the lithium ion secondary battery of the present invention described above is excellent in battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency) because the non-aqueous electrolyte of the present invention is used.
  • Examples 1 to 9 are examples, and examples 10 to 14 are comparative examples.
  • a tetrafluoroethylene-propylene rubber aqueous dispersion latex binder (0.26 g) adjusted to a solid content concentration of 34% by mass was added and stirred for 1 minute at a rotational speed of 2000 rpm using the stirrer to form a slurry for electrode coating. Obtained.
  • the slurry is coated on a copper foil having a thickness of 20 ⁇ m to a thickness of 210 ⁇ m, dried and then pressed with a roll press to a porosity of 15 to 25%, and then punched into a circle with a diameter of 16 mm for evaluation.
  • LiCoO 2 manufactured by AGC Seimi Chemical Co., Ltd., 32.0 g
  • carbon black manufactured by Denki Kagaku Kogyo Co., Ltd., 0.8 g
  • a revolving revolving stirrer manufactured by Shinky Co., Ltd., Awatori Netaro AR-E310
  • the step of stirring for 30 seconds at 2000 rpm was performed three times.
  • the step of adding N-methyl-2-pyrrolidone (6.0 g) and stirring with the stirrer at a rotation speed of 2000 rpm for 5 minutes was performed 4 times.
  • the step of adding N-methyl-2-pyrrolidone (0.8 g) and stirring for 3 minutes at 2000 rpm using the stirrer was performed three times.
  • a solution of polyvinylidene fluoride in N-methyl-2-pyrrolidone (11% by mass, 7.45 g) was added and stirred for 1 minute at a rotational speed of 2000 rpm using the stirrer to obtain a slurry.
  • the slurry is applied to a thickness of 180 ⁇ m on an aluminum foil having a thickness of 20 ⁇ m, dried, pressed with a roll press machine so that the porosity is 35 to 40%, and then punched into a circle with a diameter of 15 mm.
  • An evaluation electrode positive electrode
  • a cell comprising a LiCoO 2 electrode-graphite electrode, with a positive electrode and a negative electrode facing each other, a polyolefin microporous membrane as an electrode separator for evaluation existing between each electrode, a non-aqueous electrolyte (0.02 mL) added thereto was made.
  • the battery was charged to 4.35V with a current corresponding to 0.2C, and further charged until the current value reached a current corresponding to 0.02C at the charge lower limit voltage. Then, it discharged to 3.0V with the electric current corresponding to 0.2C. In 5 cycles, the battery was charged to 4.35 V with a current corresponding to 0.5 C, and further charged until the current value reached a current corresponding to 0.02 C at the charge lower limit voltage. Thereafter, the battery was discharged to 3.0 V with a current corresponding to 1.0 C.
  • the rate test was conducted for 6 to 11 cycles. Charging was performed until a current corresponding to 0.02C was reached at a charging lower limit voltage after charging to 4.35V with a current corresponding to 0.5C. The discharge was performed at 0.1 C for 6 cycles, 0.2 C for 7 cycles, 0.5 C for 8 cycles, 1.0 C for 9 cycles, and 3.0 V at a current corresponding to 2.0 C for 10 cycles. As an evaluation of the rate characteristics, the discharge capacity maintenance rate at 1.0 C discharge relative to the discharge capacity at 0.1 C discharge was measured.
  • the battery was charged to 4.35 V at a current corresponding to 0.5 C, and further charged until the current value reached a current corresponding to 0.02 C at the charge lower limit voltage. Then, it discharged to 3.0V with the electric current corresponding to 0.5C.
  • the cycle characteristics were evaluated based on the discharge capacity retention rate of 50 cycles and 100 cycles with respect to the discharge capacity of the 12th cycle.
  • LiPF LiPF 6
  • LiFOB Compound (1-1).
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • VC vinylene carbonate
  • FEC 4-fluoro-1,3-dioxolan-2-one.
  • Example 1 After diffusing LPF (0.15 g) and LiFOB (0.03 g) which are lithium salts into AE3000 (0.71 g) which is a fluorine-containing ether solvent (A), the cyclic carboxylic acid ester compound (B) is obtained. GBL (0.34 g), EC (0.03 g) which is a saturated cyclic carbonate compound (C) having no fluorine atom, and DMC (0.22 g) which is another solvent were mixed to obtain a non-aqueous electrolyte solution 1. . A cell was prepared using Nonaqueous Electrolytic Solution 1 (20 ⁇ L), and a charge / discharge test was performed. The results are shown in Table 1.
  • Nonaqueous electrolytes 2 to 14 were obtained in the same manner as in Example 1 except that the composition of each compound such as lithium salt was changed as shown in Tables 1 and 2.
  • Tables 1 and 2 the content (mass%) of each component is shown as a percentage of the content of each component with respect to the total content (mass) of each component contained in the non-aqueous electrolyte.
  • the cell was produced like Example 1 and the charge / discharge test was done. The results are shown in Tables 1 and 2.
  • Examples 1 to 9 in which LiFOB as the compound (1) and EC as the saturated cyclic carbonate compound (C) having no fluorine atom are used in a specific amount do not have a fluorine atom.
  • Examples 13 and 12 containing no saturated cyclic carbonate compound (C), 14 containing no compound (1), 11 containing no compound (1) and no saturated cyclic carbonate compound (C) having no fluorine atom In comparison, the initial charge / discharge efficiency, cycle characteristics, and rate characteristics were all improved.
  • the nonaqueous electrolytic solution of the present invention is useful as a nonaqueous electrolytic solution for a lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention includes a mobile phone, a portable game machine, a digital camera, a digital video camera, an electric tool, a notebook computer, a portable information terminal, a portable music player, an electric vehicle, a hybrid vehicle, a train, an aircraft, an artificial It can be applied to various uses such as satellites, submarines, ships, uninterruptible power supplies, robots, and power storage systems.
  • the lithium ion secondary battery of the present invention is particularly effective as a large secondary battery for electric vehicles, hybrid vehicles, trains, airplanes, artificial satellites, submarines, ships, uninterruptible power supplies, robots, power storage systems, and the like. is there. It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2014-086255 filed on April 18, 2014 are incorporated herein as the disclosure of the specification of the present invention. Is.

Abstract

 Provided are a nonaqueous electrolyte solution for secondary batteries, which can be used to obtain a lithium-ion secondary battery having excellent battery characteristics (cycle characteristics, rate characteristics, and initial charge and discharge efficiency), and a lithium-ion secondary battery using the nonaqueous electrolyte solution for secondary batteries. The nonaqueous electrolyte solution for secondary batteries contains: a lithium salt including a compound represented by formula (1) (wherein M is B or P, R1 is a C1-10 alkylene group, X is a halogen atom, n is 0-4, m is 0 or 1, and p is 1 or 2); a specific fluorine-containing solvent (A); a cyclic carboxylic acid ester compound (B); and a saturated cyclic carbonate compound (C) that does not have any fluorine atoms. The ratio of the mass of the saturated cyclic carbonate compound (C) that does not have any fluorine atoms relative to the total mass of the nonaqueous electrolyte solution is 0.01-20mass%.

Description

二次電池用非水電解液およびリチウムイオン二次電池Nonaqueous electrolyte for secondary battery and lithium ion secondary battery
 本発明は、二次電池用非水電解液およびリチウムイオン二次電池に関する。 The present invention relates to a non-aqueous electrolyte for a secondary battery and a lithium ion secondary battery.
 電池特性(サイクル特性、レート特性、初回充放電効率)が良好なリチウムイオン二次電池を得ることができる非水電解液としては、下記のものが提案されている。
 リチウム塩と液状組成物とを含み、液状組成物が、含フッ素エーテル化合物、含フッ素鎖状カルボン酸エステル化合物および含フッ素鎖状カーボネート化合物からなる群から選ばれる少なくとも1種の含フッ素溶媒と、環状カルボン酸エステル化合物と、不飽和環状カーボネートおよび/または含フッ素環状カーボネートを含む非水電解液(特許文献1)。
The following are proposed as non-aqueous electrolytes capable of obtaining a lithium ion secondary battery with good battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency).
A lithium salt and a liquid composition, wherein the liquid composition is at least one fluorine-containing solvent selected from the group consisting of a fluorine-containing ether compound, a fluorine-containing chain carboxylic acid ester compound, and a fluorine-containing chain carbonate compound; A nonaqueous electrolytic solution containing a cyclic carboxylic acid ester compound and an unsaturated cyclic carbonate and / or a fluorinated cyclic carbonate (Patent Document 1).
 しかし、該非水電解液であっても、電池や充放電条件によってはリチウムイオン二次電池の電池特性(サイクル特性、レート特性、初回充放電効率)はいまだ不充分であり、リチウムイオン二次電池の電池特性をさらに高めることができる非水電解液が望まれている。 However, even with the non-aqueous electrolyte, depending on the battery and charge / discharge conditions, the battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency) of the lithium ion secondary battery are still insufficient. A non-aqueous electrolyte that can further improve the battery characteristics is desired.
国際公開第2013/146359号International Publication No. 2013/146359
 本発明の目的は、電池特性(サイクル特性、レート特性、初回充放電効率)に優れるリチウムイオン二次電池を得ることができる二次電池用非水電解液、および電池特性(サイクル特性、レート特性、初回充放電効率)に優れるリチウムイオン二次電池を提供することである。 An object of the present invention is to provide a non-aqueous electrolyte for a secondary battery capable of obtaining a lithium ion secondary battery excellent in battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency), and battery characteristics (cycle characteristics, rate characteristics). It is to provide a lithium ion secondary battery having excellent initial charge / discharge efficiency.
 本発明は、以下の構成を有する。
 [1]電解質と液状組成物とを含む非水電解液であって、前記電解質の少なくとも1種が、リチウム塩であり、前記リチウム塩が、下式(1)で表される化合物の少なくとも1種を含み、前記液状組成物が、含フッ素エーテル化合物、含フッ素鎖状カルボン酸エステル化合物および含フッ素鎖状カーボネート化合物からなる群から選ばれる少なくとも1種を含む含フッ素溶媒(A)と、環状カルボン酸エステル化合物(B)と、フッ素原子を有しない飽和環状カーボネート化合物(C)とを含み、前記非水電解液の総質量に対する前記フッ素原子を有しない飽和環状カーボネート化合物(C)の質量の割合が0.01~20質量%である、二次電池用非水電解液。
The present invention has the following configuration.
[1] A nonaqueous electrolytic solution containing an electrolyte and a liquid composition, wherein at least one of the electrolytes is a lithium salt, and the lithium salt is at least one compound represented by the following formula (1): A fluorine-containing solvent (A) containing a seed, wherein the liquid composition comprises at least one selected from the group consisting of a fluorine-containing ether compound, a fluorine-containing chain carboxylic acid ester compound and a fluorine-containing chain carbonate compound; The carboxylic acid ester compound (B) and the saturated cyclic carbonate compound (C) having no fluorine atom, and having a mass of the saturated cyclic carbonate compound (C) having no fluorine atom with respect to the total mass of the nonaqueous electrolytic solution. A non-aqueous electrolyte for a secondary battery having a ratio of 0.01 to 20% by mass.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 ただし、Mは、ホウ素原子またはリン原子であり、Rは、置換基を有していてもよい炭素数1~10のアルキレン基であり、Xは、ハロゲン原子であり、nは、0~4の整数であり、mは、0または1であり、pは、1または2である。
 [2]前記フッ素原子を有しない飽和環状カーボネート化合物(C)が、下式(7)で表される化合物の少なくとも1種である、[1]の二次電池用非水電解液。
M is a boron atom or phosphorus atom, R 1 is an optionally substituted alkylene group having 1 to 10 carbon atoms, X is a halogen atom, and n is 0 to It is an integer of 4, m is 0 or 1, and p is 1 or 2.
[2] The nonaqueous electrolytic solution for secondary battery according to [1], wherein the saturated cyclic carbonate compound (C) having no fluorine atom is at least one compound represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 ただし、R14~R17は、それぞれ独立に水素原子または炭素数1~6のアルキル基である。
 [3]前記非水電解液の総質量に対する前記含フッ素溶媒(A)の質量の割合が、30~80質量%である、[1]または[2]の二次電池用非水電解液。
 [4]前記リチウム塩が、下式(1-1)で表される化合物、下式(1-2)で表される化合物、下式(1-3)で表される化合物、下式(1-4)で表される化合物および下式(1-5)で表される化合物からなる群から選ばれる少なくとも1種を含む、[1]~[3]のいずれかの二次電池用非水電解液。
However, R 14 to R 17 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
[3] The non-aqueous electrolyte for secondary batteries according to [1] or [2], wherein the ratio of the mass of the fluorinated solvent (A) to the total mass of the non-aqueous electrolyte is 30 to 80% by mass.
[4] The lithium salt is a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), a compound represented by the following formula (1-3), 1-4) and a non-secondary battery for a secondary battery according to any one of [1] to [3], comprising at least one selected from the group consisting of a compound represented by 1-4) and a compound represented by the following formula (1-5): Water electrolyte.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 [5]前記非水電解液の総質量に対する前記式(1)で表される化合物の質量の割合が、0.01~10質量%である、[1]~[4]のいずれかの二次電池用非水電解液。
 [6]前記含フッ素エーテル化合物が、下式(2)で表される化合物および下式(3)で表される化合物からなる群から選ばれる少なくとも1種である、[1]~[5]のいずれかの二次電池用非水電解液。
[5] The ratio of the mass of the compound represented by the formula (1) to the total mass of the nonaqueous electrolytic solution is 0.01 to 10% by mass, and any one of [1] to [4] Nonaqueous electrolyte for secondary batteries.
[6] The fluorine-containing ether compound is at least one selected from the group consisting of a compound represented by the following formula (2) and a compound represented by the following formula (3): [1] to [5] A non-aqueous electrolyte for a secondary battery.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 ただし、RおよびRは、それぞれ独立に炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数1~10のフッ素化アルキル基、炭素数3~10のフッ素化シクロアルキル基、エーテル性酸素原子を有する炭素数2~10のアルキル基、またはエーテル性酸素原子を有する炭素数2~10のフッ素化アルキル基であり、RおよびRのいずれか一方または両方は、炭素数1~10のフッ素化アルキル基、炭素数3~10のフッ素化シクロアルキル基、またはエーテル性酸素原子を有する炭素数2~10のフッ素化アルキル基であり、Yは、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、エーテル性酸素原子を有する炭素数2~5のアルキレン基またはエーテル性酸素原子を有する炭素数2~5のフッ素化アルキレン基である。
 [7]前記環状カルボン酸エステル化合物(B)が、下式(6)で表される化合物の少なくとも1種である、[1]~[6]のいずれかの二次電池用非水電解液。
R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a fluorinated alkyl group having 1 to 10 carbon atoms, or a fluorinated group having 3 to 10 carbon atoms. A cycloalkyl group, an alkyl group having 2 to 10 carbon atoms having an etheric oxygen atom, or a fluorinated alkyl group having 2 to 10 carbon atoms having an etheric oxygen atom, and one or both of R 2 and R 3 Is a fluorinated alkyl group having 1 to 10 carbon atoms, a fluorinated cycloalkyl group having 3 to 10 carbon atoms, or a fluorinated alkyl group having 2 to 10 carbon atoms having an etheric oxygen atom, and Y is a carbon number An alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkylene group having 2 to 5 carbon atoms having an etheric oxygen atom, or 2 carbon atoms having an etheric oxygen atom -5 fluorinated alkylene groups.
[7] The nonaqueous electrolytic solution for a secondary battery according to any one of [1] to [6], wherein the cyclic carboxylic acid ester compound (B) is at least one compound represented by the following formula (6): .
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 ただし、R~R13は、それぞれ独立に水素原子、フッ素原子、塩素原子、炭素数1~2のアルキル基、炭素数1~2のフッ素化アルキル基またはエーテル性酸素原子を有する炭素数2~3のアルキル基であり、qは0~3の整数である。
 [8]前記含フッ素エーテル化合物が、CFCHOCFCHF、CFCHOCFCHFCF、CHFCFCHOCFCHF、CHCHCHOCFCHF、CHCHOCFCHFおよびCHFCFCHOCFCHFCFからなる群から選ばれる少なくとも1種である、[1]~[7]のいずれかの二次電池用非水電解液。
 [9]前記含フッ素溶媒(A)が、前記含フッ素エーテル化合物である、[1]~[8]のいずれかの二次電池用非水電解液。
 [10]前記環状カルボン酸エステル化合物(B)が、γ-ブチロラクトン、γ-バレロラクトンおよびε-カプロラクトンからなる群から選ばれる少なくとも1種である、[1]~[9]のいずれかの二次電池用非水電解液。
 [11]前記リチウム塩が、LiPFを含む、[1]~[10]のいずれかの二次電池用非水電解液。
 [12]前記非水電解液の総質量に対するリチウム塩の質量の割合が、5~25質量%である、[1]~[11]のいずれかの二次電池用非水電解液。
 [13]前記非水電解液の総質量に対する前記環状カルボン酸エステル化合物(B)の質量の割合が、4~60質量%である、[1]~[12]のいずれかの二次電池用非水電解液。
 [14]リチウムイオンを吸蔵および放出できる材料を活物質とする正極と、リチウム金属、リチウム合金、ならびにリチウムイオンを吸蔵および放出できる炭素材料からなる群から選ばれる少なくとも1種を活物質とする負極と、[1]~[13]のいずれかの二次電池用非水電解液とを有する、リチウムイオン二次電池。
R 8 to R 13 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, an alkyl group having 1 to 2 carbon atoms, a fluorinated alkyl group having 1 to 2 carbon atoms, or an etheric oxygen atom having 2 carbon atoms. And q is an integer of 0 to 3.
[8] The fluorine-containing ether compound is CF 3 CH 2 OCF 2 CHF 2 , CF 3 CH 2 OCF 2 CHFCF 3 , CHF 2 CF 2 CH 2 OCF 2 CHF 2 , CH 3 CH 2 CH 2 OCF 2 CHF 2 , it is at least one selected from the group consisting of CH 3 CH 2 OCF 2 CHF 2 and CHF 2 CF 2 CH 2 OCF 2 CHFCF 3, [1] ~ any of the non-aqueous electrolyte solution for a secondary battery [7] .
[9] The nonaqueous electrolytic solution for a secondary battery according to any one of [1] to [8], wherein the fluorine-containing solvent (A) is the fluorine-containing ether compound.
[10] The two of any one of [1] to [9], wherein the cyclic carboxylic acid ester compound (B) is at least one selected from the group consisting of γ-butyrolactone, γ-valerolactone, and ε-caprolactone. Nonaqueous electrolyte for secondary batteries.
[11] The non-aqueous electrolyte for a secondary battery according to any one of [1] to [10], wherein the lithium salt contains LiPF 6 .
[12] The non-aqueous electrolyte for secondary batteries according to any one of [1] to [11], wherein the ratio of the mass of the lithium salt to the total mass of the non-aqueous electrolyte is 5 to 25% by mass.
[13] For the secondary battery according to any one of [1] to [12], wherein the ratio of the mass of the cyclic carboxylic acid ester compound (B) to the total mass of the non-aqueous electrolyte is 4 to 60% by mass. Non-aqueous electrolyte.
[14] A negative electrode using as an active material at least one selected from the group consisting of a positive electrode having a material capable of inserting and extracting lithium ions as an active material, and a lithium metal, a lithium alloy, and a carbon material capable of inserting and extracting lithium ions. And a non-aqueous electrolyte for secondary batteries according to any one of [1] to [13].
 本発明の二次電池用非水電解液によれば、電池特性(サイクル特性、レート特性、初回充放電効率)に優れるリチウムイオン二次電池を得ることができる。
 本発明のリチウムイオン二次電池は、電池特性(サイクル特性、レート特性、初回充放電効率)に優れる。
According to the nonaqueous electrolytic solution for a secondary battery of the present invention, a lithium ion secondary battery excellent in battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency) can be obtained.
The lithium ion secondary battery of the present invention is excellent in battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency).
 本明細書においては、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物も同様に記す。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「非水電解液」とは、水を実質的に含まない電解液であり、仮に水を含んでいたとしてもその水分量が該非水電解液を用いた二次電池に性能劣化が見られない範囲の量である電解液を意味する。非水電解液中に含まれ得る水分量は、非水電解液の総質量に対して500質量ppm以下が好ましく、100質量ppm以下がより好ましく、50質量ppm以下が特に好ましい。水分量の下限値は、0質量ppmである。
 「液状組成物」は、含フッ素溶媒(A)、環状カルボン酸エステル化合物(B)およびフッ素原子を有しない飽和環状カーボネート化合物(C)を含む。
 電解質、含フッ素溶媒(A)、環状カルボン酸エステル化合物(B)およびフッ素原子を有しない飽和環状カーボネート化合物(C)以外の他の化合物(他の溶媒、添加剤等)は、「他の成分」と定義され、電解質および液状組成物とは区別される。
 すなわち、本発明における非水電解液は、電解質、含フッ素溶媒(A)、環状カルボン酸エステル化合物(B)およびフッ素原子を有しない飽和環状カーボネート化合物(C)を必須成分とする。
 「含フッ素エーテル化合物」とは、エーテル結合を有し、フッ素原子を有する鎖状または環状の化合物を意味する。
 「含フッ素鎖状カルボン酸エステル化合物」とは、鎖状構造中にエステル結合を有し、エステル結合を有する環構造を有さず、フッ素原子を有する鎖状の化合物を意味する。
 「含フッ素鎖状カーボネート化合物」とは、鎖状構造中に-O-C(=O)-O-で表されるカーボネート結合を有し、カーボネート結合を有する環構造を有さず、フッ素原子を有する鎖状の化合物を意味する。
 「含フッ素アルカン化合物」とは、アルカンの水素原子の1個以上がフッ素原子に置換され、水素原子が残っている化合物を意味する。
 「環状カルボン酸エステル化合物」とは、環骨格の一部としてエステル結合を有する環状の化合物を意味する。
 「フッ素原子を有しない飽和環状カーボネート化合物」とは、環骨格が炭素原子と酸素原子とからなり、環骨格の一部として-O-C(=O)-O-で表されるカーボネート結合を有し、分子内に炭素-炭素不飽和結合およびフッ素原子のどちらも有しない環状の化合物を意味する。
 「フッ素化」および「含フッ素」とは、炭素原子に結合した水素原子の一部または全部がフッ素原子に置換されることを意味する。
 「フッ素化アルキル基」とは、アルキル基の水素原子の一部または全部がフッ素原子に置換された基を意味する。一部がフッ素化された基の中には、水素原子およびフッ素原子が存在する。
 「ペルフルオロアルキル基」とは、アルキル基の水素原子の全部がフッ素原子に置換された基を意味する。
 「炭素-炭素不飽和結合」とは、炭素-炭素二重結合または炭素-炭素三重結合を意味する。
In the present specification, a compound represented by the formula (1) is referred to as a compound (1). The same applies to compounds represented by other formulas.
The following definitions of terms apply throughout this specification and the claims.
The “non-aqueous electrolyte” is an electrolyte that does not substantially contain water, and even if water is included, the water content of the secondary battery using the non-aqueous electrolyte does not deteriorate in performance. It means an electrolyte solution in a range of amounts. The amount of water that can be contained in the non-aqueous electrolyte is preferably 500 ppm by mass or less, more preferably 100 ppm by mass or less, and particularly preferably 50 ppm by mass or less with respect to the total mass of the non-aqueous electrolyte. The lower limit of the moisture content is 0 mass ppm.
The “liquid composition” includes a fluorine-containing solvent (A), a cyclic carboxylic acid ester compound (B), and a saturated cyclic carbonate compound (C) having no fluorine atom.
Other compounds (other solvents, additives, etc.) other than the electrolyte, the fluorine-containing solvent (A), the cyclic carboxylic acid ester compound (B), and the saturated cyclic carbonate compound (C) not having a fluorine atom are other components. Is distinguished from electrolytes and liquid compositions.
That is, the nonaqueous electrolytic solution in the present invention contains an electrolyte, a fluorine-containing solvent (A), a cyclic carboxylic acid ester compound (B), and a saturated cyclic carbonate compound (C) having no fluorine atom as essential components.
The “fluorinated ether compound” means a chain or cyclic compound having an ether bond and having a fluorine atom.
The “fluorinated chain carboxylic acid ester compound” means a chain compound having an ester bond in a chain structure and not having a ring structure having an ester bond and having a fluorine atom.
“Fluorine-containing chain carbonate compound” is a chain structure having a carbonate bond represented by —O—C (═O) —O—, having no ring structure having a carbonate bond, and having a fluorine atom Means a chain-like compound having
The “fluorinated alkane compound” means a compound in which one or more hydrogen atoms of an alkane are substituted with fluorine atoms, and hydrogen atoms remain.
The “cyclic carboxylic acid ester compound” means a cyclic compound having an ester bond as a part of the ring skeleton.
“Saturated cyclic carbonate compound having no fluorine atom” means that a ring skeleton is composed of a carbon atom and an oxygen atom, and a carbonate bond represented by —O—C (═O) —O— is formed as a part of the ring skeleton. A cyclic compound having a carbon-carbon unsaturated bond and a fluorine atom in the molecule.
“Fluorinated” and “fluorinated” mean that some or all of the hydrogen atoms bonded to the carbon atom are replaced with fluorine atoms.
The “fluorinated alkyl group” means a group in which part or all of the hydrogen atoms of the alkyl group are substituted with fluorine atoms. Among the partially fluorinated groups are hydrogen atoms and fluorine atoms.
The “perfluoroalkyl group” means a group in which all hydrogen atoms of an alkyl group are substituted with fluorine atoms.
“Carbon-carbon unsaturated bond” means a carbon-carbon double bond or a carbon-carbon triple bond.
<二次電池用非水電解液>
 本発明の二次電池用非水電解液(以下、単に非水電解液とも記す。)は、電解質と液状組成物を含み、必要に応じて他の成分を含む。
 非水電解液の25℃におけるイオン伝導度の下限値は、0.30S/mであることが好ましい。非水電解液の25℃におけるイオン伝導度が0.30S/m以上であれば、二次電池の電池特性がさらに優れる。
<Non-aqueous electrolyte for secondary battery>
The non-aqueous electrolyte for secondary batteries of the present invention (hereinafter also simply referred to as non-aqueous electrolyte) includes an electrolyte and a liquid composition, and includes other components as necessary.
The lower limit of the ionic conductivity at 25 ° C. of the nonaqueous electrolytic solution is preferably 0.30 S / m. If the ionic conductivity at 25 ° C. of the non-aqueous electrolyte is 0.30 S / m or more, the battery characteristics of the secondary battery are further improved.
[電解質]
 電解質の少なくとも1種は、リチウム塩である。
 電解質は、リチウム塩のみであってもよく、リチウム塩と、リチウム塩以外の電解質との併用であってもよい。リチウム塩以外の電解質としては、モノフルオロリン酸またはジフルオロリン酸のナトリウム塩またはカリウム塩、NaPF等が挙げられる。
[Electrolytes]
At least one of the electrolytes is a lithium salt.
The electrolyte may be a lithium salt alone or a combination of a lithium salt and an electrolyte other than the lithium salt. Examples of the electrolyte other than the lithium salt include sodium salt or potassium salt of monofluorophosphoric acid or difluorophosphoric acid, NaPF 6 and the like.
 (リチウム塩)
 リチウム塩は、非水電解液中で解離してリチウムイオンを供給する。
 非水電解液は、リチウム塩として、下記化合物(1)を必須成分として含む。
(Lithium salt)
The lithium salt dissociates in the non-aqueous electrolyte and supplies lithium ions.
The nonaqueous electrolytic solution contains the following compound (1) as an essential component as a lithium salt.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 ただし、Mは、ホウ素原子またはリン原子であり、Rは、置換基を有していてもよい炭素数1~10のアルキレン基であり、Xは、ハロゲン原子であり、nは、0~4の整数であり、mは、0または1であり、pは、1または2である。 M is a boron atom or phosphorus atom, R 1 is an optionally substituted alkylene group having 1 to 10 carbon atoms, X is a halogen atom, and n is 0 to It is an integer of 4, m is 0 or 1, and p is 1 or 2.
 Mがホウ素原子であり、pが1である場合、nは2である。
 Mがホウ素原子であり、pが2である場合、nは0である。
 Mがリン原子であり、pが1である場合、nは4である。
 Mがリン原子であり、pが2である場合、nは2である。
 pが2である場合、2つのmはともに0であってもよく、ともに1であってもよく、一方が0で他方が1であってもよい。
 pが2であり、2つのmがともに1である場合、2つのRは、互いに異なる基であってもよく、同じ基であってもよい。
When M is a boron atom and p is 1, n is 2.
When M is a boron atom and p is 2, n is 0.
When M is a phosphorus atom and p is 1, n is 4.
When M is a phosphorus atom and p is 2, n is 2.
When p is 2, both m may be 0, both may be 1, one may be 0 and the other may be 1.
When p is 2 and two m's are both 1, the two R 1 groups may be different from each other or the same group.
 Rの置換基としては、ハロゲン原子、鎖状または環状のアルキル基、アリール基、スルホニル基、シアノ基、水酸基、アルコキシ基等が挙げられる。
 Xとしては、フッ素原子または塩素原子が好ましく、フッ素原子が特に好ましい。
 化合物(1)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of the substituent for R 1 include a halogen atom, a chain or cyclic alkyl group, an aryl group, a sulfonyl group, a cyano group, a hydroxyl group, and an alkoxy group.
X is preferably a fluorine atom or a chlorine atom, particularly preferably a fluorine atom.
As the compound (1), one type may be used alone, or two or more types may be used in combination.
 非水電解液が、リチウム塩として化合物(1)を含むことによって、サイクル特性、レート特性等の電池特性に優れた非水電解液となる。これは、以下のように考えられる。
 化合物(1)は、二次電池の充電の際に負極上で分解し、該負極表面に界面抵抗の小さいリチウムイオン導伝性被膜(SEI:Solid electrolyte interface)を形成すると考えられる。従来、このようなSEIを形成する被膜形成剤としては、ビニレンカーボネート等が知られている。化合物(1)は、ビニレンカーボネート等の従来の被膜形成剤に比べて、界面抵抗がより小さい良好なSEIを形成できるため、サイクル特性、レート特性等の電池特性に優れた非水電解液になると考えられる。
When the non-aqueous electrolyte contains the compound (1) as a lithium salt, the non-aqueous electrolyte is excellent in battery characteristics such as cycle characteristics and rate characteristics. This is considered as follows.
It is considered that the compound (1) decomposes on the negative electrode during charging of the secondary battery, and forms a lithium ion conductive film (SEI) having a small interface resistance on the negative electrode surface. Conventionally, vinylene carbonate etc. are known as a film formation agent which forms such SEI. Since the compound (1) can form a favorable SEI having a lower interface resistance than conventional film forming agents such as vinylene carbonate, it becomes a non-aqueous electrolyte excellent in battery characteristics such as cycle characteristics and rate characteristics. Conceivable.
 リチウム塩は、サイクル特性、レート特性等の電池特性に優れた非水電解液が得られやすい点から、下記化合物(1-1)~化合物(1-5)からなる群から選ばれる少なくとも1種を含むことが好ましい。 The lithium salt is at least one selected from the group consisting of the following compounds (1-1) to (1-5) from the viewpoint of easily obtaining a non-aqueous electrolyte excellent in battery characteristics such as cycle characteristics and rate characteristics. It is preferable to contain.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 リチウム塩は、化合物(1)以外の他のリチウム塩を含んでもよい。他のリチウム塩としては、LiPF、LiPOF、LiPO、下記化合物(11)(ただし、kは1~5の整数である。)、FSON(Li)SOF、CFSON(Li)SOCF、CFCFSON(Li)SOCFCF、CFCFHSON(Li)SOCFHCF、LiClO、LiBF等が挙げられる。 The lithium salt may contain other lithium salts other than the compound (1). Other lithium salts include LiPF 6 , Li 2 PO 3 F, LiPO 2 F 2 , the following compound (11) (where k is an integer of 1 to 5), FSO 2 N (Li) SO 2 F , CF 3 SO 2 N (Li ) SO 2 CF 3, CF 3 CF 2 SO 2 N (Li) SO 2 CF 2 CF 3, CF 3 CFHSO 2 N (Li) SO 2 CFHCF 3, LiClO 4, LiBF 4 , etc. Is mentioned.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 他のリチウム塩としては、LiPFを含むことが好ましい。すなわち、リチウム塩としては、化合物(1)とLiPFとの組み合わせが特に好ましい。リチウム塩としてLiPFを含むと、イオン伝導度が良好となり、電池特性に優れる。
 他のリチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
As another lithium salt, LiPF 6 is preferably contained. That is, as the lithium salt, a combination of the compound (1) and LiPF 6 is particularly preferable. When LiPF 6 is included as the lithium salt, the ionic conductivity is good and the battery characteristics are excellent.
Another lithium salt may be used individually by 1 type, and may be used in combination of 2 or more type.
[液状組成物]
 液状組成物は、含フッ素溶媒(A)と、環状カルボン酸エステル化合物(B)と、フッ素原子を有しない飽和環状カーボネート化合物(C)とを含む。
[Liquid composition]
The liquid composition contains a fluorinated solvent (A), a cyclic carboxylic acid ester compound (B), and a saturated cyclic carbonate compound (C) having no fluorine atom.
 (含フッ素溶媒(A))
 含フッ素溶媒(A)は、含フッ素エーテル化合物、含フッ素鎖状カルボン酸エステル化合物および含フッ素鎖状カーボネート化合物からなる群から選ばれる少なくとも1種を含む含フッ素溶媒である。含フッ素溶媒(A)は、分子内にフッ素原子を有する溶媒であり、難燃性に優れている。含フッ素溶媒(A)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。含フッ素溶媒(A)が2種以上の場合、その比率は任意に決定できる。
(Fluorine-containing solvent (A))
The fluorine-containing solvent (A) is a fluorine-containing solvent containing at least one selected from the group consisting of fluorine-containing ether compounds, fluorine-containing chain carboxylic acid ester compounds and fluorine-containing chain carbonate compounds. The fluorine-containing solvent (A) is a solvent having a fluorine atom in the molecule and is excellent in flame retardancy. A fluorine-containing solvent (A) may be used individually by 1 type, and may be used in combination of 2 or more type. When the number of fluorine-containing solvents (A) is two or more, the ratio can be arbitrarily determined.
 含フッ素エーテル化合物:
 含フッ素溶媒(A)は、リチウム塩の溶解性、難燃性、非水電解液のイオン伝導度が高くなる点から、含フッ素エーテル化合物を含むことが好ましい。含フッ素エーテル化合物としては、リチウム塩の溶解性、難燃性、非水電解液のイオン伝導度が高くなる点から、下記化合物(2)および下記化合物(3)からなる群から選ばれる少なくとも1種が好ましい。
 含フッ素エーテル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。含フッ素エーテル化合物が2種以上の場合、その比率は任意に決定できる。
Fluorine-containing ether compound:
The fluorine-containing solvent (A) preferably contains a fluorine-containing ether compound from the viewpoint of the solubility of the lithium salt, the flame retardancy, and the ionic conductivity of the non-aqueous electrolyte. The fluorine-containing ether compound is at least one selected from the group consisting of the following compound (2) and the following compound (3) from the viewpoints of lithium salt solubility, flame retardancy, and ionic conductivity of the non-aqueous electrolyte. Species are preferred.
A fluorine-containing ether compound may be used individually by 1 type, and may be used in combination of 2 or more type. When the number of fluorine-containing ether compounds is two or more, the ratio can be arbitrarily determined.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 ただし、式(2)中、RおよびRは、それぞれ独立に、炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数1~10のフッ素化アルキル基、炭素数3~10のフッ素化シクロアルキル基、エーテル性酸素原子を有する炭素数2~10のアルキル基、またはエーテル性酸素原子を有する炭素数2~10のフッ素化アルキル基である。さらに、RおよびRのいずれか一方または両方は、炭素数1~10のフッ素化アルキル基、炭素数3~10のフッ素化シクロアルキル基、またはエーテル性酸素原子を有する炭素数2~10のフッ素化アルキル基である。
 また、式(3)中、Yは、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、エーテル性酸素原子を有する炭素数2~5のアルキレン基、またはエーテル性酸素原子を有する炭素数2~5のフッ素化アルキレン基である。
However, in the formula (2), R 2 and R 3 are each independently an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a fluorinated alkyl group having 1 to 10 carbon atoms, carbon A fluorinated cycloalkyl group having 3 to 10 carbon atoms, an alkyl group having 2 to 10 carbon atoms having an etheric oxygen atom, or a fluorinated alkyl group having 2 to 10 carbon atoms having an etheric oxygen atom. Further, either one or both of R 2 and R 3 is a fluorinated alkyl group having 1 to 10 carbon atoms, a fluorinated cycloalkyl group having 3 to 10 carbon atoms, or a carbon number having 2 to 10 carbon atoms having an etheric oxygen atom. Of the fluorinated alkyl group.
In Formula (3), Y represents an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkylene group having 2 to 5 carbon atoms having an etheric oxygen atom, or etheric oxygen A fluorinated alkylene group having 2 to 5 carbon atoms and having an atom.
 化合物(2)におけるアルキル基およびエーテル性酸素原子を有するアルキル基としては、それぞれ、直鎖構造、分岐構造、または部分的に環状構造を有する基(シクロアルキルアルキル基等)が挙げられる。
 化合物(2)におけるRおよびRのいずれか一方または両方は、炭素数1~10のフッ素化アルキル基、炭素数3~10のフッ素化シクロアルキル基、またはエーテル性酸素原子を有する炭素数2~10のフッ素化アルキル基である。RおよびRのいずれか一方または両方がこれらの基であると、リチウム塩の非水電解液への溶解性および非水電解液の難燃性が優れる。化合物(2)におけるRとRは同じであってもよく、異なっていてもよい。
Examples of the alkyl group and the alkyl group having an etheric oxygen atom in the compound (2) include a linear structure, a branched structure, or a group having a cyclic structure (cycloalkylalkyl group and the like).
One or both of R 2 and R 3 in the compound (2) is a fluorinated alkyl group having 1 to 10 carbon atoms, a fluorinated cycloalkyl group having 3 to 10 carbon atoms, or a carbon number having an etheric oxygen atom. 2 to 10 fluorinated alkyl groups. When either one or both of R 2 and R 3 are these groups, the solubility of the lithium salt in the non-aqueous electrolyte and the flame retardancy of the non-aqueous electrolyte are excellent. R 2 and R 3 in the compound (2) may be the same or different.
 化合物(2)としては、リチウム塩の溶解性、難燃性、非水電解液のイオン伝導度が高くなる点から、RおよびRがいずれも炭素数1~10のフッ素化アルキル基である化合物(2-A);Rがエーテル性酸素原子を有する炭素数2~10のフッ素化アルキル基であり、かつRが炭素数1~10のフッ素化アルキル基である化合物(2-B);またはRが炭素数1~10のフッ素化アルキル基であり、かつRが炭素数1~10のアルキル基である化合物(2-C)が好ましい。化合物(2-A)または化合物(2-C)がより好ましく、化合物(2-A)が特に好ましい。 As the compound (2), R 2 and R 3 are all fluorinated alkyl groups having 1 to 10 carbon atoms from the viewpoint of lithium salt solubility, flame retardancy, and ionic conductivity of the non-aqueous electrolyte. Compound (2-A): Compound (2-A) wherein R 2 is a fluorinated alkyl group having 2 to 10 carbon atoms having an etheric oxygen atom, and R 3 is a fluorinated alkyl group having 1 to 10 carbon atoms B); or a compound (2-C) in which R 2 is a fluorinated alkyl group having 1 to 10 carbon atoms and R 3 is an alkyl group having 1 to 10 carbon atoms. Compound (2-A) or compound (2-C) is more preferable, and compound (2-A) is particularly preferable.
 化合物(2)の総炭素数は、少なすぎると沸点が低すぎ、多すぎると高粘度化する点から、4~10が好ましく、4~8がより好ましい。
 化合物(2)の分子量は、小さすぎると沸点が低すぎ、大きすぎると高粘度化する点から、150~800が好ましく、150~500がより好ましく、200~500が特に好ましい。
 化合物(2)中のエーテル性酸素原子数は、1~4が好ましく、1または2がより好ましく、1がさらに好ましい。化合物(2)中のエーテル性酸素原子数は、可燃性に影響する。
 化合物(2)中のフッ素含有量は、40質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上がさらに好ましい。化合物(2)中のフッ素含有量が高いと、難燃性に優れる。化合物(2)中のフッ素含有量は、多すぎるとリチウム塩の親和性が低下し相分離しやすくなるため、80質量%以下が好ましく、75質量%以下がより好ましく、70質量%以下がさらに好ましい。フッ素含有量は、分子量に占めるフッ素原子の総質量の割合である。
The total number of carbon atoms in the compound (2) is preferably 4 to 10 and more preferably 4 to 8 from the viewpoint that the boiling point is too low when the amount is too small and the viscosity increases when the amount is too large.
The molecular weight of the compound (2) is preferably 150 to 800, more preferably 150 to 500, and particularly preferably 200 to 500 from the viewpoint that if the molecular weight is too small, the boiling point is too low, and if it is too large, the viscosity becomes high.
The number of etheric oxygen atoms in the compound (2) is preferably 1 to 4, more preferably 1 or 2, and even more preferably 1. The number of etheric oxygen atoms in the compound (2) affects flammability.
40 mass% or more is preferable, as for the fluorine content in a compound (2), 50 mass% or more is more preferable, and 60 mass% or more is further more preferable. When the fluorine content in the compound (2) is high, the flame retardancy is excellent. If the fluorine content in the compound (2) is too large, the affinity of the lithium salt is lowered and phase separation is likely to occur, so 80 mass% or less is preferable, 75 mass% or less is more preferable, and 70 mass% or less is even more. preferable. The fluorine content is the ratio of the total mass of fluorine atoms to the molecular weight.
 化合物(2)としては、リチウム塩の液状組成物に対する溶解度に優れる点から、RおよびRの両方が、水素原子の一部がフッ素化されたアルキル基である化合物が好ましく、RおよびRの末端のいずれか一方または両方が、CHFである化合物がより好ましい。 As the compound (2), from the viewpoint of excellent solubility in the liquid composition of the lithium salt, both of R 2 and R 3, the compound partially fluorinated alkyl group of which a hydrogen atom is preferred, R 2 and A compound in which either one or both of the terminals of R 3 is CHF 2 is more preferable.
 化合物(2-A)および化合物(2-B)の具体例、ならびに化合物(2-A)および化合物(2-B)以外の含フッ素エーテル化合物の具体例としては、国際公開第2009/133899号に記載の化合物等が挙げられる。 Specific examples of the compound (2-A) and the compound (2-B), and specific examples of the fluorinated ether compound other than the compound (2-A) and the compound (2-B) include International Publication No. 2009/133899. And the like.
 化合物(2)としては、リチウム塩の溶解性に優れ、難燃性に優れ、粘度が低く、沸点が低すぎない点から、CFCHOCFCHF(旭硝子社製、アサヒクリン AE-3000)、CFCHOCFCHFCF、CHFCFCHOCFCHF、CHCHCHOCFCHF、CHCHOCFCHFおよびCHFCFCHOCFCHFCFからなる群から選ばれる少なくとも1種が好ましく、CFCHOCFCHF、CHFCFCHOCFCHFおよびCHFCFCHOCFCHFCFからなる群から選ばれる少なくとも1種が特に好ましい。 As compound (2), CF 3 CH 2 OCF 2 CHF 2 (produced by Asahi Glass Co., Ltd., Asahi Clin AE-) has excellent lithium salt solubility, flame retardancy, low viscosity, and low boiling point. 3000), CF 3 CH 2 OCF 2 CHFCF 3, CHF 2 CF 2 CH 2 OCF 2 CHF 2, CH 3 CH 2 CH 2 OCF 2 CHF 2, CH 3 CH 2 OCF 2 CHF 2 and CHF 2 CF 2 CH 2 OCF Preferably, at least one selected from the group consisting of 2 CHFCF 3 is selected from the group consisting of CF 3 CH 2 OCF 2 CHF 2 , CHF 2 CF 2 CH 2 OCF 2 CHF 2 and CHF 2 CF 2 CH 2 OCF 2 CHFCF 3 At least one selected from the above is particularly preferred.
 化合物(3)におけるYは、直鎖構造であってもよく、分岐構造であってもよい。Yとしては、炭素数1~5のアルキレン基が好ましく、炭素数2~4のアルキレン基がより好ましい。該アルキレン基は、直鎖構造または分岐構造が好ましい。Yにおけるアルキレン基が分岐構造を有する場合には、側鎖は炭素数1~3のアルキル基またはエーテル性酸素原子を有する炭素数1~3のアルキル基が好ましい。 Y in the compound (3) may have a linear structure or a branched structure. Y is preferably an alkylene group having 1 to 5 carbon atoms, more preferably an alkylene group having 2 to 4 carbon atoms. The alkylene group preferably has a linear structure or a branched structure. When the alkylene group in Y has a branched structure, the side chain is preferably an alkyl group having 1 to 3 carbon atoms or an alkyl group having 1 to 3 carbon atoms having an etheric oxygen atom.
 化合物(3)としては、式(3)において、Yが-CH-、-CHCH-、-CH(CH)CH-および-CHCHCH-からなる群から選ばれる1種である化合物が好ましく、Yが-CHCH-である化合物およびYが-CH(CH)CH-である化合物のいずれか一方または両方がより好ましく、Yが-CHCH-である化合物およびYが-CH(CH)CH-である化合物のいずれか一方であることがさらに好ましい。
 化合物(3)の具体例としては、下式で表される化合物等が挙げられる。
The compound (3) is selected from the group consisting of —CH 2 —, —CH 2 CH 2 —, —CH (CH 3 ) CH 2 — and —CH 2 CH 2 CH 2 — in the formula (3). And one or both of the compound in which Y is —CH 2 CH 2 — and the compound in which Y is —CH (CH 3 ) CH 2 — is more preferable, and Y is —CH 2. CH 2 -, compound and Y is -CH (CH 3) CH 2 - is still more preferably one of a compound.
Specific examples of the compound (3) include a compound represented by the following formula.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 含フッ素エーテル化合物としては、化合物(2)単独、化合物(3)単独、または化合物(2)および化合物(3)の混合物が好ましく、化合物(2)単独がより好ましい。化合物(2)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。化合物(3)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。 As the fluorinated ether compound, compound (2) alone, compound (3) alone, or a mixture of compound (2) and compound (3) is preferred, and compound (2) alone is more preferred. A compound (2) may be used individually by 1 type, and may be used in combination of 2 or more type. A compound (3) may be used individually by 1 type, and may be used in combination of 2 or more type.
 含フッ素鎖状カルボン酸エステル化合物:
 含フッ素鎖状カルボン酸エステル化合物は、粘度や沸点等の点から、下記化合物(4)を含むことが好ましく、化合物(4)のみからなることがより好ましい。含フッ素鎖状カルボン酸エステル化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。含フッ素鎖状カルボン酸エステル化合物が2種以上の場合、その比率は任意に決定できる。化合物(4)を含む場合、化合物(4)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。
Fluorine-containing chain carboxylic acid ester compound:
The fluorine-containing chain carboxylic acid ester compound preferably contains the following compound (4), more preferably only the compound (4), from the viewpoints of viscosity, boiling point and the like. A fluorine-containing chain carboxylic acid ester compound may be used individually by 1 type, and may be used in combination of 2 or more type. When the number of fluorine-containing chain carboxylic acid ester compounds is two or more, the ratio can be arbitrarily determined. When the compound (4) is included, the compound (4) may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 ただし、RおよびRは、それぞれ独立に炭素数1~3のアルキル基、または炭素数1~3のフッ素化アルキル基であり、RおよびRのいずれか一方または両方は、炭素数1~3のフッ素化アルキル基である。 Provided that R 4 and R 5 are each independently an alkyl group having 1 to 3 carbon atoms or a fluorinated alkyl group having 1 to 3 carbon atoms, and one or both of R 4 and R 5 are 1 to 3 fluorinated alkyl groups.
 化合物(4)におけるアルキル基、およびフッ素化アルキル基としては、それぞれ、直鎖構造、分岐構造が挙げられる。
 RおよびRのいずれか一方または両方は、好ましくは炭素数1~3のフッ素化アルキル基である。RおよびRのいずれか一方または両方を炭素数1~3のフッ素化アルキル基にすることによって、化合物(4)は耐酸化性および難燃性に優れる。化合物(4)におけるRおよびRは同じであってもよく、異なっていてもよい。
Examples of the alkyl group and the fluorinated alkyl group in the compound (4) include a linear structure and a branched structure, respectively.
One or both of R 4 and R 5 are preferably a fluorinated alkyl group having 1 to 3 carbon atoms. By making one or both of R 4 and R 5 into a fluorinated alkyl group having 1 to 3 carbon atoms, the compound (4) is excellent in oxidation resistance and flame retardancy. R 4 and R 5 in the compound (4) may be the same or different.
 Rとしては、粘度や沸点、もしくは化合物の入手性の点から、メチル基、エチル基、ジフルオロメチル基、トリフルオロメチル基、テトラフルオロエチル基、またはペンタフルオロエチル基が好ましく、ジフルオロメチル基、またはトリフルオロメチル基がより好ましい。
 Rとしては、粘度や沸点、もしくは化合物の入手性の点から、メチル基、エチル基、トリフルオロメチル基、2-フルオロエチル基、2,2-ジフルオロエチル基、または2,2,2-トリフルオロエチル基が好ましく、メチル基、エチル基、または2,2,2-トリフルオロエチル基がより好ましく、メチル基、またはエチル基がさらに好ましい。
R 4 is preferably a methyl group, an ethyl group, a difluoromethyl group, a trifluoromethyl group, a tetrafluoroethyl group, or a pentafluoroethyl group from the viewpoint of viscosity, boiling point, or availability of the compound, and a difluoromethyl group, Or a trifluoromethyl group is more preferable.
R 5 is a methyl group, an ethyl group, a trifluoromethyl group, a 2-fluoroethyl group, a 2,2-difluoroethyl group, or 2,2,2-in terms of viscosity, boiling point, or availability of the compound. A trifluoroethyl group is preferred, a methyl group, an ethyl group, or a 2,2,2-trifluoroethyl group is more preferred, and a methyl group or an ethyl group is more preferred.
 化合物(4)の総炭素数は、少なすぎると沸点が低すぎ、多すぎると高粘度化する点から、3~8が好ましく、3~6がより好ましく、3~5がさらに好ましい。
 化合物(4)の分子量は、小さすぎると沸点が低すぎ、大きすぎると高粘度化する点から、100~300が好ましく、100~250がより好ましく、100~200が特に好ましい。
 化合物(4)中のフッ素含有量は、難燃性に優れる点から、25質量%以上が好ましく、30質量%以上がより好ましい。また、多すぎるとリチウム塩の親和性が低下し相分離しやすくなるため、55質量%以下が好ましく、50質量%以下がより好ましい。
The total number of carbon atoms in the compound (4) is preferably from 3 to 8, more preferably from 3 to 6, and even more preferably from 3 to 5 from the viewpoint that if the amount is too small, the boiling point is too low and if the amount is too large, the viscosity increases.
The molecular weight of the compound (4) is preferably from 100 to 300, more preferably from 100 to 250, and particularly preferably from 100 to 200 from the viewpoint that if the molecular weight is too small, the boiling point is too low, and if it is too large, the viscosity increases.
The fluorine content in the compound (4) is preferably 25% by mass or more and more preferably 30% by mass or more from the viewpoint of excellent flame retardancy. Moreover, since the affinity of lithium salt will fall and phase separation will become easy when there is too much, 55 mass% or less is preferable and 50 mass% or less is more preferable.
 化合物(4)の具体例としては、酢酸(2,2,2-トリフルオロエチル)、ジフルオロ酢酸メチル、ジフルオロ酢酸エチル、トリフルオロ酢酸エチル等が挙げられる。入手容易性、およびサイクル特性等の電池性能に優れる点から、ジフルオロ酢酸メチル、トリフルオロ酢酸エチルが好ましい。 Specific examples of the compound (4) include acetic acid (2,2,2-trifluoroethyl), methyl difluoroacetate, ethyl difluoroacetate, ethyl trifluoroacetate and the like. From the viewpoint of availability and battery performance such as cycle characteristics, methyl difluoroacetate and ethyl trifluoroacetate are preferable.
 含フッ素鎖状カーボネート化合物:
 含フッ素鎖状カーボネート化合物は、粘度や沸点等の点から、下記化合物(5)を含むことが好ましく、化合物(5)のみからなることがより好ましい。含フッ素鎖状カーボネート化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。含フッ素鎖状カーボネート化合物が2種以上の場合、その比率は任意に決定できる。化合物(5)を含む場合、化合物(5)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。
Fluorine-containing chain carbonate compound:
The fluorine-containing chain carbonate compound preferably contains the following compound (5), more preferably only the compound (5), from the viewpoints of viscosity and boiling point. A fluorine-containing chain carbonate compound may be used individually by 1 type, and may be used in combination of 2 or more type. When the number of fluorine-containing chain carbonate compounds is two or more, the ratio can be arbitrarily determined. When the compound (5) is contained, the compound (5) may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 ただし、RおよびRは、それぞれ独立に炭素数1~3のアルキル基、または炭素数1~3のフッ素化アルキル基であり、RおよびRのいずれか一方または両方は、炭素数1~3のフッ素化アルキル基である。 Provided that R 6 and R 7 are each independently an alkyl group having 1 to 3 carbon atoms or a fluorinated alkyl group having 1 to 3 carbon atoms, and one or both of R 6 and R 7 are 1 to 3 fluorinated alkyl groups.
 化合物(5)におけるアルキル基、フッ素化アルキル基としては、それぞれ、直鎖構造、分岐構造が挙げられる。
 RおよびRのいずれか一方または両方は、炭素数1~3のフッ素化アルキル基である。RおよびRのいずれか一方または両方を炭素数1~3のフッ素化アルキル基にすることによって、リチウム塩の非水電解液への溶解性および難燃性が優れる。化合物(5)におけるRおよびRは同じであってもよく、異なっていてもよい。
Examples of the alkyl group and the fluorinated alkyl group in the compound (5) include a linear structure and a branched structure, respectively.
One or both of R 6 and R 7 is a fluorinated alkyl group having 1 to 3 carbon atoms. By making one or both of R 6 and R 7 a fluorinated alkyl group having 1 to 3 carbon atoms, the solubility of the lithium salt in the non-aqueous electrolyte and the flame retardancy are excellent. R 6 and R 7 in the compound (5) may be the same or different.
 化合物(5)としては、粘度や沸点、もしくは化合物の入手性の点から、RおよびRの両方が炭素数1~3のフッ素化アルキル基である化合物が好ましい。RおよびRとしては、CFCH-、CHFCFCH-が好ましい。 The compound (5) is preferably a compound in which both R 6 and R 7 are fluorinated alkyl groups having 1 to 3 carbon atoms from the viewpoint of viscosity, boiling point, or availability of the compound. R 6 and R 7 are preferably CF 3 CH 2 — or CHF 2 CF 2 CH 2 —.
 化合物(5)の総炭素数は、少なすぎると沸点が低すぎ、多すぎると高粘度化する点から、4~10が好ましく、4~7がより好ましい。
 化合物(5)の分子量は、小さすぎると沸点が低すぎ、大きすぎると高粘度化する点から、180~400が好ましく、200~350がより好ましく、210~300が特に好ましい。
 化合物(5)中のフッ素含有量は、難燃性に優れる点から、25質量%以上が好ましく、30質量%以上がより好ましい。また、多すぎるとリチウム塩の親和性が低下し相分離しやすくなるため、60質量%以下が好ましく、50質量%以下がより好ましい。
The total number of carbon atoms in the compound (5) is preferably 4 to 10 and more preferably 4 to 7 from the viewpoint that if the amount is too small, the boiling point is too low and if the amount is too large, the viscosity becomes high.
The molecular weight of the compound (5) is preferably from 180 to 400, more preferably from 200 to 350, particularly preferably from 210 to 300 from the viewpoint that if the molecular weight is too small, the boiling point is too low, and if it is too large, the viscosity increases.
From the point which is excellent in a flame retardance, 25 mass% or more is preferable and, as for the fluorine content in a compound (5), 30 mass% or more is more preferable. Moreover, since the affinity of lithium salt will fall and phase separation will become easy when there is too much, 60 mass% or less is preferable and 50 mass% or less is more preferable.
 化合物(5)の具体例としては、ビス(2,2,2-トリフルオロエチル)カーボネート、ビス(2,2,3,3-テトラフルオロプロピル)カーボネート等が挙げられる。粘度や入手容易性、および出力特性等の電池性能の点から、ビス(2,2,2-トリフルオロエチル)カーボネートが好ましい。 Specific examples of the compound (5) include bis (2,2,2-trifluoroethyl) carbonate and bis (2,2,3,3-tetrafluoropropyl) carbonate. Bis (2,2,2-trifluoroethyl) carbonate is preferred from the viewpoint of battery performance such as viscosity, availability, and output characteristics.
 他の含フッ素溶媒:
 含フッ素溶媒(A)は、含フッ素エーテル化合物、含フッ素鎖状カルボン酸エステル化合物および含フッ素鎖状カーボネート化合物以外の他の含フッ素溶媒として含フッ素アルカン化合物等を含んでいてもよい。含フッ素アルカン化合物を含む場合、非水電解液の蒸気圧が抑制され、難燃性がさらに優れる。
Other fluorine-containing solvents:
The fluorine-containing solvent (A) may contain a fluorine-containing alkane compound as a fluorine-containing solvent other than the fluorine-containing ether compound, the fluorine-containing chain carboxylic acid ester compound, and the fluorine-containing chain carbonate compound. When the fluorine-containing alkane compound is contained, the vapor pressure of the non-aqueous electrolyte is suppressed and the flame retardancy is further improved.
 含フッ素アルカン化合物としては、炭素数4~12の含フッ素アルカン化合物が好ましい。炭素数が4以上の含フッ素アルカン化合物であれば、非水電解液の蒸気圧が低くなる。炭素数が12以下の含フッ素アルカン化合物であれば、リチウム塩の溶解性が良好である。 The fluorine-containing alkane compound is preferably a fluorine-containing alkane compound having 4 to 12 carbon atoms. If the fluorine-containing alkane compound has 4 or more carbon atoms, the vapor pressure of the non-aqueous electrolyte is lowered. If the fluorine-containing alkane compound has 12 or less carbon atoms, the solubility of the lithium salt is good.
 含フッ素アルカン化合物中のフッ素含有量は、50~80質量%が好ましい。含フッ素アルカン化合物中のフッ素含有量が50質量%以上であれば、難燃性に優れる。含フッ素アルカン化合物中のフッ素含有量が80質量%以下であれば、リチウム塩の溶解性を保持しやすい。 The fluorine content in the fluorine-containing alkane compound is preferably 50 to 80% by mass. If the fluorine content in the fluorine-containing alkane compound is 50% by mass or more, the flame retardancy is excellent. If the fluorine content in the fluorine-containing alkane compound is 80% by mass or less, the solubility of the lithium salt is easily maintained.
 含フッ素アルカン化合物としては、直鎖構造の化合物が好ましく、n-CCHCH、n-C13CHCH、n-C13H、n-C17H等が挙げられる。含フッ素アルカン化合物は、1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。 As the fluorinated alkane compound, a compound having a linear structure is preferable, and nC 4 F 9 CH 2 CH 3 , nC 6 F 13 CH 2 CH 3 , nC 6 F 13 H, nC 8 F 17 H, and the like. A fluorine-containing alkane compound may be used individually by 1 type, and may be used in combination of 2 or more type.
 (環状カルボン酸エステル化合物(B))
 液状組成物が環状カルボン酸エステル化合物を含むことによって、含フッ素溶媒(A)にリチウム塩が均一に溶解される。また、環状カルボン酸エステル化合物(B)を含むことによって、非水電解液と電極とが反応しにくくなり、二次電池における熱暴走が起きにくくなる。環状カルボン酸エステル化合物(B)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。
(Cyclic carboxylic acid ester compound (B))
When the liquid composition contains the cyclic carboxylic acid ester compound, the lithium salt is uniformly dissolved in the fluorine-containing solvent (A). In addition, the inclusion of the cyclic carboxylic acid ester compound (B) makes it difficult for the non-aqueous electrolyte and the electrode to react, and thermal runaway in the secondary battery is less likely to occur. A cyclic carboxylic acid ester compound (B) may be used individually by 1 type, and may be used in combination of 2 or more type.
 環状カルボン酸エステル化合物(B)としては、酸化還元反応への安定性の点から、分子内に炭素-炭素不飽和結合を有しない飽和環状カルボン酸エステル化合物が好ましい。
 環状カルボン酸エステル化合物(B)における環構造は、4~10員環が好ましく、4~7員環がより好ましく、入手容易な点から、5~6員環がさらに好ましく、5員環が特に好ましい。
As the cyclic carboxylic acid ester compound (B), a saturated cyclic carboxylic acid ester compound having no carbon-carbon unsaturated bond in the molecule is preferable from the viewpoint of stability to redox reaction.
The ring structure in the cyclic carboxylic acid ester compound (B) is preferably a 4- to 10-membered ring, more preferably a 4- to 7-membered ring, further preferably a 5- to 6-membered ring from the viewpoint of easy availability, and particularly a 5-membered ring. preferable.
 環状カルボン酸エステル化合物(B)の環構造は、粘度および酸化還元反応への安定性の点から、エステル結合を1つ有する環構造が好ましい。
 環状カルボン酸エステル化合物(B)は、アルキレン基の水素原子の1個以上を置換基で置換した化合物でもよい。置換基としては、フッ素原子、塩素原子、アルキル基、フッ素化アルキル基等が挙げられる。アルキル基の炭素数は1~2が好ましく、フッ素化アルキル基の炭素数は1~2が好ましい。
The ring structure of the cyclic carboxylic acid ester compound (B) is preferably a ring structure having one ester bond from the viewpoint of viscosity and stability to redox reaction.
The cyclic carboxylic acid ester compound (B) may be a compound in which one or more hydrogen atoms of the alkylene group are substituted with a substituent. Examples of the substituent include a fluorine atom, a chlorine atom, an alkyl group, and a fluorinated alkyl group. The alkyl group preferably has 1 to 2 carbon atoms, and the fluorinated alkyl group preferably has 1 to 2 carbon atoms.
 環状カルボン酸エステル化合物(B)は、酸化還元反応への安定性、構造の安定性、および粘度の点から、下記化合物(6)を含むことが好ましく、化合物(6)のみからなることがより好ましい。化合物(6)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。 The cyclic carboxylic acid ester compound (B) preferably contains the following compound (6) from the viewpoints of stability to redox reaction, structural stability, and viscosity, and more preferably comprises only the compound (6). preferable. A compound (6) may be used individually by 1 type, and may be used in combination of 2 or more type.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 ただし、R~R13は、それぞれ独立に水素原子、フッ素原子、塩素原子、炭素数1~2のアルキル基、炭素数1~2のフッ素化アルキル基、またはエーテル性酸素原子を有する炭素数2~3のアルキル基であり、qは、0~3の整数である。 R 8 to R 13 are each independently a hydrogen atom, a fluorine atom, a chlorine atom, an alkyl group having 1 to 2 carbon atoms, a fluorinated alkyl group having 1 to 2 carbon atoms, or a carbon number having an etheric oxygen atom. 2 to 3 alkyl groups, and q is an integer of 0 to 3.
 R~R13は、同じであってもよく、異なっていてもよい。
 R~R13としては、酸化還元反応への安定性、粘度および化合物の入手性の点から、水素原子、メチル基、フッ素原子が好ましく、水素原子、メチル基がより好ましい。
 qは、粘度および化合物の入手性の点から、1~2が好ましく、1がより好ましい。
R 8 to R 13 may be the same or different.
R 8 to R 13 are preferably a hydrogen atom, a methyl group, or a fluorine atom, more preferably a hydrogen atom or a methyl group, from the viewpoints of stability to redox reaction, viscosity, and availability of the compound.
q is preferably 1 to 2 and more preferably 1 from the viewpoint of viscosity and availability of the compound.
 化合物(6)としては、γ-ブチロラクトン、γ-バレロラクトン、γ-ヘキサノラクトン、δ-バレロラクトン、ε-カプロラクトン等の環状エステル化合物、および該環状エステル化合物の環を形成する炭素原子に結合する水素原子の1個以上が、フッ素原子、塩素原子、炭素数1~2のアルキル基、炭素数1~2のフッ素化アルキル基、またはエーテル性酸素原子を有する炭素数2~3のアルキル基に置換された化合物が挙げられる。入手容易な点、および熱暴走の抑制効果が高い点から、γ-ブチロラクトン、γ-バレロラクトンおよびε-カプロラクトンからなる群から選ばれる少なくとも1種が好ましく、γ-ブチロラクトンが特に好ましい。 Compound (6) includes cyclic ester compounds such as γ-butyrolactone, γ-valerolactone, γ-hexanolactone, δ-valerolactone, and ε-caprolactone, and carbon atoms forming the ring of the cyclic ester compound. Or an alkyl group having 2 to 3 carbon atoms in which at least one hydrogen atom has a fluorine atom, a chlorine atom, an alkyl group having 1 to 2 carbon atoms, a fluorinated alkyl group having 1 to 2 carbon atoms, or an etheric oxygen atom The compound substituted by is mentioned. At least one selected from the group consisting of γ-butyrolactone, γ-valerolactone and ε-caprolactone is preferable, and γ-butyrolactone is particularly preferable because it is easily available and has a high effect of suppressing thermal runaway.
 (フッ素原子を有しない飽和環状カーボネート化合物(C))
 非水電解液が、リチウム塩として化合物(1)を含み、かつ液状組成物としてフッ素原子を有しない飽和環状カーボネート化合物(C)を含むことによって、電池特性(サイクル特性、レート特性、初回充放電効率)に優れた非水電解液となる。フッ素原子を有しない飽和環状カーボネート化合物(C)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。
(Saturated cyclic carbonate compound having no fluorine atom (C))
By including the compound (1) as the lithium salt and the saturated cyclic carbonate compound (C) having no fluorine atom as the liquid composition, the non-aqueous electrolyte contains battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge) It becomes a non-aqueous electrolyte excellent in efficiency. The saturated cyclic carbonate compound (C) having no fluorine atom may be used alone or in combination of two or more.
 フッ素原子を有しない飽和環状カーボネート化合物(C)は、電池特性(サイクル特性、レート特性、初回充放電効率)の点から、下記化合物(7)を含むことが好ましく、化合物(7)のみからなることがより好ましい。化合物(7)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてよい。 The saturated cyclic carbonate compound (C) having no fluorine atom preferably contains the following compound (7) from the viewpoint of battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency), and consists only of the compound (7). It is more preferable. A compound (7) may be used individually by 1 type, and may be used in combination of 2 or more type.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 ただし、R14~R17は、それぞれ独立に水素原子または炭素数1~6のアルキル基である。
 化合物(7)におけるアルキル基としては、直鎖構造、分岐構造が挙げられる。
 R14~R17は、同じであってもよく、異なっていてもよい。
 R14~R17としては、電池特性(サイクル特性、レート特性、初回充放電効率)の点から、水素原子、メチル基、エチル基が好ましく、水素原子、メチル基がより好ましい。
However, R 14 to R 17 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
Examples of the alkyl group in the compound (7) include a linear structure and a branched structure.
R 14 to R 17 may be the same or different.
R 14 to R 17 are preferably a hydrogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group, from the viewpoint of battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency).
 化合物(7)の具体例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。電池特性(サイクル特性、レート特性、初回充放電効率)の点から、エチレンカーボネートが好ましい。 Specific examples of the compound (7) include ethylene carbonate, propylene carbonate, butylene carbonate and the like. From the viewpoint of battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency), ethylene carbonate is preferred.
[他の成分]
 非水電解液は、本発明の効果を損なわない範囲で、必要に応じて、リチウム塩、含フッ素溶媒(A)、環状カルボン酸エステル化合物(B)およびフッ素原子を有しない飽和環状カーボネート化合物(C)以外の他の化合物(他の溶媒、添加剤等)を含んでいてもよい。
[Other ingredients]
The nonaqueous electrolytic solution is a lithium salt, a fluorine-containing solvent (A), a cyclic carboxylic acid ester compound (B), and a saturated cyclic carbonate compound having no fluorine atom (as required) within a range not impairing the effects of the present invention. Other compounds (other solvents, additives, etc.) other than C) may be included.
 (他の溶媒)
 非水電解液は、含フッ素溶媒(A)、環状カルボン酸エステル化合物(B)およびフッ素原子を有しない飽和環状カーボネート化合物(C)以外の他の溶媒を含んでもよい。
 他の溶媒としては、含フッ素飽和環状カーボネート化合物、フッ素原子を有しない飽和鎖状カーボネート化合物、飽和環状スルホン化合物等があげられる。
(Other solvents)
The nonaqueous electrolytic solution may contain a solvent other than the fluorine-containing solvent (A), the cyclic carboxylic acid ester compound (B), and the saturated cyclic carbonate compound (C) having no fluorine atom.
Examples of other solvents include fluorine-containing saturated cyclic carbonate compounds, saturated chain carbonate compounds having no fluorine atom, and saturated cyclic sulfone compounds.
 含フッ素飽和環状カーボネート化合物としては、4-フルオロ-1,3-ジオキソラン-2-オン、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、4、5-ジフルオロ-1,3-ジオキソラン-2-オン等が挙げられる。 Examples of the fluorine-containing saturated cyclic carbonate compound include 4-fluoro-1,3-dioxolane-2-one, 4-trifluoromethyl-1,3-dioxolane-2-one, and 4,5-difluoro-1,3-dioxolane. -2-one and the like.
 フッ素原子を有しない飽和鎖状カーボネート化合物としては、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等が挙げられる。
 飽和環状スルホン化合物としては、スルホラン、3-メチルスルホラン等が挙げられる。
Examples of the saturated chain carbonate compound having no fluorine atom include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate and the like.
Examples of the saturated cyclic sulfone compound include sulfolane and 3-methylsulfolane.
 (添加剤)
 非水電解液には、非水電解液の機能を向上させるために、必要に応じて従来公知の添加剤を含ませてもよい。添加剤としては、過充電防止剤、脱水剤、脱酸剤、特性改善助剤、界面活性剤等が挙げられる。
(Additive)
In order to improve the function of the non-aqueous electrolyte, the non-aqueous electrolyte may contain conventionally known additives as necessary. Examples of the additive include an overcharge inhibitor, a dehydrating agent, a deoxidizing agent, a property improving aid, and a surfactant.
 過充電防止剤:
 過充電防止剤としては、芳香族化合物(ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等)、芳香族化合物の部分フッ素化物(2-フルオロビフェニル、o-シクロヘキシルフルオロベンゼン、p-シクロヘキシルフルオロベンゼン等)、含フッ素アニソール化合物(2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニオール等)が挙げられる。過充電防止剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
Overcharge prevention agent:
As overcharge inhibitors, aromatic compounds (biphenyl, alkylbiphenyl, terphenyl, terphenyl partially hydrogenated, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran, etc.), aromatic compounds Partially fluorinated products (2-fluorobiphenyl, o-cyclohexylfluorobenzene, p-cyclohexylfluorobenzene, etc.), fluorine-containing anisole compounds (2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroaniol, etc.) ). An overcharge inhibitor may be used individually by 1 type, and may use 2 or more types together.
 脱水剤:
 脱水剤としては、たとえば、モレキュラーシーブス、芒硝、硫酸マグネシウム、水素化カルシウム、水素化ナトリウム、水素化カリウム、水素化リチウムアルミニウム等が挙げられる。非水電解液に用いる液状組成物や他の溶媒としては、脱水剤で脱水を行った後に精留を行ったものが好ましい。また、精留を行わずに前記脱水剤による脱水のみを行ったものであってもよい。
Dehydrating agent:
Examples of the dehydrating agent include molecular sieves, mirabilite, magnesium sulfate, calcium hydride, sodium hydride, potassium hydride, lithium aluminum hydride and the like. As the liquid composition or other solvent used for the non-aqueous electrolyte, those obtained by rectification after dehydration with a dehydrating agent are preferable. Moreover, what performed only the dehydration by the said dehydrating agent without performing rectification may be used.
 特性改善助剤:
 特性改善助剤は、高温保存後の容量維持特性やサイクル特性を改善するためのものである。特性改善助剤としては、たとえば、不飽和環状カーボネート化合物(ジメチルビニレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、4-アセチニル-1,3-ジオキソラン-2-オン、3-メチル-4-ビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4,5-ビス(2-メチルビニル)エチレンカーボネート等)、含硫黄化合物(エチレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、メタンスルホン酸メチル、ブスルファン、スルホレン、ジメチルスルホン、ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフィド、N,N-ジメチルメタンスルホンアミド、N,N-ジエチルメタンスルホンアミド等)、炭化水素化合物(ヘプタン、オクタン、シクロヘプタン等)が挙げられる。特性改善助剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
Property improvement aids:
The characteristic improving aid is for improving capacity maintenance characteristics and cycle characteristics after high temperature storage. Examples of the property improving aid include unsaturated cyclic carbonate compounds (dimethyl vinylene carbonate, vinylene carbonate, vinyl ethylene carbonate, 4-acetylin-1,3-dioxolan-2-one, 3-methyl-4-vinylethylene carbonate, 4,5-divinylethylene carbonate, 4,5-bis (2-methylvinyl) ethylene carbonate, etc.), sulfur-containing compounds (ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methyl methanesulfonate, Busulfan, sulfolene, dimethylsulfone, dibutyldisulfide, dicyclohexyldisulfide, tetramethylthiuram monosulfide, N, N-dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide, etc.), hydrocarbon compounds Heptane, octane, cycloheptane and the like). A characteristic improvement adjuvant may be used individually by 1 type, and may use 2 or more types together.
 界面活性剤:
 界面活性剤は、電極合材やセパレータへの非水電解液の含浸を助けるものである。界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、非イオン性界面活性剤、両性界面活性剤のいずれでもよく、入手が容易で界面活性効果が高い点から、アニオン性界面活性剤が好ましい。界面活性剤としては、耐酸化性が高く、サイクル特性、レート特性が良好な点から、含フッ素界面活性剤が好ましい。界面活性剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
Surfactant:
The surfactant assists the impregnation of the non-aqueous electrolyte into the electrode mixture or separator. As the surfactant, any of cationic surfactants, anionic surfactants, nonionic surfactants and amphoteric surfactants may be used. Anionic surfactants are easily available and have a high surfactant effect. Agents are preferred. As the surfactant, a fluorine-containing surfactant is preferable from the viewpoint of high oxidation resistance and good cycle characteristics and rate characteristics. Surfactant may be used individually by 1 type and may use 2 or more types together.
[各成分の割合]
 (リチウム塩の割合)
 非水電解液の総質量に対するリチウム塩の質量の割合の下限値は、5質量%が好ましく、7質量%がより好ましく、8質量%がさらに好ましい。非水電解液の総質量に対するリチウム塩の質量の割合の上限値は、25質量%が好ましく、20質量%がより好ましく、17質量%がさらに好ましい。
 リチウム塩の割合が前記下限値以上であれば、非水電解液のイオン伝導度が高くなる。リチウム塩の割合が前記上限値以下であれば、リチウム塩が液状組成物に均一に溶解しやすく、また低温条件でもリチウム塩が析出しない。
[Ratio of each component]
(Ratio of lithium salt)
5 mass% is preferable, as for the lower limit of the ratio of the mass of lithium salt with respect to the total mass of nonaqueous electrolyte solution, 7 mass% is more preferable, and 8 mass% is further more preferable. The upper limit of the ratio of the mass of the lithium salt to the total mass of the non-aqueous electrolyte is preferably 25% by mass, more preferably 20% by mass, and even more preferably 17% by mass.
If the ratio of lithium salt is more than the said lower limit, the ionic conductivity of a non-aqueous electrolyte will become high. If the proportion of the lithium salt is not more than the above upper limit value, the lithium salt is easily dissolved uniformly in the liquid composition, and the lithium salt does not precipitate even under low temperature conditions.
 リチウム塩の総モル数に対する化合物(1)のモル数の割合の下限値は、0.05mol%が好ましく、0.1mol%がより好ましく、0.5mol%がさらに好ましく、1mol%が特に好ましい。リチウム塩の総モル数に対する化合物(1)のモル数の割合の上限値は、95mol%が好ましく、80mol%がより好ましく、60mol%がさらに好ましく、40mol%が特に好ましい。
 化合物(1)の割合が前記下限値以上であれば、サイクル特性、レート特性等の電池特性に優れた非水電解液が得られやすい。化合物(1)の割合が前記上限値以下であれば、相対的にLiPFの含有量を増やすことで、イオン伝導度に優れた実用性の高い非水電解液が得られやすくなる。
The lower limit of the ratio of the number of moles of the compound (1) to the total number of moles of the lithium salt is preferably 0.05 mol%, more preferably 0.1 mol%, still more preferably 0.5 mol%, and particularly preferably 1 mol%. The upper limit of the ratio of the number of moles of the compound (1) to the total number of moles of the lithium salt is preferably 95 mol%, more preferably 80 mol%, further preferably 60 mol%, and particularly preferably 40 mol%.
When the ratio of the compound (1) is equal to or higher than the lower limit, it is easy to obtain a nonaqueous electrolytic solution excellent in battery characteristics such as cycle characteristics and rate characteristics. If the proportion of the compound (1) is less than or equal to the upper limit value, by increasing the content of relatively LiPF 6, higher non-aqueous electrolyte solution of high practical in ion conductivity is easily obtained.
 非水電解液にLiPFが含まれる場合、リチウム塩の総モル数に対するLiPFのモル数の割合の下限値は、5mol%が好ましく、20mol%がより好ましく、40mol%がさらに好ましく、60mol%が特に好ましい。リチウム塩の総モル数に対するLiPFのモル数の割合の上限値は、99.95mol%が好ましく、99.9mol%がより好ましく、99.5mol%がさらに好ましく、99mol%が特に好ましい。
 LiPFの割合が前記下限値以上であれば、イオン伝導度に優れた実用性の高い非水電解液が得られやすい。LiPFの割合が前記上限値以下であれば、相対的に化合物(1)の含有量を増やすことで、サイクル特性、レート特性等の電池特性に優れた非水電解液が得られやすくなる。
When LiPF 6 is contained in the non-aqueous electrolyte, the lower limit value of the ratio of the number of moles of LiPF 6 to the total number of moles of lithium salt is preferably 5 mol%, more preferably 20 mol%, further preferably 40 mol%, and more preferably 60 mol%. Is particularly preferred. The upper limit of the ratio of the number of moles of LiPF 6 to the total number of moles of lithium salt is preferably 99.95 mol%, more preferably 99.9 mol%, further preferably 99.5 mol%, and particularly preferably 99 mol%.
When the proportion of LiPF 6 is more than the lower limit, easily obtained high superior practicality in ionic conductivity non-aqueous electrolyte. If the ratio of LiPF 6 is less than or equal to the above upper limit value, a nonaqueous electrolytic solution excellent in battery characteristics such as cycle characteristics and rate characteristics can be easily obtained by relatively increasing the content of the compound (1).
 非水電解液にLiPFが含まれる場合、リチウム塩の総モル数に対する化合物(1)およびLiPFの合計のモル数の割合の下限値は、50mol%が好ましく、80mol%がより好ましい。リチウム塩の総モル数に対する化合物(1)およびLiPFの合計のモル数の割合の上限値は、100mol%である。 When LiPF 6 is contained in the nonaqueous electrolytic solution, the lower limit value of the ratio of the total number of moles of the compound (1) and LiPF 6 to the total number of moles of the lithium salt is preferably 50 mol%, and more preferably 80 mol%. The upper limit of the ratio of the total number of moles of the compound (1) and LiPF 6 with respect to the total number of moles of the lithium salt is 100 mol%.
 非水電解液の総質量に対する化合物(1)の質量の割合の下限値は、0.01質量%が好ましく、0.02質量%がより好ましく、0.1質量%がさらに好ましく、0.5質量%が特に好ましい。非水電解液の総質量に対する化合物(1)の質量の割合の上限値は、10質量%が好ましく、8質量%がより好ましく、5質量%がさらに好ましい。
 化合物(1)の割合が前記下限値以上であれば、サイクル特性、レート特性等の電池特性に優れた非水電解液が得られやすくなる。化合物(1)の割合が前記上限値以上であれば、リチウム塩が液状組成物に均一に溶解しやすく、また低温条件でもリチウム塩が析出しない。
The lower limit of the ratio of the mass of the compound (1) to the total mass of the nonaqueous electrolytic solution is preferably 0.01% by mass, more preferably 0.02% by mass, further preferably 0.1% by mass, Mass% is particularly preferred. 10 mass% is preferable, as for the upper limit of the ratio of the mass of the compound (1) with respect to the total mass of nonaqueous electrolyte solution, 8 mass% is more preferable, and 5 mass% is further more preferable.
If the ratio of compound (1) is more than the said lower limit, it will become easy to obtain the nonaqueous electrolyte solution excellent in battery characteristics, such as a cycle characteristic and a rate characteristic. If the ratio of the compound (1) is not less than the above upper limit value, the lithium salt is easily dissolved uniformly in the liquid composition, and the lithium salt does not precipitate even at low temperature conditions.
 (含フッ素溶媒(A)の割合)
 非水電解液の総質量に対する含フッ素溶媒(A)の質量の割合の下限値は、30質量%が好ましく、45質量%がより好ましく、50質量%がさらに好ましく、55質量%が特に好ましい。非水電解液の総質量に対する含フッ素溶媒(A)の質量の割合の上限値は、80質量%が好ましく、75質量%がより好ましく、73質量%がさらに好ましく、70質量%が特に好ましい。
 含フッ素溶媒(A)の割合が前記下限値以上であれば、非水電解液は、難燃性に優れ、正極反応性および負極反応性が小さく、熱暴走を起こしにくく、高い耐高電圧特性を有する。含フッ素溶媒(A)の割合が上限値以下であれば、リチウム塩を均一に溶解させやすく、また低温下においてリチウム塩が析出しにくいため、イオン伝導度が低下しにくい。
(Ratio of fluorine-containing solvent (A))
The lower limit of the ratio of the mass of the fluorinated solvent (A) to the total mass of the nonaqueous electrolytic solution is preferably 30% by mass, more preferably 45% by mass, further preferably 50% by mass, and particularly preferably 55% by mass. The upper limit of the ratio of the mass of the fluorinated solvent (A) to the total mass of the nonaqueous electrolytic solution is preferably 80% by mass, more preferably 75% by mass, further preferably 73% by mass, and particularly preferably 70% by mass.
If the proportion of the fluorinated solvent (A) is not less than the lower limit, the non-aqueous electrolyte is excellent in flame retardancy, has low positive electrode reactivity and negative electrode reactivity, hardly causes thermal runaway, and has high high voltage resistance. Have If the ratio of the fluorine-containing solvent (A) is not more than the upper limit value, the lithium salt is easily dissolved uniformly, and the lithium salt does not easily precipitate at a low temperature, so that the ionic conductivity is hardly lowered.
 液状組成物の総質量に対する含フッ素溶媒(A)の質量の割合の下限値は、45質量%が好ましく、50質量%がより好ましく、55質量%がさらに好ましく、60質量%が特に好ましい。液状組成物の総質量に対する含フッ素溶媒(A)の質量の割合の上限値は、90質量%が好ましく、85質量%がより好ましく、80質量%がさらに好ましく、75質量%が特に好ましい。
 含フッ素溶媒(A)の割合が前記下限値以上であれば、非水電解液は、難燃性に優れ、正極反応性および負極反応性が小さく、熱暴走を起こしにくく、高い耐高電圧特性を有する。含フッ素溶媒(A)の割合が上限値以下であれば、リチウム塩を均一に溶解させやすく、また低温下においてリチウム塩が析出しにくいため、イオン伝導度が低下しにくい。
The lower limit of the ratio of the mass of the fluorinated solvent (A) to the total mass of the liquid composition is preferably 45 mass%, more preferably 50 mass%, further preferably 55 mass%, particularly preferably 60 mass%. The upper limit of the ratio of the mass of the fluorinated solvent (A) to the total mass of the liquid composition is preferably 90% by mass, more preferably 85% by mass, further preferably 80% by mass, and particularly preferably 75% by mass.
If the proportion of the fluorinated solvent (A) is not less than the lower limit, the non-aqueous electrolyte is excellent in flame retardancy, has low positive electrode reactivity and negative electrode reactivity, hardly causes thermal runaway, and has high high voltage resistance. Have If the ratio of the fluorine-containing solvent (A) is not more than the upper limit value, the lithium salt is easily dissolved uniformly, and the lithium salt does not easily precipitate at a low temperature, so that the ionic conductivity is hardly lowered.
 含フッ素溶媒(A)が含フッ素エーテル化合物を含む場合、含フッ素溶媒(A)の総質量に対する含フッ素エーテル化合物の質量の割合の下限値は、25質量%が好ましく、30質量%がより好ましく、50質量%がさらに好ましく、60質量%がさらに好ましく、70質量%が特に好ましい。含フッ素溶媒(A)の総質量に対する含フッ素エーテル化合物の質量の割合の上限値は、100質量%である。
 含フッ素溶媒(A)は、リチウム塩の溶解性、非水電解液の難燃性およびイオン伝導度が高くなる点から、含フッ素エーテル化合物のみからなることが特に好ましい。
When the fluorinated solvent (A) contains a fluorinated ether compound, the lower limit of the ratio of the mass of the fluorinated ether compound to the total mass of the fluorinated solvent (A) is preferably 25 mass%, more preferably 30 mass%. , 50% by mass is more preferable, 60% by mass is further preferable, and 70% by mass is particularly preferable. The upper limit of the ratio of the mass of the fluorinated ether compound to the total mass of the fluorinated solvent (A) is 100% by mass.
The fluorine-containing solvent (A) is particularly preferably composed only of a fluorine-containing ether compound from the viewpoints of the solubility of the lithium salt, the flame retardance of the non-aqueous electrolyte, and the ionic conductivity.
 非水電解液の含フッ素溶媒(A)が含フッ素エーテル化合物を含む場合、非水電解液の総質量に対する含フッ素エーテル化合物の質量の割合の下限値は、10質量%が好ましく、20質量%がより好ましく、30質量%がさらに好ましく、45質量%がさらに好ましく、50質量%が特に好ましい。非水電解液の総質量に対する含フッ素エーテル化合物の質量の割合の上限値は、80質量%が好ましく、75質量%がより好ましく、73質量%がさらに好ましく、70質量%が特に好ましい。 When the fluorine-containing solvent (A) of the non-aqueous electrolyte contains a fluorine-containing ether compound, the lower limit of the ratio of the mass of the fluorine-containing ether compound to the total mass of the non-aqueous electrolyte is preferably 10% by mass, and 20% by mass. Is more preferable, 30% by mass is further preferable, 45% by mass is further preferable, and 50% by mass is particularly preferable. The upper limit of the ratio of the mass of the fluorine-containing ether compound to the total mass of the nonaqueous electrolytic solution is preferably 80% by mass, more preferably 75% by mass, further preferably 73% by mass, and particularly preferably 70% by mass.
 含フッ素溶媒(A)が含フッ素鎖状カルボン酸エステル化合物を含む場合、含フッ素溶媒(A)の総質量に対する含フッ素鎖状カルボン酸エステル化合物の質量の割合の下限値は、0.01質量%が好ましい。含フッ素溶媒(A)の総質量に対する含フッ素鎖状カルボン酸エステル化合物の質量の割合の上限値は、50質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましく、20質量%が特に好ましい。 When the fluorinated solvent (A) contains a fluorinated chain carboxylic acid ester compound, the lower limit of the ratio of the mass of the fluorinated chain carboxylic acid ester compound to the total mass of the fluorinated solvent (A) is 0.01 mass. % Is preferred. The upper limit of the ratio of the mass of the fluorinated chain carboxylic acid ester compound to the total mass of the fluorinated solvent (A) is preferably 50 mass%, more preferably 40 mass%, further preferably 30 mass%, more preferably 20 mass%. Is particularly preferred.
 含フッ素溶媒(A)が含フッ素鎖状カーボネート化合物を含む場合、含フッ素溶媒(A)の総質量に対する含フッ素鎖状カーボネート化合物の質量の割合の下限値は、0.01質量%が好ましい。含フッ素溶媒(A)の総質量に対する含フッ素鎖状カーボネート化合物の質量の割合の上限値は、50質量%が好ましく、40質量%がより好ましく、30質量%がさらに好ましく、20質量%が特に好ましい。 When the fluorine-containing solvent (A) contains a fluorine-containing chain carbonate compound, the lower limit of the ratio of the mass of the fluorine-containing chain carbonate compound to the total mass of the fluorine-containing solvent (A) is preferably 0.01% by mass. The upper limit of the ratio of the mass of the fluorinated chain carbonate compound to the total mass of the fluorinated solvent (A) is preferably 50 mass%, more preferably 40 mass%, further preferably 30 mass%, particularly preferably 20 mass%. preferable.
 含フッ素溶媒(A)が含フッ素アルカン化合物を含む場合、非水電解液の総質量に対する含フッ素アルカン化合物の質量の割合は、0.01~5質量%が好ましい。含フッ素アルカン化合物の割合が0.01質量%以上であれば、蒸気圧が低く、難燃性に優れる。含フッ素アルカン化合物の割合が5質量%以下であれば、リチウム塩の溶解性を維持しやすい。 When the fluorinated solvent (A) contains a fluorinated alkane compound, the ratio of the mass of the fluorinated alkane compound to the total mass of the nonaqueous electrolytic solution is preferably from 0.01 to 5 mass%. When the ratio of the fluorine-containing alkane compound is 0.01% by mass or more, the vapor pressure is low and the flame retardancy is excellent. When the proportion of the fluorine-containing alkane compound is 5% by mass or less, the solubility of the lithium salt is easily maintained.
 含フッ素溶媒(A)として、含フッ素エーテル化合物と、含フッ素鎖状カルボン酸エステル化合物、含フッ素鎖状カーボネート化合物および含フッ素アルカン化合物から選ばれる少なくとも1種とを併用する場合、それらの比率は任意に決定できる。 When the fluorine-containing solvent (A) is used in combination with a fluorine-containing ether compound and at least one selected from a fluorine-containing chain carboxylic acid ester compound, a fluorine-containing chain carbonate compound and a fluorine-containing alkane compound, the ratio thereof is as follows: It can be decided arbitrarily.
 (環状カルボン酸エステル化合物(B)の割合)
 非水電解液の総質量に対する環状カルボン酸エステル化合物(B)の質量の割合の下限値は、4質量%が好ましく、7質量%がより好ましく、10質量%がさらに好ましく、15質量%が特に好ましい。非水電解液の総質量に対する環状カルボン酸エステル化合物(B)の質量の割合の上限値は、60質量%が好ましく、45質量%がより好ましく、40質量%がさらに好ましく、35質量%が特に好ましい。
 環状カルボン酸エステル化合物(B)の割合が前記下限値以上であれば、非水電解液はリチウム塩を均一に溶解し、かつ非水電解液と電極との反応性が小さく、熱暴走が起こりにくい。環状カルボン酸エステル化合物(B)の割合が上限値以下であれば、非水電解液は難燃性に優れる。
(Ratio of cyclic carboxylic acid ester compound (B))
The lower limit of the ratio of the mass of the cyclic carboxylic acid ester compound (B) to the total mass of the non-aqueous electrolyte is preferably 4% by mass, more preferably 7% by mass, still more preferably 10% by mass, and particularly preferably 15% by mass. preferable. The upper limit of the ratio of the mass of the cyclic carboxylic acid ester compound (B) to the total mass of the nonaqueous electrolytic solution is preferably 60% by mass, more preferably 45% by mass, still more preferably 40% by mass, and particularly preferably 35% by mass. preferable.
If the ratio of the cyclic carboxylic acid ester compound (B) is equal to or higher than the lower limit, the non-aqueous electrolyte uniformly dissolves the lithium salt, the reactivity between the non-aqueous electrolyte and the electrode is small, and thermal runaway occurs. Hateful. If the ratio of the cyclic carboxylic acid ester compound (B) is not more than the upper limit value, the non-aqueous electrolyte is excellent in flame retardancy.
 非水電解液に含まれる、リチウム塩由来のリチウム原子の総モル数NLiに対する、環状カルボン酸エステル化合物(B)の総モル数Nの比率N/NLiの下限値は、1.5が好ましく、2がより好ましく、2.5がさらに好ましく、3が特に好ましい。N/NLiの上限値は、5.5が好ましく、5がより好ましく、4.5がさらに好ましく、4.2が特に好ましい。
 N/NLiが前記下限値以上であれば、非水電解液はリチウム塩を均一に溶解し、かつ非水電解液と電極との反応性が小さく、熱暴走が起こりにくい。N/NLiが前記上限値以下であれば、非水電解液は難燃性に優れる。
The lower limit of the ratio N B / N Li of the total number of moles N B of the cyclic carboxylic acid ester compound (B) to the total number of moles N Li of lithium atoms derived from the lithium salt contained in the non-aqueous electrolyte is 1. 5 is preferable, 2 is more preferable, 2.5 is more preferable, and 3 is particularly preferable. The upper limit value of N B / N Li is preferably 5.5, more preferably 5, more preferably 4.5, and particularly preferably 4.2.
When N B / N Li is equal to or greater than the lower limit, the non-aqueous electrolyte uniformly dissolves the lithium salt, the reactivity between the non-aqueous electrolyte and the electrode is small, and thermal runaway hardly occurs. When N B / N Li is not more than the above upper limit value, the non-aqueous electrolyte is excellent in flame retardancy.
 (フッ素原子を有しない飽和環状カーボネート化合物(C)の割合)
 非水電解液の総質量に対するフッ素原子を有しない飽和環状カーボネート化合物(C)の質量の割合は、0.01~20質量%である。非水電解液の総質量に対するフッ素原子を有しない飽和環状カーボネート化合物(C)の質量の下限値は、0.05質量%が好ましく、0.1質量%がより好ましく、0.5質量%が特に好ましい。非水電解液の総質量に対するフッ素原子を有しない飽和環状カーボネート化合物(C)の質量の割合の上限値は、15質量%が好ましく、13質量%がより好ましく、10質量%が特に好ましい。
 フッ素原子を有しない飽和環状カーボネート化合物(C)の割合が前記下限値以上であれば、電池特性(サイクル特性、レート特性、初回充放電効率)に優れた非水電解液が得られやすい。フッ素原子を有しない飽和環状カーボネート化合物(C)の割合が前記上限値以下であれば、電解液の粘度が高くなりすぎず、レート特性に優れた電解液になりやすい。
(Proportion of saturated cyclic carbonate compound (C) having no fluorine atom)
The ratio of the mass of the saturated cyclic carbonate compound (C) having no fluorine atom to the total mass of the nonaqueous electrolytic solution is 0.01 to 20% by mass. The lower limit of the mass of the saturated cyclic carbonate compound (C) having no fluorine atom relative to the total mass of the nonaqueous electrolytic solution is preferably 0.05% by mass, more preferably 0.1% by mass, and 0.5% by mass. Particularly preferred. The upper limit of the ratio of the mass of the saturated cyclic carbonate compound (C) having no fluorine atom to the total mass of the nonaqueous electrolytic solution is preferably 15% by mass, more preferably 13% by mass, and particularly preferably 10% by mass.
If the ratio of the saturated cyclic carbonate compound (C) having no fluorine atom is not less than the lower limit value, a nonaqueous electrolytic solution excellent in battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency) is easily obtained. If the ratio of the saturated cyclic carbonate compound (C) having no fluorine atom is not more than the above upper limit value, the viscosity of the electrolytic solution does not become too high, and the electrolytic solution is excellent in rate characteristics.
 (他の成分の割合)
 非水電解液が他の溶媒を含む場合、非水電解液の総質量に対する他の溶媒の質量の割合の上限値は、30質量%が好ましく、20質量%がより好ましく、15質量%がさらに好ましく、10質量%が特に好ましい。非水電解液の総質量に対する他の溶媒の質量の割合の下限値は0質量%である。
 他の溶媒の割合が上限値以下であれば、他の溶媒と電極との反応を抑制しやすく、安定性に優れた非水電解液が得られる。また、含フッ素溶媒(A)の含有量を多くしやすいため、難燃性に優れた非水電解液が得られやすい。
(Ratio of other ingredients)
When the non-aqueous electrolyte contains another solvent, the upper limit of the ratio of the mass of the other solvent to the total mass of the non-aqueous electrolyte is preferably 30% by mass, more preferably 20% by mass, and further 15% by mass 10% by mass is preferable. The lower limit of the ratio of the mass of the other solvent to the total mass of the non-aqueous electrolyte is 0% by mass.
If the ratio of the other solvent is not more than the upper limit value, it is easy to suppress the reaction between the other solvent and the electrode, and a non-aqueous electrolyte solution having excellent stability can be obtained. Moreover, since it is easy to increase content of a fluorine-containing solvent (A), the nonaqueous electrolyte solution excellent in the flame retardance is easy to be obtained.
 非水電解液が含フッ素飽和環状カーボネート化合物を含む場合、非水電解液の総質量に対する含フッ素飽和環状カーボネート化合物の質量の割合は、0.01~20質量%が好ましく、0.01~15質量%がより好ましく、0.01~10質量%がさらに好ましく、0.01~5質量%がさらに好ましく、0.01~3質量%が特に好ましい。
 含フッ素飽和環状カーボネート化合物の割合が上限値以下であれば、含フッ素飽和環状カーボネート化合物と電極とが反応しにくく、非水電解液は安定性および難燃性に優れる。
When the non-aqueous electrolyte contains a fluorine-containing saturated cyclic carbonate compound, the ratio of the mass of the fluorine-containing saturated cyclic carbonate compound to the total mass of the non-aqueous electrolyte is preferably 0.01 to 20% by mass, and 0.01 to 15 % By mass is more preferable, 0.01 to 10% by mass is further preferable, 0.01 to 5% by mass is further preferable, and 0.01 to 3% by mass is particularly preferable.
If the ratio of a fluorine-containing saturated cyclic carbonate compound is below an upper limit, a fluorine-containing saturated cyclic carbonate compound and an electrode will be hard to react, and nonaqueous electrolyte solution is excellent in stability and flame retardance.
 非水電解液がフッ素原子を有しない飽和鎖状カーボネート化合物を含む場合、非水電解液の総質量に対するフッ素原子を有しない飽和鎖状カーボネート化合物の質量の割合は、0.01~30質量%が好ましく、0.01~20質量%がより好ましい。
 フッ素原子を有しない飽和鎖状カーボネート化合物の割合が上限値以下であれば、フッ素原子を有しない飽和鎖状カーボネート化合物と電極とが反応しにくく、非水電解液は安定性および難燃性に優れる。
When the non-aqueous electrolyte includes a saturated chain carbonate compound having no fluorine atom, the ratio of the mass of the saturated chain carbonate compound having no fluorine atom to the total mass of the non-aqueous electrolyte is 0.01 to 30% by mass. Is preferable, and 0.01 to 20% by mass is more preferable.
If the ratio of the saturated chain carbonate compound having no fluorine atom is not more than the upper limit value, the saturated chain carbonate compound having no fluorine atom and the electrode are unlikely to react, and the non-aqueous electrolyte is stable and flame retardant. Excellent.
 液状組成物が飽和環状スルホン化合物を含む場合、非水電解液の総質量に対する飽和環状スルホン化合物の質量の割合は、0.01~20質量%が好ましく、0.01~15質量%がより好ましく、0.01~10質量%がさらに好ましく、0.01~5質量%が特に好ましい。
 飽和環状スルホン化合物の割合が前記上限値以下であれば、飽和環状スルホン化合物と電極とが反応しにくく、非水電解液は安定性に優れ、難燃性に優れる。
When the liquid composition contains a saturated cyclic sulfone compound, the ratio of the mass of the saturated cyclic sulfone compound to the total mass of the nonaqueous electrolytic solution is preferably 0.01 to 20% by mass, more preferably 0.01 to 15% by mass. 0.01 to 10% by mass is more preferable, and 0.01 to 5% by mass is particularly preferable.
If the ratio of the saturated cyclic sulfone compound is not more than the above upper limit value, the saturated cyclic sulfone compound and the electrode are unlikely to react with each other, and the non-aqueous electrolyte is excellent in stability and flame retardancy.
 非水電解液が過充電防止剤を含む場合、非水電解液の総質量に対する過充電防止剤の質量の割合は、0.01~5質量%が好ましい。
 非水電解液の割合が前記下限値以上であれば、過充電による二次電池の破裂および発火を抑制することがさらに容易になり、二次電池をより安定に使用できる。
When the non-aqueous electrolyte contains an overcharge inhibitor, the ratio of the mass of the overcharge inhibitor to the total mass of the non-aqueous electrolyte is preferably 0.01 to 5% by mass.
If the ratio of the non-aqueous electrolyte is equal to or higher than the lower limit, it becomes easier to suppress the secondary battery from bursting and firing due to overcharging, and the secondary battery can be used more stably.
 非水電解液が特性改善助剤を含む場合、非水電解液の総質量に対する特性改善助剤の質量の割合は、0.01~5質量%が好ましい。 When the non-aqueous electrolyte contains a characteristic improving aid, the ratio of the mass of the characteristic improving auxiliary to the total mass of the non-aqueous electrolytic solution is preferably 0.01 to 5% by mass.
 非水電解液が界面活性剤を含む場合、非水電解液の総質量に対する界面活性剤の質量の割合の上限値は、5質量%が好ましく、3質量%がより好ましく、2質量%がさらに好ましい。非水電解液の総質量に対する界面活性剤の質量の割合の下限値は、0.05質量%が好ましい。 When the non-aqueous electrolyte contains a surfactant, the upper limit of the ratio of the mass of the surfactant to the total mass of the non-aqueous electrolyte is preferably 5% by mass, more preferably 3% by mass, and further 2% by mass preferable. The lower limit of the ratio of the mass of the surfactant to the total mass of the non-aqueous electrolyte is preferably 0.05% by mass.
[作用機序]
 以上説明した本発明の非水電解液にあっては、リチウム塩が化合物(1)を含み、液状組成物がフッ素原子を有しない飽和環状カーボネート化合物(C)を含むことで、電極活物質表面に良好な保護被膜を形成することができるため、電池特性(サイクル特性、レート特性、初回充放電効率)に優れるリチウムイオン二次電池を得ることができると推定される。
[Mechanism of action]
In the nonaqueous electrolytic solution of the present invention described above, the lithium salt contains the compound (1), and the liquid composition contains the saturated cyclic carbonate compound (C) having no fluorine atom, so that the surface of the electrode active material Therefore, it is estimated that a lithium ion secondary battery excellent in battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency) can be obtained.
<リチウムイオン二次電池>
 本発明のリチウムイオン二次電池は、正極と、負極と、本発明の非水電解液を有するものである。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention has a positive electrode, a negative electrode, and the non-aqueous electrolyte of the present invention.
[正極]
 正極としては、正極活物質と導電付与剤と結着剤を含む正極層が、集電体上に形成されてなる電極が挙げられる。
[Positive electrode]
Examples of the positive electrode include an electrode in which a positive electrode layer containing a positive electrode active material, a conductivity-imparting agent, and a binder is formed on a current collector.
 (正極活物質)
 正極活物質は、リチウムイオンを吸蔵および放出できる材料であればよい、正極活物質としては、公知のリチウムイオン二次電池用の正極活物質を採用できる。正極活物質としては、リチウム含有遷移金属酸化物、2種類以上の遷移金属を用いたリチウム含有遷移金属複合酸化物、遷移金属酸化物、遷移金属硫化物、金属酸化物、オリビン型金属リチウム塩等が挙げられる。正極活物質は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Positive electrode active material)
The positive electrode active material may be any material that can occlude and release lithium ions. As the positive electrode active material, known positive electrode active materials for lithium ion secondary batteries can be employed. Examples of positive electrode active materials include lithium-containing transition metal oxides, lithium-containing transition metal composite oxides using two or more transition metals, transition metal oxides, transition metal sulfides, metal oxides, olivine-type metal lithium salts, etc. Is mentioned. A positive electrode active material may be used individually by 1 type, and may use 2 or more types together.
 リチウム含有遷移金属酸化物としては、リチウムコバルト酸化物(LiCoO等)、リチウムニッケル酸化物(LiNiO等)、リチウムマンガン酸化物(LiMnO、LiMn、LiMnO等)等が挙げられる。 Examples of the lithium-containing transition metal oxide include lithium cobalt oxide (LiCoO 2 and the like), lithium nickel oxide (LiNiO 2 and the like), lithium manganese oxide (LiMnO 2 , LiMn 2 O 4 , Li 2 MnO 3 and the like). Can be mentioned.
 リチウム含有遷移金属複合酸化物に含有される金属としてはAl、V、Ti、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Yb等が好ましい。リチウム含有遷移金属複合酸化物としては、リチウム三元系複合酸化物(Li(NiCoMn)O(ただし、a,b,c>0、a+b+c=1である。)等)、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si、Yb等の他の金属で置換したもの等が挙げられる。
 リチウム含有遷移金属複合酸化物としては、下記のものが挙げられる。
 LiMn0.5Ni0.5、LiMn1.8Al0.2
 LiNi0.85Co0.10Al0.05、 LiMn1.5Ni0.5
 LiNi1/3Co1/3Mn1/3、 LiMn1.8Al0.2等。
As the metal contained in the lithium-containing transition metal composite oxide, Al, V, Ti, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, Yb and the like are preferable. Examples of the lithium-containing transition metal composite oxide include lithium ternary composite oxides (Li (Ni a Co b Mn c ) O 2 (where a, b, c> 0, a + b + c = 1), etc.), and the like. Some of the transition metal atoms that are the main components of these lithium transition metal composite oxides are Al, Ti, V, Cr, Mn, Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Si, and Yb. And the like substituted with other metals.
The following are mentioned as a lithium containing transition metal complex oxide.
LiMn 0.5 Ni 0.5 O 2 , LiMn 1.8 Al 0.2 O 4 ,
LiNi 0.85 Co 0.10 Al 0.05 O 2 , LiMn 1.5 Ni 0.5 O 4 ,
LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiMn 1.8 Al 0.2 O 4 etc.
 遷移金属酸化物としては、TiO、MnO、MoO、V、V13等が挙げられる。遷移金属硫化物としては、TiS、FeS、MoS等が挙げられる。金属酸化物としては、SnO、SiO等が挙げられる。 Examples of the transition metal oxide include TiO 2 , MnO 2 , MoO 3 , V 2 O 5 , V 6 O 13 and the like. Examples of the transition metal sulfide include TiS 2 , FeS, and MoS 2 . Examples of the metal oxide include SnO 2 and SiO 2 .
 オリビン型金属リチウム塩は、Li (ただし、Mは、Fe(II)、Co(II)、Mn(II)、Ni(II)、V(II)またはCu(II)であり、Mは、PまたはSiであり、0≦L≦3、1≦x≦2、1≦y≦3、4≦z≦12、0≦g≦1である。)で表される物質またはこれらの複合体である。
 オリビン型金属リチウム塩としては、下記のものが挙げられる。
 LiFePO、LiFe(PO、LiFeP
 LiMnPO、LiNiPO、LiCoPO、LiFePOF、
 LiMnPOF、LiNiPOF、LiCoPOF、
 LiFeSiO、LiMnSiO、LiNiSiO
 LiCoSiO等。
Olivine type metal lithium salt, Li L M 3 x M 4 y O z F g ( however, M 3 is, Fe (II), Co ( II), Mn (II), Ni (II), V (II) Or Cu (II), M 4 is P or Si, and 0 ≦ L ≦ 3, 1 ≦ x ≦ 2, 1 ≦ y ≦ 3, 4 ≦ z ≦ 12, 0 ≦ g ≦ 1. ) Or a complex thereof.
Examples of the olivine type metal lithium salt include the following.
LiFePO 4 , Li 3 Fe 2 (PO 4 ) 3 , LiFeP 2 O 7 ,
LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 2 FePO 4 F,
Li 2 MnPO 4 F, Li 2 NiPO 4 F, Li 2 CoPO 4 F,
Li 2 FeSiO 4 , Li 2 MnSiO 4 , Li 2 NiSiO 4 ,
Li 2 CoSiO 4 etc.
 正極活物質の表面に、主体となる正極活物質を構成する物質とは異なる組成の物質が付着したものを用いることもできる。表面付着物質としては、酸化物(酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等)、硫酸塩(硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等)、炭酸塩(炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等)等が挙げられる。
 正極活物質に対する表面付着物質の量の下限値は、0.1質量ppmが好ましく、1質量ppmがより好ましく、10質量ppmが特に好ましい。正極活物質に対する表面付着物質の量の上限値は、20質量%が好ましく、10質量%がより好ましく、5質量%が特に好ましい。表面付着物質によって、正極活物質の表面での非水電解液の酸化反応を抑制でき、電池寿命を向上させることができる。
A material in which a substance having a composition different from that of the main constituent of the positive electrode active material is attached to the surface of the positive electrode active material can also be used. Surface adhering substances include oxides (aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, etc.), sulfates (lithium sulfate, sodium sulfate, potassium sulfate, Magnesium sulfate, calcium sulfate, aluminum sulfate, etc.), carbonates (lithium carbonate, calcium carbonate, magnesium carbonate, etc.) and the like.
The lower limit of the amount of the surface adhering substance relative to the positive electrode active material is preferably 0.1 mass ppm, more preferably 1 mass ppm, and particularly preferably 10 mass ppm. 20 mass% is preferable, the upper limit of the quantity of the surface adhesion substance with respect to a positive electrode active material is more preferable, 10 mass% is more preferable, and 5 mass% is especially preferable. The surface adhering substance can suppress the oxidation reaction of the nonaqueous electrolytic solution on the surface of the positive electrode active material, and can improve the battery life.
 正極活物質としては、放電電圧が高く、かつ電気化学的安定性が高い点から、α-NaCrO構造を母体とするリチウム含有遷移金属酸化物(LiCoO、LiNiO、LiMnO等)、スピネル型構造を母体とするリチウム含有遷移金属酸化物(LiMn等)が好ましい。 As the positive electrode active material, lithium-containing transition metal oxides (LiCoO 2 , LiNiO 2 , LiMnO 2, etc.) based on α-NaCrO 2 structure, spinel from the viewpoint of high discharge voltage and high electrochemical stability. A lithium-containing transition metal oxide (LiMn 2 O 4 or the like) having a mold structure as a base is preferable.
 (導電付与剤)
 導電付与剤としては、炭素材料、金属物質(Al等)、導電性酸化物の粉末等が挙げられる。
(Conductivity imparting agent)
Examples of the conductivity-imparting agent include carbon materials, metal substances (such as Al), and conductive oxide powders.
 (結着剤)
 結着剤としては、樹脂バインダ(ポリフッ化ビニリデン等)、ゴム系バインダ(炭化水素ゴム、フッ素ゴム等)が挙げられる。
(Binder)
Examples of the binder include resin binders (such as polyvinylidene fluoride) and rubber binders (hydrocarbon rubber, fluororubber, etc.).
 (集電体)
 集電体としては、Al等を主体とする金属薄膜が挙げられる。
(Current collector)
Examples of the current collector include a metal thin film mainly composed of Al or the like.
[負極]
 負極としては、粉末状の負極活物質と導電付与剤と結着剤を含む負極層が、集電体上に形成されてなる電極が挙げられる。なお、負極活物質が、それ自体で形状を保てる場合(たとえばリチウム金属薄膜である場合)は、負極活物質のみで負極を形成できる。
[Negative electrode]
Examples of the negative electrode include an electrode in which a negative electrode layer containing a powdered negative electrode active material, a conductivity-imparting agent, and a binder is formed on a current collector. In addition, when a negative electrode active material can maintain a shape by itself (for example, when it is a lithium metal thin film), a negative electrode can be formed only with a negative electrode active material.
 (負極活物質)
 負極活物質としては、リチウム金属、リチウム合金、ならびにリチウムイオンを吸蔵および放出できる炭素材料からなる群から選ばれる少なくとも1種が挙げられる。
 リチウム合金としては、Li-Si合金、Li-Al合金、Li-Pb合金、Li-Sn合金等が挙げられる。
 炭素材料としては、黒鉛、コークス、ハードカーボン等が挙げられる。
(Negative electrode active material)
Examples of the negative electrode active material include at least one selected from the group consisting of a lithium metal, a lithium alloy, and a carbon material capable of inserting and extracting lithium ions.
Examples of the lithium alloy include a Li—Si alloy, a Li—Al alloy, a Li—Pb alloy, and a Li—Sn alloy.
Examples of the carbon material include graphite, coke, and hard carbon.
 (導電付与剤、結着剤)
 負極の結着剤および導電付与剤は、正極と同等のものを用いることができる。
(Conductivity imparting agent, binder)
As the binder and the conductivity-imparting agent for the negative electrode, those equivalent to the positive electrode can be used.
 (集電体)
 集電体としては、Cu等を主体とする金属薄膜が挙げられる。
(Current collector)
Examples of the current collector include a metal thin film mainly composed of Cu or the like.
[セパレータ]
 正極と負極の間には、短絡を防止するためにセパレータを介在させる。セパレータとしては、多孔膜が挙げられる。非水電解液は該多孔膜に含浸させて用いる。また、多孔膜に非水電解液を含浸させてゲル化させたものをゲル電解質として用いてもよい。
[Separator]
A separator is interposed between the positive electrode and the negative electrode to prevent a short circuit. Examples of the separator include a porous film. A non-aqueous electrolyte is used by impregnating the porous membrane. Moreover, you may use as a gel electrolyte what impregnated the porous film with the nonaqueous electrolyte solution, and was made to gelatinize.
 多孔膜としては、非水電解液に対して安定であり、かつ保液性に優れるものを用いることができる。多孔膜としては、多孔性シートまたは不織布が好ましい。多孔膜を積層し、2層または3層にしたものを用いてもよい。
 多孔膜の材料としては、フッ素樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンとテトラフルオロエチレンのコポリマー等)、ポリイミド、ポリオレフィン(ポリエチレン、ポリプロピレン等)が挙げられ、耐酸化性、透気度、入手性等の点から、ポリオレフィンが好ましい。
As the porous film, one that is stable with respect to the non-aqueous electrolyte and excellent in liquid retention can be used. As a porous film, a porous sheet or a nonwoven fabric is preferable. You may use what laminated | stacked the porous film and was made into 2 layers or 3 layers.
Examples of the material for the porous film include fluororesins (polyvinylidene fluoride, polytetrafluoroethylene, copolymers of ethylene and tetrafluoroethylene, etc.), polyimides, polyolefins (polyethylene, polypropylene, etc.), oxidation resistance, air permeability, Polyolefin is preferable from the viewpoint of availability.
 セパレータおよび電極のいずれか一方または両方の表面には、耐熱性、形状保持特性を向上させるために、無機微粒子層を設けてもよい。無機微粒子としては、シリカ、アルミナ、チタニア、マグネシア等が挙げられる。 In order to improve heat resistance and shape retention characteristics, an inorganic fine particle layer may be provided on the surface of either or both of the separator and the electrode. Examples of the inorganic fine particles include silica, alumina, titania, magnesia and the like.
[電池外装体]
 電池外装体の材料としては、ニッケルメッキを施した鉄、ステンレス、アルミニウムまたはその合金、ニッケル、チタン、樹脂材料、フィルム材料等が挙げられる。
[Battery exterior]
Examples of the material for the battery outer package include nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, a resin material, and a film material.
[形状]
 リチウムイオン二次電池の形状は、用途に応じて選択すればよく、コイン型、円筒型、角型、ラミネート型等のいずれの形状であってもよい。また、正極および負極の形状は、二次電池の形状に合わせて適宜選択することができる。
[shape]
The shape of the lithium ion secondary battery may be selected according to the application, and may be any shape such as a coin shape, a cylindrical shape, a square shape, and a laminate shape. Moreover, the shape of a positive electrode and a negative electrode can be suitably selected according to the shape of a secondary battery.
[充電電圧]
 本発明のリチウムイオン二次電池の充電電圧は、リチウムに対する電位で4.25V以上が好ましく、4.30V以上がより好ましく、4.35V以上がさらに好ましく、4.40V以上が特に好ましい。
[Charging voltage]
The charging voltage of the lithium ion secondary battery of the present invention is preferably 4.25 V or more, more preferably 4.30 V or more, further preferably 4.35 V or more, and particularly preferably 4.40 V or more in terms of the potential with respect to lithium.
[作用機序]
 以上説明した本発明のリチウムイオン二次電池は、本発明の非水電解液を用いているため、電池特性(サイクル特性、レート特性、初回充放電効率)に優れる。
[Mechanism of action]
The lithium ion secondary battery of the present invention described above is excellent in battery characteristics (cycle characteristics, rate characteristics, initial charge / discharge efficiency) because the non-aqueous electrolyte of the present invention is used.
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例によって限定されない。例1~9は実施例であり、例10~14は比較例である。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. Examples 1 to 9 are examples, and examples 10 to 14 are comparative examples.
[評価用セルの作製]
 (負極)
 人造黒鉛(9.1g)を、自転公転式撹拌機(シンキー社製、あわとり練太郎AR-E310)を用いて回転数2000rpmで1分間撹拌した。2質量%のカルボキシメチルセルロース水溶液(9.0g)を添加し、前記撹拌機を用いて回転数2000rpmで1分間撹拌する工程を2回行った。蒸留水(4.7g)を添加し、前記撹拌機を用いて回転数2000rpmで1分間撹拌する工程を2回行った。固形分濃度を34質量%に調整したテトラフルオロエチレン-プロピレンゴム水性分散ラテックスバインダ(0.26g)を添加し、前記撹拌機を用いて回転数2000rpmで1分間撹拌して電極塗工用スラリーを得た。
 厚さ20μmの銅箔上に、前記スラリーを210μmの厚さで塗工し、乾燥した後にロールプレス機により空隙率15~25%となるようにプレスし、その後直径16mmの円形に打ち抜いて評価用電極(負極)とした。
[Production of evaluation cell]
(Negative electrode)
Artificial graphite (9.1 g) was stirred for 1 minute at a rotational speed of 2000 rpm using a rotation and revolution type stirrer (Shinky Corp., Awatori Nertaro AR-E310). 2 mass% carboxymethylcellulose aqueous solution (9.0g) was added, and the process stirred for 1 minute at the rotation speed 2000rpm using the said stirrer was performed twice. Distilled water (4.7 g) was added, and the step of stirring for 1 minute at a rotational speed of 2000 rpm was performed twice using the stirrer. A tetrafluoroethylene-propylene rubber aqueous dispersion latex binder (0.26 g) adjusted to a solid content concentration of 34% by mass was added and stirred for 1 minute at a rotational speed of 2000 rpm using the stirrer to form a slurry for electrode coating. Obtained.
The slurry is coated on a copper foil having a thickness of 20 μm to a thickness of 210 μm, dried and then pressed with a roll press to a porosity of 15 to 25%, and then punched into a circle with a diameter of 16 mm for evaluation. Electrode (negative electrode).
 (正極)
 LiCoO(AGCセイミケミカル社製、32.0g)と、カーボンブラック(電気化学工業社製、0.8g)とを混合し、自転公転式撹拌機(シンキー社製、あわとり練太郎AR-E310)を用いて回転数2000rpmで30秒間撹拌する工程を3回行った。N-メチル-2-ピロリドン(6.0g)を加えて前記撹拌機を用いて回転数2000rpmで5分間撹拌する工程を4回行った。N-メチル-2-ピロリドン(0.8g)を加えて前記撹拌機を用いて回転数2000rpmで3分間撹拌する工程を3回行った。ポリフッ化ビニリデンのN-メチル-2-ピロリドン溶液(11質量%、7.45g)を加えて前記撹拌機を用いて回転数2000rpmで1分間撹拌し、スラリーとした。
 厚さ20μmのアルミニウム箔上に、前記スラリーを180μmの厚さで塗工し、乾燥した後、ロールプレス機により空隙率35~40%となるようにプレスし、その後直径15mmの円形に打ち抜いて評価用電極(正極)とした。
(Positive electrode)
LiCoO 2 (manufactured by AGC Seimi Chemical Co., Ltd., 32.0 g) and carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd., 0.8 g) are mixed, and a revolving revolving stirrer (manufactured by Shinky Co., Ltd., Awatori Netaro AR-E310) The step of stirring for 30 seconds at 2000 rpm was performed three times. The step of adding N-methyl-2-pyrrolidone (6.0 g) and stirring with the stirrer at a rotation speed of 2000 rpm for 5 minutes was performed 4 times. The step of adding N-methyl-2-pyrrolidone (0.8 g) and stirring for 3 minutes at 2000 rpm using the stirrer was performed three times. A solution of polyvinylidene fluoride in N-methyl-2-pyrrolidone (11% by mass, 7.45 g) was added and stirred for 1 minute at a rotational speed of 2000 rpm using the stirrer to obtain a slurry.
The slurry is applied to a thickness of 180 μm on an aluminum foil having a thickness of 20 μm, dried, pressed with a roll press machine so that the porosity is 35 to 40%, and then punched into a circle with a diameter of 15 mm. An evaluation electrode (positive electrode) was obtained.
 (セル)
 正極と負極とを対向させ、各電極の間に、評価用電極セパレータとしてポリオレフィン系微多孔膜を存在させ、非水電解液(0.02mL)を添加し、LiCoO極-黒鉛極からなるセルを作製した。
(cell)
A cell comprising a LiCoO 2 electrode-graphite electrode, with a positive electrode and a negative electrode facing each other, a polyolefin microporous membrane as an electrode separator for evaluation existing between each electrode, a non-aqueous electrolyte (0.02 mL) added thereto Was made.
[充放電試験]
 セルを、25℃において、0.05Cに相当する定電流で3.4Vまで充電し、さらに0.2Cに相当する電流で4.35Vまで充電し、さらに充電下限電圧において電流値が0.02Cに相当する電流となるまで充電を行った。その後、0.2Cに相当する電流で3.0Vまで放電した。下式から初回充放電効率を求めた。
 初回充放電効率={(初回放電容量)/(初回充電容量)×100}
[Charge / discharge test]
The cell is charged to 3.4 V with a constant current corresponding to 0.05 C at 25 ° C., further charged to 4.35 V with a current corresponding to 0.2 C, and the current value is 0.02 C at the charging lower limit voltage. The battery was charged until the current corresponding to Then, it discharged to 3.0V with the electric current corresponding to 0.2C. The initial charge / discharge efficiency was calculated from the following equation.
Initial charge / discharge efficiency = {(initial discharge capacity) / (initial charge capacity) × 100}
 2サイクルから4サイクルまでは、0.2Cに相当する電流で4.35Vまで充電し、さらに充電下限電圧において電流値が0.02Cに相当する電流となるまで充電を行った。その後、0.2Cに相当する電流で3.0Vまで放電した。5サイクルでは、0.5Cに相当する電流で4.35Vまで充電し、さらに充電下限電圧において電流値が0.02Cに相当する電流となるまで充電を行った。その後、1.0Cに相当する電流で3.0Vまで放電した。 From the 2nd cycle to the 4th cycle, the battery was charged to 4.35V with a current corresponding to 0.2C, and further charged until the current value reached a current corresponding to 0.02C at the charge lower limit voltage. Then, it discharged to 3.0V with the electric current corresponding to 0.2C. In 5 cycles, the battery was charged to 4.35 V with a current corresponding to 0.5 C, and further charged until the current value reached a current corresponding to 0.02 C at the charge lower limit voltage. Thereafter, the battery was discharged to 3.0 V with a current corresponding to 1.0 C.
 6サイクルから11サイクルはレート試験を実施した。充電は、0.5Cに相当する電流で4.35Vまで充電し、さらに充電下限電圧において電流値が0.02Cに相当する電流となるまでを行った。放電は、6サイクルは0.1C、7サイクルは0.2C、8サイクルは0.5C、9サイクルは1.0C、10サイクルは2.0Cに相当する電流で3.0Vまで放電した。レート特性の評価として、0.1C放電時の放電容量に対する1.0C放電時の放電容量維持率を測定した。 The rate test was conducted for 6 to 11 cycles. Charging was performed until a current corresponding to 0.02C was reached at a charging lower limit voltage after charging to 4.35V with a current corresponding to 0.5C. The discharge was performed at 0.1 C for 6 cycles, 0.2 C for 7 cycles, 0.5 C for 8 cycles, 1.0 C for 9 cycles, and 3.0 V at a current corresponding to 2.0 C for 10 cycles. As an evaluation of the rate characteristics, the discharge capacity maintenance rate at 1.0 C discharge relative to the discharge capacity at 0.1 C discharge was measured.
 12サイクルから100サイクルまで、0.5Cに相当する電流で4.35Vまで充電し、さらに充電下限電圧において電流値が0.02Cに相当する電流となるまで充電を行った。その後、0.5Cに相当する電流で3.0Vまで放電した。12サイクル目の放電容量に対する、50サイクルおよび100サイクルの放電容量維持率によってサイクル特性の評価を行った。 From 12 cycles to 100 cycles, the battery was charged to 4.35 V at a current corresponding to 0.5 C, and further charged until the current value reached a current corresponding to 0.02 C at the charge lower limit voltage. Then, it discharged to 3.0V with the electric current corresponding to 0.5C. The cycle characteristics were evaluated based on the discharge capacity retention rate of 50 cycles and 100 cycles with respect to the discharge capacity of the 12th cycle.
 実施例にて用いた化合物および略号は、下記のとおりである。
 (リチウム塩)
 LPF:LiPF、LiFOB:化合物(1-1)。
The compounds and abbreviations used in the examples are as follows.
(Lithium salt)
LPF: LiPF 6 , LiFOB: Compound (1-1).
 (含フッ素溶媒(A))
 AE3000:CFCHOCFCHF(旭硝子社製、AE-3000)。
(Fluorine-containing solvent (A))
AE3000: CF 3 CH 2 OCF 2 CHF 2 (Asahi Glass Co., Ltd., AE-3000).
 (環状カルボン酸エステル化合物(B))
 GBL:γ-ブチロラクトン。
(Cyclic carboxylic acid ester compound (B))
GBL: γ-butyrolactone.
 (フッ素原子を有しない飽和環状カーボネート化合物(C))
 EC:エチレンカーボネート。
(Saturated cyclic carbonate compound having no fluorine atom (C))
EC: ethylene carbonate.
 (他の成分)
 DMC:ジメチルカーボネート、EMC:エチルメチルカーボネート、VC:ビニレンカーボネート、FEC:4-フルオロ-1,3-ジオキソラン-2-オン。
(Other ingredients)
DMC: dimethyl carbonate, EMC: ethyl methyl carbonate, VC: vinylene carbonate, FEC: 4-fluoro-1,3-dioxolan-2-one.
[例1]
 リチウム塩であるLPF(0.15g)およびLiFOB(0.03g)を、含フッ素エーテル溶媒(A)であるAE3000(0.71g)中に拡散した後、環状カルボン酸エステル化合物(B)であるGBL(0.34g)、フッ素原子を有しない飽和環状カーボネート化合物(C)であるEC(0.03g)および他の溶媒であるDMC(0.22g)を混合して非水電解液1とした。
 非水電解液1(20μL)を用いてセルを作製し、充放電試験を行った。結果を表1に示す。
[Example 1]
After diffusing LPF (0.15 g) and LiFOB (0.03 g) which are lithium salts into AE3000 (0.71 g) which is a fluorine-containing ether solvent (A), the cyclic carboxylic acid ester compound (B) is obtained. GBL (0.34 g), EC (0.03 g) which is a saturated cyclic carbonate compound (C) having no fluorine atom, and DMC (0.22 g) which is another solvent were mixed to obtain a non-aqueous electrolyte solution 1. .
A cell was prepared using Nonaqueous Electrolytic Solution 1 (20 μL), and a charge / discharge test was performed. The results are shown in Table 1.
[例2~14]
 リチウム塩等の各化合物の組成を表1および表2に示すように変更した以外は、例1と同様にして非水電解液2~14を得た。なお、表1および表2において、各成分の含有量(質量%)は、非水電解液に含まれる各成分の合計含有量(質量)に対する各成分のそれぞれの含有量の百分率で示される。
 また、これらの非水電解液を変更した以外は、例1と同様にしてセルを作製し、充放電試験を行った。結果を表1および表2に示す。
[Examples 2 to 14]
Nonaqueous electrolytes 2 to 14 were obtained in the same manner as in Example 1 except that the composition of each compound such as lithium salt was changed as shown in Tables 1 and 2. In Tables 1 and 2, the content (mass%) of each component is shown as a percentage of the content of each component with respect to the total content (mass) of each component contained in the non-aqueous electrolyte.
Moreover, except having changed these non-aqueous electrolyte solutions, the cell was produced like Example 1 and the charge / discharge test was done. The results are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表1および表2に示すように、化合物(1)であるLiFOBと、フッ素原子を有しない飽和環状カーボネート化合物(C)であるECを特定量併用した例1~9は、フッ素原子を有しない飽和環状カーボネート化合物(C)を含まない例13、化合物(1)を含まない例14、化合物(1)およびフッ素原子のどちらも有しない飽和環状カーボネート化合物(C)を含まない例11、12に比べ、初回充放電効率、サイクル特性、およびレート特性のいずれも改善した。 As shown in Tables 1 and 2, Examples 1 to 9 in which LiFOB as the compound (1) and EC as the saturated cyclic carbonate compound (C) having no fluorine atom are used in a specific amount do not have a fluorine atom. Examples 13 and 12 containing no saturated cyclic carbonate compound (C), 14 containing no compound (1), 11 containing no compound (1) and no saturated cyclic carbonate compound (C) having no fluorine atom In comparison, the initial charge / discharge efficiency, cycle characteristics, and rate characteristics were all improved.
 本発明の非水電解液は、リチウムイオン二次電池用の非水電解液として有用である。
 本発明のリチウムイオン二次電池は、携帯電話、携帯ゲーム機、デジタルカメラ、デジタルビデオカメラ、電動工具、ノートパソコン、携帯情報端末、携帯音楽プレーヤー、電気自動車、ハイブリット式自動車、電車、航空機、人工衛星、潜水艦、船舶、無停電電源装置、ロボット、電力貯蔵システム等の様々な用途に適用できる。また、本発明のリチウムイオン二次電池は、電気自動車、ハイブリット式自動車、電車、航空機、人工衛星、潜水艦、船舶、無停電電源装置、ロボット、電力貯蔵システム等の大型二次電池として特に有効である。
 なお、2014年4月18日に出願された日本特許出願2014-086255号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The nonaqueous electrolytic solution of the present invention is useful as a nonaqueous electrolytic solution for a lithium ion secondary battery.
The lithium ion secondary battery of the present invention includes a mobile phone, a portable game machine, a digital camera, a digital video camera, an electric tool, a notebook computer, a portable information terminal, a portable music player, an electric vehicle, a hybrid vehicle, a train, an aircraft, an artificial It can be applied to various uses such as satellites, submarines, ships, uninterruptible power supplies, robots, and power storage systems. The lithium ion secondary battery of the present invention is particularly effective as a large secondary battery for electric vehicles, hybrid vehicles, trains, airplanes, artificial satellites, submarines, ships, uninterruptible power supplies, robots, power storage systems, and the like. is there.
It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2014-086255 filed on April 18, 2014 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (14)

  1.  電解質と液状組成物とを含む非水電解液であって、
     前記電解質の少なくとも1種が、リチウム塩であり、
     前記リチウム塩が、下式(1)で表される化合物の少なくとも1種を含み、
     前記液状組成物が、含フッ素エーテル化合物、含フッ素鎖状カルボン酸エステル化合物および含フッ素鎖状カーボネート化合物からなる群から選ばれる少なくとも1種を含む含フッ素溶媒(A)と、環状カルボン酸エステル化合物(B)と、フッ素原子を有しない飽和環状カーボネート化合物(C)とを含み、前記非水電解液の総質量に対する前記フッ素原子を有しない飽和環状カーボネート化合物(C)の質量の割合が0.01~20質量%である、二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000001
     ただし、
     Mは、ホウ素原子またはリン原子であり、
     Rは、置換基を有していてもよい炭素数1~10のアルキレン基であり、
     Xは、ハロゲン原子であり、
     nは、0~4の整数であり、
     mは、0または1であり、
     pは、1または2である。
    A non-aqueous electrolyte containing an electrolyte and a liquid composition,
    At least one of the electrolytes is a lithium salt;
    The lithium salt includes at least one compound represented by the following formula (1):
    A fluorinated solvent (A) in which the liquid composition comprises at least one selected from the group consisting of a fluorinated ether compound, a fluorinated chain carboxylic acid ester compound and a fluorinated chain carbonate compound; and a cyclic carboxylic acid ester compound (B) and the saturated cyclic carbonate compound (C) having no fluorine atom, and the ratio of the mass of the saturated cyclic carbonate compound (C) having no fluorine atom to the total mass of the non-aqueous electrolyte is 0.00. A nonaqueous electrolytic solution for a secondary battery, which is from 01 to 20% by mass.
    Figure JPOXMLDOC01-appb-C000001
    However,
    M is a boron atom or a phosphorus atom,
    R 1 is an optionally substituted alkylene group having 1 to 10 carbon atoms,
    X is a halogen atom,
    n is an integer from 0 to 4,
    m is 0 or 1,
    p is 1 or 2.
  2.  前記フッ素原子を有しない飽和環状カーボネート化合物(C)が、下式(7)で表される化合物の少なくとも1種である、請求項1に記載の二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000002
     ただし、R14~R17は、それぞれ独立に水素原子または炭素数1~6のアルキル基である。
    The non-aqueous electrolyte for secondary batteries according to claim 1, wherein the saturated cyclic carbonate compound (C) having no fluorine atom is at least one compound represented by the following formula (7).
    Figure JPOXMLDOC01-appb-C000002
    However, R 14 to R 17 are each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  3.  前記非水電解液の総質量に対する前記含フッ素溶媒(A)の質量の割合が、30~80質量%である、請求項1または2のいずれか一項に記載の二次電池用非水電解液。 The nonaqueous electrolysis for a secondary battery according to any one of claims 1 and 2, wherein the ratio of the mass of the fluorinated solvent (A) to the total mass of the nonaqueous electrolytic solution is 30 to 80 mass%. liquid.
  4.  前記リチウム塩が、下式(1-1)で表される化合物、下式(1-2)で表される化合物、下式(1-3)で表される化合物、下式(1-4)で表される化合物および下式(1-5)で表される化合物からなる群から選ばれる少なくとも1種を含む、請求項1~3のいずれか一項に記載の二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000003
    The lithium salt is a compound represented by the following formula (1-1), a compound represented by the following formula (1-2), a compound represented by the following formula (1-3), a formula (1-4) The non-aqueous battery for a secondary battery according to any one of claims 1 to 3, comprising at least one selected from the group consisting of a compound represented by formula (1) and a compound represented by the following formula (1-5): Electrolytic solution.
    Figure JPOXMLDOC01-appb-C000003
  5.  前記非水電解液の総質量に対する前記式(1)で表される化合物の質量の割合が、0.01~10質量%である、請求項1~4のいずれか一項に記載の二次電池用非水電解液。 The secondary according to any one of claims 1 to 4, wherein the ratio of the mass of the compound represented by the formula (1) to the total mass of the nonaqueous electrolytic solution is 0.01 to 10 mass%. Non-aqueous electrolyte for batteries.
  6.  前記含フッ素エーテル化合物が、下式(2)で表される化合物および下式(3)で表される化合物からなる群から選ばれる少なくとも1種である、請求項1~5のいずれか一項に記載の二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000004
     ただし、
     RおよびRは、それぞれ独立に炭素数1~10のアルキル基、炭素数3~10のシクロアルキル基、炭素数1~10のフッ素化アルキル基、炭素数3~10のフッ素化シクロアルキル基、エーテル性酸素原子を有する炭素数2~10のアルキル基、またはエーテル性酸素原子を有する炭素数2~10のフッ素化アルキル基であり、
     RおよびRのいずれか一方または両方は、炭素数1~10のフッ素化アルキル基、炭素数3~10のフッ素化シクロアルキル基、またはエーテル性酸素原子を有する炭素数2~10のフッ素化アルキル基であり、
     Yは、炭素数1~5のアルキレン基、炭素数1~5のフッ素化アルキレン基、エーテル性酸素原子を有する炭素数2~5のアルキレン基またはエーテル性酸素原子を有する炭素数2~5のフッ素化アルキレン基である。
    The fluorine-containing ether compound is at least one selected from the group consisting of a compound represented by the following formula (2) and a compound represented by the following formula (3): A non-aqueous electrolyte for a secondary battery as described in 1.
    Figure JPOXMLDOC01-appb-C000004
    However,
    R 2 and R 3 each independently represents an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a fluorinated alkyl group having 1 to 10 carbon atoms, or a fluorinated cycloalkyl having 3 to 10 carbon atoms. A group, an alkyl group having 2 to 10 carbon atoms having an etheric oxygen atom, or a fluorinated alkyl group having 2 to 10 carbon atoms having an etheric oxygen atom,
    One or both of R 2 and R 3 are a fluorinated alkyl group having 1 to 10 carbon atoms, a fluorinated cycloalkyl group having 3 to 10 carbon atoms, or a fluorine atom having 2 to 10 carbon atoms having an etheric oxygen atom. Alkyl group,
    Y represents an alkylene group having 1 to 5 carbon atoms, a fluorinated alkylene group having 1 to 5 carbon atoms, an alkylene group having 2 to 5 carbon atoms having an etheric oxygen atom, or 2 to 5 carbon atoms having an etheric oxygen atom. A fluorinated alkylene group;
  7.  前記環状カルボン酸エステル化合物(B)が、下式(6)で表される化合物の少なくとも1種である、請求項1~6のいずれか一項に記載の二次電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000005
     ただし、
     R~R13は、それぞれ独立に水素原子、フッ素原子、塩素原子、炭素数1~2のアルキル基、炭素数1~2のフッ素化アルキル基またはエーテル性酸素原子を有する炭素数2~3のアルキル基であり、
     qは0~3の整数である。
    The nonaqueous electrolytic solution for a secondary battery according to any one of claims 1 to 6, wherein the cyclic carboxylic acid ester compound (B) is at least one compound represented by the following formula (6).
    Figure JPOXMLDOC01-appb-C000005
    However,
    R 8 to R 13 each independently represents a hydrogen atom, a fluorine atom, a chlorine atom, an alkyl group having 1 to 2 carbon atoms, a fluorinated alkyl group having 1 to 2 carbon atoms, or an etheric oxygen atom having 2 to 3 carbon atoms. An alkyl group of
    q is an integer of 0 to 3.
  8.  前記含フッ素エーテル化合物が、CFCHOCFCHF、CFCHOCFCHFCF、CHFCFCHOCFCHF、CHCHCHOCFCHF、CHCHOCFCHFおよびCHFCFCHOCFCHFCFからなる群から選ばれる少なくとも1種である、請求項1~7のいずれか一項に記載の二次電池用非水電解液。 The fluorine-containing ether compound is CF 3 CH 2 OCF 2 CHF 2 , CF 3 CH 2 OCF 2 CHFCF 3 , CHF 2 CF 2 CH 2 OCF 2 CHF 2 , CH 3 CH 2 CH 2 OCF 2 CHF 2 , CH 3 CH 2 is OCF 2 CHF 2 and CHF 2 CF 2 CH 2, at least one selected from the group consisting of OCF 2 CHFCF 3, the non-aqueous electrolyte solution for a secondary battery according to any one of claims 1 to 7.
  9.  前記含フッ素溶媒(A)が、前記含フッ素エーテル化合物である、請求項1~8のいずれか一項に記載の二次電池用非水電解液。 The nonaqueous electrolytic solution for secondary battery according to any one of claims 1 to 8, wherein the fluorine-containing solvent (A) is the fluorine-containing ether compound.
  10.  前記環状カルボン酸エステル化合物(B)が、γ-ブチロラクトン、γ-バレロラクトンおよびε-カプロラクトンからなる群から選ばれる少なくとも1種である、請求項1~9のいずれか一項に記載の二次電池用非水電解液。 The secondary according to any one of claims 1 to 9, wherein the cyclic carboxylic acid ester compound (B) is at least one selected from the group consisting of γ-butyrolactone, γ-valerolactone, and ε-caprolactone. Non-aqueous electrolyte for batteries.
  11.  前記リチウム塩が、LiPFを含む、請求項1~10のいずれか一項に記載の二次電池用非水電解液。 The non-aqueous electrolyte for a secondary battery according to any one of claims 1 to 10, wherein the lithium salt contains LiPF 6 .
  12.  前記非水電解液の総質量に対するリチウム塩の質量の割合が、5~25質量%である、請求項1~11のいずれか一項に記載の二次電池用非水電解液。 The nonaqueous electrolytic solution for a secondary battery according to any one of claims 1 to 11, wherein a ratio of a mass of the lithium salt to a total mass of the nonaqueous electrolytic solution is 5 to 25 mass%.
  13.  前記非水電解液の総質量に対する前記環状カルボン酸エステル化合物(B)の質量の割合が、4~60質量%である、請求項1~12のいずれか一項に記載の二次電池用非水電解液。 The non-chargeable secondary battery according to any one of claims 1 to 12, wherein a ratio of a mass of the cyclic carboxylic acid ester compound (B) to a total mass of the nonaqueous electrolytic solution is 4 to 60 mass%. Water electrolyte.
  14.  リチウムイオンを吸蔵および放出できる材料を活物質とする正極と、リチウム金属、リチウム合金、ならびにリチウムイオンを吸蔵および放出できる炭素材料からなる群から選ばれる少なくとも1種を活物質とする負極と、請求項1~13のいずれか一項に記載の二次電池用非水電解液とを有する、リチウムイオン二次電池。 A positive electrode having a material capable of inserting and extracting lithium ions as an active material, a negative electrode having at least one selected from the group consisting of lithium metal, a lithium alloy, and a carbon material capable of inserting and extracting lithium ions as an active material; 14. A lithium ion secondary battery comprising the non-aqueous electrolyte for secondary battery according to any one of items 1 to 13.
PCT/JP2015/061262 2014-04-18 2015-04-10 Nonaqueous electrolyte solution for secondary battery, and lithium-ion secondary battery WO2015159824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-086255 2014-04-18
JP2014086255A JP2017107639A (en) 2014-04-18 2014-04-18 Nonaqueous electrolyte for secondary battery and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
WO2015159824A1 true WO2015159824A1 (en) 2015-10-22

Family

ID=54324033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061262 WO2015159824A1 (en) 2014-04-18 2015-04-10 Nonaqueous electrolyte solution for secondary battery, and lithium-ion secondary battery

Country Status (2)

Country Link
JP (1) JP2017107639A (en)
WO (1) WO2015159824A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108475810A (en) * 2016-01-07 2018-08-31 罗伯特·博世有限公司 Electrolyte and battery assembly module containing the electrolyte
CN110931863A (en) * 2019-11-12 2020-03-27 深圳市比克动力电池有限公司 Additive for battery electrolyte, lithium ion battery electrolyte and lithium ion battery
CN113646944A (en) * 2019-03-21 2021-11-12 株式会社Lg新能源 Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127933A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
JP2007250288A (en) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd Method for manufacturing non-aqueous electrolyte secondary battery
JP2010086914A (en) * 2008-10-02 2010-04-15 Daikin Ind Ltd Nonaqueous electrolytic solution
WO2013033595A1 (en) * 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company Lithium ion battery
WO2013146359A1 (en) * 2012-03-27 2013-10-03 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
JP2014011023A (en) * 2012-06-29 2014-01-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006127933A (en) * 2004-10-29 2006-05-18 Sanyo Electric Co Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using it
JP2007250288A (en) * 2006-03-15 2007-09-27 Sanyo Electric Co Ltd Method for manufacturing non-aqueous electrolyte secondary battery
JP2010086914A (en) * 2008-10-02 2010-04-15 Daikin Ind Ltd Nonaqueous electrolytic solution
WO2013033595A1 (en) * 2011-09-02 2013-03-07 E. I. Du Pont De Nemours And Company Lithium ion battery
WO2013146359A1 (en) * 2012-03-27 2013-10-03 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
JP2014011023A (en) * 2012-06-29 2014-01-20 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108475810A (en) * 2016-01-07 2018-08-31 罗伯特·博世有限公司 Electrolyte and battery assembly module containing the electrolyte
CN113646944A (en) * 2019-03-21 2021-11-12 株式会社Lg新能源 Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
EP3944394A4 (en) * 2019-03-21 2022-05-11 LG Energy Solution, Ltd. Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
CN110931863A (en) * 2019-11-12 2020-03-27 深圳市比克动力电池有限公司 Additive for battery electrolyte, lithium ion battery electrolyte and lithium ion battery

Also Published As

Publication number Publication date
JP2017107639A (en) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6299603B2 (en) Nonaqueous electrolyte for secondary battery and lithium ion secondary battery
JP6428631B2 (en) Nonaqueous electrolyte for secondary battery and lithium ion secondary battery
JP5488768B2 (en) Nonaqueous electrolyte for secondary battery and lithium ion secondary battery
JP5942849B2 (en) Nonaqueous electrolyte for secondary battery and secondary battery
WO2013183719A1 (en) Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
WO2012086602A1 (en) Nonaqueous electrolyte solution for secondary batteries, and secondary battery
JP2015069704A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
WO2015046174A1 (en) Non-aqueous electrolyte secondary battery
WO2015046171A1 (en) Nonaqueous liquid electrolyte for use in secondary battery, and lithium-ion secondary battery
JPWO2011149072A1 (en) Nonaqueous electrolyte for secondary battery and secondary battery
JP2013211095A (en) Nonaqueous electrolyte for secondary battery and secondary battery
JP2015064990A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
WO2015159824A1 (en) Nonaqueous electrolyte solution for secondary battery, and lithium-ion secondary battery
JP2015069705A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
WO2014128940A1 (en) Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
JP2015065131A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
JP2015065130A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
JP2015064991A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
WO2012081710A1 (en) Nonaqueous electrolyte for secondary battery and secondary battery
JP2015069703A (en) Nonaqueous electrolytic solution for secondary batteries, and lithium ion secondary battery
JP2016038997A (en) Nonaqueous electrolyte secondary battery
WO2012173253A1 (en) Nonaqueous electrolyte for secondary cell and secondary cell
WO2012115112A1 (en) Non-aqueous electrolytic solution for secondary cell and secondary cell
WO2015046172A1 (en) Non-aqueous electrolyte secondary battery
JP2013101766A (en) Nonaqueous electrolytic solution for secondary batteries, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15780120

Country of ref document: EP

Kind code of ref document: A1