JP2010085476A - Optical path converting body, and optical transmission substrate having the same - Google Patents

Optical path converting body, and optical transmission substrate having the same Download PDF

Info

Publication number
JP2010085476A
JP2010085476A JP2008251714A JP2008251714A JP2010085476A JP 2010085476 A JP2010085476 A JP 2010085476A JP 2008251714 A JP2008251714 A JP 2008251714A JP 2008251714 A JP2008251714 A JP 2008251714A JP 2010085476 A JP2010085476 A JP 2010085476A
Authority
JP
Japan
Prior art keywords
optical
optical path
optical waveguide
substrate
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008251714A
Other languages
Japanese (ja)
Other versions
JP5300396B2 (en
Inventor
Keiichiro Watanabe
啓一郎 渡辺
Takahiro Matsubara
孝宏 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008251714A priority Critical patent/JP5300396B2/en
Publication of JP2010085476A publication Critical patent/JP2010085476A/en
Application granted granted Critical
Publication of JP5300396B2 publication Critical patent/JP5300396B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical path converting body enabling low-loss optical path conversion, and an optical transmission substrate having it. <P>SOLUTION: This optical path converting body 1 converts the transmission direction of light of an optical waveguide 4 and guides it to the outside, or converts the transmission direction of light from the outside and introduces it to the optical waveguide 4. The optical path converting body 1 includes an optical path converting section 2 that is disposed inside the optical waveguide 4, has a first core section 31a for transmitting light, and converts the transmission direction of the light of the optical waveguide 4 to another transmission direction, and a projecting section 3 that is disposed projectedly onto the optical waveguide 4 and has a second core section 31b that includes a contact surface 32 adherable to the top surface of the optical waveguide 4, is connected to the first core section 31a, and transmits the light converted into the another transmission direction by the optical path converting body 2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光路を変換する光路変換体とそれを具備する光伝送基板に関する。   The present invention relates to an optical path conversion body that converts an optical path and an optical transmission board including the same.

近年、コンピュータの情報処理能力の向上化にともなって、マイクロプロセッサとして使用される半導体大規模集積回路素子(LSI,VLSI)等の集積回路(IC)では、トランジスタの集積度が高められており、ICの動作速度は、クロック周波数でGHzのレベルまで達している。それに伴い、電気素子間を電気的に接続する電気配線についても高密度化および微細化されたものが要求されていた。   In recent years, with the improvement of information processing capability of computers, in an integrated circuit (IC) such as a semiconductor large scale integrated circuit element (LSI, VLSI) used as a microprocessor, the degree of integration of transistors has been increased. The operating speed of the IC has reached the GHz level at the clock frequency. Along with this, there has been a demand for higher density and finer electrical wiring for electrically connecting electrical elements.

しかしながら、電気配線の高密度化および微細化は、電気信号のクロストークおよび伝搬損失が生じやすい。このことから、半導体素子に入出力される電気信号を光信号に変換し、さらに、その光信号を実装基板に形成した光導波路などの光配線によって伝送される光伝送技術が検討されている。   However, increasing the density and miniaturization of electrical wiring tends to cause crosstalk and propagation loss of electrical signals. For this reason, an optical transmission technique in which an electrical signal inputted to and outputted from a semiconductor element is converted into an optical signal, and the optical signal is transmitted through an optical wiring such as an optical waveguide formed on a mounting substrate has been studied.

光配線を用いた光伝送技術においては、回路基板の表面などに形成される光導波路のように、光を基板に対して略平行に伝送させるだけでなく、例えば、光を基板に対して略垂直に伝送させることで、光信号についても電気信号と同様に三次元的な伝送をおこなう光伝送技術が検討されている。   In optical transmission technology using optical wiring, not only light is transmitted substantially parallel to the substrate, such as an optical waveguide formed on the surface of a circuit board, but for example, light is substantially transmitted to the substrate. An optical transmission technique that performs three-dimensional transmission of an optical signal in the same manner as an electrical signal by transmitting the signal vertically has been studied.

例えば、特許文献1には、光素子からの光を垂直方向に伝送させ、さらにその光の進路を変更させて光導波路に伝送させる光路変換体が開示されている。
特開2004−333922号公報
For example, Patent Document 1 discloses an optical path changer that transmits light from an optical element in a vertical direction and further changes the light path and transmits the light to an optical waveguide.
JP 2004-333922 A

光路変換体のコア部は、クラッド部のみと接触されているにすぎないため、コア部の密着性が低く、コア部が剥がれやすいなどの問題があった。   Since the core part of the optical path changer is only in contact with the clad part, there is a problem that the adhesion of the core part is low and the core part is easily peeled off.

例えば、特許文献1における光路変換体のコア部は、光導波路との接触面に設けられた、金属から構成される光反射膜に保持されている。しかし、樹脂から構成されるコア部と光反射膜との密着性が弱く、長期にわたり使用することで、光路変換体のコア部が、熱変化等により剥がれやすくなる傾向があった。   For example, the core portion of the optical path changer in Patent Document 1 is held by a light reflecting film made of metal provided on the contact surface with the optical waveguide. However, the adhesion between the core portion made of resin and the light reflecting film is weak, and the core portion of the optical path changer tends to be peeled off due to heat change or the like when used over a long period of time.

本発明は以上のような従来の技術における課題を解決すべく案出されたものであり、その目的は、コア部の密着性を向上させることで長期にわたり使用が可能であり、かつ、低損失な光路変換を可能にする光路変換体、およびそれを具備する光伝送基板を提供することである。   The present invention has been devised to solve the problems in the prior art as described above, and the purpose thereof is to improve the adhesion of the core part, and it can be used for a long period of time, and has low loss. It is an object to provide an optical path changer that makes it possible to perform an optical path change, and an optical transmission board including the same.

本発明は、光導波路の光の伝送方向を変換して外部へ導出する又は外部からの光の伝送方向を変換して前記光導波路に導入するための光路変換体であって、前記光導波路の内部に設けられ、光を伝送させる第1のコア部を有し、前記光導波路の光の伝送方向を別の伝送方向に変換する光路変換部と、前記光導波路上に突出するように設けられた突出部であって、前記光導波路の上面と密着可能な接触面を含み、前記第1のコア部と連続して設けられ、前記光路変換部によって別の伝送方向に変換された光を伝送させる第2のコア部を有する突出部と、を具備する光路変換体に関する。   The present invention relates to an optical path changer for converting the light transmission direction of an optical waveguide and leading it to the outside or converting the light transmission direction from the outside and introducing it into the optical waveguide. An optical path conversion unit that is provided inside and has a first core part that transmits light, converts the light transmission direction of the optical waveguide to another transmission direction, and is provided so as to protrude on the optical waveguide. A protruding portion that includes a contact surface that can be in close contact with the upper surface of the optical waveguide, is provided continuously with the first core portion, and transmits light that has been converted to another transmission direction by the optical path conversion unit. It is related with the optical path change body which comprises the protrusion part which has a 2nd core part to make.

前記光路変換部は、前記光導波路の光路に対して傾斜した斜面を有し、前記斜面上に光反射膜をさらに具備することが好ましい。   It is preferable that the optical path conversion unit has a slope inclined with respect to the optical path of the optical waveguide, and further includes a light reflection film on the slope.

また本発明は、前記光導波路を主面上に有する第1の基板と、はんだにより前記第1の基板と対向して接続され、両主面を貫通するように設けられた光伝送路を有する第2の基板と、を前記光路変換体と、を具備する光伝送基板に関する。   The present invention also includes a first substrate having the optical waveguide on a main surface, and an optical transmission path connected to the first substrate by soldering so as to penetrate both main surfaces. The present invention relates to an optical transmission board comprising a second board and the optical path changer.

前記第2の基板の主面のうち前記第1の基板と対向する主面上に、前記第1の基板に向かってせり出すように設けられ、前記光路変換体と前記光伝送路との間に介在してこれらを光学的に結合させる第2の光伝送路を有する段部をさらに具備することが好ましい。   The main surface of the second substrate is provided on the main surface facing the first substrate so as to protrude toward the first substrate, and between the optical path changer and the optical transmission path. It is preferable to further include a step portion having a second optical transmission line that interposes and optically couples them.

本発明によれば、光路変換体の突出部が、光導波路の上面と密着可能な接触面を含む第2のコア部を有することにより、第2のコア部の接触面と光導波路とが密着することで、コア部が光導波路に保持されて、コア部が光路変換体から光路変換体から剥がれにくくなる。よって、長期にわたる低損失な光路変換をおこなうことができる。   According to the present invention, the projecting portion of the optical path changer has the second core portion including the contact surface that can be in close contact with the upper surface of the optical waveguide, whereby the contact surface of the second core portion and the optical waveguide are in close contact with each other. By doing so, the core part is held by the optical waveguide, and the core part is not easily peeled from the optical path changer. Therefore, it is possible to perform optical path conversion with low loss over a long period of time.

光路変換部は光導波路の光路に対して傾斜した斜面を有し、斜面上に光反射膜をさらに具備することにより、光導波路からの光の大部分を光経路へ、又は光経路からの光の大部分を光導波路へ伝送し、高効率な光路変換をおこなうことができる。   The optical path conversion unit has an inclined surface that is inclined with respect to the optical path of the optical waveguide, and further includes a light reflecting film on the inclined surface, so that most of the light from the optical waveguide enters or leaves the optical path. Most of the light can be transmitted to the optical waveguide to perform highly efficient optical path conversion.

本発明の光伝送基板は、光導波路を主面上に有する第1の基板と、はんだにより第1の基板と対向して接続され、両主面を貫通するように設けられた光伝送路を有する第2の基板と、光路変換体と、を具備する。これにより、光路変換体の突出部が第1の基板と第2の基板との間の間隔を狭めるため、第1の基板と第2の基板との間における光の伝送損失の低減を抑え、第1の基板と第2の基板において低損失な光路変換を可能にする。また、光路変換体の突出部が第1の基板と第2の基板との間の間隔を狭めるため、はんだから出るフラックスが、第1の基板と第2の基板との間に浸入にくくする。さらに、接触面が光導波路の上面と密着していることで、フラックスによる光路変換部への浸入を抑制して、光導波路と光伝送路との高効率な光路変換をおこなうことができる。   An optical transmission board of the present invention includes a first board having an optical waveguide on a main surface, and an optical transmission path that is connected to the first board by soldering so as to penetrate both main surfaces. And a second substrate having an optical path changer. Thereby, since the protrusion part of the optical path changer narrows the interval between the first substrate and the second substrate, the reduction of the transmission loss of light between the first substrate and the second substrate is suppressed, A low-loss optical path conversion is enabled between the first substrate and the second substrate. In addition, since the protrusion of the optical path changer narrows the interval between the first substrate and the second substrate, the flux emitted from the solder is less likely to enter between the first substrate and the second substrate. Furthermore, since the contact surface is in close contact with the upper surface of the optical waveguide, it is possible to suppress the penetration of the flux into the optical path conversion unit and perform highly efficient optical path conversion between the optical waveguide and the optical transmission path.

第2の基板の主面上に、段部が設けられることにより、突出部と段部により第1の基板と第2の基板との間の間隔をさらに狭めることができるため、フラックスによる第1の基板と第2の基板との間への浸入を抑制して、光導波路と光伝送路との高効率な光路変換をおこなうことができる。また、段部と光路変換体とが近接しているため、基板間の光漏れを防ぎ、チャネル間のクロストークと損失を抑制することができる。   Since the step portion is provided on the main surface of the second substrate, the distance between the first substrate and the second substrate can be further narrowed by the protruding portion and the step portion. Intrusion between the second substrate and the second substrate can be suppressed, and highly efficient optical path conversion between the optical waveguide and the optical transmission path can be performed. Further, since the step portion and the optical path changer are close to each other, light leakage between the substrates can be prevented, and crosstalk and loss between channels can be suppressed.

図面にもとづいて、本発明の実施態様の光伝送基板について説明するが、それらの図面は実施形態の一例に過ぎず、本発明はそれらに限定されるものではない。   The optical transmission board according to the embodiment of the present invention will be described with reference to the drawings. However, the drawings are only examples of the embodiments, and the present invention is not limited to them.

図1は本発明の光路変換体と、光路変換体を設ける光導波路の一例を模式的に示す断面図である。1は光路変換体、2は光路変換部、3は突出部、31はコア部、31aは第1のコア部、32aは第2のコア部、32は接触面、33は斜面、34はクラッド部、4は光導波路、41は光導波路のコア部、42は光導波路のクラッド部、6は第1の基板を示す。   FIG. 1 is a cross-sectional view schematically showing an example of an optical path changer of the present invention and an optical waveguide provided with the optical path changer. DESCRIPTION OF SYMBOLS 1 is an optical path changer, 2 is an optical path change part, 3 is a protrusion part, 31 is a core part, 31a is a 1st core part, 32a is a 2nd core part, 32 is a contact surface, 33 is a slope, 34 is a clad Reference numeral 4 denotes an optical waveguide, 41 denotes a core part of the optical waveguide, 42 denotes a cladding part of the optical waveguide, and 6 denotes a first substrate.

図2(a)は本発明の光路変換体の一例を模式的に示す斜視図である。図2において、5は光反射膜を示す。図2(b)は、コア部41の光の伝送方向と同方向に沿って図2(a)の光路変換体1および光導波路4を切断した断面図である。   Fig.2 (a) is a perspective view which shows typically an example of the optical path change body of this invention. In FIG. 2, 5 indicates a light reflecting film. FIG. 2B is a cross-sectional view of the optical path changer 1 and the optical waveguide 4 of FIG. 2A cut along the same direction as the light transmission direction of the core portion 41.

図3は、本発明の光路変換体の接触面32の長さおよび高さの位置を模式的に示す断面図である。   FIG. 3 is a cross-sectional view schematically showing the position of the length and height of the contact surface 32 of the optical path changer of the present invention.

また、図4の(a)〜(h)は、本発明の光路変換体の製造工程を模式的に示す断面図である。図5の(e)〜(h)は、図4(e)〜(h)の光路変換体の製造工程を模式的に示す上面図である。   Moreover, (a)-(h) of FIG. 4 is sectional drawing which shows typically the manufacturing process of the optical path changing body of this invention. FIGS. 5E to 5H are top views schematically showing manufacturing steps of the optical path changer of FIGS. 4E to 4H.

さらに、図6において、8は第2の基板、81は第2の基板の貫通型光伝送路のコア部、82は第2の基板の貫通型光伝送路のクラッド部、9は光半導体素子、9Aは受発光部、10は段部、14は金属層、15ははんだボールを示す。   Further, in FIG. 6, 8 is a second substrate, 81 is a core portion of a through-type optical transmission path of the second substrate, 82 is a cladding portion of the through-type optical transmission path of the second substrate, and 9 is an optical semiconductor element. 9A is a light emitting / receiving unit, 10 is a stepped part, 14 is a metal layer, and 15 is a solder ball.

本発明の光路変換体1は、光路変換部2と突出部3とを具備する。以下、各構成について記載する。   The optical path changing body 1 of the present invention includes an optical path changing portion 2 and a protruding portion 3. Each configuration will be described below.

(光路変換部2)
光路変換部2は、光導波路4の内部に設けられ、光導波路4の光の伝送方向を別の伝送方向に変換する。
(Optical path conversion unit 2)
The optical path conversion unit 2 is provided inside the optical waveguide 4 and converts the light transmission direction of the optical waveguide 4 to another transmission direction.

光路変換部2は、光の伝送が可能な透明樹脂によって構成されており、材料として、光を照射すると屈折率が低下するフォトブリーチング現象を生じるポリシラン、あるいは光を照射した部分以外が現像により除去できる感光性の透明アクリル系樹脂、透明エポキシ樹脂等を挙げることができる。   The optical path conversion unit 2 is made of a transparent resin capable of transmitting light. As a material, polysilane that causes a photobleaching phenomenon in which a refractive index decreases when irradiated with light, or a portion other than a portion irradiated with light is developed. Examples thereof include a photosensitive transparent acrylic resin and a transparent epoxy resin that can be removed.

光路変換部2は、コア部(以下、第1のコア部31a)とクラッド部(不図示)とから構成される。第1のコア部31aはクラッド部よりも比屈折率差が1〜3%高く、第1のコア部内に光信号を閉じ込めて、低損失で光導波路のコア部41に伝搬することができる。   The optical path conversion unit 2 includes a core part (hereinafter, first core part 31a) and a clad part (not shown). The first core portion 31a has a relative refractive index difference of 1 to 3% higher than that of the cladding portion, and can confine an optical signal in the first core portion and propagate to the core portion 41 of the optical waveguide with low loss.

なお、光路変換部2を内部に設ける光導波路4も、光路変換部2と同様に光導波路のコア部41、光導波路のクラッド部42によって同軸構造に構成されている。光導波路の作製は一般的な方法により行われる。光導波路4の具体的な寸法としては、例えば、クラッド42の下部の厚みが15〜25μm、コア41の断面サイズが35〜100μm角、クラッド42の上部の厚みが15〜25μmである。   In addition, the optical waveguide 4 in which the optical path changing unit 2 is provided is also configured in a coaxial structure by the core part 41 of the optical waveguide and the clad part 42 of the optical waveguide, like the optical path changing unit 2. The optical waveguide is manufactured by a general method. Specific dimensions of the optical waveguide 4 include, for example, a lower thickness of the cladding 42 of 15 to 25 μm, a cross-sectional size of the core 41 of 35 to 100 μm square, and an upper thickness of the cladding 42 of 15 to 25 μm.

第1のコア部31aは、光導波路2のコア部41と対応するように設けられる。具体的には、光路変換部2とそれを設けた光導波路4を、上面から透視した場合、第1のコア部31aは光導波路2のコア部41と同一直線状に並ぶように設けられる。   The first core portion 31 a is provided so as to correspond to the core portion 41 of the optical waveguide 2. Specifically, when the optical path conversion unit 2 and the optical waveguide 4 provided with the optical path conversion unit 2 are seen through from above, the first core unit 31 a is provided so as to be aligned with the core unit 41 of the optical waveguide 2.

光路変換部2は、光導波路4の光路に対して傾斜した斜面33を有する。斜面3は、光導波路2の光軸方向に対して傾斜している。例えば光軸方向に対して45度に傾斜する斜面33によって光の光路方向を90度変換し、光路を変更させる。斜面33は、例えば略45度の断面を持つダイシングブレードにより作製される。   The optical path conversion unit 2 has an inclined surface 33 that is inclined with respect to the optical path of the optical waveguide 4. The inclined surface 3 is inclined with respect to the optical axis direction of the optical waveguide 2. For example, the light path direction is changed 90 degrees by the inclined surface 33 inclined at 45 degrees with respect to the optical axis direction, and the light path is changed. The slope 33 is produced by a dicing blade having a cross section of approximately 45 degrees, for example.

斜面33上には光反射膜5がさらに設けられる(図2(b)参照)。光反射膜5は、具体的には、斜面33に、例えば、金、銀、銅、アルミニウム、ニッケルなどの金属を、薄く膜付け又は塗布されることにより設けられる。   A light reflecting film 5 is further provided on the inclined surface 33 (see FIG. 2B). Specifically, the light reflecting film 5 is provided on the inclined surface 33 by, for example, thinly coating or applying a metal such as gold, silver, copper, aluminum, or nickel.

(突出部3)
突出部3は、図1および2に示すように、光導波路4の主面上に突出するように設けられる。突出部3の厚みは1〜200μmである。
(Protrusion 3)
As shown in FIGS. 1 and 2, the protruding portion 3 is provided so as to protrude on the main surface of the optical waveguide 4. The thickness of the protrusion part 3 is 1-200 micrometers.

得られた突出部3は、光導波路4から突出しているため視認性が良く外部の部品を実装する際にマーカとしての役割を果たす。また、フォトプロセスによって高精度に形成されている場合には、突出部3は嵌合部品としての役割も果たし、実装位置決めを行う事が出来るので調芯を行うこと無く高効率な光伝送を可能とする。また、実装時に光学経路間の距離を短縮することも可能であり、光学損失を低減させる事が出来る。凸部の高さが十分にある場合には光学部品間を結合させることも可能である。   Since the obtained protruding portion 3 protrudes from the optical waveguide 4, it has good visibility and serves as a marker when mounting external components. In addition, when formed with high accuracy by a photo process, the projecting portion 3 also serves as a fitting part and can perform mounting positioning, thus enabling highly efficient light transmission without alignment. And Further, the distance between the optical paths can be shortened at the time of mounting, and the optical loss can be reduced. When the height of the convex portion is sufficient, it is possible to couple the optical components.

突出部3は、第2のコア部31bを有する。第2のコア部31bは光路変換部2によって別の伝送方向に変換された光と光学的に結合する。第2のコア部31bは、光路変換部2と同様に光の伝送が可能な透明樹脂によって構成されている。材料は光路変換部2と同様のものから構成される。第2のコア部31bは突出部3の屈折率分布のうち、屈折率の高い部位をいう。突出部3のうち第2のコア部31b以外の部位は、第2のコア部31bの屈折率よりも低い屈折率を有する突出部3のクラッド部34となる。図1および図2(b)においては、コア部31以外の部位は突出部のクラッド部34である。   The protrusion part 3 has the 2nd core part 31b. The second core unit 31b is optically coupled with the light converted into another transmission direction by the optical path conversion unit 2. The second core portion 31b is made of a transparent resin capable of transmitting light in the same manner as the optical path changing portion 2. The material is the same as that of the optical path changing unit 2. The second core portion 31 b refers to a portion having a high refractive index in the refractive index distribution of the protruding portion 3. A portion other than the second core portion 31b in the protruding portion 3 becomes the cladding portion 34 of the protruding portion 3 having a refractive index lower than that of the second core portion 31b. In FIG. 1 and FIG. 2 (b), the portion other than the core portion 31 is a clad portion 34 of a protruding portion.

なお、第2のコア部31bは、光伝送方向に対する断面が円形を有し、その直径は約35〜100μmである。   The second core portion 31b has a circular cross section with respect to the optical transmission direction, and its diameter is about 35 to 100 μm.

第2のコア部31bは、第1のコア部31aおよび光導波路2のコア部41と対応するように設けられる。具体的には、光路変換体1とそれを設けた光導波路4を、上面から透視した場合、第2のコア部31bは第1のコア部31aと光導波路2のコア部41とが同一直線状に並ぶように設けられる。   The second core portion 31 b is provided so as to correspond to the first core portion 31 a and the core portion 41 of the optical waveguide 2. Specifically, when the optical path changer 1 and the optical waveguide 4 provided with the optical path changer 1 are seen through from above, the second core portion 31b has the same straight line as the first core portion 31a and the core portion 41 of the optical waveguide 2. Are arranged in a line.

光導波路4内にコア部41が複数設けられている場合、第2のコア部31bは、図2に示すように、光路変換体1の突出部3内において、それぞれのコア部41に対応して複数設けられる。これにより、後述する接触面32の面積が増加して、光導波路4と接触面32との間で強い密着性が得られる。   When a plurality of core portions 41 are provided in the optical waveguide 4, the second core portion 31 b corresponds to each core portion 41 in the protruding portion 3 of the optical path changing body 1 as shown in FIG. 2. Are provided. Thereby, the area of the contact surface 32 which will be described later increases, and strong adhesion is obtained between the optical waveguide 4 and the contact surface 32.

突出部3において第2のコア部31bは、接触面32を有する。接触面32とは、第2のコア部31において光導波路4の上面と接している部位をいう。接触面32は、例えば、フォトリソグラフィによって光導波路4上に設けられる。接触面32と光導波路4とが、密着することで、接触面32が、光導波路4に光路変換体1を保持するために、長期にわたり使用しても、光導波路4から光路変換体1が剥がれにくくなり、低損失な光路変換をおこなうことができる。とくに、突出部3と光導波路4とが共にエポキシ樹脂の場合は、突出部3の接触面32と光導波路4とを分子レベルで水素結合することができ、接触面32と光導波路4との密着性を向上させることができる。   In the protruding portion 3, the second core portion 31 b has a contact surface 32. The contact surface 32 refers to a portion in contact with the upper surface of the optical waveguide 4 in the second core portion 31. The contact surface 32 is provided on the optical waveguide 4 by, for example, photolithography. The contact surface 32 and the optical waveguide 4 are in close contact so that the contact surface 32 holds the optical path conversion body 1 in the optical waveguide 4. It is difficult to peel off, and low-loss optical path conversion can be performed. In particular, when both the protrusion 3 and the optical waveguide 4 are made of epoxy resin, the contact surface 32 of the protrusion 3 and the optical waveguide 4 can be hydrogen-bonded at the molecular level. Adhesion can be improved.

接触面32の材料として、光を照射すると屈折率が低下するフォトブリーチング現象を生じるポリシラン、あるいは光を照射した部分以外が現像により除去できる感光性の透明アクリル系樹脂、透明エポキシ樹脂等を挙げることができる。   Examples of the material for the contact surface 32 include polysilane that causes a photobleaching phenomenon in which the refractive index decreases when irradiated with light, or a photosensitive transparent acrylic resin, transparent epoxy resin, or the like that can be removed by development other than the irradiated portion. be able to.

接触面32と光導波路4とはともに同種の樹脂であることが好ましく、ともに、エポキシ樹脂であることがより好ましい。接触面32と光導波路4とがともにエポキシ樹脂であることにより、接触面32と光導波路4との間に互いに水素結合が生じるため、接触面32と光導波路4との強い密着性が得られる。   Both the contact surface 32 and the optical waveguide 4 are preferably the same type of resin, and more preferably both are epoxy resins. Since both the contact surface 32 and the optical waveguide 4 are made of epoxy resin, a hydrogen bond is generated between the contact surface 32 and the optical waveguide 4, so that strong adhesion between the contact surface 32 and the optical waveguide 4 can be obtained. .

ここで、図3において、光路変換体1における接触面32の長さAおよびB、ならびに光路変換部2の高さCを示す。なお、長さAは光路変換部2の斜面33側の接触面32の長さを、また、長さBは光路変換部2の垂直面側の接触面32の長さをそれぞれ示す。   Here, in FIG. 3, the lengths A and B of the contact surface 32 in the optical path changer 1 and the height C of the optical path changer 2 are shown. The length A indicates the length of the contact surface 32 on the inclined surface 33 side of the optical path conversion unit 2, and the length B indicates the length of the contact surface 32 on the vertical surface side of the optical path conversion unit 2.

長さAは10〜1000μmである。また、長さBは10〜1000μmである。高さCは10〜300μmである。   The length A is 10 to 1000 μm. The length B is 10 to 1000 μm. The height C is 10 to 300 μm.

ここで、長さAと長さBは互いに等しいことが好ましい。これを満たすことにより、膨張による応力の緩和より光路変換体1のコア部31の剥がれを抑制することができる。   Here, the length A and the length B are preferably equal to each other. By satisfying this, peeling of the core portion 31 of the optical path changing body 1 can be suppressed from relaxation of stress due to expansion.

また、光路変換部2の高さCと長さAとの関係は、A=B>Cであることが好ましい。これを満たすことにより、膨張による応力の緩和により光路変換体1のコア部31の剥がれを抑制することができる
以下に、本発明の光路変換体1とそれを設けるための光導波路4の製造方法について図4および図5をもとにして説明する。
Further, the relationship between the height C and the length A of the optical path conversion unit 2 is preferably A = B> C. By satisfying this, peeling of the core part 31 of the optical path changer 1 can be suppressed by relaxation of stress due to expansion. Hereinafter, the optical path changer 1 of the present invention and the method of manufacturing the optical waveguide 4 for providing the same Will be described with reference to FIGS.

例えば、紫外線硬化型のアクリル系樹脂またはエポキシ系樹脂等の感光性ポリマー樹脂を用いて、第1の基板6の上面に低屈折率の感光性ポリマー樹脂を塗布し、加熱硬化させた後、フォトマスクを介して紫外光を照射して現像を行うことにより紫外光未照射部の樹脂を除去し、クラッド部42の下部を形成する。   For example, a photosensitive polymer resin such as an ultraviolet curable acrylic resin or an epoxy resin is used to apply a low refractive index photosensitive polymer resin to the upper surface of the first substrate 6, heat cure, Development is performed by irradiating with ultraviolet light through a mask, thereby removing the resin in the non-irradiated part of the ultraviolet light and forming the lower part of the cladding part 42.

さらに、クラッド部42の下部の上に、高屈折率でクラッド部42よりも屈折率の高い感光性ポリマー材料を塗布し、加熱硬化させた後、フォトマスクを介して紫外光を照射して現像を行った後に紫外光未照射部の樹脂を除去しコア部41を形成する。その後にコア部41上に屈折率の低い材料を塗布し、フォトマスクを介して紫外光を照射して現像、ポストベークを行うことにより、コア部の周囲にクラッド部42を形成し、光導波路4を形成する(図4(a))。   Further, a photosensitive polymer material having a high refractive index and a refractive index higher than that of the clad portion 42 is applied on the lower portion of the clad portion 42, heat-cured, and then developed by irradiation with ultraviolet light through a photomask. After performing the above, the resin in the portion not irradiated with ultraviolet light is removed to form the core portion 41. Thereafter, a material having a low refractive index is applied onto the core portion 41, and development and post-baking are performed by irradiating ultraviolet light through a photomask, thereby forming a cladding portion 42 around the core portion. 4 is formed (FIG. 4A).

次に、光導波路4に対して、型押し、エッチング、ダイシング、レーザ加工等によって45°光路変換面を形成するための溝を作製する(図4(b))。   Next, a groove for forming a 45 ° optical path conversion surface is formed in the optical waveguide 4 by stamping, etching, dicing, laser processing, or the like (FIG. 4B).

さらに作製した溝の上に金属または低屈折率体を設けることによって光反射膜5を作製する(図4(c)。光反射膜3に形成する金属としては、金(Au),銀(Ag),白金(Pt),アルミニウム(Al),銅(Cu)等の様に反射率の高い材料またはコア部41よりも低い屈折率の低い材料の低屈折率体が望ましい。具体的には金属を蒸着する事によって光反射膜5を得る。   Further, a light reflecting film 5 is produced by providing a metal or a low refractive index material on the produced groove (FIG. 4C) .As a metal to be formed on the light reflecting film 3, gold (Au), silver (Ag) ), Platinum (Pt), aluminum (Al), copper (Cu), or the like, or a low-refractive index body made of a material having a high reflectance or a material having a lower refractive index than that of the core portion 41. Specifically, a metal. The light reflecting film 5 is obtained by evaporating.

光導波路4の光反射膜5以外に付着した金属を除去する為に、余分な金属をダイシングする(図4(d))。   In order to remove the metal adhering to the portion other than the light reflection film 5 of the optical waveguide 4, excess metal is diced (FIG. 4D).

さらに、光導波路4の上から、高屈折率の感光性ポリマー材料を塗布する(図4(e)および図5(e))。   Further, a photosensitive polymer material having a high refractive index is applied from above the optical waveguide 4 (FIG. 4 (e) and FIG. 5 (e)).

加熱硬化させた後、フォトマスクを介して紫外光を照射した後に現像を行うことにより紫外光未照射部の樹脂を除去し、第1のコア部31aおよび第2のコア部31bを形成する(図4(f)および図5(f))。   After heat-curing, development is performed after irradiating ultraviolet light through a photomask to remove the resin in the non-irradiated part of the ultraviolet light, thereby forming the first core part 31a and the second core part 31b ( FIG. 4 (f) and FIG. 5 (f)).

また、低屈折率の感光性ポリマー材料を塗布し、加熱硬化させる(図4(g)および図5(g))。その後、フォトマスクを介して紫外光を照射した後に現像を行うことにより、紫外光未照射部の樹脂を除去し、光路変換部2のクラッド部と突出部3のクラッド部34とを形成する(図4(h)および図5(h))。   Further, a photosensitive polymer material having a low refractive index is applied and heated and cured (FIGS. 4G and 5G). Thereafter, development is performed after irradiating ultraviolet light through a photomask to remove the resin in the non-irradiated part of the ultraviolet light, thereby forming the clad part of the optical path changing part 2 and the clad part 34 of the protruding part 3 ( FIG. 4 (h) and FIG. 5 (h)).

以上の方法により光路変換体1を作製することができる。   The optical path changer 1 can be produced by the above method.

図6は、本発明の光伝送基板の一例を模式的に示す断面図である。   FIG. 6 is a cross-sectional view schematically showing an example of the optical transmission board of the present invention.

図6には、第1の基板6と第2の基板8とが積層されて光接続された光伝送基板を示している。この光伝送基板の第2の基板8上には光半導体素子9が設けられており、光半導体素子9の下部には受発光部9Aが設けられている。また、第1の基板6上に光路変換体1が設けられている。そして、光半導体素子9の受発光部9Aと光路変換体1とは光学的に結合している。第2の基板8には、光半導体素子9受発光部9Aと光路変換体1との光学的な結合を満足させるために、第2の基板8を貫通するように貫通型光伝送路が設けられている。この貫通型光伝送路は、コア部81とクラッド部82とから構成される。なお、貫通型光伝送路は、光伝送方向に対する断面が円形を有し、その直径は100〜200μmであり、コア部81の直径は35〜100μmである。   FIG. 6 shows an optical transmission substrate in which the first substrate 6 and the second substrate 8 are stacked and optically connected. An optical semiconductor element 9 is provided on the second substrate 8 of the optical transmission substrate, and a light emitting / receiving unit 9A is provided below the optical semiconductor element 9. Further, the optical path changing body 1 is provided on the first substrate 6. The light emitting / receiving unit 9A of the optical semiconductor element 9 and the optical path changer 1 are optically coupled. The second substrate 8 is provided with a through-type optical transmission path so as to penetrate the second substrate 8 in order to satisfy the optical coupling between the optical semiconductor element 9 light receiving / emitting unit 9A and the optical path changer 1. It has been. This penetrating optical transmission line includes a core part 81 and a clad part 82. The through-type optical transmission line has a circular cross section with respect to the optical transmission direction, the diameter is 100 to 200 μm, and the core portion 81 has a diameter of 35 to 100 μm.

また、第1の基板6と第2の基板8とは、はんだボール15などにより電気的に接続している。なお、第1の基板6と第2の基板8の間には、はんだボール15によって、約1〜1000μmの間隔が存在する。   Further, the first substrate 6 and the second substrate 8 are electrically connected by solder balls 15 or the like. Note that an interval of about 1 to 1000 μm exists between the first substrate 6 and the second substrate 8 due to the solder balls 15.

はんだボールには主に有機系溶剤によるフラックスが含まれており、加熱によって拡散する。はんだボールの垂直方向高さ分だけ第1の基板6と第2の基板8とが離れてしまい、第1の基板6と第2の基板8のそれぞれ互いに向かい合う面上にフラックスが付着する傾向がある。一般的にフラックスは無色透明であるが、反応で白濁したり、経時変化で茶褐色に変色するため、光伝送路の露出面に付着することは光損失を生じさせる傾向があり、基板間の光接続の実現が困難な場合があった。   Solder balls mainly contain a flux due to an organic solvent and diffuse by heating. The first substrate 6 and the second substrate 8 are separated from each other by the vertical height of the solder ball, and the flux tends to adhere to the surfaces of the first substrate 6 and the second substrate 8 that face each other. is there. In general, the flux is colorless and transparent, but it becomes cloudy by reaction or turns brown with time, so adhering to the exposed surface of the optical transmission line tends to cause light loss, and light between the substrates. In some cases, it was difficult to realize the connection.

本実施態様では、図6に示すように、第1の基板6に段部10を設け、第2の基板8上の光路変換体1とともに、第1の基板6と第2の基板8との間の隙間を塞ぐようにすることで、フラックスが、第1の基板6および第2の基板8の露出面を覆う可能性を低減させ、光の伝搬性能の低減を抑制することができる。   In this embodiment, as shown in FIG. 6, a step portion 10 is provided on the first substrate 6, and together with the optical path changer 1 on the second substrate 8, the first substrate 6 and the second substrate 8 By closing the gap between them, the possibility that the flux covers the exposed surfaces of the first substrate 6 and the second substrate 8 can be reduced, and the reduction of the light propagation performance can be suppressed.

なお、段部10としては厚さ0.3〜0.5mmが好ましい。段部10は、エポキシ樹脂のような樹脂から構成される。   The step portion 10 preferably has a thickness of 0.3 to 0.5 mm. The step part 10 is comprised from resin like an epoxy resin.

段部10は、フォトリソグラフィにより形成することもできる。第1の基板6に対して、必要な厚みの感光性樹脂を塗布し、露光・現像によりパターニングを行う。これにより、段部10となる部分以外の余分な感光性樹脂は現像により除去される。   The step portion 10 can also be formed by photolithography. A photosensitive resin having a required thickness is applied to the first substrate 6 and patterned by exposure and development. Thereby, excess photosensitive resin other than the part which becomes the step part 10 is removed by development.

段部10を設ける場合、第1の基板6に設けられた貫通型光伝送路は段部10にまで延長して設けられる。これにより、段部10内にも光信号を伝送させることができる。   When the step portion 10 is provided, the penetrating optical transmission line provided on the first substrate 6 is provided to extend to the step portion 10. Thereby, an optical signal can be transmitted also in the step part 10.

本発明の光路変換体の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the optical path change body of this invention. (a)は本発明の光路変換体の一例を模式的に示す斜視図、(b)は(a)のコア部41およびコア部31に沿って光路変換体1および光導波路4を切断した断面図である。(A) is a perspective view which shows typically an example of the optical path changer of this invention, (b) is the cross section which cut | disconnected the optical path changer 1 and the optical waveguide 4 along the core part 41 and the core part 31 of (a) FIG. 本発明の光路変換体の接触面32の長さおよび高さの位置を模式的に示す断面図である。It is sectional drawing which shows typically the position of the length and the height of the contact surface 32 of the optical path changing body of this invention. (a)〜(h)は、本発明の光路変換体の製造工程を模式的に示す断面図である。(A)-(h) is sectional drawing which shows typically the manufacturing process of the optical path changing body of this invention. (e)〜(h)は、図3(e)〜(h)の光路変換体の製造工程を模式的に示す上面図である。(E)-(h) is a top view which shows typically the manufacturing process of the optical path change body of FIG.3 (e)-(h). 本発明の光伝送基板の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the optical transmission board | substrate of this invention.

符号の説明Explanation of symbols

1 光路変換体
2 光路変換部
3 突出部
31 コア部
31a 第1のコア部
31b 第2のコア部
32 接触面
33 斜面
34 突出部のクラッド部
4 光導波路
41 光導波路のコア部
42 光導波路のクラッド部
5 光反射膜
6 第1の基板
8 第2の基板
81 第2の基板の貫通型光伝送路のコア部
82 第2の基板の貫通型光伝送路のクラッド部
9 光半導体素子
9A 光半導体素子9の受発光部
10 段部
14 金属層
15 はんだボール
A 光路変換部2の斜面33側の接触面32の長さ
B 光路変換部2の垂直面側の接触面32の長さ
C 光路変換部の高さ
DESCRIPTION OF SYMBOLS 1 Optical path conversion body 2 Optical path conversion part 3 Protrusion part 31 Core part 31a 1st core part 31b 2nd core part 32 Contact surface 33 Inclination 34 The clad part 4 of a protrusion part Optical waveguide 41 The core part 42 of an optical waveguide 42 Cladding portion 5 Light reflecting film 6 First substrate 8 Second substrate 81 Core portion 82 of penetrating optical transmission path of second substrate Cladding portion 9 of penetrating optical transmission path of second substrate 9 Optical semiconductor element 9A Light Light receiving / emitting part 10 of semiconductor element 9 Step part 14 Metal layer 15 Solder ball A Length B of contact surface 32 on the slope 33 side of optical path conversion part 2 Length C of contact surface 32 on the vertical surface side of optical path conversion part 2 Optical path Height of conversion part

Claims (4)

光導波路の光の伝送方向を変換して外部へ導出する又は外部からの光の伝送方向を変換して前記光導波路に導入するための光路変換体であって、
前記光導波路の内部に設けられ、光を伝送させる第1のコア部を有し、前記光導波路の光の伝送方向を別の伝送方向に変換する光路変換部と、
前記光導波路上に突出するように設けられた突出部であって、前記光導波路の上面と密着可能な接触面を含み、前記第1のコア部と連続して設けられ、前記光路変換部によって別の伝送方向に変換された光を伝送させる第2のコア部を有する突出部と、
を具備する光路変換体。
An optical path changer for converting the light transmission direction of the optical waveguide to be derived outside or converting the light transmission direction from the outside and introducing it into the optical waveguide,
An optical path conversion unit that is provided inside the optical waveguide, has a first core part that transmits light, and converts the transmission direction of the light of the optical waveguide to another transmission direction;
A projecting portion provided to project on the optical waveguide, including a contact surface capable of being in close contact with the upper surface of the optical waveguide, provided continuously with the first core portion, by the optical path changing unit; A protrusion having a second core for transmitting light converted in another transmission direction;
An optical path changer comprising:
前記光路変換部が、前記光導波路の光路に対して傾斜した斜面を有し、前記斜面上に光反射膜をさらに具備する請求項1記載の光路変換体。   The optical path conversion body according to claim 1, wherein the optical path conversion unit has a slope inclined with respect to the optical path of the optical waveguide, and further includes a light reflection film on the slope. 光導波路を主面上に有する第1の基板と、
はんだにより前記第1の基板と対向して接続され、両主面を貫通するように設けられた光伝送路を有する第2の基板と、
請求項1または2記載の光路変換体と、
を具備する光伝送基板。
A first substrate having an optical waveguide on a main surface;
A second substrate having an optical transmission line connected to the first substrate by solder and provided so as to penetrate both main surfaces;
The optical path changer according to claim 1 or 2,
An optical transmission board comprising:
前記第2の基板の主面のうち前記第1の基板と対向する主面上に、前記第1の基板に向かってせり出すように設けられ、前記光路変換体と前記光伝送路との間に介在してこれらを光学的に結合させる第2の光伝送路を有する段部をさらに具備する請求項3記載の光伝送基板。   The main surface of the second substrate is provided on the main surface facing the first substrate so as to protrude toward the first substrate, and between the optical path changer and the optical transmission path. 4. The optical transmission board according to claim 3, further comprising a step portion having a second optical transmission line that interposes and optically couples them.
JP2008251714A 2008-09-29 2008-09-29 Optical path changer and optical transmission board having the same Expired - Fee Related JP5300396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251714A JP5300396B2 (en) 2008-09-29 2008-09-29 Optical path changer and optical transmission board having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251714A JP5300396B2 (en) 2008-09-29 2008-09-29 Optical path changer and optical transmission board having the same

Publications (2)

Publication Number Publication Date
JP2010085476A true JP2010085476A (en) 2010-04-15
JP5300396B2 JP5300396B2 (en) 2013-09-25

Family

ID=42249525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251714A Expired - Fee Related JP5300396B2 (en) 2008-09-29 2008-09-29 Optical path changer and optical transmission board having the same

Country Status (1)

Country Link
JP (1) JP5300396B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021170110A (en) * 2020-04-15 2021-10-28 ヒロセ電機株式会社 Multimode waveguide system and connector for photonic integrated circuit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070142A (en) * 2003-08-28 2005-03-17 Ngk Spark Plug Co Ltd Optical waveguide structure with optical path conversion component, optical path conversion component, and manufacturing method of optical path conversion component
JP2006010927A (en) * 2004-06-24 2006-01-12 Seiko Epson Corp Optical module substrate, its manufacturing method, optical module, and electronic equipment
JP2008158388A (en) * 2006-12-26 2008-07-10 Kyocera Corp Opto-electrical circuit board, optical module, and opto-electrical circuit system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005070142A (en) * 2003-08-28 2005-03-17 Ngk Spark Plug Co Ltd Optical waveguide structure with optical path conversion component, optical path conversion component, and manufacturing method of optical path conversion component
JP2006010927A (en) * 2004-06-24 2006-01-12 Seiko Epson Corp Optical module substrate, its manufacturing method, optical module, and electronic equipment
JP2008158388A (en) * 2006-12-26 2008-07-10 Kyocera Corp Opto-electrical circuit board, optical module, and opto-electrical circuit system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021170110A (en) * 2020-04-15 2021-10-28 ヒロセ電機株式会社 Multimode waveguide system and connector for photonic integrated circuit
JP7436416B2 (en) 2020-04-15 2024-02-21 ヒロセ電機株式会社 Multimode waveguide systems and connectors for optical integrated circuits

Also Published As

Publication number Publication date
JP5300396B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
KR100720854B1 (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
JP5877749B2 (en) Manufacturing method of opto-electric hybrid board
JP2009175418A (en) Opto-electronic printed wiring board and manufacturing method of same
JP2010243770A (en) Method of manufacturing opto-electric hybrid module and opto-electric hybrid module obtained thereby
JP2010128200A (en) Opto-electric hybrid board and method of manufacturing the same
JP2009251033A (en) Method of manufacturing optical waveguide, optical waveguide and optical transmitter/receiver
JP2012208306A (en) Optoelectric hybrid substrate and manufacturing method thereof
JP2010107558A (en) Manufacturing method of optoelectrical hybrid module and optoelectrical hybrid module obtained by the method
KR20090110225A (en) Optical waveguide module manufacturing method
US20050213872A1 (en) Optical waveguide interconnection board, method of manufacturing the same, precursor for use in manufacturing optical waveguide interconnection board, and photoelectric multifunction board
JP5495896B2 (en) Manufacturing method of optoelectric wiring board
JP5328095B2 (en) Optical transmission board, opto-electronic hybrid board, optical module, and optoelectric circuit system
JP5230324B2 (en) OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD
JP2008158388A (en) Opto-electrical circuit board, optical module, and opto-electrical circuit system
JP5300396B2 (en) Optical path changer and optical transmission board having the same
US7865052B2 (en) Optical waveguide having an optical transmission direction changing part
JP5349192B2 (en) Optical wiring structure and optical module having the same
JP2009145817A (en) Optical substrate and its manufacturing method
JP2007086367A (en) Optical pin, optical pin connector and optical path conversion module
JP2011095385A (en) Method for manufacturing photoelectric wire wiring board and photoelectric wire wiring board
JP2008164943A (en) Multichannel optical path conversion element and its manufacturing method
JP4339198B2 (en) Manufacturing method of optical module
JP2012088634A (en) Optical waveguide device and method for manufacturing the same
JP2009098485A (en) Device with adhered mirror for converting optical path and method of manufacturing the same
JP2008275770A (en) Optical path conversion body, optical path conversion structure, composite optical transmission substrate, and optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130618

R150 Certificate of patent or registration of utility model

Ref document number: 5300396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees