JP2010085438A - Optical transmission substrate, optical module, and method of manufacturing optical transmission substrate - Google Patents

Optical transmission substrate, optical module, and method of manufacturing optical transmission substrate Download PDF

Info

Publication number
JP2010085438A
JP2010085438A JP2008251194A JP2008251194A JP2010085438A JP 2010085438 A JP2010085438 A JP 2010085438A JP 2008251194 A JP2008251194 A JP 2008251194A JP 2008251194 A JP2008251194 A JP 2008251194A JP 2010085438 A JP2010085438 A JP 2010085438A
Authority
JP
Japan
Prior art keywords
optical transmission
optical
substrate
main surface
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008251194A
Other languages
Japanese (ja)
Other versions
JP5230324B2 (en
Inventor
Keiko Oda
恵子 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008251194A priority Critical patent/JP5230324B2/en
Publication of JP2010085438A publication Critical patent/JP2010085438A/en
Application granted granted Critical
Publication of JP5230324B2 publication Critical patent/JP5230324B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmission substrate which is usable over a long period of time, and also capable of achieving optical transmission with low loss, and to provide an optical module. <P>SOLUTION: The optical transmission substrate includes: a substrate 1 including a first main surface 11 and a second main surface 12; and an optical transmission path. The optical transmission path includes: an optical transmission part 2 disposed extending from the first main surface to the second main surface so that it may open in the first main surface of the substrate 1; and a protrusion part 3 disposed protrusively on the second main surface 12 of the substrate 1, having an optical path 31 optically coupled with the optical transmission part 2 and an edge portion 33 tightly coming in contact with the upper surface of the substrate 1. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光信号を行うための光伝送基板およびこれを備える光モジュールに関する。   The present invention relates to an optical transmission board for performing optical signals and an optical module including the same.

近年、コンピュータの情報処理能力の向上化にともなって、マイクロプロセッサとして使用される半導体大規模集積回路素子(LSI,VLSI)等の集積回路(IC)では、トランジスタの集積度が高められており、ICの動作速度は、クロック周波数でGHzのレベルまで達している。それに伴い、電気素子間を電気的に接続する電気配線についても高密度化および微細化されたものが要求されていた。   In recent years, with the improvement of information processing capability of computers, in an integrated circuit (IC) such as a semiconductor large scale integrated circuit element (LSI, VLSI) used as a microprocessor, the degree of integration of transistors has been increased. The operating speed of the IC has reached the GHz level at the clock frequency. Along with this, there has been a demand for higher density and finer electrical wiring for electrically connecting electrical elements.

しかしながら、電気配線の高密度化および微細化は、電気信号のクロストークおよび伝搬損失が生じやすい。このことから、半導体素子に入出力される電気信号を光信号に変換し、さらに、その光信号を実装基板に形成した光導波路などの光配線によって伝送される光伝送技術が検討されている。   However, increasing the density and miniaturization of electrical wiring tends to cause crosstalk and propagation loss of electrical signals. For this reason, an optical transmission technique in which an electrical signal inputted to and outputted from a semiconductor element is converted into an optical signal, and the optical signal is transmitted through an optical wiring such as an optical waveguide formed on a mounting substrate has been studied.

光配線を用いた光伝送技術においては、回路基板の表面などに形成される光導波路のように、光を基板に対して略平行に伝送させるだけでなく、例えば、光を基板に対して略垂直に伝送させることで、光信号についても電気信号と同様に三次元的な伝送をおこなう光伝送技術が検討されている。   In optical transmission technology using optical wiring, not only light is transmitted substantially parallel to the substrate, such as an optical waveguide formed on the surface of a circuit board, but for example, light is substantially transmitted to the substrate. An optical transmission technique that performs three-dimensional transmission of an optical signal in the same manner as an electrical signal by transmitting the signal vertically has been studied.

例えば、特許文献1には、光導波路と光半導体素子との間に、光導波路内に埋め込まれた基板厚み方向の光伝送部が開示されている。
特開2004−333922号公報
For example, Patent Document 1 discloses an optical transmission unit in the substrate thickness direction embedded in an optical waveguide between the optical waveguide and the optical semiconductor element.
JP 2004-333922 A

しかしながら、特許文献1に開示された技術では、何層にも積層させながら形成されていることから、長期にわたり使用することで、光伝導波路から光伝送部が剥がれやすくなる傾向があった。また、スピンコートで塗布されるため厚み方向の制限が厳しく、自由に厚みを厚くすることができないといった問題があった。   However, since the technique disclosed in Patent Document 1 is formed by laminating a number of layers, there is a tendency that the optical transmission unit is easily peeled off from the photoconductive waveguide when used for a long period of time. Moreover, since it is applied by spin coating, there is a problem that the thickness direction is severely restricted and the thickness cannot be increased freely.

本発明は以上のような従来の技術における課題を解決すべく案出されたものであり、その目的は、長期にわたり使用が可能であり、かつ、自由な厚みで低損失な光伝送を可能にする光伝送基板および光モジュールを提供することである。   The present invention has been devised to solve the above-described problems in the prior art, and its purpose is to enable long-term use and to enable low-loss optical transmission with a free thickness. An optical transmission board and an optical module are provided.

本発明は、第1の主面と第2の主面とを有する基板と、前記基板の前記第1の主面で開口するように前記第1の主面から前記第2の主面まで設けられた光伝送部と、前記基板の第2の主面上に突出するように設けられ、前記光伝送部と光学的に結合する光経路と前記基板の上面に密着可能な縁部とを備える突出部と、を有する光伝送路と、を具備する光伝送基板に関する。   The present invention provides a substrate having a first main surface and a second main surface, and the first main surface to the second main surface so as to open at the first main surface of the substrate. And an optical path optically coupled to the optical transmission unit and an edge that can be in close contact with the upper surface of the substrate. The present invention relates to an optical transmission board having an optical transmission line having a protrusion.

前記基板および前記光伝送路がともにエポキシ系材料から構成されることが好ましい。   It is preferable that both the substrate and the optical transmission line are made of an epoxy material.

前記突出部は、前記光経路の周囲に設けられ、前記光経路よりも屈折率の低い突出部のクラッド部をさらに備えることが好ましい。   It is preferable that the protrusion is further provided with a clad portion of a protrusion provided around the optical path and having a refractive index lower than that of the optical path.

前記光伝送部は、コア部と、前記コア部の周囲に設けられ、前記コア部よりも屈折率の低い光伝送部のクラッド部と、を有し、前記光伝送部のコア部の屈折率と前記光経路の屈折率とが同じであることが好ましい。   The optical transmission part includes a core part and a cladding part of the optical transmission part provided around the core part and having a refractive index lower than that of the core part, and the refractive index of the core part of the optical transmission part And the refractive index of the optical path are preferably the same.

本発明は、前記光伝送基板と、前記第2の主面上に実装され、前記突出部の上方に位置し、前記光伝送路と光学的に結合する光半導体素子と、を具備する光モジュールに関する。   The present invention provides an optical module comprising: the optical transmission board; and an optical semiconductor element mounted on the second main surface and positioned above the protrusion and optically coupled to the optical transmission path. About.

本発明は、基板に第1の貫通孔を形成する工程Aと、前記基板の一方の主面上に溢れるように前記貫通孔に第1の感光性樹脂を充填したのち、前記第1の感光性樹脂を硬化させて、光伝送部のクラッド部と突出部のクラッド部とを形成する工程Bと、前記光伝送部のクラッド部と前記突出部のクラッド部に、第2の貫通孔を形成する工程Cと、前記第2の貫通孔内に第2の感光性樹脂を充填したのち前記第2の感光性樹脂を硬化させて、前記突出部のクラッド部よりも屈折率の高い光経路と、前記光伝送部のクラッド部よりも屈折率の高い光伝送部のコア部と、を形成する工程Dと、を具備する光伝送基板の製造方法に関する。   The present invention includes a step A of forming a first through hole in a substrate, and filling the through hole with a first photosensitive resin so as to overflow on one main surface of the substrate, and then the first photosensitive resin. A step B of forming a clad portion of the optical transmission portion and a clad portion of the protruding portion by curing the resin, and forming a second through hole in the cladding portion of the optical transmission portion and the clad portion of the protruding portion And a step C of filling the second through hole with the second photosensitive resin, then curing the second photosensitive resin, and an optical path having a refractive index higher than that of the clad portion of the protrusion And a step D of forming a core part of the optical transmission part having a refractive index higher than that of the clad part of the optical transmission part.

本発明によれば、基板に光伝送路を設け、さらに縁部が、基板の主面と密着することで、光伝送路の剥がれを抑制し、長期にわたり使用した場合でも安定して低損失な光伝送を可能にする光伝送基板を提供することができる。   According to the present invention, the optical transmission path is provided on the substrate, and the edge portion is in close contact with the main surface of the substrate, so that the optical transmission path is prevented from being peeled, and even when used for a long time, the loss is stable. An optical transmission board that enables optical transmission can be provided.

基板および光伝送路がともにエポキシ樹脂から構成されることで、互いのエポキシ基の水素結合により、基板と光伝送路とが強固に密着し、光伝送路の剥がれを抑制することができる。   Since the substrate and the optical transmission path are both made of an epoxy resin, the substrate and the optical transmission path are firmly adhered to each other by hydrogen bonding between the epoxy groups, and peeling of the optical transmission path can be suppressed.

光伝送部および突出部がそれぞれコア部およびクラッド部を有することで、十分な光閉じ込め効果が得られる。   A sufficient light confinement effect can be obtained because the optical transmission part and the projecting part have the core part and the clad part, respectively.

光伝送部のコア部および光経路の屈折率が同じであるため、それらの屈折率差が小さく、光伝送部と突出部間での光の伝送を円滑にすることができる。   Since the refractive index of the core part and the optical path of the optical transmission part are the same, the refractive index difference between them is small, and the light transmission between the optical transmission part and the protruding part can be made smooth.

光半導体素子と突出部とが近接しているため、それらの間の光漏れを防ぎ、クロストークと光損失を抑制することができる。   Since the optical semiconductor element and the protrusion are close to each other, light leakage between them can be prevented, and crosstalk and light loss can be suppressed.

また、本発明の製造方法によれば、基板に貫通孔を形成したのち感光性樹脂を充填させることで、自由な厚みで低損失な光伝送を可能にする光伝送部を有する光伝送基板を作製することができる。さらに、基板の一方の主面上に溢れるように貫通孔に第1の感光性樹脂を充填する工程を含むことで、突出部を設けることができる。   Further, according to the manufacturing method of the present invention, an optical transmission board having an optical transmission section that enables low-loss optical transmission with a free thickness by filling a photosensitive resin after forming a through hole in the board. Can be produced. Furthermore, a protrusion part can be provided by including the process of filling 1st photosensitive resin into a through-hole so that it may overflow on one main surface of a board | substrate.

以下、本発明の光伝送基板について、図面を参照しつつ説明する。   The optical transmission board of the present invention will be described below with reference to the drawings.

図1は、光伝送基板の構成を示す断面図である。図2は、複数の光伝送部を有する光伝送基板の構成を示す断面図である。図3(a)〜(d)は光伝送基板の製造方法を示す断面図である。また、図4は光伝送基板を有する光モジュールの構成を示す断面図である。   FIG. 1 is a cross-sectional view showing a configuration of an optical transmission board. FIG. 2 is a cross-sectional view illustrating a configuration of an optical transmission board having a plurality of optical transmission units. 3A to 3D are cross-sectional views showing a method for manufacturing an optical transmission board. FIG. 4 is a cross-sectional view showing the configuration of an optical module having an optical transmission board.

図1〜4において、1は基板、11は第1の主面、12は第2の主面、2は光伝送部、21はコア部、22は光伝送部のクラッド部、3は突出部、31は光経路、32は突出部のクラッド部、33は縁部、4は光半導体素子、5は接合部、6は光伝送基板、および7は光モジュール、8Aは第1の貫通孔、および8Bは第2の貫通孔を示す。   1-4, 1 is a board | substrate, 11 is a 1st main surface, 12 is a 2nd main surface, 2 is an optical transmission part, 21 is a core part, 22 is a clad part of an optical transmission part, 3 is a protrusion part , 31 is an optical path, 32 is a clad portion of a protruding portion, 33 is an edge portion, 4 is an optical semiconductor element, 5 is a joint portion, 6 is an optical transmission board, 7 is an optical module, 8A is a first through hole, And 8B represent the second through holes.

なお、本発明の光伝送基板は、例えば、電子機器内に搭載される回路基板上で複数の半導体デバイスを光信号で接続する場合に用いられる。   The optical transmission board of the present invention is used, for example, when a plurality of semiconductor devices are connected by optical signals on a circuit board mounted in an electronic device.

本発明の光伝送基板6は、その基板1間に光を伝送させて、基板1の両主面側に設けた光部品同士を光学的に結合するために用いられる。光部品としては、光を授受することができるものであればよく、例えば、VCSEL、PIN−PDなどの光半導体素子、光導波路などが挙げられる。また、基板1に半導体素子を搭載し、基板1を実装する不図示の大基板上に光導波路とミラーを形成して、ミラー上部の縦方向の光路を担う光伝送基板として使用することもできる。   The optical transmission board 6 of the present invention is used to transmit light between the boards 1 and optically couple the optical components provided on both principal surface sides of the board 1. Any optical component may be used as long as it can transmit and receive light, and examples thereof include optical semiconductor elements such as VCSEL and PIN-PD, optical waveguides, and the like. Further, a semiconductor element can be mounted on the substrate 1, and an optical waveguide and a mirror can be formed on a large substrate (not shown) on which the substrate 1 is mounted, so that it can be used as an optical transmission substrate that bears a vertical optical path above the mirror. .

光伝送基板6は、基板1と、光伝送部2と突出部3とから構成される光伝送路と、を具備する。以下、各構成について記載する。   The optical transmission board 6 includes a board 1 and an optical transmission path composed of the optical transmission part 2 and the protruding part 3. Each configuration will be described below.

(基板1)
基板1としては、例えば、セラミックスやガラスエポキシ樹脂などの樹脂材料からなるプリント基板が用いられる。なかでも、光伝送部2や突出部3を形成する樹脂との相性という面から、光伝送部2や突出部3を形成する樹脂と同じ樹脂基板を用いるのが好ましく、機械的強度が大きく、熱による基板の反りに対して効果的な防止が可能となるため、両面に同じ厚さの樹脂絶縁層を形成した対称層構造を有する基板が望ましい。基板1の厚みとしては、0.4〜2mmとすることができる。
(Substrate 1)
As the substrate 1, for example, a printed substrate made of a resin material such as ceramics or glass epoxy resin is used. Among these, from the aspect of compatibility with the resin that forms the optical transmission part 2 and the protruding part 3, it is preferable to use the same resin substrate as the resin that forms the optical transmission part 2 and the protruding part 3, and the mechanical strength is large. A substrate having a symmetrical layer structure in which a resin insulating layer having the same thickness is formed on both sides is desirable because it can effectively prevent the substrate from being warped by heat. The thickness of the substrate 1 can be 0.4 to 2 mm.

また、基板1として、多層配線基板を用いても良い。ここで、多層配線基板とは、電気配線層と絶縁層とが交互に複数積層されたものであればよく、例えば、コア基板と、配線基板表裏面側に形成されたビルドアップ層とからなる基板も含まれる。基板1は、外部との電気的接続を行うための接続部位(例えば、素子実装用パッド、ソルダレジスト層など)を有することが好ましい。なお、基板1において、基板1の第2の主面12とは突出部3が設けられる側を、基板1の第1の主面11とは突出部3が設けられる側の反対側の主面をいう。   Further, a multilayer wiring board may be used as the substrate 1. Here, the multilayer wiring board may be any one in which a plurality of electrical wiring layers and insulating layers are alternately laminated, and includes, for example, a core board and a buildup layer formed on the front and back sides of the wiring board. A substrate is also included. The substrate 1 preferably has a connection portion (for example, an element mounting pad, a solder resist layer, etc.) for electrical connection with the outside. In addition, in the board | substrate 1, the 2nd main surface 12 of the board | substrate 1 is the side in which the protrusion part 3 is provided, and the 1st main surface 11 of the board | substrate 1 is the main surface on the opposite side to the side in which the protrusion part 3 is provided. Say.

(光伝送路)
光伝送路は、基板1間に光を伝送させて、基板1の第1の主面11および第2の主面12に設けた光部品同士を光学的に結合する役割を果たす。光伝送路は、光伝送部2と突出部3とから構成される。
(Optical transmission line)
The optical transmission path plays a role of optically coupling optical components provided on the first main surface 11 and the second main surface 12 of the substrate 1 by transmitting light between the substrates 1. The optical transmission path is composed of an optical transmission part 2 and a protruding part 3.

(光伝送部2)
光伝送部2とは、基板1の内部に設けられ、第1の主面11から第2の主面12まで光を伝送させる部位をいう。光伝送部2は、光伝送方向に対する断面が円形を有する。その場合、光伝送部2の直径は約50〜200μmである。
(Optical transmission unit 2)
The light transmission unit 2 is a part that is provided inside the substrate 1 and transmits light from the first main surface 11 to the second main surface 12. The optical transmission unit 2 has a circular cross section with respect to the optical transmission direction. In that case, the diameter of the optical transmission part 2 is about 50-200 micrometers.

光伝送部2は、中心部に屈折率の高いコア部21と、コア部21の周囲に設けられ、コア部21よりも屈折率の低いクラッド部22と、を有することが好ましい。このような構造をとることにより、光伝送部2内において十分な光閉じ込め効果が得られる。   The optical transmission unit 2 preferably includes a core part 21 having a high refractive index at the center and a clad part 22 provided around the core part 21 and having a refractive index lower than that of the core part 21. By adopting such a structure, a sufficient light confinement effect can be obtained in the optical transmission unit 2.

なお、コア部21の直径は約35〜100μmである。   In addition, the diameter of the core part 21 is about 35-100 micrometers.

光伝送部2としては、光を照射すると屈折率が低下するフォトブリーチング現象を生じるポリシラン、あるいは光を照射した部分が現像により除去できる感光性のアクリル系樹脂、エポキシ樹脂等を用いて形成することができる。例えば、フォトブリーチング現象を利用する場合は、基板1に貫通孔を設けたのち、貫通孔にポリシランを充填し、加熱硬化させた後、フォトマスク(光伝送孔より小さい径の円形パターンの遮光部を具備する)を介して紫外光を照射して紫外光照射部の屈折率を低下させ、最後にポストベークを行うことにより、コア部21およびクラッド部22を有する光伝送部2を形成する。この方法では、コアとクラッドの屈折率差を得るために露光部と未露光部に分ける必要があるが、露光する厚みが厚いと露光時の光が広がるため充分な屈折率差を得ることが難しくなる。   The light transmission unit 2 is formed using polysilane that causes a photo bleaching phenomenon in which the refractive index decreases when irradiated with light, or a photosensitive acrylic resin, epoxy resin, or the like that can be removed by developing the irradiated portion. be able to. For example, when the photo bleaching phenomenon is used, a through hole is provided in the substrate 1, and after filling the through hole with polysilane and heat-curing, a photomask (light shielding of a circular pattern having a smaller diameter than the light transmission hole) is performed. The optical transmission part 2 having the core part 21 and the clad part 22 is formed by lowering the refractive index of the ultraviolet light irradiation part and finally performing post-baking. . In this method, in order to obtain the refractive index difference between the core and the clad, it is necessary to divide into an exposed part and an unexposed part. It becomes difficult.

紫外線硬化型のアクリル系樹脂、エポキシ系樹脂などの感光性材料を用いる場合は、基板1に貫通孔を設けたのち、クラッドとなる感光性ポリマー材料を基板1の第2の主面12側から充填する。基板1上で光伝送部2の上方には、図4に示すように光半導体素子を実装することができるが、その際、素子実装部のソルダレジスト開口部(不図示)を材料充填時の流れ出し防止ダムとして使用することにより、充填樹脂が広範囲に基板上に広がることを防止することが出来る。その後、フォトマスクを使用して縁部3として必要な面積を露光し、プレベーク・現像・ポストベークを行って硬化させる。その後、ドリルやレーザなどにより穿孔した部分(光伝送孔中心部)に、最初に充填した材料より屈折率の高いコア材料をクラッドと同じく基板1の第2の主面12側から充填する。その際も、素子実装部のソルダレジスト開口部(不図示)を材料充填時の流れ出し防止ダムとして使用することにより、充填樹脂が広範囲に基板上に広がることを防止することが出来る。その後、フォトマスクを使用して必要な面積を露光し、プレベーク・現像・ポストベークを行って硬化させる。コア材料をコア21や光経路31となる光伝送孔中心部にのみ限って充填できる場合は上述のマスク露光等は必要としないが、非常に小さな孔に充填する必要があるため、必要な箇所のみを露光して作製しやすいという利点がある。最後に突出部として必要な厚みとなるように表面を研磨する。以上により、コア部21およびクラッド部22を有する光伝送部2と、光経路31と突出部クラッド32を有する突出部3を一度に形成することができる。   In the case of using a photosensitive material such as an ultraviolet curable acrylic resin or epoxy resin, a through hole is provided in the substrate 1, and then the photosensitive polymer material that becomes the cladding is formed from the second main surface 12 side of the substrate 1. Fill. An optical semiconductor element can be mounted on the substrate 1 above the optical transmission unit 2 as shown in FIG. 4. At this time, a solder resist opening (not shown) of the element mounting unit is filled with a material. By using it as a flow-out prevention dam, it is possible to prevent the filled resin from spreading on the substrate in a wide range. Thereafter, a necessary area as the edge 3 is exposed using a photomask, and cured by performing pre-baking / developing / post-baking. Thereafter, a core material having a higher refractive index than that of the initially filled material is filled from the second main surface 12 side of the substrate 1 into the portion drilled by a drill or a laser (center portion of the light transmission hole). Also in this case, by using a solder resist opening (not shown) of the element mounting portion as a flow-out prevention dam at the time of material filling, it is possible to prevent the filling resin from spreading on the substrate in a wide range. Thereafter, a necessary area is exposed using a photomask and cured by pre-baking / developing / post-baking. If the core material can be filled only in the core 21 and the center of the optical transmission hole to be the optical path 31, the above-described mask exposure is not necessary, but it is necessary to fill a very small hole. There is an advantage that it is easy to produce by exposing only. Finally, the surface is polished so as to have a thickness necessary for the protruding portion. By the above, the optical transmission part 2 having the core part 21 and the clad part 22 and the protruding part 3 having the optical path 31 and the protruding part clad 32 can be formed at a time.

光伝送路がエポキシ樹脂から構成され、基板1としてガラスエポキシ基板を用いるような、ともにエポキシ系材料(エポキシ基を有する高分子材料をいう)を用いる場合、基板1と光伝送路とが、エポキシ基同士で水素結合することから、密着性が良く、剥がれなどの不良が抑制される。   When the optical transmission path is made of an epoxy resin and a glass epoxy substrate is used as the substrate 1 and both are made of an epoxy material (referred to as a polymer material having an epoxy group), the substrate 1 and the optical transmission path are made of epoxy. Since hydrogen bonding is performed between groups, adhesion is good and defects such as peeling are suppressed.

前述の貫通孔の形成には、通常のプリント基板の穿孔工程に使用されるドリル、レーザなどが好適に使用される。そして、一方の主面から他方の主面まで基板1を貫通させることにより貫通孔は形成される。なお、基板1に設ける貫通孔は断面を円形とすることが望ましく、直径は50〜200μmとすることが望ましい。   For the formation of the above-described through holes, a drill, a laser, or the like used in a normal printed circuit board drilling process is preferably used. And a through-hole is formed by letting the board | substrate 1 penetrate from one main surface to the other main surface. The through hole provided in the substrate 1 preferably has a circular cross section, and the diameter is preferably 50 to 200 μm.

(突出部3)
突出部3は、図1および2に示すように、基板1上に突出するように設けられる。突出部3の厚みは10〜100μmである。
(Protrusion 3)
As shown in FIGS. 1 and 2, the protrusion 3 is provided so as to protrude on the substrate 1. The thickness of the protrusion part 3 is 10-100 micrometers.

突出部3は、基板1から突出しているため視認性が良く外部の部品を実装する際にマーカとしての役割を果たす。突出部3は、フォトプロセスによって高精度に形成することができるが、その場合、嵌合部品としての役割も果たし、実装位置決めを行う事が出来るので調芯を行うこと無く高効率な光伝送を可能とする。また、実装時に光学経路間の距離を短縮することも可能であり、光学損失を低減させる事が出来る。凸部の高さが十分にある場合には光学部品間を結合させることも可能であるし、隙間を有する場合も素子実装後にアンダーフィルを行う際の厚みが薄いため気泡の巻き込みや異物混入などを防ぐこともできる。   Since the protruding portion 3 protrudes from the substrate 1, it has good visibility and serves as a marker when mounting external components. The protruding portion 3 can be formed with high accuracy by a photo process. In this case, the protruding portion 3 also serves as a fitting part and can perform mounting positioning so that highly efficient optical transmission can be performed without alignment. Make it possible. Further, the distance between the optical paths can be shortened at the time of mounting, and the optical loss can be reduced. If the height of the convex part is sufficient, it is possible to connect the optical parts, and even if there is a gap, the thickness when the underfill is performed after mounting the element is thin, so bubbles are involved or foreign matter is mixed in. Can also be prevented.

突出部3は、光経路31を有する。光経路31は、光伝送基板6の外部と光伝送部2とを光学的に結合する。光経路31は、光伝送部2と同様に光の伝送が可能な透明樹脂によって構成されている。材料は光伝送部2と同様のものから構成される。光経路31は突出部3の屈折率分布のうち、屈折率の高い部位(いわゆるコア部)をいう。突出部3のうち光経路31以外の部位は、光経路31の屈折率よりも低い屈折率を有するクラッド部32となる。図1および図2においては、光経路31以外の部位はクラッド部32である。   The protrusion 3 has an optical path 31. The optical path 31 optically couples the outside of the optical transmission board 6 and the optical transmission unit 2. The optical path 31 is made of a transparent resin capable of transmitting light in the same manner as the optical transmission unit 2. The material is the same as that of the optical transmission unit 2. The optical path 31 refers to a portion having a high refractive index (so-called core portion) in the refractive index distribution of the protruding portion 3. A portion of the protruding portion 3 other than the optical path 31 is a clad portion 32 having a refractive index lower than the refractive index of the optical path 31. In FIGS. 1 and 2, the part other than the optical path 31 is a clad portion 32.

なお、光経路31の直径は約35〜100μmである。   The diameter of the optical path 31 is about 35 to 100 μm.

光経路31は、光伝送部2のコア部21と対応するように設けられる。具体的には、光伝送基板6を、上面から透視した場合、光経路31と光伝送部2のコア部21とが重なりあうように設けられる。また、光経路31の直径とコア部21との直径とは等しいことが好ましい。   The optical path 31 is provided so as to correspond to the core unit 21 of the optical transmission unit 2. Specifically, when the optical transmission board 6 is seen through from above, the optical path 31 and the core part 21 of the optical transmission part 2 are provided so as to overlap each other. Moreover, it is preferable that the diameter of the optical path 31 and the diameter of the core part 21 are equal.

突出部3は、縁部33を有する。縁部33とは、突出部3において基板1の第2の主面12と接している部位をいう。縁部33は、例えば、フォトリソグラフィによって基板1上に設けられる。特に縁部33としてエポキシ樹脂を用い、基板1としてガラスエポキシ基板を用いるような、ともにエポキシ系材料(エポキシ基を有する高分子材料をいう)を用いる場合、基板1と縁部32とが、エポキシ基同士で水素結合することから、密着性が良く、剥がれなどの不良が抑制される。このように、縁部33が基板1と密着していることにより、縁部33が、光伝送部2と突出部3とから構成される光伝送路を保持するために、長期にわたり使用しても、基板1から光伝送路が剥がれにくくなり、長期にわたって低損失な光伝送をおこなうことができる。   The protrusion 3 has an edge 33. The edge portion 33 refers to a portion in contact with the second main surface 12 of the substrate 1 in the protruding portion 3. The edge portion 33 is provided on the substrate 1 by, for example, photolithography. In particular, when an epoxy material (referred to as a polymer material having an epoxy group) is used, such as an epoxy resin as the edge 33 and a glass epoxy substrate as the substrate 1, the substrate 1 and the edge 32 are made of epoxy. Since hydrogen bonding is performed between groups, adhesion is good and defects such as peeling are suppressed. As described above, since the edge 33 is in close contact with the substrate 1, the edge 33 is used over a long period of time in order to hold the optical transmission path composed of the optical transmission part 2 and the protruding part 3. However, the optical transmission line is not easily peeled off from the substrate 1, and low-loss optical transmission can be performed over a long period of time.

縁部33の長さは約1〜1000μmである。なお、縁部33の長さとは、光経路2の外周縁部と第2の主面12との境界から縁部33の端までの長さをいう(図1のaの長さ)。   The length of the edge 33 is about 1-1000 μm. In addition, the length of the edge part 33 means the length from the boundary of the outer periphery part of the optical path 2 and the 2nd main surface 12 to the edge of the edge part 33 (length of a of FIG. 1).

図2には、複数の光伝送部2を基板1に設けた場合の光伝送基板6を示している。このように本発明の光伝送基板6は、複数の光伝送部2を有することが好ましい。これにより、光伝送部2が1つの場合の縁部33だけでなく、光伝送部2と光伝送部2との間の基板1上の第2の主面12上にも縁部33が設けられ、多数の縁部33が設けられることになるため、基板1からの光伝送路の剥がれを十分に抑制することが可能となる。   FIG. 2 shows an optical transmission board 6 when a plurality of optical transmission units 2 are provided on the board 1. Thus, the optical transmission board 6 of the present invention preferably has a plurality of optical transmission units 2. Thus, the edge 33 is provided not only on the edge 33 in the case of one optical transmission unit 2 but also on the second main surface 12 on the substrate 1 between the optical transmission unit 2 and the optical transmission unit 2. In addition, since a large number of edge portions 33 are provided, peeling of the optical transmission path from the substrate 1 can be sufficiently suppressed.

光伝送部2と突出部3とから構成される光伝送路の作製方法の具体例を図3に示す。   A specific example of a method for producing an optical transmission line composed of the optical transmission part 2 and the protruding part 3 is shown in FIG.

基板1に、ドリル、レーザなどにより第1の貫通孔8Aを設ける(工程A、図3(a)参照)。そして、第1の貫通孔8Aに対して、第1の感光性樹脂として透明エポキシ樹脂を均一に充填させるとともに、貫通孔から溢れて基板1の第2主面12上に透明エポキシ樹脂が広がるように、透明エポキシ樹脂を塗布する。その際、材料の使用量を抑えるために、貫通孔の周囲にソルダレジストが設けられている場合、ソルダレジストを樹脂の流れ出し防止ダムとして、ソルダレジストの開口内に透明エポキシ樹脂を溜めることで透明エポキシ樹脂を第2の主面12上に広げてもよい。なお、第2の主面12上に透明エポキシ樹脂を広げる方法としては、スピンコート、ダイコートなどが挙げられるが、ソルダレジストをダムとして用いることで、ディスペンサで充填と部分的な塗布を行うことが材料効率や作業性の観点から有効である。   The substrate 1 is provided with a first through hole 8A by a drill, a laser, or the like (step A, see FIG. 3A). The first through hole 8A is uniformly filled with a transparent epoxy resin as the first photosensitive resin, and the transparent epoxy resin spreads on the second main surface 12 of the substrate 1 overflowing from the through hole. Then, apply a transparent epoxy resin. At that time, in order to reduce the amount of material used, if a solder resist is provided around the through hole, the solder resist is used as a resin flow prevention dam, and transparent epoxy resin is stored in the opening of the solder resist. The epoxy resin may be spread on the second main surface 12. In addition, as a method of spreading the transparent epoxy resin on the second main surface 12, spin coating, die coating, and the like can be mentioned. By using a solder resist as a dam, filling and partial application can be performed with a dispenser. It is effective from the viewpoint of material efficiency and workability.

その後、プリベーク、マスク露光、現像、ポストベークを順に行い、不要部を除去して光伝送部2のクラッド部22および突出部3のクラッド部32を形成する(工程B、図3(b)参照)。   Thereafter, pre-baking, mask exposure, development, and post-baking are performed in order, and unnecessary portions are removed to form the clad portion 22 of the optical transmission portion 2 and the clad portion 32 of the protruding portion 3 (step B, see FIG. 3B). ).

次に、両クラッド部の中心部に、精密ドリルまたはレーザを用いて第2の貫通孔8Bを作製する(工程C、図3(c)参照)。そののち、第2の貫通孔8Bに、第2の感光性樹脂として、先に用いた透明エポキシ樹脂よりも比屈折率差が1〜3%高い透明エポキシ樹脂等の材料を充填してプリベーク、マスク露光、現像、ポストベークを順に行い、不要部を除去して、光伝送部2のコア部21および光経路31を形成する(工程D、図3(d)参照)。   Next, the 2nd through-hole 8B is produced in the center part of both clad parts using a precision drill or a laser (refer process C and FIG.3 (c)). After that, the second through-hole 8B is filled with a material such as a transparent epoxy resin having a relative refractive index difference of 1 to 3% higher than that of the previously used transparent epoxy resin as a second photosensitive resin, and prebaked. Mask exposure, development, and post-baking are performed in this order to remove unnecessary portions, thereby forming the core portion 21 and the optical path 31 of the optical transmission portion 2 (step D, see FIG. 3D).

コア部およびクラッド部は共に透明エポキシ樹脂から作製されてもよい。この場合、コア部およびクラッド部は、樹脂の母骨格は同じものであることから非常に密着性が良い。光半導体素子の光入出射部のサイズや光導波路のコアサイズと良好に結合するような貫通孔径にすることで、より高効率な結合を得ることが出来る。   Both the core part and the clad part may be made of a transparent epoxy resin. In this case, the core part and the clad part have very good adhesion because the resin skeleton is the same. More efficient coupling can be obtained by setting the diameter of the through hole so as to couple well with the size of the light incident / exit portion of the optical semiconductor element and the core size of the optical waveguide.

以上により光伝送部2および突出部3を一体的に形成する。なお、この場合、突出部3の高さは塗布厚みで決定されるため、必要により研磨を行うことで、より正確に突出部3の高さを設定できる。光経路の閉じ込め効果を充分に得るためには突出部のクラッド32はクラッド材料のみで形成されるように、突出部クラッド32上のコア材料はすべて研磨する方が好ましいが、コア材が突出部クラッド32上に残っていても問題ない。なお、ソルダレジスト開口部の流れ出し防止ダムは、樹脂の表面張力によりソルダレジストの厚み以上に内部に樹脂を溜めることができる。   As described above, the optical transmission unit 2 and the protrusion 3 are integrally formed. In this case, since the height of the protrusion 3 is determined by the coating thickness, the height of the protrusion 3 can be set more accurately by polishing if necessary. In order to obtain a sufficient optical path confinement effect, it is preferable to polish all of the core material on the protruding cladding 32 so that the protruding cladding 32 is formed of only the cladding material. There is no problem even if it remains on the clad 32. Note that the flow-out prevention dam at the opening of the solder resist can store the resin inside the solder resist more than the thickness of the solder resist due to the surface tension of the resin.

図4は、光伝送基板6と光半導体素子4とを具備する光モジュール7を示している。この光伝送基板6の第2の主面12上には光半導体素子4が設けられており、光半導体素子4の下部には、光を受発光する受発光部4Aが設けられている。そして、光半導体素子4の受発光部4Aと光伝送部2と突出部3とは光学的に結合している。   FIG. 4 shows an optical module 7 having an optical transmission board 6 and an optical semiconductor element 4. An optical semiconductor element 4 is provided on the second main surface 12 of the optical transmission substrate 6, and a light emitting / receiving unit 4 A that receives and emits light is provided below the optical semiconductor element 4. The light emitting / receiving unit 4A, the optical transmission unit 2 and the protrusion 3 of the optical semiconductor element 4 are optically coupled.

光伝送基板6と光半導体素子4とは、金バンプなどの接合部5により電気的に接続している。金バンプを接合部5として用いる場合、光伝送基板6および光半導体素子4にそれぞれ設けられた電極パッド(不図示)間に、金バンプを介在させ、電極パッドを超音波圧着することで接続することができる。   The optical transmission board 6 and the optical semiconductor element 4 are electrically connected by a joint 5 such as a gold bump. When gold bumps are used as the joints 5, gold bumps are interposed between electrode pads (not shown) provided on the optical transmission substrate 6 and the optical semiconductor element 4, and the electrode pads are connected by ultrasonic pressure bonding. be able to.

光伝送基板6と光半導体素子4との間には、接合部5によって、約20〜100μmの間隔が存在する。   An interval of about 20 to 100 μm exists between the optical transmission substrate 6 and the optical semiconductor element 4 due to the junction 5.

本発明では、図4に示すように、突出部3により、光伝送基板6と光半導体素子4との隙間を小さくすることで、それらの間の光漏れを防ぎ、クロストークと光損失を抑制することができる。   In the present invention, as shown in FIG. 4, the gap between the optical transmission substrate 6 and the optical semiconductor element 4 is reduced by the protrusion 3, thereby preventing light leakage between them and suppressing crosstalk and optical loss. can do.

また、接合部5として、例えばはんだボールなどを用いた場合、はんだには主に有機系溶剤によるフラックスが含まれており、加熱によって拡散する傾向がある。これにより、光伝送基板6と光半導体素子4との隙間に、フラックスが入りこみ、光伝送基板6と光半導体素子4との隙間のそれぞれ互いに向かい合う面上にフラックスが付着する傾向がある。一般的にフラックスは無色透明であるが、反応で白濁したり、経時変化で茶褐色に変色するため、光半導体素子4および光伝送基板6の光伝送路の露出面に付着することは光損失を生じさせる傾向があった。しかし、本実施態様では、突出部3により、光伝送基板6と光半導体素子4との隙間を小さくすることにより、フラックスなどの異物などを介在させないようにできる。   Further, when a solder ball or the like is used as the bonding portion 5, for example, the solder mainly contains a flux due to an organic solvent and tends to diffuse by heating. As a result, the flux enters the gap between the optical transmission board 6 and the optical semiconductor element 4, and the flux tends to adhere to the mutually facing surfaces of the gap between the optical transmission board 6 and the optical semiconductor element 4. In general, the flux is colorless and transparent, but it becomes cloudy by reaction or turns brown with time. Therefore, adhering to the exposed surface of the optical transmission line of the optical semiconductor element 4 and the optical transmission board 6 causes light loss. There was a tendency to cause. However, in the present embodiment, the protrusion 3 can reduce the gap between the optical transmission substrate 6 and the optical semiconductor element 4 so that foreign matters such as flux can be prevented from interposing.

光伝送基板の構成を示す断面図である。It is sectional drawing which shows the structure of an optical transmission board | substrate. 複数の光伝送部を有する光伝送基板の構成を示す断面図である。It is sectional drawing which shows the structure of the optical transmission board | substrate which has a some optical transmission part. (a)〜(d)は光伝送基板の製造方法を示す断面図である。(A)-(d) is sectional drawing which shows the manufacturing method of an optical transmission board | substrate. 光モジュールの構成を示す断面図である。It is sectional drawing which shows the structure of an optical module.

符号の説明Explanation of symbols

1 基板
11 第1の主面
12 第2の主面
2 光伝送部
21 コア部
22 光伝送部のクラッド部
3 突出部
31 光経路
32 突出部のクラッド部
33 縁部
4 光半導体素子
4A 光半導体素子の受発光部
5 接合部
6 光伝送基板
7 光モジュール
8A 第1の貫通孔
8B 第2の貫通孔
DESCRIPTION OF SYMBOLS 1 Board | substrate 11 1st main surface 12 2nd main surface 2 Optical transmission part 21 Core part 22 Clad part 3 of optical transmission part Protrusion part 31 Optical path 32 Clad part 33 of protrusion part Edge part 4 Optical semiconductor element 4A Optical semiconductor Light receiving / emitting part 5 of element 5 Junction part 6 Optical transmission board 7 Optical module 8A 1st through-hole 8B 2nd through-hole

Claims (6)

第1の主面と第2の主面とを有する基板と、
前記基板の前記第1の主面で開口するように前記第1の主面から前記第2の主面まで設けられた光伝送部と、前記基板の第2の主面上に突出するように設けられ、前記光伝送部と光学的に結合する光経路と前記基板の上面に密着可能な縁部とを備える突出部と、を有する光伝送路と、
を具備する光伝送基板。
A substrate having a first main surface and a second main surface;
An optical transmission portion provided from the first main surface to the second main surface so as to open at the first main surface of the substrate, and so as to protrude on the second main surface of the substrate. An optical transmission path provided with an optical path optically coupled to the optical transmission section and a protrusion having an edge that can be in close contact with the upper surface of the substrate;
An optical transmission board comprising:
前記基板および前記光伝送路がともにエポキシ系材料から構成される請求項1記載の光伝送基板。   The optical transmission board according to claim 1, wherein both the board and the optical transmission path are made of an epoxy-based material. 前記突出部は、前記光経路の周囲に設けられ、前記光経路よりも屈折率の低い突出部のクラッド部をさらに備える請求項1または2記載の光伝送基板。   3. The optical transmission board according to claim 1, wherein the projecting portion is further provided with a clad portion of a projecting portion provided around the optical path and having a lower refractive index than the optical path. 前記光伝送部は、コア部と、前記コア部の周囲に設けられ、前記コア部よりも屈折率の低い光伝送部のクラッド部と、を有し、
前記光伝送部のコア部の屈折率と前記光経路の屈折率とが同じである請求項1乃至3のいずれか記載の光伝送基板。
The optical transmission part includes a core part, and a cladding part of an optical transmission part provided around the core part and having a lower refractive index than the core part,
The optical transmission board according to any one of claims 1 to 3, wherein a refractive index of a core part of the optical transmission part and a refractive index of the optical path are the same.
請求項1乃至4のいずれか記載の光伝送基板と、
前記第2の主面上に実装され、前記突出部の上方に位置し、前記光伝送路と光学的に結合する光半導体素子と、
を具備する光モジュール。
An optical transmission board according to any one of claims 1 to 4,
An optical semiconductor element mounted on the second main surface, located above the protrusion, and optically coupled to the optical transmission path;
An optical module comprising:
基板に第1の貫通孔を形成する工程Aと、
前記基板の一方の主面上に溢れるように前記貫通孔に第1の感光性樹脂を充填したのち、前記第1の感光性樹脂を硬化させて、光伝送部のクラッド部と突出部のクラッド部とを形成する工程Bと、
前記光伝送部のクラッド部と前記突出部のクラッド部に、第2の貫通孔を形成する工程Cと、
前記第2の貫通孔内に第2の感光性樹脂を充填したのち前記第2の感光性樹脂を硬化させて、前記突出部のクラッド部よりも屈折率の高い光経路と、前記光伝送部のクラッド部よりも屈折率の高い光伝送部のコア部と、を形成する工程Dと、
を具備する光伝送基板の製造方法。
Forming a first through hole in the substrate;
After filling the through hole with the first photosensitive resin so as to overflow on one main surface of the substrate, the first photosensitive resin is cured, and the clad part of the light transmission part and the clad of the protrusion part A step B of forming a portion;
Forming a second through hole in the clad portion of the optical transmission portion and the clad portion of the protruding portion; and
An optical path having a refractive index higher than that of the clad portion of the projecting portion by filling the second through hole with the second photosensitive resin and then curing the second photosensitive resin; Forming a core part of the optical transmission part having a higher refractive index than that of the cladding part,
A method of manufacturing an optical transmission board comprising:
JP2008251194A 2008-09-29 2008-09-29 OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD Expired - Fee Related JP5230324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251194A JP5230324B2 (en) 2008-09-29 2008-09-29 OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251194A JP5230324B2 (en) 2008-09-29 2008-09-29 OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2010085438A true JP2010085438A (en) 2010-04-15
JP5230324B2 JP5230324B2 (en) 2013-07-10

Family

ID=42249492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251194A Expired - Fee Related JP5230324B2 (en) 2008-09-29 2008-09-29 OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP5230324B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029880A1 (en) * 2010-08-31 2012-03-08 京セラ株式会社 Optical transmission substrate, optical transmission module, and method for manufacturing optical transmission substrate
WO2013105471A1 (en) * 2012-01-11 2013-07-18 日立化成株式会社 Optical waveguide and manufacturing method thereof
JP2013142825A (en) * 2012-01-11 2013-07-22 Hitachi Chemical Co Ltd Optical waveguide and method for manufacturing the same
WO2014193978A1 (en) * 2013-05-28 2014-12-04 Georgia Tech Research Corporation Glass-polymer optical interposer
US9360638B2 (en) 2010-08-31 2016-06-07 Kyocera Corporation Optical transmission body, method for manufacturing the same, and optical transmission module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001176A1 (en) * 1999-06-25 2001-01-04 Toppan Printing Co., Ltd. Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
JP2004318081A (en) * 2003-04-04 2004-11-11 Mitsui Chemicals Inc Optical waveguide element and its manufacturing method
JP2004333922A (en) * 2003-05-08 2004-11-25 Sharp Corp Photoelectric wiring board and its manufacturing method
JP2007293308A (en) * 2006-03-28 2007-11-08 Kyocera Corp Optoelectric integrated wiring board, its manufacturing method and optoelectric integrated wiring system
JP2008134492A (en) * 2006-11-29 2008-06-12 Kyocera Corp Optical transmission system and optical module equipped with same
JP2008158388A (en) * 2006-12-26 2008-07-10 Kyocera Corp Opto-electrical circuit board, optical module, and opto-electrical circuit system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001001176A1 (en) * 1999-06-25 2001-01-04 Toppan Printing Co., Ltd. Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
JP2004318081A (en) * 2003-04-04 2004-11-11 Mitsui Chemicals Inc Optical waveguide element and its manufacturing method
JP2004333922A (en) * 2003-05-08 2004-11-25 Sharp Corp Photoelectric wiring board and its manufacturing method
JP2007293308A (en) * 2006-03-28 2007-11-08 Kyocera Corp Optoelectric integrated wiring board, its manufacturing method and optoelectric integrated wiring system
JP2008134492A (en) * 2006-11-29 2008-06-12 Kyocera Corp Optical transmission system and optical module equipped with same
JP2008158388A (en) * 2006-12-26 2008-07-10 Kyocera Corp Opto-electrical circuit board, optical module, and opto-electrical circuit system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012029880A1 (en) * 2010-08-31 2012-03-08 京セラ株式会社 Optical transmission substrate, optical transmission module, and method for manufacturing optical transmission substrate
JP4937425B2 (en) * 2010-08-31 2012-05-23 京セラ株式会社 Optical transmission board, optical transmission module, and method of manufacturing optical transmission board
JP2013033201A (en) * 2010-08-31 2013-02-14 Kyocera Corp Optical transmission substrate and optical transmission module
US8811782B2 (en) 2010-08-31 2014-08-19 Kyocera Corporation Optical transmission board, optical transmission module, and method for manufacturing optical transmission board
US9360638B2 (en) 2010-08-31 2016-06-07 Kyocera Corporation Optical transmission body, method for manufacturing the same, and optical transmission module
WO2013105471A1 (en) * 2012-01-11 2013-07-18 日立化成株式会社 Optical waveguide and manufacturing method thereof
JP2013142825A (en) * 2012-01-11 2013-07-22 Hitachi Chemical Co Ltd Optical waveguide and method for manufacturing the same
CN104040391A (en) * 2012-01-11 2014-09-10 日立化成株式会社 Optical waveguide and manufacturing method thereof
US9513434B2 (en) 2012-01-11 2016-12-06 Hitachi Chemical Company, Ltd. Optical waveguide and manufacturing method thereof
WO2014193978A1 (en) * 2013-05-28 2014-12-04 Georgia Tech Research Corporation Glass-polymer optical interposer
US9417415B2 (en) 2013-05-28 2016-08-16 Georgia Tech Research Corporation Interposer with polymer-filled or polymer-lined optical through-vias in thin glass substrate

Also Published As

Publication number Publication date
JP5230324B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP5281075B2 (en) Composite optical transmission board and optical module
JP4260650B2 (en) Photoelectric composite substrate and manufacturing method thereof
US8915657B2 (en) Opto-electric hybrid board and manufacturing method therefor
US9265141B2 (en) Opto-electric hybrid board and manufacturing method therefor
JP2010243770A (en) Method of manufacturing opto-electric hybrid module and opto-electric hybrid module obtained thereby
JP2005275405A (en) Optical structure and method for connecting optical circuit board components
JP2011033876A (en) Method of manufacturing optical sensor module and optical sensor module obtained thereby
JP5230324B2 (en) OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD
JP5608125B2 (en) Opto-electric hybrid board and manufacturing method thereof
US8644655B2 (en) Opto-electric hybrid board and manufacturing method therefor
JP2006259730A (en) Apparatus and method for coupling optical element
JP5328095B2 (en) Optical transmission board, opto-electronic hybrid board, optical module, and optoelectric circuit system
JP2011209510A (en) Method for manufacturing photoelectric wiring board
JP5349192B2 (en) Optical wiring structure and optical module having the same
JP5029343B2 (en) Optical substrate manufacturing method
JP5253083B2 (en) OPTICAL TRANSMISSION BOARD, OPTICAL MODULE, AND OPTICAL TRANSMISSION BOARD MANUFACTURING METHOD
JP2008158388A (en) Opto-electrical circuit board, optical module, and opto-electrical circuit system
JP2011095385A (en) Method for manufacturing photoelectric wire wiring board and photoelectric wire wiring board
JP5144357B2 (en) Composite optical transmission board and optical module
JP2012203376A (en) Optoelectric hybrid substrate and manufacturing method thereof
JP2013057718A (en) Optical module
JP2012037818A (en) Photoelectric composite wiring module and manufacturing method thereof
JP5149759B2 (en) Manufacturing method of wiring board with optical waveguide
JP5300396B2 (en) Optical path changer and optical transmission board having the same
JP2005338704A (en) Wiring board with optical coupling function, its manufacturing method and optical coupling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5230324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees