JP2008257988A - Non-aqueous electrolytic solution - Google Patents

Non-aqueous electrolytic solution Download PDF

Info

Publication number
JP2008257988A
JP2008257988A JP2007098792A JP2007098792A JP2008257988A JP 2008257988 A JP2008257988 A JP 2008257988A JP 2007098792 A JP2007098792 A JP 2007098792A JP 2007098792 A JP2007098792 A JP 2007098792A JP 2008257988 A JP2008257988 A JP 2008257988A
Authority
JP
Japan
Prior art keywords
fluorine
solvent
fluorinated
atom
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007098792A
Other languages
Japanese (ja)
Inventor
Meiten Ko
明天 高
Hideo Sakata
英郎 坂田
Hitomi Nakazawa
瞳 中澤
Michiru Tanaka
みちる 田中
Akiyoshi Yamauchi
昭佳 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2007098792A priority Critical patent/JP2008257988A/en
Publication of JP2008257988A publication Critical patent/JP2008257988A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolytic solution suitable for a lithium secondary battery in which the coating is hardly separated since a strong coating can be formed on the surface of a negative electrode, reaction of the electrolytic solution and the negative electrode can be suppressed even at high temperature since it hardly melts, and further, which has excellent battery characteristics (charge and discharge cycle characteristics, high discharge capacity), ion conductivity, safety, etc. <P>SOLUTION: The non-aqueous electrolytic solution contains (I) a solvent for electrolyte salt dissolution containing a fluorine-contained ester solvent (A) as shown in a formula (A): R<SP>1</SP>CFXCOOR<SP>2</SP>(wherein, R<SP>1</SP>is hydrogen atom, fluorine atom, or alkyl group of carbon number 1-3 in which hydrogen atom may be substituted by fluorine atom, X is hydrogen atom or fluorine atom, provided that X is hydrogen atom when R<SP>1</SP>is hydrogen atom or perfluoroalkyl group, R<SP>2</SP>is alkyl group of carbon number 1-4) and a fluorine-contained solvent (B) other than the fluorine-contained ester solvent (A), and an electrolyte salt (II). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウム二次電池用に適した非水系電解液に関する。   The present invention relates to a non-aqueous electrolyte suitable for a lithium secondary battery.

負極と電解液の反応を抑制することにより安全性を向上させる働きを有する負極表面被覆材として、たとえば、式(A):
1CFXCOOR2 (A)
(式中、R1は水素原子、フッ素原子または炭素数1〜3の水素原子がフッ素原子で置換されていてもよいアルキル基;Xは水素原子またはフッ素原子;ただし、R1がフッ素原子またはパーフルオロアルキル基の場合はXは水素原子;R2は炭素数1〜2のアルキル基である)
で示される含フッ素エステル溶媒(A)が知られている(たとえば、特許文献1参照)。この含フッ素エステル溶媒(A)は、耐酸化性も高く、粘性も低いだけでなく、含フッ素溶媒でありながらも塩の溶解性がよいという特色がある。
As a negative electrode surface covering material having a function of improving safety by suppressing the reaction between the negative electrode and the electrolytic solution, for example, the formula (A):
R 1 CFXCOOR 2 (A)
(Wherein R 1 is a hydrogen atom, a fluorine atom or an alkyl group in which a hydrogen atom having 1 to 3 carbon atoms may be substituted with a fluorine atom; X is a hydrogen atom or a fluorine atom; provided that R 1 is a fluorine atom or In the case of a perfluoroalkyl group, X is a hydrogen atom; R 2 is an alkyl group having 1 to 2 carbon atoms)
Is known (for example, see Patent Document 1). The fluorine-containing ester solvent (A) has not only high oxidation resistance and low viscosity, but also has a feature that the salt solubility is good while being a fluorine-containing solvent.

しかし、より一層の安全性の向上が望まれている。   However, further improvement in safety is desired.

特開平11−86901号公報Japanese Patent Laid-Open No. 11-86901

本発明は、より一層安全性が向上した非水系電解液を提供することを目的とする。   It is an object of the present invention to provide a non-aqueous electrolyte with further improved safety.

本発明は、式(A):
1CFXCOOR2 (A)
(式中、R1は水素原子、フッ素原子または炭素数1〜3の水素原子がフッ素原子で置換されていてもよいアルキル基;Xは水素原子またはフッ素原子;ただし、R1がフッ素原子またはパーフルオロアルキル基の場合はXは水素原子;R2は炭素数1〜4のアルキル基である)
で表される含フッ素エステル溶媒(A)、および
前記含フッ素エステル溶媒(A)以外の含フッ素溶媒(B)
を含む電解質塩溶解用溶媒(I)、ならびに
電解質塩(II)
を含む非水系電解液に関する。
The present invention relates to formula (A):
R 1 CFXCOOR 2 (A)
(Wherein R 1 is a hydrogen atom, a fluorine atom or an alkyl group in which a hydrogen atom having 1 to 3 carbon atoms may be substituted with a fluorine atom; X is a hydrogen atom or a fluorine atom; provided that R 1 is a fluorine atom or In the case of a perfluoroalkyl group, X is a hydrogen atom; R 2 is an alkyl group having 1 to 4 carbon atoms)
And a fluorine-containing solvent (B) other than the fluorine-containing ester solvent (A).
Solvent for dissolving electrolyte salt (I), and electrolyte salt (II)
The present invention relates to a nonaqueous electrolytic solution containing

前記含フッ素溶媒(B)は、含フッ素エーテル(B1)、含フッ素エステル(B2)および含フッ素カーボネート(B3)よりなる群から選ばれる少なくとも1種であることが好ましい。   The fluorinated solvent (B) is preferably at least one selected from the group consisting of a fluorinated ether (B1), a fluorinated ester (B2), and a fluorinated carbonate (B3).

前記含フッ素エステル溶媒(A)は、CHF2COOCH3、CF3CHFCOOCH3、CHF2COOC25、CF3CHFCOOC25、CH3CF2COOCH3およびCH3CF2COOC25よりなる群から選ばれる少なくとも1種であることが好ましい。 The fluorine-containing ester solvent (A) is from CHF 2 COOCH 3 , CF 3 CHFCOOCH 3 , CHF 2 COOC 2 H 5 , CF 3 CHFCOOC 2 H 5 , CH 3 CF 2 COOCH 3 and CH 3 CF 2 COOC 2 H 5 . It is preferably at least one selected from the group consisting of

前記電解質塩溶解用溶媒(I)は、さらに、非フッ素系溶媒(C)を含むことが好ましい。   The electrolyte salt dissolving solvent (I) preferably further contains a non-fluorinated solvent (C).

前記含フッ素溶媒(B)は、含フッ素鎖状エーテル(B1a)、含フッ素環状エステル(B2b)、含フッ素鎖状カーボネート(B3a)および含フッ素環状カーボネート(B3b)よりなる群から選ばれる少なくとも1種であることが好ましい。   The fluorine-containing solvent (B) is at least one selected from the group consisting of a fluorine-containing chain ether (B1a), a fluorine-containing cyclic ester (B2b), a fluorine-containing chain carbonate (B3a), and a fluorine-containing cyclic carbonate (B3b). Preferably it is a seed.

また含フッ素エステル溶媒(A)と含フッ素溶媒(B)との合計量が電解質塩溶解用溶媒(I)の60体積%以上であることが好ましい。   The total amount of the fluorinated ester solvent (A) and the fluorinated solvent (B) is preferably 60% by volume or more of the electrolyte salt dissolving solvent (I).

前記電解質塩(II)は、LiPF6、LiN(SO2CF32およびLiN(SO2252よりなる群から選ばれる少なくとも1種であることが好ましい。 The electrolyte salt (II) is preferably at least one selected from the group consisting of LiPF 6 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2 .

前記非水系電解液は、リチウム二次電池用であることが好ましい。   The non-aqueous electrolyte solution is preferably for a lithium secondary battery.

また、本発明は、正極、負極、セパレータおよび前記非水系電解液を備え、該正極に使用する正極活物質が、コバルト系複合酸化物、ニッケル系複合酸化物、マンガン系複合酸化物、鉄系複合酸化物およびバナジウム系複合酸化物よりなる群から選ばれる少なくとも1種であるリチウム二次電池に関する。   In addition, the present invention includes a positive electrode, a negative electrode, a separator, and the non-aqueous electrolyte, and a positive electrode active material used for the positive electrode is a cobalt-based composite oxide, a nickel-based composite oxide, a manganese-based composite oxide, or an iron-based material. The present invention relates to a lithium secondary battery that is at least one selected from the group consisting of complex oxides and vanadium complex oxides.

さらにまた、本発明は、正極、負極、セパレータおよび請求項1〜8のいずれかに記載の非水系電解液を備え、該負極に使用する負極活物質として、スズ原子またはケイ素原子を含む材料を用いるリチウム二次電池にも関する。   Furthermore, the present invention includes a positive electrode, a negative electrode, a separator, and the nonaqueous electrolytic solution according to any one of claims 1 to 8, and a material containing a tin atom or a silicon atom as a negative electrode active material used for the negative electrode. It also relates to the lithium secondary battery used.

本発明の非水電解液によれば、負極表面に強固な被膜を形成できるため被膜がはがれにくく、R1CFXCOOR2が形成する表面被膜に含まれるR1CFXCOOLiが特許文献1、特にその実施例1、2等に記載の従来技術に比して溶解しにくいため高温でも電解液と負極の反応を抑制でき、その結果、安全性をさらに向上させることが可能になる。 According to the non-aqueous electrolyte solution of the present invention, the film is unlikely to peel off because it can form a strong film on the negative electrode surface, R 1 CFXCOOLi Patent Document 1 contained in the surface coating R 1 CFXCOOR 2 forms, in particular the examples Since it is harder to dissolve than the prior arts described in 1 and 2, etc., the reaction between the electrolytic solution and the negative electrode can be suppressed even at high temperatures, and as a result, safety can be further improved.

さらに、本発明の非水電解液を用いることにより、良好な電池特性(充放電サイクル特性、高放電容量)やイオン伝導度、安全性などを有するリチウム二次電池を提供することも可能になる。   Furthermore, by using the nonaqueous electrolytic solution of the present invention, it is possible to provide a lithium secondary battery having good battery characteristics (charge / discharge cycle characteristics, high discharge capacity), ionic conductivity, safety, and the like. .

本発明の非水系電解液は、特定の成分を含む電解質塩溶解用溶媒(I)と電解質塩(II)とを含有する。   The nonaqueous electrolytic solution of the present invention contains an electrolyte salt dissolving solvent (I) containing a specific component and an electrolyte salt (II).

電解質塩溶解用溶媒(I)は、特定の含フッ素エステル溶媒(A)および前記含フッ素エステル溶媒(A)以外の含フッ素溶媒(B)を含む。   The electrolyte salt dissolving solvent (I) contains a specific fluorine-containing ester solvent (A) and a fluorine-containing solvent (B) other than the fluorine-containing ester solvent (A).

以下、各溶媒成分(A)および(B)について説明する。
(A)含フッ素エステル溶媒:
含フッ素エステル溶媒(A)を含有させることにより、負極表面に被膜を形成することで電解液と負極の反応を抑制できるため安全性を向上させ、さらに、粘性を低く、塩の溶解性および耐酸化性が高くすることができる。
Hereinafter, each solvent component (A) and (B) is demonstrated.
(A) Fluorinated ester solvent:
By containing the fluorinated ester solvent (A), the reaction between the electrolytic solution and the negative electrode can be suppressed by forming a film on the negative electrode surface, so that safety is improved, and further, the viscosity is low, the solubility of the salt and the acid resistance are improved. The chemical property can be increased.

含フッ素エステル溶媒(A)は、式(A):
1CFXCOOR2 (A)
(式中、R1は水素原子、フッ素原子または炭素数1〜3の水素原子がフッ素原子で置換されていてもよいアルキル基;Xは水素原子またはフッ素原子;ただし、R1がフッ素原子またはパーフルオロアルキル基の場合はXは水素原子;R2は炭素数1〜4のアルキル基である)
で示されるものである。
The fluorine-containing ester solvent (A) has the formula (A):
R 1 CFXCOOR 2 (A)
(Wherein R 1 is a hydrogen atom, a fluorine atom or an alkyl group in which a hydrogen atom having 1 to 3 carbon atoms may be substituted with a fluorine atom; X is a hydrogen atom or a fluorine atom; provided that R 1 is a fluorine atom or In the case of a perfluoroalkyl group, X is a hydrogen atom; R 2 is an alkyl group having 1 to 4 carbon atoms)
It is shown by.

式(A)において、R1は、水素原子、フッ素原子または水素原子がフッ素原子で置換されていてもよい炭素数1〜3のアルキル基であり、CHF2−、CH3CF2−またはCF3CFH−が、熱安定性が高い表面皮膜を負極に形成しやすい点から好ましい。 In the formula (A), R 1 is a hydrogen atom, a fluorine atom or an alkyl group having 1 to 3 carbon atoms in which the hydrogen atom may be substituted with a fluorine atom, and CHF 2 —, CH 3 CF 2 — or CF 3 CFH- is preferable from the viewpoint of easily forming a surface film having high thermal stability on the negative electrode.

2は、炭素数1〜4のアルキル基である。 R 2 is an alkyl group having 1 to 4 carbon atoms.

また、Xは水素原子またはフッ素原子であるが、R1がフッ素原子またはパーフルオロアルキル基の場合、Xは水素原子である。 X is a hydrogen atom or a fluorine atom. When R 1 is a fluorine atom or a perfluoroalkyl group, X is a hydrogen atom.

好ましい含フッ素エステル溶媒(A)の具体例としては、たとえば、CHF2COOCH3、CF3CHFCOOCH3、CHF2COOC25、CF3CHFCOOC25、CH3CF2COOCH3、CH3CF2COOC25、C25CF2COOC25、C37CF2COOCH3、C37CF2COOC25などがあげられ、なかでも、CHF2COOCH3、CF3CHFCOOCH3、CHF2COOC25、CF3CHFCOOC25、CH3CF2COOCH3およびCH3CF2COOC25よりなる群から選ばれる少なくとも1種が、特にCHF2COOCH3、CF3CHFCOOCH3、CHF2COOC25、CF3CHFCOOC25であることが、負極上に最も熱安定性の高い皮膜を形成できるだけでなく、粘性が低く、塩を溶解させやすい点から好ましい。 Specific examples of the preferred fluorine-containing ester solvent (A), for example, CHF 2 COOCH 3, CF 3 CHFCOOCH 3, CHF 2 COOC 2 H 5, CF 3 CHFCOOC 2 H 5, CH 3 CF 2 COOCH 3, CH 3 CF 2 COOC 2 H 5 , C 2 H 5 CF 2 COOC 2 H 5 , C 3 H 7 CF 2 COOCH 3 , C 3 H 7 CF 2 COOC 2 H 5 and the like, among others, CHF 2 COOCH 3 , CF 3 CHFCOOCH 3 , CHF 2 COOC 2 H 5 , CF 3 CHFCOOC 2 H 5 , CH 3 CF 2 COOCH 3 and at least one selected from the group consisting of CH 3 CF 2 COOC 2 H 5 , in particular CHF 2 COOCH 3 , CF 3 CHFCOOCH 3, CHF 2 COOC 2 H 5, CF 3 it CHFCOOC a 2 H 5 is the most high thermal stability skin on the negative electrode Not only can form, low viscosity, from the viewpoint of easily dissolving salt.

なお、R1がフッ素原子またはパーフルオロアルキル基で、Xがフッ素原子の場合、具体的には、CF3COOCH3、C25COOC25などのように、カルボニル基のα位の炭素の電子密度が小さくなりすぎると、還元電位が高くなり好ましくない。 When R 1 is a fluorine atom or a perfluoroalkyl group and X is a fluorine atom, specifically, the α-position of the carbonyl group such as CF 3 COOCH 3 , C 2 F 5 COOC 2 H 5, etc. If the electron density of carbon becomes too small, the reduction potential becomes high, which is not preferable.

含フッ素エステル溶媒(A)のフッ素含有率は、20〜55質量%で側鎖がメチル基またはエチル基であることが負極の熱安定性が向上する点から好ましい。さらには負極の熱安定性や耐酸化性向上の効果が大きいため30〜54質量%が好ましい。   The fluorine content of the fluorine-containing ester solvent (A) is preferably 20 to 55% by mass, and the side chain is preferably a methyl group or an ethyl group from the viewpoint of improving the thermal stability of the negative electrode. Furthermore, since the effect of improving the thermal stability and oxidation resistance of the negative electrode is large, 30 to 54% by mass is preferable.

本発明の非水系電解液において、電解質塩溶解用溶媒(I)中の含フッ素エステル溶媒(A)の含有率は、電解質塩溶解用溶媒(I)全体に対して、5〜80体積%が、負極上に熱安定性の高い皮膜が効率よく形成できる点から好ましい。さらには10〜70体積%が、特に10〜60体積%が好ましい。
(B)含フッ素溶媒:
含フッ素溶媒(B)としては、含フッ素鎖状エーテル(B1a)などの含フッ素エーテル(B1)や、前記含フッ素エステル溶媒(A)以外の含フッ素鎖状エステル(B2a)、含フッ素環状エステル(B2b)などの含フッ素エステル(B2)や、含フッ素鎖状カーボネート(B3a)、含フッ素環状カーボネート(B3b)などの含フッ素カーボネート(B3)などがあげられ、これらのなかから1種以上を選択して使用することができる。
In the nonaqueous electrolytic solution of the present invention, the content of the fluorinated ester solvent (A) in the electrolyte salt dissolving solvent (I) is 5 to 80% by volume with respect to the entire electrolyte salt dissolving solvent (I). From the viewpoint that a highly heat-stable film can be efficiently formed on the negative electrode. Furthermore, 10-70 volume% is preferable, and 10-60 volume% is especially preferable.
(B) Fluorine-containing solvent:
Examples of the fluorinated solvent (B) include a fluorinated ether (B1) such as a fluorinated chain ether (B1a), a fluorinated chain ester (B2a) other than the fluorinated ester solvent (A), and a fluorinated cyclic ester. Fluorinated esters (B2) such as (B2b), fluorinated carbonates (B3) such as fluorinated chain carbonates (B3a), and fluorinated cyclic carbonates (B3b), etc. You can select and use.

これらのうち、含フッ素鎖状エーテル(B1a)、含フッ素鎖状エステル(B2a)および含フッ素鎖状カーボネート(B3a)は自己消火作用を有しているため、これらを含フッ素エステル溶媒(A)と併用すると安全性が向上する。また、前記含フッ素エステル溶媒(A)が形成した表面被膜を溶解させにくいため、高温でも本発明の非水系電解液と負極の反応を抑制することができる。また、これらは表面張力が低いためにレート特性を向上させる働きがある。さらに、これらは含フッ素溶媒であるため、塩の溶解性が低く、また粘度も同等の非フッ素系溶媒と比較すると高くなるが、含フッ素エステル溶媒(A)を含有することにより、非フッ素系溶媒と比較しても、塩の溶解性を向上させ、粘性を低減することができ、良好なイオン伝導度を得ることができる。   Of these, the fluorine-containing chain ether (B1a), the fluorine-containing chain ester (B2a), and the fluorine-containing chain carbonate (B3a) have a self-extinguishing action, so that they are used as the fluorine-containing ester solvent (A). When used in combination, safety is improved. Moreover, since it is difficult to dissolve the surface film formed by the fluorine-containing ester solvent (A), the reaction between the nonaqueous electrolytic solution of the present invention and the negative electrode can be suppressed even at high temperatures. Moreover, since these have low surface tension, they have a function of improving rate characteristics. Furthermore, since these are fluorine-containing solvents, the solubility of the salt is low and the viscosity is higher than that of the equivalent non-fluorine-based solvent, but by containing the fluorine-containing ester solvent (A), the non-fluorine-based solvent is contained. Even if compared with a solvent, the solubility of a salt can be improved, viscosity can be reduced, and favorable ionic conductivity can be obtained.

含フッ素鎖状エーテル(B1a)は、耐酸化性や難燃性が高い、自己消火性を有し、レート特性を改善できるという利点を有する。   The fluorine-containing chain ether (B1a) has the advantages that it has high oxidation resistance and flame retardancy, has self-extinguishing properties, and can improve rate characteristics.

含フッ素鎖状エーテル(B1a)としては、たとえば、特開平8−37024号公報、特開平9−97627号公報、特開平11−26015号公報、特開2000−294281号公報、特開2001−52737号公報、特開平11−307123号公報などに記載された化合物があげられる。   Examples of the fluorine-containing chain ether (B1a) include, for example, JP-A-8-37024, JP-A-9-97627, JP-A-11-26015, JP-A-2000-294281, JP-A-2001-52737. And the compounds described in JP-A-11-307123 and the like.

なかでも、式(B1a1):
Rf1ORf2 (B1a1)
(式中、Rf1およびRf2は同じかまたは異なり、いずれも炭素数1〜8、好ましくは炭素数1〜4のアルキル基または含フッ素アルキル基であり、Rf1とRf2の少なくとも一方は含フッ素アルキル基である)
で示される含フッ素鎖状エーテル(B1a1)が、他溶媒との相溶性が良好で適切な沸点を有する点から好ましい。
Among them, the formula (B1a1):
Rf 1 ORf 2 (B1a1)
(In the formula, Rf 1 and Rf 2 are the same or different and both are alkyl groups having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms or fluorine-containing alkyl groups, and at least one of Rf 1 and Rf 2 is (It is a fluorine-containing alkyl group)
Is preferable from the viewpoint of good compatibility with other solvents and an appropriate boiling point.

特に、Rf1としては、たとえば、CHF2CF2CH2−、CHF2CF2CF2CH2−、CHF2CF2CF2CF2CH2−、CF3CF2CH2−、CF3CHFCF2CH2−、CHF2CF(CF3)CH2−、CF3CF2CH2CH2−などがあげられ、また、Rf2としては、たとえば、−CF2CHF2、−CF2CHFCF3、−CF2CF2CHF2、−CH2CH2CF3、−CH2CHFCF3、−CH2CH2CF2CF3などがあげられる。なかでもRf1、Rf2がいずれも炭素数1〜4、特には3〜4の含フッ素アルキル基であることが、イオン伝導性が良好な点から好ましい。 In particular, as Rf 1 , for example, CHF 2 CF 2 CH 2 —, CHF 2 CF 2 CF 2 CH 2 —, CHF 2 CF 2 CF 2 CF 2 CH 2 —, CF 3 CF 2 CH 2 —, CF 3 CHFCF 2 CH 2 —, CHF 2 CF (CF 3 ) CH 2 —, CF 3 CF 2 CH 2 CH 2 — and the like are exemplified, and examples of Rf 2 include —CF 2 CHF 2 , —CF 2 CHFCF 3. , -CF 2 CF 2 CHF 2, -CH 2 CH 2 CF 3, -CH 2 CHFCF 3, such as -CH 2 CH 2 CF 2 CF 3 and the like. Among them Rf 1, Rf 2 is 1 to 4 carbon atoms either, especially be a 3-4 fluorinated alkyl group, preferably a ionic conductivity viewpoint of satisfactory.

含フッ素鎖状エーテル(B1a)の好ましい具体例としては、たとえば、CHF2CF2CH2OCF2CHFCF3、CHF2CF2CH2OCF2CF2H、CF3CF2CH2OCF2CHFCF3、CF3CF2CH2OCF2CF2H、CHF2CF2CH2OCH2CHFCF3、CF3CF2CH2OCH2CHFCF3などの、Rf1、Rf2ともに含フッ素アルキル基であるものがあげられ、なかでも、CHF2CF2CH2OCF2CHFCF3、CF3CF2CH2OCF2CHFCF3が、他溶媒との相溶性が良好でレート特性も良好な点から特に好ましい。 Preferable specific examples of the fluorine-containing chain ether (B1a) include, for example, CHF 2 CF 2 CH 2 OCF 2 CHFCF 3 , CHF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CHFCF 3 , CF 3 CF 2 CH 2 OCF 2 CF 2 H, CHF 2 CF 2 CH 2 OCH 2 CHFCF 3 , CF 3 CF 2 CH 2 OCH 2 CHFCF 3, etc., wherein both Rf 1 and Rf 2 are fluorine-containing alkyl groups Of these, CHF 2 CF 2 CH 2 OCF 2 CHFCF 3 and CF 3 CF 2 CH 2 OCF 2 CHFCF 3 are particularly preferred because they have good compatibility with other solvents and good rate characteristics.

また、式(B1a2):
Rf1OR3 (B1a2)
(式中、R3は炭素数1〜6のアルキル基であり、Rf1は式(B1a1)と同じである)
または式(B1a3):
4ORf2 (B1a3)
(式中、R4は炭素数1〜6のアルキル基であり、Rf2は式(B1a1)と同じである)
で示される含フッ素鎖状エーテルも好ましい。
Formula (B1a2):
Rf 1 OR 3 (B1a2)
(Wherein R 3 is an alkyl group having 1 to 6 carbon atoms, and Rf 1 is the same as in formula (B1a1))
Or the formula (B1a3):
R 4 ORf 2 (B1a3)
(Wherein R 4 is an alkyl group having 1 to 6 carbon atoms, and Rf 2 is the same as in formula (B1a1))
The fluorine-containing chain ether represented by the formula is also preferred.

これらの含フッ素鎖状エーテル(B1a2)や含フッ素鎖状エーテル(B1a3)は、耐酸化性や自己消化性は含フッ素鎖状エーテル(B1a1)には劣るものの、塩の溶解性に優れるために好ましい。   These fluorine-containing chain ethers (B1a2) and fluorine-containing chain ethers (B1a3) are inferior to the fluorine-containing chain ether (B1a1) in oxidation resistance and self-digestibility, but are excellent in salt solubility. preferable.

含フッ素鎖状エーテル(B1a2)および含フッ素鎖状エーテル(B1a3)において、R3、R4としては、炭素数1〜6のアルキル基が好ましく、具体的には、−CH3、−C25、−C37、−CH(CH32などが例示できる。 In the fluorine-containing chain ether (B1a2) and the fluorine-containing chain ether (B1a3), R 3 and R 4 are preferably an alkyl group having 1 to 6 carbon atoms, specifically, —CH 3 , —C 2. H 5, -C 3 H 7, -CH (CH 3) 2 , and others.

含フッ素鎖状エーテル(B1a2)および含フッ素鎖状エーテル(B1a3)としては、たとえば、CHF2CF2OC25、CF3CHFCF2OC25、CHF2CF2OCH3、CF3CHFCF2OCH3、CHF2CF2OCH(CH32、CF3CHFCF2OCH(CH32などが好ましいものとしてあげられる。 Examples of the fluorinated chain ether (B1a2) and the fluorinated chain ether (B1a3) include CHF 2 CF 2 OC 2 H 5 , CF 3 CHFCF 2 OC 2 H 5 , CHF 2 CF 2 OCH 3 , and CF 3 CHFCF. Preferred examples include 2 OCH 3 , CHF 2 CF 2 OCH (CH 3 ) 2 , and CF 3 CHFCF 2 OCH (CH 3 ) 2 .

含フッ素鎖状エステル(B2a)は、耐酸化性や難燃性が高く、レート特性を改善できるという利点を有する。   The fluorine-containing chain ester (B2a) has an advantage that it has high oxidation resistance and flame retardancy and can improve rate characteristics.

含フッ素鎖状エステル(B2a)としては、式(B2a1):
Rf3COORf4 (B2a1)
(式中、Rf3およびRf4は同じかまたは異なり、Rf3は炭素数1〜8、好ましくは炭素数1〜4のアルキル基または含フッ素アルキル基であり、Rf4は炭素数1〜8、好ましくは炭素数1〜4の含フッ素アルキル基であり、Rf3とRf4の少なくとも一方は含フッ素アルキル基である)
で示される含フッ素エステル(B2a1)が、難燃性が高く、かつ他溶媒との相溶性が良好な点から好ましい。
As the fluorine-containing chain ester (B2a), the formula (B2a1):
Rf 3 COORf 4 (B2a1)
Wherein Rf 3 and Rf 4 are the same or different, Rf 3 is an alkyl group or a fluorinated alkyl group having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms, and Rf 4 is 1 to 8 carbon atoms. Preferably a fluorine-containing alkyl group having 1 to 4 carbon atoms, and at least one of Rf 3 and Rf 4 is a fluorine-containing alkyl group)
The fluorine-containing ester (B2a1) represented by is preferable from the viewpoint of high flame retardancy and good compatibility with other solvents.

Rf3としては、たとえば、CF3−、C25−、CHF2CF2−、CHF2−、CH3CF2−、CF3CH2−などがあげられ、なかでも、CF3−、C25−が、レート特性が良好な点から特に好ましい。 Examples of Rf 3 include CF 3 —, C 2 F 5 —, CHF 2 CF 2 —, CHF 2 —, CH 3 CF 2 —, CF 3 CH 2 —, among others, CF 3 —, C 2 F 5 -is particularly preferable from the viewpoint of good rate characteristics.

Rf4としては、たとえば、−CF3、−C25、−CH2CF3、−C24CF3、−CH(CF32、−CH2CF2CHFCF3、−CH225、−CH2CF2CHF2、−C2425、−CH237などがあげられ、なかでも、−CH2CF3、−CH225、−CH(CF32、−CH2CF2CHF2が、他溶媒との相溶性が良好な点から特に好ましい。 The Rf 4, for example, -CF 3, -C 2 F 5 , -CH 2 CF 3, -C 2 H 4 CF 3, -CH (CF 3) 2, -CH 2 CF 2 CHFCF 3, -CH 2 C 2 F 5 , —CH 2 CF 2 CHF 2 , —C 2 H 4 C 2 F 5 , —CH 2 C 3 F 7, and the like, among others, —CH 2 CF 3 , —CH 2 C 2 F 5 , —CH (CF 3 ) 2 and —CH 2 CF 2 CHF 2 are particularly preferred from the viewpoint of good compatibility with other solvents.

含フッ素鎖状エステル(B2a1)の好ましい具体例としては、たとえば、CF3COOCH2CF3、CF3COOC24CF3、CF3COOCH225、CF3COOCH2CF2CHF2、CF3COOCH(CF32などの、Rf3、Rf4ともに含フッ素アルキル基であるものがあげられ、なかでも、CF3COOCH2CF3、CF3COOCH225、CF3COOCH2CF2CHF2、CF3COOCH(CF32が、他溶媒との相溶性およびレート特性が良好な点から特に好ましい。 Preferable specific examples of the fluorine-containing chain ester (B2a1) include, for example, CF 3 COOCH 2 CF 3 , CF 3 COOC 2 H 4 CF 3 , CF 3 COOCH 2 C 2 F 5 , CF 3 COOCH 2 CF 2 CHF 2 , CF 3 COOCH (CF 3 ) 2 and the like, both of Rf 3 and Rf 4 are fluorine-containing alkyl groups. Among them, CF 3 COOCH 2 CF 3 , CF 3 COOCH 2 C 2 F 5 , CF 3 COOCH 2 CF 2 CHF 2 and CF 3 COOCH (CF 3 ) 2 are particularly preferred from the viewpoint of good compatibility with other solvents and good rate characteristics.

また、式(B2a2):
Rf3COOR5 (B2a2)
(式中、R5は炭素数1〜4のアルキル基であり、Rf3は式(B2a1)と同じである)
または式(B2a3):
6COORf4 (B2a3)
(式中、R6は炭素数1〜4のアルキル基であり、Rf4は式(B2a1)と同じである)
で示される含フッ素鎖状エステルも好ましい。
Also, the formula (B2a2):
Rf 3 COOR 5 (B2a2)
(Wherein R 5 is an alkyl group having 1 to 4 carbon atoms, and Rf 3 is the same as in formula (B2a1))
Or formula (B2a3):
R 6 COORf 4 (B2a3)
(Wherein R 6 is an alkyl group having 1 to 4 carbon atoms, and Rf 4 is the same as in formula (B2a1)).
A fluorine-containing chain ester represented by

これらの含フッ素鎖状エステル(B2a2)や(B2a3)は含フッ素鎖状エステル(B2a1)よりも自己消火性は低いが、加水分解性が高く、サイクル安定性が良好な点で好ましい。   These fluorine-containing chain esters (B2a2) and (B2a3) have lower self-extinguishing properties than the fluorine-containing chain esters (B2a1), but are preferable in terms of high hydrolyzability and good cycle stability.

含フッ素鎖状エステル(B2a2)および含フッ素鎖状エステル(B2a3)としては、たとえば、CF3COOCH3、CF3COOC25、CF3COOCH(CH32、C25COOCH3、C25COOC25、C25COOCH(CH32、CH3COOCH2CF3、CH3COOCH225、CH3COOCH2CF2CHF2、C25COOCH2CF3、C25COOCH225、C25COOCH2CF2CHF2などが好ましいものとしてあげられる。 Examples of the fluorine-containing chain ester (B2a2) and the fluorine-containing chain ester (B2a3) include CF 3 COOCH 3 , CF 3 COOC 2 H 5 , CF 3 COOCH (CH 3 ) 2 , C 2 F 5 COOCH 3 , C 2 F 5 COOC 2 H 5 , C 2 F 5 COOCH (CH 3 ) 2 , CH 3 COOCH 2 CF 3 , CH 3 COOCH 2 C 2 F 5 , CH 3 COOCH 2 CF 2 CHF 2 , C 2 H 5 COOCH Preferred examples include 2 CF 3 , C 2 H 5 COOCH 2 C 2 F 5 , and C 2 H 5 COOCH 2 CF 2 CHF 2 .

含フッ素エステル(B2)として、含フッ素環状エステル(B2b)も使用できる。   A fluorine-containing cyclic ester (B2b) can also be used as the fluorine-containing ester (B2).

含フッ素環状エステル(B2b)は、含フッ素エステル溶媒(A)と併用することで、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の高い溶解性という効果が得られる。   The fluorine-containing cyclic ester (B2b) can be used in combination with the fluorine-containing ester solvent (A) to exhibit particularly excellent properties such as a high dielectric constant and high withstand voltage, and also has the effect of high solubility of the electrolyte salt. It is done.

含フッ素環状エステル(B2b)としては、たとえば、式(B2b1):

Figure 2008257988
(式中、X1〜X6は同じかまたは異なり、いずれも水素原子、フッ素原子、塩素原子、−CH3または含フッ素メチル基;ただし、X1〜X6の少なくとも1つは含フッ素メチル基である)
で示される含フッ素ラクトン(B2b1)があげられる。 Examples of the fluorine-containing cyclic ester (B2b) include a formula (B2b1):
Figure 2008257988
(In the formula, X 1 to X 6 are the same or different and all are hydrogen atom, fluorine atom, chlorine atom, —CH 3 or fluorine-containing methyl group; provided that at least one of X 1 to X 6 is fluorine-containing methyl Base)
And a fluorine-containing lactone (B2b1) represented by

1〜X6における含フッ素メチル基は、−CH2F、−CHF2または−CF3であり、−CF3が、耐電圧性が良好な点から好ましい。 The fluorine-containing methyl group in X 1 to X 6 is —CH 2 F, —CHF 2 or —CF 3 , and —CF 3 is preferable from the viewpoint of good voltage resistance.

含フッ素メチル基は、X1〜X6の全てに置換していてもよいし、1個だけに置換していてもよい。なかでも、1〜3個、特に1〜2個置換していることが、電解質塩の溶解性が良好な点から好ましい。 In the fluorine-containing methyl group, all of X 1 to X 6 may be substituted, or only one may be substituted. Especially, it is preferable from the point with the favorable solubility of electrolyte salt to substitute 1-3, especially 1-2.

含フッ素メチル基の置換位置は特に限定されないが、X3および/またはX4が、特にX3またはX4が含フッ素メチル基、なかでも−CF3であることが、合成収率が良好なことから好ましい。含フッ素メチル基以外のX1〜X6は、水素原子、フッ素原子、塩素原子または−CH3であり、特に、水素原子が、電解質塩の溶解性が良好な点から好ましい。 The substitution position of fluorine-containing methyl group is not particularly limited, X 3 and / or X 4 are, in particular, X 3 or X 4 is a fluorine-containing methyl group, it is inter alia -CF 3, a good synthesis yield This is preferable. X 1 to X 6 other than the fluorine-containing methyl group are a hydrogen atom, a fluorine atom, a chlorine atom or —CH 3 , and a hydrogen atom is particularly preferable from the viewpoint of good solubility of the electrolyte salt.

含フッ素ラクトン(B2b1)としては、前記式(B2b1)で示されるもの以外にも、たとえば、式(B2b2):

Figure 2008257988
(式中、AおよびBはいずれか一方がCX1213(X12およびX13は同じかまたは異なり、いずれも水素原子、フッ素原子、塩素原子、−CF3、−CH3または水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基である)であり、他方は酸素原子;Rf7は含フッ素エーテル基、含フッ素アルコキシ基または炭素数2以上の含フッ素アルキル基;X7およびX8は同じかまたは異なり、いずれも水素原子、フッ素原子、塩素原子、−CF3または−CH3;X9〜X11は同じかまたは異なり、いずれも水素原子、フッ素原子、塩素原子または水素原子がハロゲン原子で置換されていてもよくヘテロ原子を鎖中に含んでいてもよいアルキル基;n=0または1)
で示される含フッ素ラクトン(B2b2)などもあげられる。 As the fluorine-containing lactone (B2b1), in addition to those represented by the formula (B2b1), for example, the formula (B2b2):
Figure 2008257988
(In the formula, either one of A and B is CX 12 X 13 (X 12 and X 13 are the same or different, and each is a hydrogen atom, a fluorine atom, a chlorine atom, —CF 3 , —CH 3 or a hydrogen atom) And the other is an oxygen atom; Rf 7 is a fluorine-containing ether group, a fluorine-containing alkoxy group, or a carbon number of 2 or more. X 7 and X 8 are the same or different, all are hydrogen atoms, fluorine atoms, chlorine atoms, —CF 3 or —CH 3 ; X 9 to X 11 are the same or different and both are hydrogen An alkyl group in which the atom, fluorine atom, chlorine atom or hydrogen atom may be substituted by a halogen atom and may contain a hetero atom in the chain; n = 0 or 1)
And a fluorine-containing lactone (B2b2) represented by

式(B2b2)で示される含フッ素ラクトン(B2b2)としては、式(B2b2a):

Figure 2008257988
(式中、A、B、Rf7、X7、X8およびX9は式(B2b2)と同じである)
で示される5員環構造を有する含フッ素ラクトン(B2b2a)が、合成が容易である点、化学的安定性が良好な点から好ましい。 As the fluorine-containing lactone (B2b2) represented by the formula (B2b2), the formula (B2b2a):
Figure 2008257988
(In the formula, A, B, Rf 7 , X 7 , X 8 and X 9 are the same as those in formula (B2b2)).
The fluorine-containing lactone (B2b2a) having a five-membered ring structure represented by is preferable from the viewpoint of easy synthesis and good chemical stability.

式(B2b2a)で示される含フッ素ラクトン(B2b2a)には、AとBの組合せにより、式(B2b2b):

Figure 2008257988
(式中、Rf7、X7、X8、X9、X12およびX13は式(B2b2)と同じ)
で示される含フッ素ラクトン(B2b2b)と、式(B2b2c):
Figure 2008257988
(式中、Rf7、X7、X8、X9、X12およびX13は式(B2b2)と同じ)
で示される含フッ素ラクトン(B2b2c)がある。 In the fluorine-containing lactone (B2b2a) represented by the formula (B2b2a), a combination of A and B, the formula (B2b2b):
Figure 2008257988
(Wherein Rf 7 , X 7 , X 8 , X 9 , X 12 and X 13 are the same as those in formula (B2b2))
And a fluorine-containing lactone (B2b2b) represented by the formula (B2b2c):
Figure 2008257988
(Wherein Rf 7 , X 7 , X 8 , X 9 , X 12 and X 13 are the same as those in formula (B2b2))
Is a fluorine-containing lactone (B2b2c).

これらのなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明における電解液としての特性が向上する点から、

Figure 2008257988
が好ましい。 Among these, the point that the excellent characteristics such as high dielectric constant and high withstand voltage can be exhibited especially, and the characteristics as the electrolytic solution in the present invention are improved in that the solubility of the electrolyte salt and the reduction of internal resistance are good. From
Figure 2008257988
Is preferred.

その他、含フッ素環状エステル(B2b)としては、

Figure 2008257988
なども使用できる。 In addition, as the fluorine-containing cyclic ester (B2b),
Figure 2008257988
Etc. can also be used.

含フッ素溶媒(B)としては、含フッ素カーボネート(B3)も使用できる。含フッ素カーボネート(B3)としては、含フッ素鎖状カーボネート(B3a)および含フッ素環状カーボネート(B3b)があげられる。   As the fluorine-containing solvent (B), fluorine-containing carbonate (B3) can also be used. Examples of the fluorinated carbonate (B3) include a fluorinated chain carbonate (B3a) and a fluorinated cyclic carbonate (B3b).

含フッ素鎖状カーボネート(B3a)は、耐酸化性や難燃性が高く、レート特性を改善できるという利点を有する。   The fluorine-containing chain carbonate (B3a) has an advantage that it has high oxidation resistance and flame retardancy and can improve rate characteristics.

含フッ素鎖状カーボネート(B3a)としては、式(B3a1):
Rf5OCOORf6 (B3a1)
(式中、Rf5およびRf6は同じかまたは異なり、いずれも炭素数1〜8、好ましくは炭素数1〜4のアルキル基または含フッ素アルキル基であり、Rf5とRf6の少なくとも一方は含フッ素アルキル基である)
で示される含フッ素鎖状カーボネート(B3a1)が、難燃性が高く、かつレート特性が良好な点から好ましい。
As the fluorine-containing chain carbonate (B3a), the formula (B3a1):
Rf 5 OCOORf 6 (B3a1)
(In the formula, Rf 5 and Rf 6 are the same or different and both are alkyl groups having 1 to 8 carbon atoms, preferably 1 to 4 carbon atoms or fluorine-containing alkyl groups, and at least one of Rf 5 and Rf 6 is (It is a fluorine-containing alkyl group)
The fluorine-containing chain carbonate (B3a1) represented by is preferable from the viewpoint of high flame retardancy and good rate characteristics.

Rf5およびRf6としては、たとえば、CF3−、C25−、(CF32CH−、CF3CH2−、C25CH2−、CHF2CF2CH2−、CF3CHFCF2CH2−などがあげられ、なかでも、CF3CH2−、C25CH2−が、粘性が適切で、他溶媒との相溶性およびレート特性が良好な点から特に好ましい。 Examples of Rf 5 and Rf 6 include CF 3- , C 2 F 5- , (CF 3 ) 2 CH-, CF 3 CH 2- , C 2 F 5 CH 2- , CHF 2 CF 2 CH 2- , CF 3 CHFCF 2 CH 2 — and the like. Among them, CF 3 CH 2 — and C 2 F 5 CH 2 — are particularly suitable because they have appropriate viscosity, good compatibility with other solvents, and good rate characteristics. preferable.

含フッ素鎖状カーボネート(B3a)の好ましい具体例としては、たとえば、CF3CH2OCOOCH2CF3、C25CH2OCOOCH225、C25CH2OCOOCH3、CF3CH2OCOOCH3などの、Rf5、Rf6ともに含フッ素アルキル基であるものがあげられ、なかでも、CF3CH2OCOOCH2CF3、C25CH2OCOOCH225が、粘性が適切で、難燃性、他溶媒との相溶性およびレート特性が良好な点から特に好ましい。また、たとえば、特開平6−21992号公報、特開2000−327634号公報、特開2001−256983号公報などに記載された化合物もあげられる。 Preferable specific examples of the fluorine-containing chain carbonate (B3a) include, for example, CF 3 CH 2 OCOOCH 2 CF 3 , C 2 F 5 CH 2 OCOOCH 2 C 2 F 5 , C 2 F 5 CH 2 OCOOCH 3 and CF 3. Examples include CH 2 OCOOCH 3 and the like in which both Rf 5 and Rf 6 are fluorine-containing alkyl groups. Among them, CF 3 CH 2 OCOOCH 2 CF 3 , C 2 F 5 CH 2 OCOOCH 2 C 2 F 5 are It is particularly preferable from the viewpoints of suitable viscosity, good flame retardancy, compatibility with other solvents, and rate characteristics. Examples thereof include compounds described in JP-A-6-21992, JP-A-2000-327634, JP-A-2001-256983, and the like.

また、式(B3a2):
Rf5OCOOR7 (B3a2)
(式中、R7は炭素数1〜6のアルキル基であり、Rf5は式(B3a1)と同じである)
または式(B3a3):
8OCOORf6 (B3a3)
(式中、R8は炭素数1〜6のアルキル基であり、Rf6は式(B3a1)と同じである)
で示される含フッ素鎖状カーボネートも好ましい。
Moreover, Formula (B3a2):
Rf 5 OCOOR 7 (B3a2)
(Wherein R 7 is an alkyl group having 1 to 6 carbon atoms, and Rf 5 is the same as in formula (B3a1)).
Or formula (B3a3):
R 8 OCOORf 6 (B3a3)
(Wherein R 8 is an alkyl group having 1 to 6 carbon atoms, and Rf 6 is the same as in formula (B3a1))
The fluorine-containing chain carbonate shown by these is also preferable.

これらの含フッ素鎖状カーボネート(B3a2)や含フッ素鎖状カーボネート(B3a3)は含フッ素鎖状カーボネート(B3a1)よりも耐酸化性や自己消火性は低いが、塩の溶解性が良好な点で好ましい。   These fluorine-containing chain carbonates (B3a2) and fluorine-containing chain carbonates (B3a3) have lower oxidation resistance and self-extinguishing properties than fluorine-containing chain carbonates (B3a1), but they have good salt solubility. preferable.

含フッ素鎖状カーボネート(B3a2)および含フッ素鎖状カーボネート(B3a3)において、R7、R8としては、炭素数1〜6のアルキル基が好ましく、具体的には、−CH3、−C25、−C37、−CH(CH32などが例示できる。 In the fluorine-containing chain carbonate (B3a2) and the fluorine-containing chain carbonate (B3a3), R 7 and R 8 are preferably an alkyl group having 1 to 6 carbon atoms, specifically, —CH 3 , —C 2. H 5, -C 3 H 7, -CH (CH 3) 2 , and others.

含フッ素鎖状カーボネート(B3a2)および含フッ素鎖状カーボネート(B3a3)としては、たとえば、CF3CH2OCOOCH3、CF3CH2OCOOC25、C25CH2OCOOCH3、C25CH2OCOOC25、CHF2CF2CH2OCOOCH3、CHF2CF2CH2OCOOC25、CF3CHFCF2CH2OCOOCH3、CF3CHFCF2CH2OCOOC25などが好ましいものとしてあげられる。 Examples of the fluorine-containing chain carbonate (B3a2) and the fluorine-containing chain carbonate (B3a3) include CF 3 CH 2 OCOOCH 3 , CF 3 CH 2 OCOOC 2 H 5 , C 2 F 5 CH 2 OCOOCH 3 , and C 2 F. 5 CH 2 OCOOC 2 H 5 , CHF 2 CF 2 CH 2 OCOOCH 3 , CHF 2 CF 2 CH 2 OCOOC 2 H 5 , CF 3 CHFCF 2 CH 2 OCOOCH 3 , CF 3 CHFCF 2 CH 2 OCOOC 2 H 5 etc. are preferred It is given as a thing.

含フッ素環状カーボネート(B3b)は、式(B3b):

Figure 2008257988
(式中、X14〜X17は同じかまたは異なり、いずれも水素原子、フッ素原子、−CF3、−CHF2、−CH2F、−CF2CF3、−CH2CF3、−CH2CF2CF3、−CH2CF(CF32または−CH2OCH225;ただし、X14〜X17の少なくとも1つはフッ素原子、−CF3、−CF2CF3、−CH2CF3、−CH2CF2CF3または−CH2OCH2CF2CF3である)
で示されるものが好ましい。 The fluorine-containing cyclic carbonate (B3b) has the formula (B3b):
Figure 2008257988
(In the formula, X 14 to X 17 are the same or different and all are a hydrogen atom, a fluorine atom, —CF 3 , —CHF 2 , —CH 2 F, —CF 2 CF 3 , —CH 2 CF 3 , —CH. 2 CF 2 CF 3 , —CH 2 CF (CF 3 ) 2 or —CH 2 OCH 2 C 2 F 5 ; provided that at least one of X 14 to X 17 is a fluorine atom, —CF 3 , —CF 2 CF 3 , —CH 2 CF 3 , —CH 2 CF 2 CF 3, or —CH 2 OCH 2 CF 2 CF 3 )
Is preferred.

ここで、X14〜X17の少なくとも1つがフッ素原子である含フッ素環状カーボネート(B3b)は、負極表面に強固な薄膜を形成できるので、被膜がはがれにくく、本発明の非水系電解液と負極の反応を抑制でき、さらに、耐酸化性やサイクル特性を向上させることができる。また、この含フッ素環状カーボネート(B3b)は、他の含フッ素溶媒(B)とまざりやすいという利点も有する。 Here, since the fluorine-containing cyclic carbonate (B3b) in which at least one of X 14 to X 17 is a fluorine atom can form a strong thin film on the negative electrode surface, the coating is difficult to peel off, and the non-aqueous electrolyte solution and the negative electrode of the present invention Reaction can be suppressed, and oxidation resistance and cycle characteristics can be improved. Moreover, this fluorine-containing cyclic carbonate (B3b) also has an advantage that it can be easily mixed with other fluorine-containing solvents (B).

また、X14〜X17の少なくとも1つが−CF3、−CHF2、−CH2F、−CF2CF3、−CH2CF3、−CH2CF2CF3または−CH2OCH225である含フッ素環状カーボネート(B3b)は、耐酸化性や誘電率が高く、粘性が低くできる。さらに、この含フッ素環状カーボネート(B3b)は、他の含フッ素溶媒(B)とまざりやすいという利点も有する。 Further, at least one of X 14 to X 17 is —CF 3 , —CHF 2 , —CH 2 F, —CF 2 CF 3 , —CH 2 CF 3 , —CH 2 CF 2 CF 3, or —CH 2 OCH 2 C. The fluorine-containing cyclic carbonate (B3b) that is 2 F 5 has high oxidation resistance and dielectric constant, and can have low viscosity. Furthermore, this fluorine-containing cyclic carbonate (B3b) also has an advantage that it can be easily mixed with other fluorine-containing solvents (B).

14〜X17は、水素原子、フッ素原子、−CF3、−CHF2、−CH2F、−C25、−CH2CF3、−CH2CF2CF3、−CH2CF(CF32または−CH2OCH225であり、誘電率、粘性が良好で、他の溶媒との相溶性に優れる点からフッ素原子、−CF3、−CH2CF3、−CH2CF2CF3が好ましい。 X 14 to X 17 is a hydrogen atom, a fluorine atom, -CF 3, -CHF 2, -CH 2 F, -C 2 F 5, -CH 2 CF 3, -CH 2 CF 2 CF 3, -CH 2 CF (CF 3 ) 2 or —CH 2 OCH 2 C 2 F 5 , fluorine atom, —CF 3 , —CH 2 CF 3 , from the viewpoint of excellent dielectric constant, viscosity, and compatibility with other solvents. -CH 2 CF 2 CF 3 are preferred.

式(B3b)において、フッ素原子、−CF3、−CF2CF3、−CH2CF3、−CH2CF2CF3または−CH2OCH2CF2CF3は、X14〜X17のすべてに置換していてもよいし、1箇所のみに置換していてもよい。なかでも、誘電率、耐酸化性が良好な点から、置換箇所は1〜2個が好ましい。 In the formula (B3b), a fluorine atom, —CF 3 , —CF 2 CF 3, —CH 2 CF 3 , —CH 2 CF 2 CF 3, or —CH 2 OCH 2 CF 2 CF 3 is represented by X 14 to X 17 . All may be substituted, or only one place may be substituted. Among these, from the point that the dielectric constant and oxidation resistance are good, the number of substitution sites is preferably 1 to 2.

含フッ素環状カーボネート(B3b)のなかでも、高い誘電率、高い耐電圧といった優れた特性が特に発揮できる点、そのほか電解質塩の溶解性、内部抵抗の低減が良好な点で本発明におけるリチウム二次電池としての特性が向上する点から、次のものが好ましい。   Among the fluorine-containing cyclic carbonates (B3b), the lithium secondary in the present invention is particularly advantageous in that it has excellent characteristics such as high dielectric constant and high withstand voltage, and also has good solubility of electrolyte salt and reduction of internal resistance. From the viewpoint of improving the characteristics as a battery, the following are preferable.

耐電圧が高く、電解質塩の溶解性も良好な含フッ素環状カーボネート(B3b)としては、たとえば、

Figure 2008257988
などがあげられる。 As the fluorine-containing cyclic carbonate (B3b) having a high withstand voltage and good solubility of the electrolyte salt, for example,
Figure 2008257988
Etc.

他にも、含フッ素環状カーボネート(B3b)としては、

Figure 2008257988
なども使用できる。 In addition, as the fluorine-containing cyclic carbonate (B3b),
Figure 2008257988
Etc. can also be used.

これらの含フッ素溶媒(B)のなかでも、含フッ素エーテル(B1)、含フッ素エステル(B2)および含フッ素カーボネート(B3)よりなる群から選ばれる少なくとも1種が、特には含フッ素鎖状エーテル(B1a)、含フッ素環状エステル(B2b)、含フッ素鎖状カーボネート(B3a)および含フッ素環状カーボネート(B3b)よりなる群から選ばれる少なくとも1種が、電池特性が良好な点から好ましい。   Among these fluorinated solvents (B), at least one selected from the group consisting of fluorinated ethers (B1), fluorinated esters (B2), and fluorinated carbonates (B3), in particular, fluorinated chain ethers. At least one selected from the group consisting of (B1a), a fluorine-containing cyclic ester (B2b), a fluorine-containing chain carbonate (B3a) and a fluorine-containing cyclic carbonate (B3b) is preferable from the viewpoint of good battery characteristics.

本発明の非水系電解液において、電解質塩溶解用溶媒(I)中の含フッ素溶媒(B)の含有率は、電解質塩溶解用溶媒(I)全体に対して、5〜80体積%が耐酸化性および安全性が良好な点から好ましい。さらには10〜70体積%が、特に20〜60体積%が好ましい。なお、含フッ素溶媒(B)として、複数の溶媒を使用する場合、含フッ素溶媒(B)の含有率は、その合計量である。   In the non-aqueous electrolyte solution of the present invention, the content of the fluorinated solvent (B) in the electrolyte salt dissolving solvent (I) is 5 to 80% by volume based on the total amount of the electrolyte salt dissolving solvent (I). From the viewpoint of good chemical properties and safety. Furthermore, 10 to 70 volume% is preferable, and 20 to 60 volume% is particularly preferable. In addition, when using a some solvent as a fluorine-containing solvent (B), the content rate of a fluorine-containing solvent (B) is the total amount.

本発明の非水系電解液において、電解質塩溶解用溶媒(I)には、前記含フッ素エステル溶媒(A)および含フッ素溶媒(B)以外にも、非フッ素系溶媒(C)として、非フッ素系鎖状エステル(C1a)や非フッ素系環状エステル(C1b)などの非フッ素系エステル(C1)、非フッ素系鎖状カーボネート(C2a)や非フッ素系環状カーボネート(C2b)などの非フッ素系カーボネート(C2)などを使用することもできる。この際、これらの非フッ素系溶媒(C)は、含フッ素エステル溶媒(A)と含フッ素溶媒(B)による効果を損なわない範囲で含んでよいが、電池特性の向上の点からその含有率は、電解質塩溶解用溶媒(I)中に5〜75体積%が、特には10〜65体積%が、さらには10〜40体積%が好ましい。   In the non-aqueous electrolyte solution of the present invention, the electrolyte salt-dissolving solvent (I) includes, in addition to the fluorine-containing ester solvent (A) and the fluorine-containing solvent (B), a non-fluorine solvent (C). Non-fluorinated carbonates such as non-fluorinated esters (C1), such as non-fluorinated cyclic carbonates (C2b), and non-fluorinated esters such as non-fluorinated cyclic carbonates (C2b). (C2) or the like can also be used. At this time, these non-fluorinated solvents (C) may be contained within a range that does not impair the effects of the fluorinated ester solvent (A) and the fluorinated solvent (B). Is preferably 5 to 75% by volume, particularly 10 to 65% by volume, more preferably 10 to 40% by volume in the solvent (I) for dissolving the electrolyte salt.

非フッ素系鎖状エステル(C1a)を使用すると、低温特性を向上させることができるという利点がある。   Use of the non-fluorinated chain ester (C1a) has an advantage that the low-temperature characteristics can be improved.

非フッ素系鎖状エステル(C1a)としては、式(C1a):
9COOR10
(式中、R9およびR10は同じかまたは異なり、R9は炭素数1〜2のアルキル基、R10は炭素数1〜4のアルキル基である)
で示される化合物が、低粘性で誘電率が高く、表面張力が低い点から好ましい。
As the non-fluorine chain ester (C1a), the formula (C1a):
R 9 COOR 10
(Wherein R 9 and R 10 are the same or different, R 9 is an alkyl group having 1 to 2 carbon atoms, and R 10 is an alkyl group having 1 to 4 carbon atoms)
Is preferable from the viewpoint of low viscosity, high dielectric constant, and low surface tension.

非フッ素系鎖状エステル(C1a)の好ましい具体例としては、たとえば、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチルなどがあげられ、なかでも、酢酸メチル、酢酸エチルが、粘性が低く、表面張力が低く、サイクル特性を向上させる点から好ましい。ただし、耐酸化性が低いという難点がある。   Preferable specific examples of the non-fluorine chain ester (C1a) include, for example, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl propionate, ethyl propionate, and the like. Among them, methyl acetate, ethyl acetate However, it is preferable from the viewpoint of low viscosity, low surface tension, and improved cycle characteristics. However, there is a difficulty that oxidation resistance is low.

非フッ素系環状エステル(C1b)を使用すると、電解質塩(II)の溶解性の向上、耐酸化性の向上、イオン解離性の向上といった効果が得られる。   When the non-fluorinated cyclic ester (C1b) is used, effects such as improved solubility of the electrolyte salt (II), improved oxidation resistance, and improved ion dissociation can be obtained.

非フッ素系環状エステル(C1b)としては、たとえば、γ−ブチロラクトン、γ−バレロラクトン、β−ブチロラクトン、β−プロピオラクトン、δ−バレロラクトン、ε−カプロラクトンなどがあげられ、なかでも、γ−ブチロラクトン、γ−バレロラクトンが、イオン解離性、誘電率が良好な点から好ましい。   Examples of the non-fluorine-based cyclic ester (C1b) include γ-butyrolactone, γ-valerolactone, β-butyrolactone, β-propiolactone, δ-valerolactone, ε-caprolactone, and the like. Butyrolactone and γ-valerolactone are preferred because of their good ion dissociation and dielectric constant.

非フッ素系鎖状カーボネート(C2a)を使用すると、低温特性を向上させることができるという利点がある。   The use of non-fluorinated chain carbonate (C2a) has the advantage that the low-temperature characteristics can be improved.

非フッ素系鎖状カーボネート(C2a)としては、式(C2a):
11OCOOR12
(式中、R11およびR12は同じかまたは異なり、いずれも炭素数1〜4のアルキル基である)
で示される化合物が、低粘性、他溶媒との相溶性が良好な点から好ましい。
As the non-fluorine chain carbonate (C2a), the formula (C2a):
R 11 OCOOR 12
(Wherein, R 11 and R 12 are the same or different and both are alkyl groups having 1 to 4 carbon atoms)
Is preferable from the viewpoint of low viscosity and good compatibility with other solvents.

非フッ素系鎖状カーボネート(C2a)の具体例としては、たとえば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネートなどがあげられ、なかでも、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートが、他溶媒との相溶性、レート特性が良好な点から好ましい。   Specific examples of the non-fluorine chain carbonate (C2a) include, for example, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate and the like. Among them, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and the like. The compatibility with the solvent and the rate characteristic are preferable from the viewpoint of good.

非フッ素系環状カーボネート(C2b)を使用すると、電解質塩(II)の溶解性の向上、イオン解離性の向上といった効果が得られる。   When non-fluorine-based cyclic carbonate (C2b) is used, effects such as improved solubility of the electrolyte salt (II) and improved ion dissociation can be obtained.

非フッ素系環状カーボネート(C2b)としては、エチレンカーボネート、プロピレンカーボネートよりなる群から選ばれる少なくとも1種が、イオン解離性、低粘性、誘電率が良好な点から好ましい。   As the non-fluorinated cyclic carbonate (C2b), at least one selected from the group consisting of ethylene carbonate and propylene carbonate is preferable from the viewpoint of good ion dissociation, low viscosity, and dielectric constant.

他にも、非フッ素系溶媒としては、シクロヘキシルベンゼン、ビフェニルなどは安全性向上、特に過充電安全性向上を必要とする場合は使用することもでき添加量は電解質塩溶解用溶媒(I)に対して0.5〜5質量%で添加すれば良い。また、ビニレンカーボネートはサイクル特性向上を必要とする場合は使用することもできその添加量は電解質塩溶解用溶媒(I)に対して0.5〜2質量%であることが好ましい。   In addition, as non-fluorinated solvents, cyclohexylbenzene, biphenyl, etc. can be used when safety improvement, especially overcharge safety improvement is required, and the amount added can be added to the electrolyte salt dissolving solvent (I). It may be added at 0.5 to 5% by mass. In addition, vinylene carbonate can be used when cycle characteristic improvement is required, and the addition amount thereof is preferably 0.5 to 2% by mass with respect to the electrolyte salt dissolving solvent (I).

特に耐酸化性の向上が要求される場合は、上記(C1a)〜(C2b)などであげた非フッ素系溶媒(C)を使用せずに非水電解液を構成することが望ましい。すなわち、含フッ素系の溶媒(A)と(B)の合計含有量が高くなるほど耐酸化性を向上させることができる。特に含フッ素エステル溶媒(A)と含フッ素溶媒(B)との合計量が電解質塩溶解用溶媒(I)の60体積%以上、さらには80体積%以上とするときに、優れた耐酸化性の向上効果が奏される。   In particular, when improvement in oxidation resistance is required, it is desirable to constitute the non-aqueous electrolyte without using the non-fluorinated solvent (C) mentioned in (C1a) to (C2b) above. That is, the oxidation resistance can be improved as the total content of the fluorine-containing solvents (A) and (B) increases. Excellent oxidation resistance especially when the total amount of the fluorinated ester solvent (A) and the fluorinated solvent (B) is 60% by volume or more, more preferably 80% by volume or more of the solvent (I) for dissolving the electrolyte salt. The improvement effect is exhibited.

以下、本発明の非水系電解液における電解質塩溶解用溶媒(I)の好ましい具体例について説明する。   Hereinafter, preferred specific examples of the solvent (I) for dissolving the electrolyte salt in the nonaqueous electrolytic solution of the present invention will be described.

(1)サイクル特性および安全性を向上させ、コストを抑制できる電解質塩溶解用溶媒(I)
含フッ素エステル溶媒(A):5〜80体積%、
14〜X17の少なくとも一つがフッ素原子である含フッ素環状カーボネート(B3b):10〜50体積%、
ジエチルカーボネート、ジメチルカーボネートまたはエチルメチルカーボネート:10〜50体積%、
エチレンカーボネートまたはプロピレンカーボネート:10〜50体積%。
(1) Solvent for dissolving electrolyte salt (I) capable of improving cycle characteristics and safety and suppressing cost
Fluorinated ester solvent (A): 5 to 80% by volume,
Fluorine-containing cyclic carbonate (B3b) in which at least one of X 14 to X 17 is a fluorine atom: 10 to 50% by volume,
Diethyl carbonate, dimethyl carbonate or ethyl methyl carbonate: 10 to 50% by volume,
Ethylene carbonate or propylene carbonate: 10 to 50% by volume.

さらにサイクル特性を向上させたい場合はビニレンカーボネートを0.5〜2質量%で添加すれば良い。また、安全性向上、特に過充電特性を向上させたい場合はシクロヘキシルベンゼン、モノフルオロベンゼン、ジフルオロアニソール、ビフェニルの少なくとも1種を0.5〜5質量%で添加すればよい。   Further, when it is desired to improve the cycle characteristics, vinylene carbonate may be added at 0.5 to 2% by mass. In order to improve safety, particularly overcharge characteristics, at least one of cyclohexylbenzene, monofluorobenzene, difluoroanisole, and biphenyl may be added at 0.5 to 5 mass%.

(2)自己消火性を有する成分を含有し、負極表面の皮膜をはがれにくくするため、安全性を向上できる電解質塩溶解用溶媒(I)
含フッ素エステル溶媒(A):5〜80体積%、
含フッ素鎖状エーテル(B1a)、含フッ素鎖状エステル(B2a)または含フッ素鎖状カーボネート(B3a):10〜50体積%、
ジエチルカーボネート、ジメチルカーボネートまたはエチルメチルカーボネート:10〜50体積%、
エチレンカーボネートまたはプロピレンカーボネート:10〜50体積%。
(2) Solvent for dissolving electrolyte salt (I), which contains a component having self-extinguishing properties and makes it difficult to peel off the film on the negative electrode surface, thereby improving safety.
Fluorinated ester solvent (A): 5 to 80% by volume,
Fluorine-containing chain ether (B1a), fluorine-containing chain ester (B2a) or fluorine-containing chain carbonate (B3a): 10 to 50% by volume,
Diethyl carbonate, dimethyl carbonate or ethyl methyl carbonate: 10 to 50% by volume,
Ethylene carbonate or propylene carbonate: 10 to 50% by volume.

さらにサイクル特性を向上させたい場合はビニレンカーボネートを0.5〜2質量%で添加すれば良い。また、安全性向上、特に過充電特性を向上させたい場合はシクロヘキシルベンゼン、モノフルオロベンゼン、ジフルオロアニソール、ビフェニルの少なくとも1種を0.5〜5質量%で添加すればよい。   Further, when it is desired to improve the cycle characteristics, vinylene carbonate may be added at 0.5 to 2% by mass. In order to improve safety, particularly overcharge characteristics, at least one of cyclohexylbenzene, monofluorobenzene, difluoroanisole, and biphenyl may be added at 0.5 to 5 mass%.

(3)自己消火性を有する成分を含有し、負極表面の皮膜をはがれにくくするため、安全性を向上でき、さらに、耐酸化性も向上できる電解質塩溶解用溶媒(I)
含フッ素エステル溶媒(A):5〜80体積%、
含フッ素鎖状エーテル(B1a)、含フッ素鎖状エステル(B2a)または含フッ素鎖状カーボネート(B3a):10〜50体積%、
14〜X17の少なくとも1がフッ素原子である含フッ素環状カーボネート(B3b):0.5〜5体積%、
14〜X17の少なくとも1つが−CF3、−CHF2、−CH2F、−C25、−CH2CF3または−CH2OCH225である含フッ素環状カーボネート(B3b):5〜30体積%
エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメチルカーボネートなど:0〜40体積%。
(3) Solvent for dissolving electrolyte salt (I) which contains a component having self-extinguishing properties and makes it difficult to peel off the film on the negative electrode surface, thereby improving safety and further improving oxidation resistance
Fluorinated ester solvent (A): 5 to 80% by volume,
Fluorine-containing chain ether (B1a), fluorine-containing chain ester (B2a) or fluorine-containing chain carbonate (B3a): 10 to 50% by volume,
Fluorine-containing cyclic carbonate (B3b) in which at least one of X 14 to X 17 is a fluorine atom: 0.5 to 5% by volume,
Fluorinated cyclic carbonate in which at least one of X 14 to X 17 is —CF 3 , —CHF 2 , —CH 2 F, —C 2 F 5, —CH 2 CF 3, or —CH 2 OCH 2 C 2 F 5 B3b): 5 to 30% by volume
Ethylene carbonate, propylene carbonate, diethyl carbonate, dimethyl carbonate, etc .: 0 to 40% by volume.

さらにサイクル特性を向上させたい場合はビニレンカーボネートを0.5〜2質量%で添加すれば良い。また、安全性向上、特に過充電特性を向上させたい場合はシクロヘキシルベンゼン、モノフルオロベンゼン、ジフルオロアニソール、ビフェニルの少なくとも1種を0.5〜5質量%で添加すればよい。   Further, when it is desired to improve the cycle characteristics, vinylene carbonate may be added at 0.5 to 2% by mass. In order to improve safety, particularly overcharge characteristics, at least one of cyclohexylbenzene, monofluorobenzene, difluoroanisole, and biphenyl may be added at 0.5 to 5 mass%.

つぎに電解質塩(II)について説明する。   Next, the electrolyte salt (II) will be described.

本発明の非水系電解液に使用する電解質塩(II)としては、たとえばLiBF4、LiAsF6、LiClO4、LiPF6、LiN(SO2CF32、LiN(SO2252などがあげられ、サイクル特性が良好な点から、LiPF6、LiN(SO2CF32およびLiN(SO2252よりなる群から選ばれる少なくとも1種の電解質塩が好ましい。また、たとえばLiPF6とLiN(SO2CF32を併用してもよい。 Examples of the electrolyte salt (II) used in the nonaqueous electrolytic solution of the present invention include LiBF 4 , LiAsF 6 , LiClO 4 , LiPF 6 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2. In view of good cycle characteristics, at least one electrolyte salt selected from the group consisting of LiPF 6 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2 is preferable. Further, for example, LiPF 6 and LiN (SO 2 CF 3 ) 2 may be used in combination.

本発明の非水系電解液において、電解質塩(II)の濃度は、要求される電池特性を達成するためには、0.8モル/リットル以上、さらには1.0モル/リットル以上が好ましい。上限は電解質塩溶解用溶媒(I)にもよるが、通常1.5モル/リットルである。   In the nonaqueous electrolytic solution of the present invention, the concentration of the electrolyte salt (II) is preferably 0.8 mol / liter or more, more preferably 1.0 mol / liter or more, in order to achieve the required battery characteristics. Although the upper limit depends on the electrolyte salt dissolving solvent (I), it is usually 1.5 mol / liter.

本発明の非水系電解液は、以上のような構成を備えることから、不燃性(難燃性)でかつ電池特性(充放電サイクル特性、放電容量)に優れる。さらに本発明の非水系電解液によれば、低温でも相分離し難いこと、耐熱性に優れること、電解質塩の溶解性が高いこと、電池容量が向上し、レート特性に優れることを期待することもできる。   Since the non-aqueous electrolyte solution of the present invention has the above-described configuration, it is nonflammable (flame retardant) and excellent in battery characteristics (charge / discharge cycle characteristics, discharge capacity). Furthermore, according to the non-aqueous electrolyte of the present invention, it is expected that phase separation is difficult even at low temperatures, heat resistance is excellent, electrolyte salt solubility is high, battery capacity is improved, and rate characteristics are excellent. You can also.

本発明の非水系電解液は、不燃性に優れる点から、リチウム二次電池用として好適であり、具体的には、正極、負極、セパレータと本発明の非水系電解液を備えるリチウム二次電池において、正極に使用する正極活物質が、コバルト系複合酸化物、ニッケル系複合酸化物、マンガン系複合酸化物、鉄系複合酸化物およびバナジウム系複合酸化物よりなる群から選ばれる少なくとも1種であることがエネルギー密度の高く、高出力な二次電池となることから好ましい。   The non-aqueous electrolyte solution of the present invention is suitable for a lithium secondary battery because it is excellent in nonflammability. Specifically, the lithium secondary battery includes a positive electrode, a negative electrode, a separator, and the non-aqueous electrolyte solution of the present invention. The positive electrode active material used for the positive electrode is at least one selected from the group consisting of cobalt-based composite oxides, nickel-based composite oxides, manganese-based composite oxides, iron-based composite oxides, and vanadium-based composite oxides. It is preferable because the secondary battery has a high energy density and a high output.

コバルト系複合酸化物としては、LiCoO2が例示され、ニッケル系複合酸化物としては、LiNiO2が例示され、マンガン系複合酸化物としては、LiMnO2が例示される。また、LiCoxNi1-x2(0<x<1)やLiCoxMn1-x2(0<x<1)、LiNixMn1-x2(0<x<1)、LiNixMn2-x4(0<x<2)、LiNi1-x-yCoxMny2(0<x<1、0<y<1、0<x+y<1)で表されるCoNi、CoMn、NiMn、NiCoMnの複合酸化物でも良い。これらのリチウム含有複合酸化物は、Co、Ni、Mnなどの金属元素の一部が、Mg、Al、Zr、Ti、Crなどの1種以上の金属元素で置換されたものであってもよい。 An example of the cobalt-based composite oxide is LiCoO 2 , an example of the nickel-based composite oxide is LiNiO 2 , and an example of the manganese-based composite oxide is LiMnO 2 . LiCo x Ni 1-x O 2 (0 <x <1), LiCo x Mn 1-x O 2 (0 <x <1), LiNi x Mn 1-x O 2 (0 <x <1), LiNi x Mn 2-x O 4 (0 <x <2), CoNi represented by LiNi 1-xy Co x Mn y O 2 (0 <x <1,0 <y <1,0 <x + y <1) , CoMn, NiMn, and NiCoMn composite oxides may be used. In these lithium-containing composite oxides, a part of metal elements such as Co, Ni, and Mn may be substituted with one or more metal elements such as Mg, Al, Zr, Ti, and Cr. .

また、鉄系複合酸化物としては、たとえばLiFeO2、LiFePO4が例示され、バナジウム系複合酸化物としては、たとえばV25が例示される。 In addition, examples of the iron-based composite oxide include LiFeO 2 and LiFePO 4 , and examples of the vanadium-based composite oxide include V 2 O 5 .

正極活物質として、上記の複合酸化物のなかでも、容量を高くすることができる点から、ニッケル系複合酸化物またはコバルト系複合酸化物が好ましい。特に小型リチウム二次電池ではコバルト系複合酸化物を用いることはエネルギー密度が高い点と安全性の面から望ましい。   As the positive electrode active material, among the above complex oxides, a nickel complex oxide or a cobalt complex oxide is preferable because the capacity can be increased. In particular, in a small lithium secondary battery, it is desirable to use a cobalt-based composite oxide from the viewpoint of high energy density and safety.

前記負極に使用する負極活物質は炭素材料があげられ、リチウムイオンを挿入可能な金属酸化物や金属窒化物などもあげられる。炭素材料としては天然黒鉛、人造黒鉛、熱分解炭素類、コークス類、メソカーボンマイクロビーズ、炭素ファイバー、活性炭、ピッチ被覆黒鉛などがあげられ、リチウムイオンを挿入可能な金属酸化物としては、スズ(Sn)やケイ素(Si)を含む金属化合物、例えば酸化スズや酸化ケイ素等があげられ、金属窒化物としては、Li2.6Co0.4Nなどがあげられる。 Examples of the negative electrode active material used for the negative electrode include carbon materials, and also include metal oxides and metal nitrides capable of inserting lithium ions. Examples of carbon materials include natural graphite, artificial graphite, pyrolytic carbons, cokes, mesocarbon microbeads, carbon fibers, activated carbon, and pitch-coated graphite. Metal oxides into which lithium ions can be inserted include tin ( Examples of the metal nitride include Sn 2.6 and silicon (Si), such as tin oxide and silicon oxide. Examples of the metal nitride include Li 2.6 Co 0.4 N.

前記セパレータは特に制限はなく、微孔性ポリエチレンフィルム、微孔性ポリプロピレンフィルム、微孔性エチレン−プロピレンコポリマーフィルム、微孔性ポリプロピレン/ポリエチレン2層フィルム、微孔性ポリプロピレン/ポリエチレン/ポリプロピレン3層フィルムなどがあげられる。   The separator is not particularly limited, and is a microporous polyethylene film, a microporous polypropylene film, a microporous ethylene-propylene copolymer film, a microporous polypropylene / polyethylene bilayer film, a microporous polypropylene / polyethylene / polypropylene trilayer film. Etc.

また、本発明の電解液は、難燃性あるいは不燃性であることから、ハイブリッド自動車用や分散電源用の大型リチウム二次電池用の電解液としても有用である。また、アルミニウム電解コンデンサ用電解液、電気二重層キャパシタ用電解液などの非水系電解液としても有用である。   Moreover, since the electrolyte solution of the present invention is flame-retardant or non-flammable, it is also useful as an electrolyte solution for a hybrid lithium vehicle or a large-sized lithium secondary battery for a distributed power source. It is also useful as a non-aqueous electrolyte such as an electrolytic solution for an aluminum electrolytic capacitor and an electrolytic solution for an electric double layer capacitor.

つぎに本発明を実施例に基づいて具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。   Next, the present invention will be specifically described based on examples, but the present invention is not limited to such examples.

なお、本発明で採用した測定法は以下のとおりである。   In addition, the measuring method employ | adopted by this invention is as follows.

(1)NMR:BRUKER社製のAC−300を使用。
19F−NMR:
測定条件:282MHz(トリクロロフルオロメタン=0ppm)
1H−NMR:
測定条件:300MHz(テトラメチルシラン=0ppm)
(1) NMR: AC-300 manufactured by BRUKER is used.
19 F-NMR:
Measurement conditions: 282 MHz (trichlorofluoromethane = 0 ppm)
1 H-NMR:
Measurement conditions: 300 MHz (tetramethylsilane = 0 ppm)

(2)IR分析:Perkin Elmer社製フーリエ変換赤外分光光度計1760Xで室温にて測定した。 (2) IR analysis: Measured at room temperature with a Fourier transform infrared spectrophotometer 1760X manufactured by Perkin Elmer.

(3)フッ素含有率
酸素フラスコ燃焼法により試料10mgを燃焼し、分解ガスを脱イオン水20mlに吸収させ、吸収液中のフッ素イオン濃度をフッ素選択電極法(フッ素イオンメーター、オリオン社製 901型)で測定することにより求めた(質量%)。
(3) Fluorine content 10 mg of the sample is burned by the oxygen flask combustion method, the decomposition gas is absorbed in 20 ml of deionized water, and the fluorine ion concentration in the absorption liquid is determined by the fluorine selective electrode method (fluorine ion meter, model 901 manufactured by Orion). ) (Mass%).

合成例1(成分A1)
3LのSUS316製オートクレーブを用いて反応を行った。反応容器内にまずメタノール(1800g:25mol)、KOH(559g:10mol)、水(500ml)を加え密閉にした。この際溶解熱がでるので撹拌し冷却することで除熱した。その後反応容器内を真空下にし、テトラフルオロエチレン(832g:8.3mol):
CF2=CF2
を圧入(0.2MPa)した。その際発熱が生じるが50℃で反応を行った。所定量のテトラフルオロエチレンを加えた後室温になるまで撹拌を行い、室温下の状態になった時反応を終了した。系内の圧を抜き反応溶液を1N−HCl水溶液(1500ml)に注ぎ込んだ。その時2相に分離するので下相の目的生成物を採取し、1N−HCl水溶液(500ml)で2回洗浄し蒸留を行い精製した。常圧で70〜75℃の留分を採取した。1H−NMR、19F−NMRにより目的生成物であることが分かった。収率95%で含フッ素エーテル(1)(1041g:7.89mol):
CHF2CF2OCH3
を得た。
1H−NMR(重アセトン):3.24(3H)、6.02(1H)
19F−NMR(重アセトン):−124.0(2F)、−126.0(2F)
Synthesis example 1 (component A1)
The reaction was carried out using a 3 L SUS316 autoclave. First, methanol (1800 g: 25 mol), KOH (559 g: 10 mol), and water (500 ml) were added and sealed in the reaction vessel. At this time, heat of dissolution was generated, so the heat was removed by stirring and cooling. Thereafter, the reaction vessel was evacuated and tetrafluoroethylene (832 g: 8.3 mol):
CF 2 = CF 2
Was press-fitted (0.2 MPa). At that time, heat was generated, but the reaction was carried out at 50 ° C. After adding a predetermined amount of tetrafluoroethylene, stirring was performed until the temperature reached room temperature, and the reaction was terminated when the temperature reached room temperature. The pressure in the system was released, and the reaction solution was poured into a 1N-HCl aqueous solution (1500 ml). Since the two phases were separated at that time, the target product in the lower phase was collected, washed twice with 1N-HCl aqueous solution (500 ml), and purified by distillation. A fraction at 70 to 75 ° C. was collected at normal pressure. 1 H-NMR and 19 F-NMR proved to be the desired product. Fluorine-containing ether (1) in a yield of 95% (1041 g: 7.89 mol):
CHF 2 CF 2 OCH 3
Got.
1 H-NMR (heavy acetone): 3.24 (3H), 6.02 (1H)
19 F-NMR (heavy acetone): -124.0 (2F), -126.0 (2F)

次に、3Lのガラス製反応容器を用いて反応を行った。反応容器内に98%濃硫酸(1500g:15mol)、酸化アルミニウム(224g:2.2mol)を加え熱を加え80℃で撹拌を行った。反応温度が安定した時点で上記で得た含フッ素エーテル(1)(400g:3mol):
CHF2CF2OCH3
を滴下ロートを用いて滴下した。滴下の際発熱は確認できなかった。滴下終了後発砲がなくなるまで充分に撹拌した後、目的生成物をそのまま抜き出し採取した。
Next, the reaction was performed using a 3 L glass reaction vessel. 98% concentrated sulfuric acid (1500 g: 15 mol) and aluminum oxide (224 g: 2.2 mol) were added to the reaction vessel, and heat was applied, followed by stirring at 80 ° C. When the reaction temperature is stabilized, the fluorine-containing ether (1) obtained above (400 g: 3 mol):
CHF 2 CF 2 OCH 3
Was dropped using a dropping funnel. No exotherm could be confirmed during the dropwise addition. After completion of dropping, the mixture was sufficiently stirred until there was no fire, and the target product was extracted and collected as it was.

その後、抜き出した目的生成物のエステルを再度蒸留し精製した。1H−NMR、19F−NMRにより目的生成物であることが分かった。収率80%で含フッ素エステル溶媒(A1)(264g:2.4mol):
CHF2COOCH3
を得た。
1H−NMR(重アセトン):3.67(3H)、5.99(1H)
19F−NMR(重アセトン):−124.0(2F)
Thereafter, the extracted ester of the target product was distilled again and purified. 1 H-NMR and 19 F-NMR proved to be the desired product. Fluorine-containing ester solvent (A1) in a yield of 80% (264 g: 2.4 mol):
CHF 2 COOCH 3
Got.
1 H-NMR (heavy acetone): 3.67 (3H), 5.99 (1H)
19 F-NMR (heavy acetone): -124.0 (2F)

合成例2(成分A2)
3Lの反応容器を用いて反応を行った。反応容器内に濃硫酸(1500g:15mol)、酸化アルミニウム(224g:2.2mol)を加え熱を加え80℃で撹拌を行った。反応温度が安定した時点で含フッ素エーテル(2)(546g:3mol):
CF3CHFCF2OCH3
を滴下ロートを用いて滴下した。滴下の際発熱は確認できなかった。滴下終了後発砲がなくなるまで充分に撹拌した後、目的生成物をそのまま抜き出し採取した。
Synthesis example 2 (component A2)
The reaction was performed using a 3 L reaction vessel. Concentrated sulfuric acid (1500 g: 15 mol) and aluminum oxide (224 g: 2.2 mol) were added to the reaction vessel, and heat was applied, followed by stirring at 80 ° C. When the reaction temperature is stabilized, the fluorine-containing ether (2) (546 g: 3 mol):
CF 3 CHFCF 2 OCH 3
Was dropped using a dropping funnel. No exotherm could be confirmed during the dropwise addition. After completion of dropping, the mixture was sufficiently stirred until there was no fire, and the target product was extracted and collected as it was.

その後、抜き出した目的生成物のエステルを再度蒸留し精製した。1H−NMR、19F−NMRにより目的生成物であることが分かった。収率80%で含フッ素エステル溶媒(A2)(384g:2.4mol):
CF3CHFCOOCH3
を得た。
1H−NMR(重アセトン):3.67(3H)、4.97(1H)
19F−NMR(重アセトン):−145.0(1F)、−80.5(3F)
Thereafter, the extracted ester of the target product was distilled again and purified. 1 H-NMR and 19 F-NMR proved to be the desired product. Fluorinated ester solvent (A2) in a yield of 80% (384 g: 2.4 mol):
CF 3 CHFCOOCH 3
Got.
1 H-NMR (heavy acetone): 3.67 (3H), 4.97 (1H)
19 F-NMR (heavy acetone): -145.0 (1F), -80.5 (3F)

合成例3(成分A3)
3Lの反応容器を用いて反応を行った。反応容器内に含フッ素カルボン酸(220g:2.00mol):
CH3CF2COOH
、メタノール(192g:6.00mol)に10mol%の濃硫酸を加えて60℃還流下で2時間撹拌し、GCにより原料の消失を確認した。反応後、水でクエンチし、下相の目的生成物を採取し、その後、蒸留を行い、収率90%で含フッ素エステル溶媒(A3):
CH3CF2COOCH3
を得た。
1H−NMR(重アセトン):1.96(3H)、3.67(3H)
19F−NMR(重アセトン):−127.7(2F)
Synthesis example 3 (component A3)
The reaction was performed using a 3 L reaction vessel. Fluorine-containing carboxylic acid (220 g: 2.00 mol) in the reaction vessel:
CH 3 CF 2 COOH
, 10 mol% concentrated sulfuric acid was added to methanol (192 g: 6.00 mol), and the mixture was stirred at 60 ° C. under reflux for 2 hours, and disappearance of the raw material was confirmed by GC. After the reaction, it is quenched with water, and the lower phase target product is collected, followed by distillation, and a fluorine-containing ester solvent (A3) in a yield of 90%:
CH 3 CF 2 COOCH 3
Got.
1 H-NMR (heavy acetone): 1.96 (3H), 3.67 (3H)
19 F-NMR (heavy acetone):-127.7 (2F)

合成例4(成分B1a)
3Lオートクレーブに、KOH84g(1.35mol)、水800ml、2,2,3,3−テトラフルオロプロパノール:
CHF2CF2CH2OH
600g(4.5mol)を入れた。そこに、ヘキサフルオロプロペン:
CF2=CFCF3
681g(4.5mol)を導入した。反応後、液は二層分離しており、下層を水で3回洗浄、分液を行った。その後精留精製を行い、含フッ素鎖状エーテル(B1a):
CHF2CF2CH2OCF2CHFCF3
1015g(3.6mol)を得た(収率80%)。
Synthesis example 4 (component B1a)
To a 3 L autoclave, KOH 84 g (1.35 mol), water 800 ml, 2,2,3,3-tetrafluoropropanol:
CHF 2 CF 2 CH 2 OH
600 g (4.5 mol) was added. There, hexafluoropropene:
CF 2 = CFCF 3
681 g (4.5 mol) was introduced. After the reaction, the liquid was separated into two layers, and the lower layer was washed with water three times and separated. Thereafter, rectification is performed, and fluorine-containing chain ether (B1a):
CHF 2 CF 2 CH 2 OCF 2 CHFCF 3
1015 g (3.6 mol) was obtained (yield 80%).

この生成物を1H−NMR、19F−NMRにより分析したところ、上記構造を有する含フッ素鎖状エーテル(B1a)であることが確認された。
1H−NMR:(neat):3.62〜3.95ppm(2H)、4.31〜4.49ppm(1H)、5.03〜5.62ppm(1H)
19F−NMR:(neat):−77.8ppm(3F)、−83.6〜−88.7ppm(2F)、−128.9ppm(2F)、−143.0ppm(2F)、−215.2ppm(1F)
When this product was analyzed by 1 H-NMR and 19 F-NMR, it was confirmed to be a fluorinated chain ether (B1a) having the above structure.
1 H-NMR: (neat): 3.62 to 3.95 ppm (2H), 4.31 to 4.49 ppm (1H), 5.03 to 5.62 ppm (1H)
19 F-NMR: (neat): -77.8 ppm (3F), -83.6 to -88.7 ppm (2F), -128.9 ppm (2F), -143.0 ppm (2F), -215.2 ppm (1F)

この含フッ素鎖状カーボネート(B1a)のフッ素含有率は67.4質量%であった。   The fluorine content of this fluorine-containing chain carbonate (B1a) was 67.4% by mass.

合成例5(成分B2a)
窒素雰囲気下、2L四つ口フラスコに無水トリフルオロ酢酸:
(CF3CO)2
を500g(2.38mol)入れ、40℃にて2,2,3,3−テトラフルオロプロパノール:
CHF2CF2CH2OH
394g(2.86mol)を滴下ロートを用いて還流下に、少しずつ加えていった。2,2,3,3−テトラフルオロプロパノールの添加量が1.2当量になった時点で、80℃で0.5時間反応させた。反応終了後室温に戻し、水洗を繰り返し、蒸留生成を行い、含フッ素鎖状エステル(B2a):
CF3COOCH2CF2CHF2
488g(2.19mol)を得た(収率92%)。
Synthesis Example 5 (component B2a)
In a 2 L four-necked flask under nitrogen atmosphere, trifluoroacetic anhydride:
(CF 3 CO) 2 O
500 g (2.38 mol), and 2,2,3,3-tetrafluoropropanol at 40 ° C .:
CHF 2 CF 2 CH 2 OH
394 g (2.86 mol) was added little by little under reflux using a dropping funnel. When the amount of 2,2,3,3-tetrafluoropropanol added reached 1.2 equivalents, the reaction was carried out at 80 ° C. for 0.5 hours. After completion of the reaction, the temperature is returned to room temperature, washing with water is repeated, distillation is performed, and a fluorine-containing chain ester (B2a):
CF 3 COOCH 2 CF 2 CHF 2
488 g (2.19 mol) were obtained (yield 92%).

この生成物を1H−NMR、19F−NMR、IR分析により分析したところ、上記の構造の含フッ素鎖状エステル(B2a)であることが確認された。
1H−NMR:(neat):3.29〜3.48ppm(2H)、4.38〜4.81ppm(1H)
19F−NMR:(neat):−76.63(3F)、−125.23〜−125.280ppm(2F)、−138.74〜138.99ppm(2F)
IR:(KBr):1805cm-1
When this product was analyzed by 1 H-NMR, 19 F-NMR, and IR analysis, it was confirmed to be a fluorine-containing chain ester (B2a) having the above structure.
1 H-NMR: (neat): 3.29 to 3.48 ppm (2H), 4.38 to 4.81 ppm (1H)
19 F-NMR: (neat): −76.63 (3F), −125.23 to −125.280 ppm (2F), −138.74 to 138.999 ppm (2F)
IR: (KBr): 1805 cm −1

この含フッ素エステル(B2a)のフッ素含有率は58.31質量%であった。   The fluorine content of this fluorine-containing ester (B2a) was 58.31% by mass.

合成例6(成分B3a)
窒素雰囲気下、3L四つ口フラスコにトリフルオロエタノール:
CF3CH2OH
300g(3.00mol)を入れ、続いて、ピリジン355g(1.5当量:3.0mol)、および溶媒としてテトラグライム600mlを加え、氷浴下で撹拌した。続いて、滴下ロートからトリホスゲン:
CCl3OCOOCCl3
150g(0.57mol)のテトラグライム溶液を滴下ロートを用いて少しずつ、4時間かけて加えた。反応温度は10℃を保つようにした。反応終了後室温に戻し、1N塩酸で3回分液し、下層の蒸留生成を行い、含フッ素鎖状カーボネート(B3a):
CF3CH2OCOOCH2CF3
270g(2.19mol)を得た(収率40%)。このものの沸点は103℃(760mmHg)であった。
Synthesis Example 6 (component B3a)
In a 3 L four-necked flask under nitrogen atmosphere, trifluoroethanol:
CF 3 CH 2 OH
300 g (3.00 mol) was added, and subsequently 355 g of pyridine (1.5 equivalents: 3.0 mol) and 600 ml of tetraglyme as a solvent were added and stirred in an ice bath. Subsequently, triphosgene from the dropping funnel:
CCl 3 OCOOCCl 3
150 g (0.57 mol) of tetraglyme solution was added little by little using a dropping funnel over 4 hours. The reaction temperature was kept at 10 ° C. After completion of the reaction, the temperature is returned to room temperature, and the mixture is separated three times with 1N hydrochloric acid, and the lower layer is distilled to form a fluorine-containing chain carbonate (B3a):
CF 3 CH 2 OCOOCH 2 CF 3
270 g (2.19 mol) was obtained (yield 40%). The boiling point of this product was 103 ° C. (760 mmHg).

この生成物を1H−NMR、19F−NMR、IR分析により分析したところ、上記構造の含フッ素鎖状カーボネート(B3a)であることが確認された。
1H−NMR:(neat):3.91〜3.98ppm(2H)
19F−NMR:(neat):−82.3(3F)
IR:(KBr):1784cm-1
When this product was analyzed by 1 H-NMR, 19 F-NMR, and IR analysis, it was confirmed to be a fluorine-containing chain carbonate (B3a) having the above structure.
1 H-NMR: (neat): 3.91 to 3.98 ppm (2H)
19 F-NMR: (neat): -82.3 (3F)
IR: (KBr): 1784 cm −1

この含フッ素鎖状カーボネート(B3a)のフッ素含有率は50.42質量%であった。   The fluorine content of this fluorine-containing chain carbonate (B3a) was 50.42% by mass.

合成例7(成分B2b)
ステンレススチール製の3Lオートクレーブに、開始剤として1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)(73g:10mol%)を入れ、続いて溶媒として酢酸エチル600mL、4ペンテン酸(300g:3.0mol)を入れ、系内を10℃以下に冷却しながら真空−窒素置換を3回行った。系内を真空にした後、トリフルオロメチルアイオダイド(646g:3.3mol)を圧入した。温度を65℃から5℃/30minで段階的に昇温し、88℃で2時間反応させた。反応終了後室温に戻し、エバポレーターで溶媒を減圧留去し、付加体:
CF3CH2CHIC24COOH
を80%の収率で得た。
Synthesis Example 7 (component B2b)
A stainless steel 3 L autoclave was charged with 1,1′-azobis (cyclohexane-1-carbonitrile) (73 g: 10 mol%) as an initiator, followed by 600 mL of ethyl acetate and 4 pentenoic acid (300 g: 3. 0 mol), and vacuum-nitrogen substitution was performed three times while cooling the system to 10 ° C. or lower. After evacuating the system, trifluoromethyl iodide (646 g: 3.3 mol) was injected. The temperature was raised stepwise from 65 ° C. at 5 ° C./30 min and reacted at 88 ° C. for 2 hours. After completion of the reaction, the temperature is returned to room temperature, and the solvent is distilled off under reduced pressure using an evaporator.
CF 3 CH 2 CHIC 2 H 4 COOH
Was obtained in 80% yield.

次に、冷却管、温度計、滴下ロートを備え付けた2Lの四つ口フラスコに先に得られた付加体を入れ、60℃に加熱した。滴下ロートからK2CO3(207g:1.5mol)の50%水溶液を、発泡を確認しながら滴下した。CO2の発泡がおさまってから室温に戻し、水洗を3回行なった後二層分離した下層より、粗含フッ素ラクトンを得た。 Next, the adduct obtained previously was put into a 2 L four-necked flask equipped with a condenser, a thermometer, and a dropping funnel, and heated to 60 ° C. A 50% aqueous solution of K 2 CO 3 (207 g: 1.5 mol) was dropped from the dropping funnel while confirming foaming. After the CO 2 foaming subsided, the temperature was returned to room temperature, washed with water three times, and then a crude fluorine-containing lactone was obtained from the lower layer separated into two layers.

このラクトンを減圧蒸留することにより、含フッ素環状エステル(B2b):

Figure 2008257988
を305g得た(収率60%、純度99.5%GC、沸点65℃/70mmHg)。 Fluorine-containing cyclic ester (B2b):
Figure 2008257988
(Yield 60%, purity 99.5% GC, boiling point 65 ° C./70 mmHg).

この生成物を1H−NMR、19F−NMR、IR分析により分析したところ、上記構造を有する含フッ素環状エステル(B2b)であることが確認された。
1H−NMR:(アセトン):1.12〜1.33ppm(1H)、1.64〜2.16ppm(5H)、3.92〜4.20ppm(1H)
19F−NMR:(アセトン):−78.31ppm(3F)
IR(KBr):1690cm-1
When this product was analyzed by 1 H-NMR, 19 F-NMR, and IR analysis, it was confirmed to be a fluorine-containing cyclic ester (B2b) having the above structure.
1 H-NMR: (acetone): 1.12 to 1.33 ppm (1H), 1.64 to 2.16 ppm (5H), 3.92 to 4.20 ppm (1H)
19 F-NMR: (acetone): −78.31 ppm (3F)
IR (KBr): 1690 cm −1

合成例8(成分B3b)
3Lのオートクレーブに、3,3,3−トリフルオロメチルエポキシプロパンを800g(7.14mol)、LiBrを18.8g(3mol%:0.2mol)、N−メチル−2−ピロリドンを600ml入れた。氷浴下、減圧(100mmHg)にした後、CO2を導入した。その後、100℃まで加熱しながらCO2を1.2MPaまで導入し、圧が下がらなくなるまで攪拌し反応させた。反応終了後は冷却し反応液を1mol/LのHCl水溶液で洗浄、分液を行った。その後、蒸留精製し含フッ素環状カーボネート(B3b):

Figure 2008257988
548g(3.5mol)を得た(収率49%)。 Synthesis Example 8 (component B3b)
In a 3 L autoclave, 800 g (7.14 mol) of 3,3,3-trifluoromethyl epoxypropane, 18.8 g of LiBr (3 mol%: 0.2 mol), and 600 ml of N-methyl-2-pyrrolidone were added. After reducing the pressure (100 mmHg) in an ice bath, CO 2 was introduced. Thereafter, CO 2 was introduced to 1.2 MPa while heating to 100 ° C., and the mixture was stirred and reacted until the pressure did not decrease. After completion of the reaction, the reaction solution was cooled, washed with 1 mol / L HCl aqueous solution, and separated. Thereafter, the product was purified by distillation and fluorine-containing cyclic carbonate (B3b):
Figure 2008257988
548 g (3.5 mol) was obtained (49% yield).

この生成物を1H−NMR、19F−NMR、IR分析により分析したところ、上記構造を有する含フッ素環状カーボネート(B3b)であることが確認された。
1H−NMR:(neat):4.44〜4.61ppm(2H)、4.91ppm(1H)
19F−NMR:(neat):−79.1〜−83.2ppm(3F)
IR:(KBr):1801cm-1
When this product was analyzed by 1 H-NMR, 19 F-NMR, and IR analysis, it was confirmed to be a fluorinated cyclic carbonate (B3b) having the above structure.
1 H-NMR: (neat): 4.44 to 4.61 ppm (2H), 4.91 ppm (1H)
19 F-NMR: (neat): −79.1 to −83.2 ppm (3F)
IR: (KBr): 1801 cm −1

この含フッ素環状カーボネート(B3b)のフッ素含有率は36.5質量%であった。   The fluorine content of this fluorine-containing cyclic carbonate (B3b) was 36.5% by mass.

つぎに非水系電解液二次電池の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。   Next, examples of the non-aqueous electrolyte secondary battery will be described, but the present invention is not limited to these examples.

なお、以下の実施例および比較例で使用した各化合物は以下のとおりである。
成分(A)
(A1):CHF2COOCH3(合成例1)
(A2):CF3CHFCOOCH3(合成例2)
(A3):CH3CF2COOCH3(合成例3)
成分(B)
(B1a):CHF2CF2CH2OCF2CHFCF3 (合成例4)
(B2a):CF3COOCH2CF2CHF2 (合成例5)
(B3a):CF3CH2OCOOCH2CF3 (合成例6)
(B2b):

Figure 2008257988
(B3b):
(A1)を、成分(B)として(B1a)を50/50体積%比となるように混合し、この電解質塩溶解用溶媒にさらに電解質塩としてLiN(SO2CF2CF32を0.8モル/リットルの濃度となるように加え、25℃にて充分に撹拌し、本発明の電解液を調製した。 In addition, each compound used in the following Examples and Comparative Examples is as follows.
Ingredient (A)
(A1): CHF 2 COOCH 3 (Synthesis Example 1)
(A2): CF 3 CHFCOOCH 3 (Synthesis Example 2)
(A3): CH 3 CF 2 COOCH 3 (Synthesis Example 3)
Ingredient (B)
(B1a): CHF 2 CF 2 CH 2 OCF 2 CHFCF 3 (Synthesis Example 4)
(B2a): CF 3 COOCH 2 CF 2 CHF 2 (Synthesis Example 5)
(B3a): CF 3 CH 2 OCOOCH 2 CF 3 (Synthesis Example 6)
(B2b):
Figure 2008257988
(B3b):
(A1) is mixed as a component (B) so that (B1a) is in a 50/50 volume% ratio, and LiN (SO 2 CF 2 CF 3 ) 2 is further added as an electrolyte salt to this electrolyte salt dissolving solvent. The electrolyte solution of the present invention was prepared by adding at a concentration of 8 mol / liter and sufficiently stirring at 25 ° C.

実施例2〜17
実施例1と同様にして、成分(A)、成分(B)および成分(C)を表1に示す組成となるように混合し、この電解質塩溶解用溶媒にさらに表1に示す電解質塩を加え、本発明の電解液を調製した。
Examples 2-17
In the same manner as in Example 1, the component (A), the component (B) and the component (C) were mixed so as to have the composition shown in Table 1, and the electrolyte salt shown in Table 1 was further added to the solvent for dissolving the electrolyte salt. In addition, the electrolytic solution of the present invention was prepared.

比較例1
実施例1と同様にして、電解質塩溶解用溶媒として成分(C)のみを使用し、さらに表1に示す電解質塩を加え、比較用の電解液を調製した。
Comparative Example 1
In the same manner as in Example 1, only the component (C) was used as the electrolyte salt dissolving solvent, and the electrolyte salt shown in Table 1 was further added to prepare a comparative electrolytic solution.

試験1(電解液の低温安定性)
実施例1〜17および比較例1でそれぞれ製造した電解液6mlを9ml容のサンプル瓶に取り出し、−30℃にて8時間静置して液の状態を目視で観察した。結果を表1に示す。
Test 1 (Low temperature stability of electrolyte)
6 ml of the electrolytic solution produced in each of Examples 1 to 17 and Comparative Example 1 was taken out into a 9 ml sample bottle, allowed to stand at −30 ° C. for 8 hours, and the state of the liquid was visually observed. The results are shown in Table 1.

(評価基準)
○:均一溶液である。
×:固化している。
(Evaluation criteria)
○: A uniform solution.
X: Solidified.

試験2(安全性試験)
次の方法に従い、実施例1〜17および比較例1でそれぞれ製造した電解液を用いて円筒型リチウム二次電池を作製した。
Test 2 (safety test)
In accordance with the following method, cylindrical lithium secondary batteries were produced using the electrolytic solutions produced in Examples 1 to 17 and Comparative Example 1, respectively.

(正極の作製1)
LiMnO2とカーボンブラックとポリフッ化ビニリデン(呉羽化学(株)製、商品名KF−1000)を85/7/8(質量%比)で混合した正極活物質をN−メチル−2−ピロリドンに分散してスラリー状としたものを正極集電体(厚さ15μmのアルミニウム箔)上に均一に塗布し、乾燥して正極合剤層を形成し、その後、ローラプレス機により圧縮成形した後、切断し、リード体を溶接して、帯状のマンガン酸リチウム正極を作製した。
(Production of positive electrode 1)
A positive electrode active material in which LiMnO 2 , carbon black, and polyvinylidene fluoride (made by Kureha Chemical Co., Ltd., trade name KF-1000) are mixed at 85/7/8 (mass% ratio) is dispersed in N-methyl-2-pyrrolidone Then, the slurry is applied uniformly on a positive electrode current collector (aluminum foil having a thickness of 15 μm), dried to form a positive electrode mixture layer, and then compression-molded with a roller press and then cut. The lead body was then welded to produce a strip-shaped lithium manganate positive electrode.

(負極の作製)
人造黒鉛粉末(テイムカル社製、商品名KS−44)に、蒸留水で分散させたスチレン−ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成し、その後、ローラプレス機により圧縮成形し、切断した後、乾燥し、リード体を溶接して、帯状の負極を作製した。
(Preparation of negative electrode)
Styrene-butadiene rubber dispersed with distilled water is added to artificial graphite powder (trade name KS-44, manufactured by Temcal Co., Ltd.) so that the solid content becomes 6% by mass and mixed with a disperser to form a slurry. Is uniformly coated on a negative electrode current collector (copper foil having a thickness of 10 μm), dried to form a negative electrode mixture layer, then compression-molded by a roller press, cut, dried, and lead body Were welded to produce a strip-shaped negative electrode.

前記帯状の正極を厚さ20μmの微孔性ポリエチレンフィルムを介して上記帯状の負極に重ね、渦巻状に巻回して渦巻状巻回構造の積層電極体とした。その際、正極集電材の粗面側が外周側になるようにして巻回した。その後、この電極体を外径18mmの有底円筒状の電池ケース内に充填し、正極および負極のリード体の溶接を行った。   The belt-like positive electrode was overlapped on the belt-like negative electrode with a microporous polyethylene film having a thickness of 20 μm and wound in a spiral shape to obtain a laminated electrode body having a spiral winding structure. In that case, it wound so that the rough surface side of the positive electrode current collector could be the outer peripheral side. Thereafter, the electrode body was filled in a bottomed cylindrical battery case having an outer diameter of 18 mm, and the positive and negative lead bodies were welded.

つぎに、上記実施例1〜17および比較例1の電解液を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、封口し、予備充電、エイジングを行い、筒形のリチウム二次電池を作製した。   Next, the electrolyte solutions of Examples 1 to 17 and Comparative Example 1 were poured into the battery case, and after the electrolyte solution sufficiently penetrated into the separator and the like, sealing was performed, precharging and aging were performed, and cylindrical lithium A secondary battery was produced.

この円筒型リチウム二次電池について、つぎの4種類の安全性試験を行った。結果を表1に示す。   The cylindrical lithium secondary battery was subjected to the following four types of safety tests. The results are shown in Table 1.

[釘刺し試験]
4.3Vまで円筒型リチウム二次電池を充電したのち、直径3mmの釘を円筒型リチウム二次電池に貫通させて、円筒型リチウム二次電池の発火・破裂の有無を調べた。
[Nail penetration test]
After charging the cylindrical lithium secondary battery to 4.3 V, a 3 mm diameter nail was passed through the cylindrical lithium secondary battery to examine whether the cylindrical lithium secondary battery was ignited or ruptured.

[加熱試験]
4.25Vまで円筒型リチウム二次電池を充電したのち、5℃/分で室温から150℃まで上げその後、150℃で放置させ円筒型リチウム二次電池の発火・破裂の有無を調べた。
[Heating test]
After charging the cylindrical lithium secondary battery to 4.25 V, the temperature was raised from room temperature to 150 ° C. at 5 ° C./min, and then allowed to stand at 150 ° C. to check whether the cylindrical lithium secondary battery was ignited or ruptured.

[短絡試験]
4.3Vまで円筒型リチウム二次電池を充電した後、正極と負極を銅線で短絡させ、円筒型リチウム二次電池の発火の有無を調べた。
[Short-circuit test]
After charging the cylindrical lithium secondary battery to 4.3 V, the positive electrode and the negative electrode were short-circuited with a copper wire, and the presence or absence of ignition of the cylindrical lithium secondary battery was examined.

[過充電試験]
1CmA相当の電流値で3.0Vまで放電した後、1CmA相当の電流値で12Vを上限電圧として過充電を行い、円筒型リチウム二次電池の発火・破裂の有無を調べた。
[Overcharge test]
After discharging to 3.0 V at a current value equivalent to 1 CmA, overcharging was performed with a current value equivalent to 1 CmA at 12 V as the upper limit voltage, and the presence or absence of ignition or rupture of the cylindrical lithium secondary battery was examined.

評価は、いずれの試験においても、発火(破裂)がない場合を○、発火(破裂)した場合を×とした。   In any of the tests, the case where there was no ignition (rupture) was evaluated as ◯, and the case where there was ignition (rupture) was evaluated as x.

試験3(安全性試験)
試験2において、正極としてつぎの方法で作製した正極を用いたほかは試験2と同様にして安全性試験を行った。結果を表1に示す。
Test 3 (safety test)
In Test 2, a safety test was conducted in the same manner as Test 2 except that the positive electrode produced by the following method was used as the positive electrode. The results are shown in Table 1.

(正極の作製2)
LiNiO2とカーボンブラックとフッ素樹脂(商品名テフロン30−J、三井・デュポンフロロケミカル(株)製)を88/6/6(質量%比)で混合した正極活物質をN−メチル−2−ピロリドンに分散してスラリー状としたものを正極集電体(厚さ15μmのアルミニウム箔)上に均一に塗布し、乾燥して正極合剤層を形成し、その後、ローラプレス機により圧縮成形した後、切断し、リード体を溶接して、帯状のマンガン酸リチウム正極を作製した。
(Preparation of positive electrode 2)
A positive electrode active material obtained by mixing LiNiO 2 , carbon black, and fluororesin (trade name: Teflon 30-J, manufactured by Mitsui DuPont Fluorochemical Co., Ltd.) at 88/6/6 (mass% ratio) is N-methyl-2- A slurry dispersed in pyrrolidone was uniformly applied on a positive electrode current collector (15 μm thick aluminum foil), dried to form a positive electrode mixture layer, and then compression molded by a roller press. Then, it cut | disconnected and welded the lead body and produced the strip | belt-shaped lithium manganate positive electrode.

Figure 2008257988
表1からわかるように、釘刺し試験、加熱試験、短絡試験、過充電試験のいずれの試験でも実施例1〜17ではすべて発火しなかったが、比較例1は発火した。
Figure 2008257988
As can be seen from Table 1, in any of the nail penetration test, heating test, short circuit test, and overcharge test, all of Examples 1 to 17 did not ignite, but Comparative Example 1 ignited.

試験4(電解質塩の溶解性)
リチウム二次電池の負極表面にはCHF2COOLiからなる被膜が形成されるが、この被膜は電解質塩溶解用溶媒に溶解しないことが望まれる。そこで、表2に示す電解質塩溶解用溶媒について、CHF2COOLiの溶解性を調べた。結果を表2に示す。
Test 4 (Solubility of electrolyte salt)
A film made of CHF 2 COOLi is formed on the negative electrode surface of the lithium secondary battery, but it is desirable that this film is not dissolved in the electrolyte salt dissolving solvent. Therefore, the solubility of CHF 2 COOLi was examined for the electrolyte salt dissolving solvents shown in Table 2. The results are shown in Table 2.

(溶解性試験)
CHF2COOLi(固体)0.1gを表2に示す電解質塩溶解用溶媒10mlに加え、充分攪拌した後静置し、目視により観察した。溶解した(透明)ものを×、CHF2COOLiが沈殿したものを○とした。
(Solubility test)
0.1 g of CHF 2 COOLi (solid) was added to 10 ml of the electrolyte salt dissolving solvent shown in Table 2, and after stirring well, the mixture was allowed to stand and visually observed. × those dissolved (clear), was ○ what CHF 2 COOLi precipitated.

Figure 2008257988
Figure 2008257988

表2の結果から、特定の含フッ素エステル溶媒(A)および含フッ素溶媒(B)を含む電解質塩溶解用溶媒はCHF2COOLiからなる被膜を溶解せず、被膜が安定することがわかる。 From the results of Table 2, it can be seen that the electrolyte salt-dissolving solvent containing the specific fluorine-containing ester solvent (A) and the fluorine-containing solvent (B) does not dissolve the film made of CHF 2 COOLi, and the film is stable.

Claims (10)

(A):
1CFXCOOR2 (A)
(式中、R1は水素原子、フッ素原子または炭素数1〜3の水素原子がフッ素原子で置換されていてもよいアルキル基;Xは水素原子またはフッ素原子;ただし、R1がフッ素原子またはパーフルオロアルキル基の場合はXは水素原子;R2は炭素数1〜4のアルキル基である)
で示される含フッ素エステル溶媒(A)、および
前記含フッ素エステル溶媒(A)以外の含フッ素溶媒(B)
を含む電解質塩溶解用溶媒(I)、ならびに
電解質塩(II)
を含む非水系電解液。
(A):
R 1 CFXCOOR 2 (A)
(Wherein R 1 is a hydrogen atom, a fluorine atom or an alkyl group in which a hydrogen atom having 1 to 3 carbon atoms may be substituted with a fluorine atom; X is a hydrogen atom or a fluorine atom; provided that R 1 is a fluorine atom or In the case of a perfluoroalkyl group, X is a hydrogen atom; R 2 is an alkyl group having 1 to 4 carbon atoms)
And a fluorine-containing solvent (B) other than the fluorine-containing ester solvent (A).
Solvent for dissolving electrolyte salt (I), and electrolyte salt (II)
Non-aqueous electrolyte solution containing.
含フッ素溶媒(B)が、含フッ素エーテル(B1)、含フッ素エステル(B2)および含フッ素カーボネート(B3)よりなる群から選ばれる少なくとも1種である請求項1記載の非水系電解液。 The nonaqueous electrolytic solution according to claim 1, wherein the fluorinated solvent (B) is at least one selected from the group consisting of a fluorinated ether (B1), a fluorinated ester (B2), and a fluorinated carbonate (B3). 含フッ素エステル溶媒(A)が、CHF2COOCH3、CF3CHFCOOCH3、CHF2COOC25、CF3CHFCOOC25、CH3CF2COOCH3およびCH3CF2COOC25よりなる群から選ばれる少なくとも1種である請求項1または2記載の非水系電解液。 Fluorinated ester solvent (A) is composed of CHF 2 COOCH 3, CF 3 CHFCOOCH 3, CHF 2 COOC 2 H 5, CF 3 CHFCOOC 2 H 5, CH 3 CF 2 COOCH 3 and CH 3 CF 2 COOC 2 H 5 The non-aqueous electrolyte solution according to claim 1 or 2, which is at least one selected from the group. 電解質塩溶解用溶媒(I)が、さらに、非フッ素系溶媒(C)を含む請求項1〜3のいずれかに記載の非水系電解液。 The non-aqueous electrolyte solution according to any one of claims 1 to 3, wherein the electrolyte salt-dissolving solvent (I) further contains a non-fluorinated solvent (C). 含フッ素溶媒(B)が、含フッ素鎖状エーテル(B1a)、含フッ素環状エステル(B2b)、含フッ素鎖状カーボネート(B3a)および含フッ素環状カーボネート(B3b)よりなる群から選ばれる少なくとも1種である請求項1〜4のいずれかに記載の非水系電解液。 The fluorine-containing solvent (B) is at least one selected from the group consisting of a fluorine-containing chain ether (B1a), a fluorine-containing cyclic ester (B2b), a fluorine-containing chain carbonate (B3a), and a fluorine-containing cyclic carbonate (B3b). The nonaqueous electrolytic solution according to any one of claims 1 to 4. 含フッ素エステル溶媒(A)と含フッ素溶媒(B)との合計量が電解質塩溶解用溶媒(I)の60体積%以上である請求項5記載の非水電解液。 6. The nonaqueous electrolytic solution according to claim 5, wherein the total amount of the fluorinated ester solvent (A) and the fluorinated solvent (B) is 60% by volume or more of the electrolyte salt dissolving solvent (I). 電解質塩(II)が、LiPF6、LiN(SO2CF32およびLiN(SO2252よりなる群から選ばれる少なくとも1種である請求項1〜6のいずれかに記載の非水系電解液。 The electrolyte salt (II) is at least one selected from the group consisting of LiPF 6 , LiN (SO 2 CF 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2. Non-aqueous electrolyte. リチウム二次電池用である請求項1〜7のいずれかに記載の非水系電解液。 The nonaqueous electrolytic solution according to any one of claims 1 to 7, which is used for a lithium secondary battery. 正極、負極、セパレータおよび請求項1〜8のいずれかに記載の非水系電解液を備え、該正極に使用する正極活物質が、コバルト系複合酸化物、ニッケル系複合酸化物、マンガン系複合酸化物、鉄系複合酸化物およびバナジウム系複合酸化物よりなる群から選ばれる少なくとも1種であるリチウム二次電池。 A positive electrode, a negative electrode, a separator, and the non-aqueous electrolyte solution according to claim 1, wherein the positive electrode active material used for the positive electrode is a cobalt-based composite oxide, a nickel-based composite oxide, or a manganese-based composite oxide. A lithium secondary battery that is at least one selected from the group consisting of an oxide, an iron-based composite oxide, and a vanadium-based composite oxide. 正極、負極、セパレータおよび請求項1〜8のいずれかに記載の非水系電解液を備え、該負極に使用する負極活物質として、スズ原子またはケイ素原子を含む材料を用いるリチウム二次電池。 A lithium secondary battery comprising a positive electrode, a negative electrode, a separator, and the non-aqueous electrolyte solution according to any one of claims 1 to 8, wherein a negative electrode active material used for the negative electrode uses a material containing a tin atom or a silicon atom.
JP2007098792A 2007-04-04 2007-04-04 Non-aqueous electrolytic solution Pending JP2008257988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007098792A JP2008257988A (en) 2007-04-04 2007-04-04 Non-aqueous electrolytic solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007098792A JP2008257988A (en) 2007-04-04 2007-04-04 Non-aqueous electrolytic solution

Publications (1)

Publication Number Publication Date
JP2008257988A true JP2008257988A (en) 2008-10-23

Family

ID=39981348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007098792A Pending JP2008257988A (en) 2007-04-04 2007-04-04 Non-aqueous electrolytic solution

Country Status (1)

Country Link
JP (1) JP2008257988A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035085A1 (en) * 2007-09-12 2009-03-19 Daikin Industries, Ltd. Electrolyte solution
WO2011021644A1 (en) 2009-08-19 2011-02-24 三菱化学株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2012054240A (en) * 2011-10-13 2012-03-15 Hitachi Maxell Energy Ltd Lithium secondary battery
WO2012132976A1 (en) * 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
WO2012133798A1 (en) * 2011-03-31 2012-10-04 ダイキン工業株式会社 Electrochemical device and nonaqueous electrolyte solution for electrochemical device
JP2013048015A (en) * 2011-07-27 2013-03-07 Daikin Ind Ltd Nonaqueous electrolyte, lithium ion secondary battery, and module
WO2013146359A1 (en) 2012-03-27 2013-10-03 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
WO2014065246A1 (en) 2012-10-22 2014-05-01 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
US20150171467A1 (en) * 2012-06-01 2015-06-18 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
US20180183097A1 (en) * 2016-12-26 2018-06-28 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
CN108242570A (en) * 2016-12-26 2018-07-03 丰田自动车株式会社 The manufacturing method of nonaqueous electrolytic solution, nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
WO2018123259A1 (en) 2016-12-26 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
WO2018179767A1 (en) 2017-03-31 2018-10-04 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery and module
WO2019031315A1 (en) 2017-08-07 2019-02-14 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019207983A1 (en) * 2018-04-25 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009035085A1 (en) * 2007-09-12 2010-12-24 ダイキン工業株式会社 Electrolyte
WO2009035085A1 (en) * 2007-09-12 2009-03-19 Daikin Industries, Ltd. Electrolyte solution
JP5234000B2 (en) * 2007-09-12 2013-07-10 ダイキン工業株式会社 Electrolyte
WO2011021644A1 (en) 2009-08-19 2011-02-24 三菱化学株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN103460491A (en) * 2011-03-28 2013-12-18 日本电气株式会社 Secondary battery and electrolyte
US10749208B2 (en) 2011-03-28 2020-08-18 Nec Corporation Secondary battery and electrolyte liquid
WO2012132976A1 (en) * 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
WO2012132060A1 (en) * 2011-03-28 2012-10-04 日本電気株式会社 Secondary battery and electrolyte
JPWO2012132976A1 (en) * 2011-03-28 2014-07-28 日本電気株式会社 Secondary battery and electrolyte
US20140017572A1 (en) * 2011-03-28 2014-01-16 Nec Corporation Secondary battery and electrolyte liquid
WO2012133798A1 (en) * 2011-03-31 2012-10-04 ダイキン工業株式会社 Electrochemical device and nonaqueous electrolyte solution for electrochemical device
JP2013201142A (en) * 2011-03-31 2013-10-03 Daikin Ind Ltd Electrochemical device and nonaqueous electrolyte for electrochemical device
JP2012216544A (en) * 2011-03-31 2012-11-08 Daikin Ind Ltd Electrochemical device and nonaqueous electrolyte for electrochemical device
US9455468B2 (en) 2011-03-31 2016-09-27 Daikin Industries, Ltd. Electrochemical device and nonaqueous electrolyte solution for electrochemical device
JP2013048015A (en) * 2011-07-27 2013-03-07 Daikin Ind Ltd Nonaqueous electrolyte, lithium ion secondary battery, and module
JP2012054240A (en) * 2011-10-13 2012-03-15 Hitachi Maxell Energy Ltd Lithium secondary battery
WO2013146359A1 (en) 2012-03-27 2013-10-03 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
US9236636B2 (en) 2012-03-27 2016-01-12 Asahi Glass Company, Limited Non-aqueous electrolyte solution for secondary batteries, and lithium ion secondary battery
US20150171467A1 (en) * 2012-06-01 2015-06-18 E. I. Du Pont De Nemours And Company Fluorinated electrolyte compositions
US10044066B2 (en) * 2012-06-01 2018-08-07 Solvary SA Fluorinated electrolyte compositions
WO2014065246A1 (en) 2012-10-22 2014-05-01 旭硝子株式会社 Nonaqueous electrolyte solution for secondary batteries and lithium ion secondary battery
KR20180075406A (en) 2016-12-26 2018-07-04 다이킨 고교 가부시키가이샤 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
KR102248688B1 (en) * 2016-12-26 2021-05-07 도요타지도샤가부시키가이샤 Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method of producing nonaqueous electrolyte secondary battery
JP2018106896A (en) * 2016-12-26 2018-07-05 トヨタ自動車株式会社 Non-aqueous electrolyte, non-aqueous electrolyte secondary battery and method of manufacturing non-aqueous electrolyte secondary battery
WO2018123259A1 (en) 2016-12-26 2018-07-05 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
DE102017223219A1 (en) 2016-12-26 2018-06-28 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery and module
CN110062976B (en) * 2016-12-26 2022-03-15 大金工业株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
CN108242570B (en) * 2016-12-26 2021-12-14 丰田自动车株式会社 Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method for producing same
CN110062976A (en) * 2016-12-26 2019-07-26 大金工业株式会社 Electrolyte, electrochemical appliance, lithium ion secondary battery and component
KR102027181B1 (en) * 2016-12-26 2019-10-01 다이킨 고교 가부시키가이샤 Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
JPWO2018123259A1 (en) * 2016-12-26 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US11043698B2 (en) 2016-12-26 2021-06-22 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
KR20190133131A (en) * 2016-12-26 2019-12-02 도요타지도샤가부시키가이샤 Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method of producing nonaqueous electrolyte secondary battery
CN108242570A (en) * 2016-12-26 2018-07-03 丰田自动车株式会社 The manufacturing method of nonaqueous electrolytic solution, nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
US20180183097A1 (en) * 2016-12-26 2018-06-28 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
US10923764B2 (en) * 2016-12-26 2021-02-16 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
US10950896B2 (en) 2016-12-26 2021-03-16 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte solution, nonaqueous electrolyte secondary battery, and method of producing nonaqueous electrolyte secondary battery
WO2018179767A1 (en) 2017-03-31 2018-10-04 ダイキン工業株式会社 Electrolyte solution, electrochemical device, lithium ion secondary battery and module
US11489204B2 (en) 2017-03-31 2022-11-01 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery and module
US11888122B2 (en) 2017-03-31 2024-01-30 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery and module
KR20190141016A (en) 2017-08-07 2019-12-20 다이킨 고교 가부시키가이샤 Electrolytes, Electrochemical Devices, Lithium Ion Secondary Batteries and Modules
WO2019031315A1 (en) 2017-08-07 2019-02-14 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US11611106B2 (en) 2017-08-07 2023-03-21 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
WO2019207983A1 (en) * 2018-04-25 2019-10-31 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, and module

Similar Documents

Publication Publication Date Title
JP5444717B2 (en) Non-aqueous electrolyte
JP5359163B2 (en) Non-aqueous electrolyte
JP2008257988A (en) Non-aqueous electrolytic solution
JP5223919B2 (en) Non-aqueous electrolyte
JP5716789B2 (en) Non-aqueous electrolyte
JP2008192504A (en) Nonaqueous electrolyte
JP5369589B2 (en) Nonaqueous electrolyte containing fluorine-containing formate solvent
JP5401836B2 (en) Solvent for dissolving electrolyte salt of lithium secondary battery
JP2008218387A (en) Non-aqueous electrolytic solution
EP2765642A1 (en) Battery and non-aqueous electrolyte
JP6738815B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
JP2010146740A (en) Electrolytic solution
CN104685700A (en) Nonaqueous electrolyte solution, electrochemical device, lithium ion secondary cell, and module
JP5321685B2 (en) Solvent for non-aqueous electrolyte of lithium secondary battery
JP5309704B2 (en) Solvent for non-aqueous electrolyte of lithium secondary battery
JP2014072102A (en) Nonaqueous electrolyte, electrochemical device, lithium ion secondary battery, and module
JP2013069512A (en) Nonaqueous electrolytic solution, lithium ion secondary battery, and module
JP2012216387A (en) Electrochemical device and nonaqueous electrolyte for electrochemical device
JP5382248B2 (en) Overcharge prevention agent, non-aqueous electrolyte, and lithium ion secondary battery
JP2012216390A (en) Electrochemical device and nonaqueous electrolyte for electrochemical device
JP4787477B2 (en) Non-aqueous electrolyte battery electrolyte additive, battery non-aqueous electrolyte and non-aqueous electrolyte battery