JP2013142825A - Optical waveguide and method for manufacturing the same - Google Patents

Optical waveguide and method for manufacturing the same Download PDF

Info

Publication number
JP2013142825A
JP2013142825A JP2012003587A JP2012003587A JP2013142825A JP 2013142825 A JP2013142825 A JP 2013142825A JP 2012003587 A JP2012003587 A JP 2012003587A JP 2012003587 A JP2012003587 A JP 2012003587A JP 2013142825 A JP2013142825 A JP 2013142825A
Authority
JP
Japan
Prior art keywords
transparent resin
substrate
optical waveguide
layer
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012003587A
Other languages
Japanese (ja)
Other versions
JP6069836B2 (en
Inventor
Daichi Sakai
大地 酒井
Toshihiro Kuroda
敏裕 黒田
Takuo Betsui
洋 別井
Kota Segawa
幸太 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012003587A priority Critical patent/JP6069836B2/en
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to CN201280066784.7A priority patent/CN104040391A/en
Priority to TW101151032A priority patent/TWI575270B/en
Priority to US14/371,591 priority patent/US9513434B2/en
Priority to PCT/JP2012/084139 priority patent/WO2013105471A1/en
Priority to KR1020147019254A priority patent/KR20140114829A/en
Publication of JP2013142825A publication Critical patent/JP2013142825A/en
Priority to US15/213,428 priority patent/US20170010413A1/en
Application granted granted Critical
Publication of JP6069836B2 publication Critical patent/JP6069836B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical waveguide with a mirror which can transmit a light signal regardless of the type of a substrate and propagate a signal with low loss by reducing a spatial gap between an optical element and an optical waveguide substrate to suppress spreading of a light signal reflected from a mirror part.SOLUTION: There is provided an optical waveguide in which a lower clad layer 6, a core layer 7 and an upper clad layer 8 are laminated in order on a substrate and a mirror part 9 is formed on the core layer 7, and a method for manufacturing the same comprises: a step A of laminating an optical waveguide having an opening part 2 on the substrate 1 and a columnar transparent member 5 projected toward the backside direction of the substrate 1 from the opening part 2 and a transparent resin A on one surface of the substrate 1 having the opening part 2 and injecting the transparent resin A to at least a part of the opening part of the substrate 1 to laminate a transparent resin B on the other surface; and a step B of exposing the opening part 2 from the surface side on which the transparent resin A is formed to photocure the transparent resin B within the opening part 2 and on the opening part 2.

Description

本発明は光導波路及び光導波路の製造方法に関し、特に、ミラー部を有する光導波路及びミラー部を有する光導波路の製造方法に関する。   The present invention relates to an optical waveguide and an optical waveguide manufacturing method, and more particularly to an optical waveguide having a mirror portion and an optical waveguide manufacturing method having a mirror portion.

情報容量の増大に伴い、幹線やアクセス系といった通信分野のみならず、ルータやサーバ内の情報処理にも光信号を用いる光インターコネクション技術の開発が進められている。特に、ルータやサーバ装置内のボード間あるいはボード内の短距離信号伝送に光を用いるための光伝送路としては、光ファイバに比べ、配線の自由度が高く、かつ高密度化が可能な光導波路を用いることが望ましく、中でも、加工性や経済性に優れたポリマー材料を用いた光導波路が有望である。   With the increase in information capacity, development of optical interconnection technology that uses optical signals not only for communication fields such as trunk lines and access systems but also for information processing in routers and servers is underway. In particular, as an optical transmission path for using light for short-distance signal transmission between boards in a router or a server device, optical fibers that have a higher degree of freedom in wiring and can be densified than optical fibers. It is desirable to use a waveguide. Among them, an optical waveguide using a polymer material excellent in processability and economy is promising.

このような光導波路としては、例えば、特許文献1に記載されているように、まず、下部クラッド層を硬化形成した後に、下部クラッド層上にコアパターンを形成し、上部クラッド層を積層し、光導波路を形成する。その後、切削加工によってミラー部を形成した光導波路が提案されている。
このような光導波路の場合、ミラー部によって光路変換された光信号が、基板を通過するため、該基板は光信号に対して透過率の高い材料である必要がある。さらには、基板と光学素子との間に空間がある場合には、ミラー部によって光路変換された光信号のスポット径が、大きくなり、伝搬損失の悪化につながっていた。
As such an optical waveguide, for example, as described in Patent Document 1, first, after the lower cladding layer is cured and formed, a core pattern is formed on the lower cladding layer, and the upper cladding layer is laminated, An optical waveguide is formed. Thereafter, an optical waveguide in which a mirror portion is formed by cutting has been proposed.
In the case of such an optical waveguide, since the optical signal whose optical path has been changed by the mirror portion passes through the substrate, the substrate needs to be made of a material having a high transmittance with respect to the optical signal. Furthermore, when there is a space between the substrate and the optical element, the spot diameter of the optical signal whose optical path has been changed by the mirror portion becomes large, leading to deterioration in propagation loss.

また、基板と光学素子との間に空間を低減させた光導波路としては、例えば、特許文献2に記載のように、コアの途上または端部に開口する穴部を設け、該穴部に光路変換部品を挿入したミラー付き光導波路が提案されている。
しかし、このような光導波路の場合、光路変換部品を各光導波路の光路変換部ごとに挿入する必要があるため、作業が煩雑であり、また、基板平面方向及び基板垂直方向の位置合わせをする必要があるため高精度な位置合わせが必要であった。さらに、基板垂直方向の位置合わせをするために開口縁に光変換部品を係止する支持係止部を設けると、光変換部品の占有面積が、開口した穴部よりも大きくなり、例えば、上部クラッド層上に光学素子を実装するための電気配線を備えた場合、支持係止部がかかる上部クラッド層上には電気配線を形成できないため、密な素子実装は困難である。
In addition, as an optical waveguide in which a space is reduced between the substrate and the optical element, for example, as described in Patent Document 2, a hole is provided in the middle or at the end of the core, and the optical path is provided in the hole. An optical waveguide with a mirror in which a conversion component is inserted has been proposed.
However, in the case of such an optical waveguide, since it is necessary to insert an optical path conversion component for each optical path conversion portion of each optical waveguide, the work is complicated, and alignment in the substrate plane direction and the substrate vertical direction is performed. Because it was necessary, high-precision alignment was necessary. Furthermore, if a support locking portion for locking the light conversion component is provided at the opening edge in order to align the substrate in the vertical direction, the area occupied by the light conversion component is larger than that of the opened hole. When the electrical wiring for mounting the optical element on the clad layer is provided, the electrical wiring cannot be formed on the upper clad layer where the support locking portion is applied, so that dense element mounting is difficult.

特開2006−011210JP 2006-011210 A 特開2005−70142JP-A-2005-70142

本発明は、前記の課題を解決するためになされたもので、基板の種類によらず光信号の伝達が可能で、かつ光学素子と光導波路基板との間の空間ギャップを少なくし、ミラー部から反射された光信号の広がりを押さえ低損失で信号伝搬可能な光導波路、及びその製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and can transmit an optical signal regardless of the type of substrate, reduce the spatial gap between the optical element and the optical waveguide substrate, and provide a mirror unit. It is an object of the present invention to provide an optical waveguide capable of suppressing the spread of the optical signal reflected from the light and transmitting the signal with low loss, and a method for manufacturing the same.

本発明者らは上記の課題を解決するために鋭意研究した結果、基板に、開口部を設け、該開口部から基板の裏面方向に向かって突出した柱状透明部材を設けることで、上記課題を解決し得ることを見出した。本発明は、かかる知見にもとづいて完成したものである。
すなわち、本発明は、
(1)基板上に、下部クラッド層、コア層及び上部クラッド層が順に積層され、かつ該コア層にミラー部が形成されてなる光導波路であって、該基板に開口部を有し、該開口部から基板の裏面方向に向かって突出した柱状透明部材を有する光導波路、
(2)前記ミラー部が、前記開口部の直上部に形成されてなる上記(1)に記載の光導波路、
(3)前記基板と前記下部クラッド層の間に透明樹脂Aからなる透明樹脂層を有し、該透明樹脂Aが前記基板の開口部の少なくとも一部に充填され、該開口部内の透明樹脂Aに接して透明樹脂Bからなる前記柱状透明部材が突出する上記(1)又は(2)に記載の光導波路、
(4)前記透明樹脂Aが、クラッド層形成用樹脂組成物又はコア層形成用樹脂組成物からなる上記(3)に記載の光導波路、
(5)前記下部クラッド層を構成するクラッド層形成用樹脂組成物が前記基板の開口部の少なくとも一部に充填され、該開口部内の該樹脂組成物に接して透明樹脂Bからなる前記柱状透明部材が突出する上記(1)又は(2)に記載の光導波路、
(6)前記コア層を構成するコア層形成用樹脂組成物が前記基板の開口部の少なくとも一部に充填され、該開口部内の該樹脂組成物に接して透明樹脂Bからなる前記柱状透明部材が突出する上記(1)又は(2)に記載の光導波路、
(7)前記透明樹脂Bが、感光性の樹脂組成物である上記(3)〜(6)のいずれかに記載の光導波路、
(8)前記透明樹脂Bが、クラッド層形成用樹脂組成物又はコア層形成用樹脂組成物である上記(7)に記載の光導波路、
(9)前記透明樹脂Bが、電気配線保護用の感光性樹脂組成物である上記(7)に記載の光導波路、
(10)前記基板が、前記透明樹脂Bを光硬化するための活性光線を遮光可能な基板である上記(3)〜(9)のいずれかに記載の光導波路、
(11)上記(1)〜(10)のいずれかに記載の光導波路の製造方法であって、開口部を有する基板の一方の面に透明樹脂Aを積層するとともに、基板の開口部の少なくとも一部に透明樹脂Aを充填し、もう一方の面に透明樹脂Bを積層する工程A、該透明樹脂Aを形成した面側から該開口部を露光し、該開口部内及び該開口部上の前記透明樹脂Bを光硬化する工程Bを有する光導波路の製造方法、
(12)前記工程Bの後に未硬化部の前記透明樹脂Bを現像除去し、柱状透明部材を形成する工程Cを有する上記(11)に記載の光導波路の製造方法、
(13)前記工程B又は前記工程Cの後に前記透明樹脂A上に下部クラッド層、コア層、上部クラッド層を形成する工程D1、前記コア層にミラー部を形成する工程Eを有する上記(11)又は(12)に記載の光導波路の製造方法、
(14)前記透明樹脂Aが下部クラッド層形成用樹脂組成物であって、前記工程B又は前記工程Cの後に、形成された下部クラッド層上にコア層、上部クラッド層を形成する工程D2、該コア層にミラー部を形成する工程Eを有する上記(11)又は(12)に記載の光導波路の製造方法、
(15)上記(1)〜(10)に記載の光導波路の製造方法であって、基板の一方の面に、少なくとも基板の開口部の一部が開口された状態を維持するように、基板上に下部クラッド層を形成した後、該下部クラッド層上にコア層形成用樹脂組成物を積層するとともに、基板の開口部の少なくとも一部にコア層形成用樹脂組成物を充填し、もう一方の面に透明樹脂Bを積層する工程A、該コア層側から該開口部を露光し、該開口部内及び該開口部上の前記透明樹脂Bを光硬化する工程B、未硬化部の該透明樹脂Bを現像除去し、柱状透明部材を形成する工程C、該コア層上に上部クラッド層を形成する工程D3、該コア層にミラー部を形成する工程Eを有する光導波路の製造方法、及び
(16)前記透明樹脂Bが、電気配線保護用の感光性樹脂組成物であり、かつ基板が少なくとも透明樹脂B形成面側の前記基板表面に電気配線を有する基板であって、前記工程Aの後、又は前記工程Bの後に、前記透明樹脂Bをパターン露光し、前記配線保護用の電気配線保護層を形成する工程Fを有する上記(11)〜(15)のいずれかに記載の光導波路の製造方法、
を提供するものである。
As a result of diligent research to solve the above problems, the present inventors have provided an opening in the substrate, and provided a columnar transparent member protruding from the opening toward the back surface of the substrate. I found that it could be solved. The present invention has been completed based on such knowledge.
That is, the present invention
(1) An optical waveguide in which a lower clad layer, a core layer, and an upper clad layer are sequentially laminated on a substrate, and a mirror portion is formed on the core layer, the substrate having an opening, An optical waveguide having a columnar transparent member protruding from the opening toward the back surface of the substrate;
(2) The optical waveguide according to (1), wherein the mirror portion is formed immediately above the opening.
(3) A transparent resin layer made of a transparent resin A is provided between the substrate and the lower clad layer, and the transparent resin A is filled in at least a part of the opening of the substrate, and the transparent resin A in the opening The optical waveguide according to (1) or (2), wherein the columnar transparent member made of transparent resin B protrudes in contact with
(4) The optical waveguide according to (3), wherein the transparent resin A is formed of a resin composition for forming a cladding layer or a resin composition for forming a core layer,
(5) The columnar transparent resin comprising the resin composition for forming a clad layer constituting the lower clad layer is filled in at least a part of the opening of the substrate and is in contact with the resin composition in the opening. The optical waveguide according to (1) or (2), wherein the member protrudes,
(6) The columnar transparent member comprising the transparent resin B in which the resin composition for forming a core layer constituting the core layer is filled in at least a part of the opening of the substrate and is in contact with the resin composition in the opening. The optical waveguide according to (1) or (2), wherein
(7) The optical waveguide according to any one of (3) to (6), wherein the transparent resin B is a photosensitive resin composition,
(8) The optical waveguide according to (7), wherein the transparent resin B is a clad layer forming resin composition or a core layer forming resin composition,
(9) The optical waveguide according to (7), wherein the transparent resin B is a photosensitive resin composition for electrical wiring protection,
(10) The optical waveguide according to any one of (3) to (9), wherein the substrate is a substrate capable of shielding an actinic ray for photocuring the transparent resin B.
(11) The method for manufacturing an optical waveguide according to any one of (1) to (10), wherein the transparent resin A is laminated on one surface of a substrate having an opening, and at least the opening of the substrate Step A in which a portion of the transparent resin A is filled and the transparent resin B is laminated on the other surface, the opening is exposed from the surface side on which the transparent resin A is formed, and the inside of the opening and on the opening A method for producing an optical waveguide, comprising the step B of photocuring the transparent resin B;
(12) The method for producing an optical waveguide according to (11), further including a step C of developing and removing the transparent resin B in an uncured portion after the step B to form a columnar transparent member,
(13) The process D 1 including forming a lower clad layer, a core layer, and an upper clad layer on the transparent resin A after the process B or the process C, and the process E including forming a mirror portion on the core layer. 11) or the manufacturing method of the optical waveguide as described in (12),
(14) Step D 2 in which the transparent resin A is a resin composition for forming a lower cladding layer, and a core layer and an upper cladding layer are formed on the formed lower cladding layer after the step B or the step C. The method for producing an optical waveguide according to the above (11) or (12), which comprises a step E of forming a mirror part in the core layer,
(15) The method for manufacturing an optical waveguide according to (1) to (10) above, wherein the substrate is maintained so that at least a part of the opening of the substrate is opened on one surface of the substrate. After forming the lower clad layer thereon, the core layer forming resin composition is laminated on the lower clad layer, and at least a part of the opening of the substrate is filled with the core layer forming resin composition. Step A of laminating transparent resin B on the surface of the substrate, Step B of exposing the opening from the core layer side, and photocuring the transparent resin B in the opening and on the opening, The transparent of the uncured portion A process C for forming the columnar transparent member by developing and removing the resin B; a process D 3 for forming the upper clad layer on the core layer; and a method for manufacturing an optical waveguide having a process E for forming a mirror portion on the core layer, And (16) the transparent resin B is a photosensitive tree for protecting electrical wiring. It is a composition and the substrate is a substrate having electrical wiring on at least the surface of the transparent resin B forming surface, and the transparent resin B is subjected to pattern exposure after the step A or after the step B. The method for producing an optical waveguide according to any one of the above (11) to (15), comprising a step F of forming an electrical wiring protective layer for protecting the wiring,
Is to provide.

本発明の光導波路は、基板の種類によらず光信号の伝達が可能で、かつ光学素子と光導波路基板との間の空間ギャップが小さいため、ミラー部から反射された光信号の広がりを押さえ低損失で信号伝搬が可能である。また、本発明の製造方法によれば、上記優れた機能を有する本発明の光導波路を効率的に製造することができる。   The optical waveguide of the present invention can transmit an optical signal regardless of the type of the substrate, and since the spatial gap between the optical element and the optical waveguide substrate is small, the spread of the optical signal reflected from the mirror portion is suppressed. Signal propagation is possible with low loss. Moreover, according to the manufacturing method of this invention, the optical waveguide of this invention which has the said outstanding function can be manufactured efficiently.

本発明の光導波路の製造方法の一例を説明する図である。It is a figure explaining an example of the manufacturing method of the optical waveguide of this invention. 本発明の光導波路の一例を説明する図である。It is a figure explaining an example of the optical waveguide of the present invention. 本発明の光導波路の他の一例を説明する図である。It is a figure explaining another example of the optical waveguide of the present invention. 本発明の光導波路の他の一例を説明する図である。It is a figure explaining another example of the optical waveguide of the present invention.

本発明の光導波路は、基板1上に、下部クラッド層6、コア層7及び上部クラッド層8が順に積層され、かつ該コア層にミラー部9が形成されてなる光導波路であって、該基板1に開口部2を有し、該開口部2から基板の裏面方向に向かって突出した柱状透明部材5を有することが特徴である。
その態様としては種々のものがあるが、例えば、図1(e)に示す態様では、基板1の少なくとも一部に開口部2を有し、該基板1の一方の面に透明樹脂Aからなる透明樹脂層3、下部クラッド層6、コア層7、上部クラッド層8が順次形成され、基板1の表面に対して垂直方向であって、開口部2の直上部のコア層7にミラー部9を有する。透明樹脂Aは基板1の開口部2の少なくとも一部に充填され、該開口部内の透明樹脂Aに接して、透明樹脂Bからなる柱状透明部材5が、基板1の裏面方向に向かって突出してなる。
ここで、開口部2の直上部とは、コアパターンからミラーにより基板垂直方向へ光路変換される光信号において、又は、基板垂直方向からミラーによりコアパターンへ光路変換される光信号において、光信号が開口部を通過する際に、開口部周囲の基板が光信号に干渉し光損失として悪影響を与えることのないように、ミラーと開口部のそれぞれの大きさ及び位置関係であることをいう。
なお、本発明において、基板の表面とは、光導波路が形成される基板面を意味し、基板の裏面とは、光導波路を形成する側の反対面を意味する。
An optical waveguide according to the present invention is an optical waveguide in which a lower clad layer 6, a core layer 7, and an upper clad layer 8 are sequentially laminated on a substrate 1, and a mirror portion 9 is formed on the core layer, The substrate 1 has an opening 2 and is characterized by a columnar transparent member 5 protruding from the opening 2 toward the back surface of the substrate.
There are various modes, for example, in the mode shown in FIG. 1 (e), an opening 2 is provided in at least a part of the substrate 1, and the transparent resin A is formed on one surface of the substrate 1. A transparent resin layer 3, a lower clad layer 6, a core layer 7, and an upper clad layer 8 are formed in this order, and are perpendicular to the surface of the substrate 1 and directly above the opening 2 and a mirror portion 9. Have The transparent resin A is filled in at least a part of the opening 2 of the substrate 1, and the columnar transparent member 5 made of the transparent resin B protrudes toward the back surface of the substrate 1 in contact with the transparent resin A in the opening. Become.
Here, the portion directly above the opening 2 is an optical signal in an optical signal whose optical path is changed from the core pattern to the substrate vertical direction by the mirror, or an optical signal whose optical path is changed from the vertical direction in the substrate to the core pattern by the mirror. Means that the size and positional relationship between the mirror and the opening are such that the substrate around the opening does not interfere with the optical signal and adversely affect optical loss when passing through the opening.
In the present invention, the surface of the substrate means the substrate surface on which the optical waveguide is formed, and the back surface of the substrate means the opposite surface to the side on which the optical waveguide is formed.

また、他の態様としては、図2に示すように、図1(e)において、透明樹脂Aからなる透明樹脂層3と下部クラッド層6とが兼用された光導波路が挙げられる。さらに、図3に示すように、開口部2の周囲に下部クラッド層形成用樹脂組成物が配され、開口部2の開口を維持するように、下部クラッド層6を形成しておき、その後にコア層形成用樹脂組成物を積層して、該開口部2をコア層形成用樹脂組成物で充填する態様がある。この場合には、コア層形成用樹脂組成物に接して透明樹脂Bからなる柱状透明部材5が、基板1の裏面側に突出する。この態様では、透明樹脂層3とコア層7とが兼用される。また、図4に示すように、電気配線を備えた電気配線板付き光導波路の態様も考えられ、透明樹脂Bを電気配線保護層として用いることもできる。すなわち、透明樹脂Bからなる透明樹脂層4と電気配線保護層11が兼用される態様である。   As another embodiment, as shown in FIG. 2, an optical waveguide in which the transparent resin layer 3 made of the transparent resin A and the lower cladding layer 6 are used in FIG. Further, as shown in FIG. 3, the lower cladding layer forming resin composition is disposed around the opening 2, and the lower cladding layer 6 is formed so as to maintain the opening of the opening 2. There is an embodiment in which the core layer forming resin composition is laminated and the opening 2 is filled with the core layer forming resin composition. In this case, the columnar transparent member 5 made of the transparent resin B is in contact with the core layer forming resin composition and protrudes to the back side of the substrate 1. In this embodiment, the transparent resin layer 3 and the core layer 7 are used together. Moreover, as shown in FIG. 4, the aspect of the optical waveguide with an electrical wiring board provided with the electrical wiring is also considered, and transparent resin B can also be used as an electrical wiring protective layer. That is, the transparent resin layer 4 made of the transparent resin B and the electrical wiring protective layer 11 are used in combination.

本発明における柱状透明部材5の形成方法としては、光硬化性の透明樹脂Bを用いて、基板1の裏面側に透明樹脂層を形成し、コア層形成面側(基板の表面側)から基板1を遮光部代わりにして露光・現像し、パターン化することで得ることができる。すなわち、当該方法により、基板1から裏面側に、開口部2とほぼ同一形状の突出した柱状透明部材5を得ることができる。これにより、柱状透明部材5が突出する側の基板裏面には、透明樹脂層4が存在しないため、電気配線や、素子実装を行う場合、スペースを効率よく確保することができる。さらに、柱状透明部材5が形成された開口部2を光信号が透過するため、基板1の種類(光信号の透過率)によらず良好な光通信が行えるという利点がある。
仮に、基板1の透明性が高い場合であっても、基板は通常、透明樹脂A、透明樹脂B、下部クラッド層、コア層よりも高い屈折率を持つので、光信号が該基板を透過する場合には、空気と基板間の屈折率差によってフレネル損失が発生する。これに対して、本発明の光導波路は、基板1よりも低屈折率の柱状透明樹脂内を光が伝搬していくので、該フレネル損失を低減することができる。
As a method for forming the columnar transparent member 5 in the present invention, a transparent resin layer is formed on the back surface side of the substrate 1 using a photocurable transparent resin B, and the substrate is formed from the core layer forming surface side (substrate surface side). It can be obtained by exposing and developing 1 in place of the light shielding portion and patterning. That is, by this method, the protruding columnar transparent member 5 having substantially the same shape as the opening 2 can be obtained from the substrate 1 on the back surface side. Thereby, since the transparent resin layer 4 does not exist on the back surface of the substrate on the side from which the columnar transparent member 5 protrudes, space can be efficiently secured when electrical wiring or element mounting is performed. Furthermore, since an optical signal is transmitted through the opening 2 in which the columnar transparent member 5 is formed, there is an advantage that good optical communication can be performed regardless of the type of substrate 1 (transmittance of the optical signal).
Even if the transparency of the substrate 1 is high, the substrate usually has a higher refractive index than the transparent resin A, the transparent resin B, the lower cladding layer, and the core layer, so that an optical signal passes through the substrate. In some cases, Fresnel loss occurs due to the refractive index difference between the air and the substrate. On the other hand, since the light propagates through the columnar transparent resin having a lower refractive index than that of the substrate 1, the optical waveguide of the present invention can reduce the Fresnel loss.

さらに、柱状透明部材5により、基板1に設置される光学素子と光導波路との間の空間ギャップを少なくすることができるので、ミラー部から反射された光信号の広がりを押さえ低損失で信号伝搬が可能となる。
なお、透明樹脂層3を構成する透明樹脂Aと、柱状透明部材を構成する透明樹脂Bとは同一の樹脂組成物でも異なる樹脂組成物でもよいが、透明樹脂Aと透明樹脂Bとの高い接着性が得られることから、同一の樹脂組成物を用いることが好ましい。特に、小型の柱状透明部材5を形成する際に有利である。
また、フィルム状の透明樹脂Bを用いると、柱状透明部材5の基板1の裏面からの突出する高さを制御することができより好ましい。
Further, the columnar transparent member 5 can reduce the spatial gap between the optical element installed on the substrate 1 and the optical waveguide, thereby suppressing the spread of the optical signal reflected from the mirror portion and transmitting the signal with low loss. Is possible.
The transparent resin A constituting the transparent resin layer 3 and the transparent resin B constituting the columnar transparent member may be the same resin composition or different resin compositions, but high adhesion between the transparent resin A and the transparent resin B. It is preferable to use the same resin composition because the properties can be obtained. In particular, it is advantageous when forming a small columnar transparent member 5.
Moreover, when the film-shaped transparent resin B is used, the height which protrudes from the back surface of the board | substrate 1 of the columnar transparent member 5 can be controlled, and it is more preferable.

(基板)
本発明の光導波路に用い得る基板1の材質としては、特に制限はなく、例えば、ガラスエポキシ樹脂基板、セラミック基板、ガラス基板、シリコン基板、プラスチック基板、金属基板、樹脂層付き基板、金属層付き基板、プラスチックフィルム、樹脂層付きプラスチックフィルム、金属層付きプラスチックフィルム、電気配線板などが挙げられ、特に、透明樹脂Bを光硬化するための活性光線に対して遮光効果があることが好ましい。
例えば、透明樹脂Bを光硬化するための活性光線が紫外光であれば、金属基板や紫外光を透過しないプラスチック基板やガラスエポキシ樹脂基板などが好適に挙げられる。透明樹脂Aや下部クラッド層と接着力が少ない基板を用いる際には、接着層付きの基板を用いても良い。このときの接着層は、開口部にかからないように基板に設置すれば良い。
基板の厚みは、透明樹脂A(下部クラッド層又はコア層を兼用する場合を含む)と透明樹脂Bとで開口部を埋められる厚さであれば特に制限はないが、厚みが薄いほうが、ミラー部にて反射された光信号が広がる前に受光素子や光ファイバ等で受光できるため好ましい。以上の観点から、基板の厚みは5μm〜1mmであることが好ましく、作業性の観点から10μm〜100μmであることがさらに好ましい。
(substrate)
There is no restriction | limiting in particular as a material of the board | substrate 1 which can be used for the optical waveguide of this invention, For example, a glass epoxy resin substrate, a ceramic substrate, a glass substrate, a silicon substrate, a plastic substrate, a metal substrate, a board | substrate with a resin layer, with a metal layer Examples thereof include a substrate, a plastic film, a plastic film with a resin layer, a plastic film with a metal layer, an electric wiring board, and the like.
For example, when the actinic ray for photocuring the transparent resin B is ultraviolet light, a metal substrate, a plastic substrate that does not transmit ultraviolet light, a glass epoxy resin substrate, and the like are preferably used. When using a substrate having a low adhesive force with the transparent resin A or the lower cladding layer, a substrate with an adhesive layer may be used. The adhesive layer at this time may be provided on the substrate so as not to cover the opening.
The thickness of the substrate is not particularly limited as long as the opening can be filled with the transparent resin A (including the case where the lower clad layer or the core layer is also used) and the transparent resin B. However, the thinner the mirror, This is preferable because it can be received by a light receiving element, an optical fiber or the like before the optical signal reflected by the portion spreads. From the above viewpoint, the thickness of the substrate is preferably 5 μm to 1 mm, and more preferably 10 μm to 100 μm from the viewpoint of workability.

(開口部)
開口部2としては、基板1に穴があけられていれば良く、例えば、ドリル加工や、レーザ加工によって好適に形成することができる。また、開口部の側面に各種金属を蒸着、スパッタ、めっき等によって形成した金属層付きスルーホールであっても良い。
開口部2の開口形状としては、特に限定はなく、円状、楕円状、多角形状等の開口部であれば良い。また、側壁は垂直に形成された柱状でも、テーパ状に形成された錐台形状でも良い。
開口部の大きさとしては、光伝搬損失に影響のない範囲であれば良く、基板表面側からミラー部を見たときに、該ミラー部が開口部内に位置される大きさであることが好ましい。具体的には、ミラー部の大きさが50μm×50μmの大きさで、開口部が円状の場合、該開口部にミラー部が内接する大きさの円である直径50√2μm以上であるのが好ましい。
(Aperture)
The opening 2 only needs to be perforated in the substrate 1 and can be suitably formed by, for example, drilling or laser processing. Moreover, the through-hole with a metal layer formed by vapor-depositing, sputter | spatter, plating, etc. on the side surface of an opening part may be sufficient.
There is no limitation in particular as an opening shape of the opening part 2, What is necessary is just opening parts, such as circular shape, ellipse shape, and polygonal shape. Further, the side wall may be a vertically formed columnar shape or a tapered frustum shape.
The size of the opening may be in a range that does not affect the light propagation loss, and is preferably a size that allows the mirror to be positioned in the opening when the mirror is viewed from the substrate surface side. . Specifically, when the size of the mirror portion is 50 μm × 50 μm and the opening is circular, the diameter is 50√2 μm or more, which is a circle whose size is inscribed in the opening. Is preferred.

(柱状透明部材)
柱状透明部材5としては、上述のように、基板1に形成された開口部2を遮光マスクとしてパターン化して得ることができ、図3に示すように2種類以上の透明部材から柱状透明部材5が形成されていても良い。
該柱状透明部材を構成する材料としては、後述する透明樹脂Bとして例示されるものであることが好ましい。また、基板1の裏面から突出した柱状透明部材5の高さは特に制限はなく、基板1の裏面に形成する透明樹脂層4の厚みによって適宜調整できる。各種光学素子と基板表面との空隙を埋める観点から使用する各種受発光素子の受発光面と基板表面とのギャップ間以下であると良い。
(Columnar transparent member)
As described above, the columnar transparent member 5 can be obtained by patterning the opening 2 formed in the substrate 1 as a light shielding mask. As shown in FIG. May be formed.
As a material which comprises this columnar transparent member, it is preferable that it is what is illustrated as transparent resin B mentioned later. Further, the height of the columnar transparent member 5 protruding from the back surface of the substrate 1 is not particularly limited, and can be appropriately adjusted depending on the thickness of the transparent resin layer 4 formed on the back surface of the substrate 1. It is preferable that the gap is less than or equal to the gap between the light receiving and emitting surfaces of the various light receiving and emitting elements used from the viewpoint of filling the gaps between the various optical elements and the substrate surface.

(透明樹脂A)
透明樹脂Aとしては、用いる光信号に対して透明であれば特に制限はなく、後述するクラッド層形成用樹脂やコア層形成用樹脂を用いることができる。形状としては、液状でもフィルム状でも良いが、膜厚を制御したい場合にはフィルム状であることが好ましい。
また、透明樹脂Aからなる透明樹脂層3は、下部クラッド層6やコア層7と兼用しても良い。下部クラッド層6を透明樹脂3と兼用する場合には、基板1と接着力のある下部クラッド層6であれば良く、コア層7と透明樹脂3を兼用する場合には、下部クラッド層6をパターン化し、開口部2の少なくとも一部に開口を設けた状態を維持しておき、その後コア層7を形成することで得ることができる。
(Transparent resin A)
The transparent resin A is not particularly limited as long as it is transparent to the optical signal to be used, and a clad layer forming resin and a core layer forming resin described later can be used. The shape may be liquid or film, but is preferably film when the film thickness is desired to be controlled.
Further, the transparent resin layer 3 made of the transparent resin A may also be used as the lower cladding layer 6 and the core layer 7. When the lower clad layer 6 is also used as the transparent resin 3, the lower clad layer 6 having an adhesive force with the substrate 1 may be used. When the core layer 7 and the transparent resin 3 are also used, the lower clad layer 6 is used. It can be obtained by patterning and maintaining the state where the opening is provided in at least a part of the opening 2 and then forming the core layer 7.

(透明樹脂B)
透明樹脂Bとしては、用いる光信号に対して透明であり、活性光線によりパターンを形成し得るものを用いることが好ましい。形状としては、液状でもフィルム状でも良いが、膜厚を制御したい場合にはフィルム状であることが好ましい。
また、パターン化可能な材料であれば、下部クラッド層6やコア層7を形成するための樹脂組成物、フィルムを用いても良い。
透明樹脂Aと同一の材料を用いると、接着性が高くなり、後の現像工程等にて剥れることがないためさらに好ましい。
(Transparent resin B)
As the transparent resin B, it is preferable to use a resin that is transparent to an optical signal to be used and can form a pattern with actinic rays. The shape may be liquid or film, but is preferably film when the film thickness is desired to be controlled.
Moreover, as long as it can be patterned, a resin composition or a film for forming the lower clad layer 6 and the core layer 7 may be used.
It is more preferable to use the same material as the transparent resin A because the adhesiveness is increased and it does not peel off in a later development step or the like.

(下部クラッド層及び上部クラッド層)
本発明で使用される下部クラッド層6及び上部クラッド層8としては、クラッド層形成用樹脂組成物又はクラッド層形成用樹脂フィルムを用いることができる。
本発明で用いるクラッド層形成用樹脂組成物としては、コア層7より低屈折率で、光又は熱により硬化する樹脂組成物であれば特に限定されず、熱硬化性樹脂組成物や感光性樹脂組成物を好適に使用することができる。クラッド層形成用樹脂に用いる樹脂組成物は、下部クラッド層6及び上部クラッド層8において、該樹脂組成物に含有する成分が同一であっても異なっていてもよく、該樹脂組成物の屈折率が同一であっても異なっていてもよい。
またクラッド層形成用樹脂組成物を透明樹脂Bとして用いる場合には、感光性樹脂組成物であり、活性光線によりパターンを形成し得るものを用いることが肝要である。
(Lower cladding layer and upper cladding layer)
As the lower clad layer 6 and the upper clad layer 8 used in the present invention, a clad layer forming resin composition or a clad layer forming resin film can be used.
The resin composition for forming a clad layer used in the present invention is not particularly limited as long as it is a resin composition that has a lower refractive index than the core layer 7 and is cured by light or heat, and the thermosetting resin composition or the photosensitive resin. A composition can be used conveniently. In the lower clad layer 6 and the upper clad layer 8, the resin composition used for the resin for forming the clad layer may have the same or different components contained in the resin composition, and the refractive index of the resin composition May be the same or different.
When the resin composition for forming a cladding layer is used as the transparent resin B, it is important to use a photosensitive resin composition that can form a pattern with actinic rays.

本発明においては、クラッド層の形成方法は特に限定されず、例えば、クラッド層形成用樹脂組成物の塗布又はクラッド層形成用樹脂フィルムのラミネートにより形成すれば良い。
塗布による場合には、その方法は限定されず、クラッド層形成用樹脂組成物を常法により塗布すれば良い。
また、ラミネートに用いるクラッド層形成用樹脂フィルムは、例えば、クラッド層形成用樹脂組成物を溶媒に溶解して、キャリアフィルムに塗布し、溶媒を除去することにより容易に製造することができる。
In the present invention, the method for forming the clad layer is not particularly limited. For example, the clad layer may be formed by coating the clad layer forming resin composition or laminating the clad layer forming resin film.
In the case of application, the method is not limited, and the clad layer forming resin composition may be applied by a conventional method.
The clad layer-forming resin film used for laminating can be easily produced by, for example, dissolving the clad layer-forming resin composition in a solvent, applying it to a carrier film, and removing the solvent.

下部クラッド層6及び上部クラッド層8の厚さに関しては、特に限定するものではないが、乾燥後の厚さで、5〜500μmの範囲が好ましい。5μm以上であると、光の閉じ込めに必要なクラッド厚さが確保でき、500μm以下であると、膜厚を均一に制御することが容易である。以上の観点から、下部クラッド層6及び上部クラッド層8の厚さは、さらに10〜100μmの範囲であることがより好ましい。   The thickness of the lower cladding layer 6 and the upper cladding layer 8 is not particularly limited, but the thickness after drying is preferably in the range of 5 to 500 μm. When the thickness is 5 μm or more, a clad thickness necessary for light confinement can be secured, and when the thickness is 500 μm or less, it is easy to control the film thickness uniformly. From the above viewpoint, the thickness of the lower cladding layer 6 and the upper cladding layer 8 is more preferably in the range of 10 to 100 μm.

(コア層)
コア層7としては、コア層形成用樹脂又はコア層形成用樹脂フィルムを用いることができる。
コア層形成用樹脂は、クラッド層6及び8より高屈折率であるように設計され、活性光線によりコアパターンを形成し得るものを用いることが好ましい。パターン化する前のコア層の形成方法は限定されず、前記コア層形成用樹脂組成物を常法により塗布する方法等が挙げられる。
(Core layer)
As the core layer 7, a core layer forming resin or a core layer forming resin film can be used.
The core layer forming resin is preferably designed to have a refractive index higher than that of the cladding layers 6 and 8 and capable of forming a core pattern with actinic rays. The method of forming the core layer before patterning is not limited, and examples thereof include a method of applying the core layer forming resin composition by a conventional method.

コア層形成用樹脂フィルムの厚さについては特に限定されず、乾燥後のコア層の厚さが、通常は10〜100μmとなるように調整される。該フィルムの仕上がり後のコア層7の厚さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバとの結合において位置合わせトレランスが拡大できるという利点があり、100μm以下であると、光導波路形成後の受発光素子又は光ファイバとの結合において、結合効率が向上するという利点がある。以上の観点から、該フィルムの厚さは、さらに30〜90μmの範囲であることが好ましく、該厚みを得るために適宜フィルム厚みを調整すれば良い。   The thickness of the resin film for forming the core layer is not particularly limited, and the thickness of the core layer after drying is usually adjusted to be 10 to 100 μm. When the thickness of the core layer 7 after finishing the film is 10 μm or more, there is an advantage that the alignment tolerance can be increased in the coupling with the light emitting / receiving element or the optical fiber after forming the optical waveguide, and when the thickness is 100 μm or less. In the coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed, there is an advantage that the coupling efficiency is improved. From the above viewpoint, the thickness of the film is preferably in the range of 30 to 90 μm, and the film thickness may be appropriately adjusted in order to obtain the thickness.

(ミラー部)
基板平面に対して並行方向に設置したコア層を伝搬した光信号を基板垂直方向に光路変換する構造であれば特に限定はなく、45°に切り欠きを形成した空気反射ミラーであっても良いし、切り欠き部に反射金属層を形成した金属反射ミラーであっても良い。
(Mirror part)
There is no particular limitation as long as the optical signal propagated through the core layer installed in the direction parallel to the substrate plane is optically path-converted in the direction perpendicular to the substrate, and may be an air reflection mirror with a notch formed at 45 °. Alternatively, a metal reflection mirror in which a reflective metal layer is formed in the notch may be used.

(電気配線)
コア形成面側と反対の面(基板の裏面)に各種光学素子を実装する場合、コア形成面側と反対の基板面に電気配線10を設けても良い。
(Electric wiring)
When various optical elements are mounted on the surface opposite to the core formation surface side (back surface of the substrate), the electrical wiring 10 may be provided on the substrate surface opposite to the core formation surface side.

(電気配線保護層)
透明樹脂Bは、用いる光信号に対して透明であり、活性光線によりパターンを形成し得るものであり、電気配線保護層11として使用可能であれば、前述の電気配線10を保護する電気配線保護層11として使用できる(図4参照)。このとき柱状透明部材5と電気配線保護層11をパターン化する工程は別工程で行うことが、電気配線保護層11と電気配線10との位置合わせ精度の観点から好ましい。また、基板1が遮光性のある基板である場合、光導波路形成面側(基板の表面側)から露光し電気配線保護層11をパターン化することはできないため、別工程において光導波路形成面側と反対の面側(基板の裏面側)から露光を行わなければならない。
(Electrical wiring protective layer)
The transparent resin B is transparent to an optical signal to be used, and can form a pattern with actinic rays. If the transparent resin B can be used as the electrical wiring protection layer 11, the electrical wiring protection for protecting the electrical wiring 10 described above. It can be used as layer 11 (see FIG. 4). At this time, it is preferable that the step of patterning the columnar transparent member 5 and the electric wiring protective layer 11 is performed as a separate step from the viewpoint of alignment accuracy between the electric wiring protective layer 11 and the electric wiring 10. Further, when the substrate 1 is a light-shielding substrate, the electrical wiring protective layer 11 cannot be patterned by exposure from the optical waveguide forming surface side (substrate surface side). Exposure must be performed from the opposite side (the back side of the substrate).

以下、本発明の光導波路の製造方法について説明する。
(工程A)
工程Aは、開口部を有する基板の一方の面に透明樹脂Aを積層するとともに、基板の開口部の少なくとも一部に透明樹脂Aを充填し、もう一方の面に透明樹脂Bを積層する工程である。
透明樹脂A及び透明樹脂Bを基板1に積層する方法については、特に制限はなく、透明樹脂A及び透明樹脂Bが液状の場合は、基板1に常法によって塗布すれば良い。透明樹脂A及び透明樹脂Bがフィルム状の場合は、ロールラミネータ、真空加圧ラミネータ、プレス、真空プレス等の各種方法を用いれば良い。積層する順番については特に限定はなく、(a)透明樹脂Aを基板1の表面に積層して透明樹脂層3を形成した後に、透明樹脂Bを基板1の裏面に積層して透明樹脂層4を形成しても良いし、(b)透明樹脂Bを基板1の裏面に積層して透明樹脂層4を形成した後に、透明樹脂Aを基板1の表面に積層して透明樹脂層3を形成しても良いし、(c)透明樹脂Aと透明樹脂Bを同時に積層して透明樹脂層3及び透明樹脂層4を形成しても良い。
(a)の場合、透明樹脂層3と透明樹脂層4との境界面は、透明樹脂層4形成面側の基板1の裏面付近となり、(b)の場合、透明樹脂層3と透明樹脂層4との境界面は、透明樹脂層3形成面側の基板1表面付近となり、(c)の場合、透明樹脂層3と透明樹脂層4との境界面は、開口部5の基板1の厚み方向の中心付近となる。(c)の場合、透明樹脂層3及び透明樹脂層4のそれぞれの樹脂表面の平坦性を確保しやすいため特に好ましい。
Hereinafter, the manufacturing method of the optical waveguide of this invention is demonstrated.
(Process A)
Step A is a step of laminating transparent resin A on one surface of a substrate having an opening, filling transparent resin A in at least a part of the opening of the substrate, and laminating transparent resin B on the other surface. It is.
The method of laminating the transparent resin A and the transparent resin B on the substrate 1 is not particularly limited, and when the transparent resin A and the transparent resin B are liquid, they may be applied to the substrate 1 by a conventional method. When the transparent resin A and the transparent resin B are in a film form, various methods such as a roll laminator, a vacuum pressure laminator, a press, and a vacuum press may be used. The order of lamination is not particularly limited. (A) After transparent resin A is laminated on the surface of substrate 1 to form transparent resin layer 3, transparent resin B is laminated on the back surface of substrate 1 to form transparent resin layer 4. (B) After the transparent resin B is laminated on the back surface of the substrate 1 to form the transparent resin layer 4, the transparent resin A is laminated on the surface of the substrate 1 to form the transparent resin layer 3. Alternatively, (c) the transparent resin A and the transparent resin B may be laminated simultaneously to form the transparent resin layer 3 and the transparent resin layer 4.
In the case of (a), the boundary surface between the transparent resin layer 3 and the transparent resin layer 4 is near the back surface of the substrate 1 on the surface on which the transparent resin layer 4 is formed, and in the case of (b), the transparent resin layer 3 and the transparent resin layer. 4 is near the surface of the substrate 1 on the surface on which the transparent resin layer 3 is formed. In the case of (c), the boundary surface between the transparent resin layer 3 and the transparent resin layer 4 is the thickness of the substrate 1 in the opening 5. Near the center of the direction. In the case of (c), since it is easy to ensure the flatness of each resin surface of the transparent resin layer 3 and the transparent resin layer 4, it is especially preferable.

(工程B)
工程Bは透明樹脂Bを光硬化する工程である。
透明樹脂Bを光硬化する方法としては、透明樹脂層3側から透明樹脂Bを露光すればよく、基板1を遮光部として開口部5を輪郭とした透明樹脂硬化部401と基板1上の透明樹脂未硬化部402を形成できる。なお、本工程Bは、前述の工程Aの透明樹脂Bを積層した後に行われるが、その後、透明樹脂Aを積層しても良い。
(Process B)
Step B is a step of photocuring the transparent resin B.
As a method for photocuring the transparent resin B, the transparent resin B may be exposed from the transparent resin layer 3 side. The transparent resin cured portion 401 having the opening 5 as an outline with the substrate 1 as a light shielding portion and the transparent on the substrate 1 Resin uncured portion 402 can be formed. In addition, although this process B is performed after laminating | stacking transparent resin B of the above-mentioned process A, you may laminate | stack transparent resin A after that.

(工程C)
工程Cは未硬化部の透明樹脂Bを現像除去し、柱状透明部材5を形成する工程である。
透明樹脂Bをパターン化し、柱状透明部材5を形成する方法は、透明樹脂未硬化部402をエッチング除去すれば良く、透明樹脂未硬化部402を除去し得る現像液を用いてエッチングすれば良い。
(Process C)
Step C is a step of developing and removing the uncured transparent resin B to form the columnar transparent member 5.
The method of patterning the transparent resin B and forming the columnar transparent member 5 may be performed by removing the transparent resin uncured portion 402 by etching, or by using a developer that can remove the transparent resin uncured portion 402.

(工程D)
工程Dは、光導波路を形成する工程である。
透明樹脂層3を形成した後の工程D1は、透明樹脂層3上に、下部クラッド層6、コア層7、上部クラッド層8を順次形成すればよい。各層の形成方法としては特に限定はなく、液状のクラッド層形成用樹脂組成物又はコア層形成用樹脂組成物をスピンコート等で塗布しても良いし、フィルム形状のクラッド層形成用樹脂組成物又はコア層形成用樹脂組成物を、ロールラミネータ、真空ラミネータ、プレス、真空プレス等の方法でラミネートしても良い。
透明樹脂層3と下部クラッド層6とを兼用する場合は、透明樹脂層3(下部クラッド層6)を形成した後の工程D2は、工程D1と同様に、上述の方法を用いてコア層7及び上部クラッド層8を順次形成すればよい。
また、透明樹脂層3とコア層7とを兼用する場合は、透明樹脂層3(コア層7)を形成した後の工程D3は、工程D1と同様に、上述の方法を用いて上部クラッド層8を形成すればよい。
(Process D)
Step D is a step of forming an optical waveguide.
In step D 1 after forming the transparent resin layer 3, the lower clad layer 6, the core layer 7, and the upper clad layer 8 may be sequentially formed on the transparent resin layer 3. The method for forming each layer is not particularly limited, and a liquid clad layer forming resin composition or a core layer forming resin composition may be applied by spin coating or the like, or a film-shaped clad layer forming resin composition. Or you may laminate the resin composition for core layer formation by methods, such as a roll laminator, a vacuum laminator, a press, a vacuum press.
When the transparent resin layer 3 and the lower clad layer 6 are used together, the process D 2 after the formation of the transparent resin layer 3 (lower clad layer 6) is performed by using the above-described method in the same manner as the process D 1. The layer 7 and the upper cladding layer 8 may be formed sequentially.
Further, when the transparent resin layer 3 and the core layer 7 are used together, the step D 3 after forming the transparent resin layer 3 (core layer 7) is performed by using the above-described method in the same manner as the step D 1. The clad layer 8 may be formed.

(工程E)
工程Eは、コア層にミラー部を形成する工程である。
ミラー部9の形成方法としては、公知の方法を適用することができる。例えば、コア層7形成面側から、ダイシングソー等を用いて、コア層7を切削することにより形成することができる。形成するミラー部9は、45°であることが好ましい。
また、ミラー部に蒸着装置を用いて、金等の金属を蒸着し、反射金属層を備えたミラー部としても良い。本工程Eは、前述の工程Dのコア層を積層した後の工程D中に行っても良い。
(Process E)
Step E is a step of forming a mirror portion in the core layer.
A known method can be applied as a method of forming the mirror portion 9. For example, the core layer 7 can be formed by cutting the core layer 7 using a dicing saw or the like from the surface on which the core layer 7 is formed. The mirror part 9 to be formed is preferably 45 °.
Moreover, it is good also as a mirror part provided with a reflective metal layer by vapor-depositing metals, such as gold | metal | money, using a vapor deposition apparatus for a mirror part. This process E may be performed during the process D after the core layer of the above-mentioned process D is laminated.

(工程F)
工程Fは、配線保護用の電気配線保護層を形成する工程である。
透明樹脂Bが、電気配線保護用の感光性樹脂組成物であり、透明樹脂層4形成面側の基板裏面に電気配線10が設けられている場合、工程Aの後、又は工程Bの後に透明樹脂層4、電気配線の形成面(基材の裏面)側からパターン露光し、透明樹脂Bの硬化部402からなる電気配線保護層11を形成できる。
また、後の工程Cにおいて、透明樹脂B未硬化部401をエッチング除去して、柱状透明部材5を形成する際に、併せて電気配線保護層11を同時に形成することもできる。
(Process F)
Step F is a step of forming an electrical wiring protective layer for wiring protection.
When the transparent resin B is a photosensitive resin composition for protecting the electrical wiring, and the electrical wiring 10 is provided on the back surface of the substrate on the transparent resin layer 4 forming surface, the transparent resin B is transparent after the step A or after the step B. Pattern exposure is performed from the resin layer 4 and the electrical wiring formation surface (back surface of the base material) side, and the electrical wiring protective layer 11 including the cured portion 402 of the transparent resin B can be formed.
Further, in the subsequent step C, when the transparent resin B uncured portion 401 is removed by etching to form the columnar transparent member 5, the electrical wiring protective layer 11 can be simultaneously formed.

以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。
実施例1
[クラッド層形成用樹脂フィルムの作製]
[(A)ベースポリマー;(メタ)アクリルポリマー(A−1)の作製]
撹拌機、冷却管、ガス導入管、滴下ろうと、及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート46質量部及び乳酸メチル23質量部を秤量し、窒素ガスを導入しながら撹拌を行った。液温を65℃に上昇させ、メチルメタクリレート47質量部、ブチルアクリレート33質量部、2−ヒドロキシエチルメタクリレート16質量部、メタクリル酸14質量部、2,2’−アゾビス(2,4−ジメチルバレロニトリル)3質量部、プロピレングリコールモノメチルエーテルアセテート46質量部、及び乳酸メチル23質量部の混合物を3時間かけて滴下後、65℃で3時間撹拌し、さらに95℃で1時間撹拌を続けて、(メタ)アクリルポリマー(A−1)溶液(固形分45質量%)を得た。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, unless the summary is exceeded.
Example 1
[Preparation of resin film for forming clad layer]
[(A) Base polymer; production of (meth) acrylic polymer (A-1)]
46 parts by mass of propylene glycol monomethyl ether acetate and 23 parts by mass of methyl lactate were weighed in a flask equipped with a stirrer, a cooling pipe, a gas introduction pipe, a dropping funnel, and a thermometer, and stirred while introducing nitrogen gas. . The liquid temperature was raised to 65 ° C., 47 parts by weight of methyl methacrylate, 33 parts by weight of butyl acrylate, 16 parts by weight of 2-hydroxyethyl methacrylate, 14 parts by weight of methacrylic acid, 2,2′-azobis (2,4-dimethylvaleronitrile ) A mixture of 3 parts by mass, 46 parts by mass of propylene glycol monomethyl ether acetate and 23 parts by mass of methyl lactate was added dropwise over 3 hours, followed by stirring at 65 ° C. for 3 hours, and further stirring at 95 ° C. for 1 hour. A (meth) acrylic polymer (A-1) solution (solid content: 45% by mass) was obtained.

[重量平均分子量の測定]
(A−1)の重量平均分子量(標準ポリスチレン換算)をGPC(東ソー(株)製「SD−8022」、「DP−8020」、及び「RI−8020」)を用いて測定した結果、3.9×104であった。なお、カラムは日立化成工業(株)製「Gelpack GL−A150−S」及び「Gelpack GL−A160−S」を使用した。
[酸価の測定]
A−1の酸価を測定した結果、79mgKOH/gであった。なお、酸価はA−1溶液を中和するのに要した0.1mol/L水酸化カリウム水溶液量から算出した。このとき、指示薬として添加したフェノールフタレインが無色からピンク色に変色した点を中和点とした。
[Measurement of weight average molecular weight]
As a result of measuring the weight average molecular weight (in terms of standard polystyrene) of (A-1) using GPC (“SD-8022”, “DP-8020”, and “RI-8020” manufactured by Tosoh Corporation), 3. It was 9 × 10 4 . The column used was “Gelpack GL-A150-S” and “Gelpack GL-A160-S” manufactured by Hitachi Chemical Co., Ltd.
[Measurement of acid value]
As a result of measuring the acid value of A-1, it was 79 mgKOH / g. In addition, the acid value was computed from the amount of 0.1 mol / L potassium hydroxide aqueous solution required for neutralizing A-1 solution. At this time, the point at which the phenolphthalein added as an indicator changed color from colorless to pink was defined as the neutralization point.

[クラッド層形成用樹脂ワニスの調合]
(A)ベースポリマーとして、前記A−1溶液(固形分45質量%)84質量部(固形分38質量部)、(B)光硬化成分として、ポリエステル骨格を有するウレタン(メタ)アクリレート(新中村化学工業(株)製「U−200AX」)33質量部、及びポリプロピレングリコール骨格を有するウレタン(メタ)アクリレート(新中村化学工業(株)製「UA−4200」)15質量部、(C)熱硬化成分として、ヘキサメチレンジイソシアネートのイソシアヌレート型三量体をメチルエチルケトンオキシムで保護した多官能ブロックイソシアネート溶液(固形分75質量%)(住化バイエルウレタン(株)製「スミジュールBL3175」)20質量部(固形分15質量部)、(D)光重合開始剤として、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(チバ・ジャパン(株)製「イルガキュア2959」)1質量部、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(チバ・ジャパン(株)製「イルガキュア819」)1質量部、及び希釈用有機溶剤としてプロピレングリコールモノメチルエーテルアセテート23質量部を攪拌しながら混合した。孔径2μmのポリフロンフィルタ(アドバンテック東洋(株)製「PF020」)を用いて加圧濾過後、減圧脱泡し、クラッド層形成用樹脂ワニスを得た。
上記で得られたクラッド層形成用樹脂ワニスを、支持フィルムであるPETフィルム(東洋紡績(株)製「コスモシャインA4100」、厚み50μm)の非処理面上に、塗工機(マルチコーターTM−MC、(株)ヒラノテクシード製)を用いて塗布し、100℃で20分乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム(株)製「ピューレックスA31」、厚み25μm)を貼付け、クラッド層形成用樹脂フィルムを得た。
このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であり、本実施例では使用した下部クラッド層6、透明樹脂層3、透明樹脂層4の厚みについては、実施例中に記載する。また、下部クラッド層6、透明樹脂層3、透明樹脂層4の硬化後の膜厚と塗工後の膜厚は同一であった。本実施例で用いた上部クラッド層形成用樹脂フィルムの膜厚についても実施例中に記載する。実施例中に記載する上部クラッド層形成用樹脂フィルムの膜厚は塗工後の膜厚とする。
[Preparation of resin varnish for forming clad layer]
(A) As the base polymer, 84 parts by mass (solid content: 45% by mass) of the A-1 solution (solid content: 45% by mass), (B) Urethane (meth) acrylate having a polyester skeleton as the photocuring component (Shin Nakamura) 33 parts by mass of “U-200AX” manufactured by Chemical Industry Co., Ltd., and 15 parts by mass of urethane (meth) acrylate having a polypropylene glycol skeleton (“UA-4200” manufactured by Shin-Nakamura Chemical Co., Ltd.), (C) heat As a curing component, 20 parts by mass of a polyfunctional block isocyanate solution (solid content: 75% by mass) obtained by protecting an isocyanurate type trimer of hexamethylene diisocyanate with methyl ethyl ketone oxime (“Sumijour BL3175” manufactured by Sumika Bayer Urethane Co., Ltd.) (Solid content 15 parts by mass), (D) As a photopolymerization initiator, 1- [4- (2-hydroxy ester) Xyl) phenyl] -2-hydroxy-2-methyl-1-propan-1-one (“Irgacure 2959” manufactured by Ciba Japan Co., Ltd.), 1 part by mass, bis (2,4,6-trimethylbenzoyl) phenylphosphine 1 part by mass of oxide (“Irgacure 819” manufactured by Ciba Japan Co., Ltd.) and 23 parts by mass of propylene glycol monomethyl ether acetate as an organic solvent for dilution were mixed with stirring. After pressure filtration using a polyflon filter having a pore size of 2 μm (“PF020” manufactured by Advantech Toyo Co., Ltd.), degassing was performed under reduced pressure to obtain a resin varnish for forming a cladding layer.
The resin varnish for forming a clad layer obtained above is coated on a non-treated surface of a PET film (“Cosmo Shine A4100” manufactured by Toyobo Co., Ltd., thickness 50 μm) as a support film. MC, manufactured by Hirano Tech Seed Co., Ltd., dried at 100 ° C. for 20 minutes, and then a surface release treated PET film (“Purex A31” manufactured by Teijin DuPont Films Co., Ltd., thickness 25 μm) is pasted as a protective film. A resin film for forming a cladding layer was obtained.
At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this embodiment, the thickness of the lower cladding layer 6, the transparent resin layer 3, and the transparent resin layer 4 used is as follows. Described in the examples. Moreover, the film thickness after hardening of the lower clad layer 6, the transparent resin layer 3, and the transparent resin layer 4 and the film thickness after coating were the same. The film thickness of the upper clad layer forming resin film used in this example is also described in the examples. The film thickness of the upper clad layer forming resin film described in the examples is the film thickness after coating.

[コア層形成用樹脂フィルムの作製]
(A)ベースポリマーとして、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成(株)製)26質量部、(B)光重合性化合物として、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A−BPEF、新中村化学工業(株)製)36質量部、及びビスフェノールA型エポキシアクリレート(商品名:EA−1020、新中村化学工業(株)製)36質量部、(C)光重合開始剤として、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・スペシャリティ・ケミカルズ社製)1質量部、及び1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(商品名:イルガキュア2959、チバ・スペシャリティ・ケミカルズ社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上記製造例と同様の方法及び条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法及び条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスBを、支持フィルムであるPETフィルム(商品名:コスモシャインA1517、東洋紡績(株)製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム(株)、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であり、本実施例では使用したコア層形成用樹脂フィルム厚みに付いては、実施例中に記載する。実施例中に記載するコア層形成用樹脂フィルムの膜厚は塗工後の膜厚とする。
[Preparation of resin film for core layer formation]
(A) As a base polymer, 26 parts by mass of a phenoxy resin (trade name: Phenotote YP-70, manufactured by Toto Kasei Co., Ltd.), and (B) 9,9-bis [4- (2- Acrylyloxyethoxy) phenyl] fluorene (trade name: A-BPEF, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, and bisphenol A type epoxy acrylate (trade name: EA-1020, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, (C) 1 part by mass of bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (trade name: Irgacure 819, manufactured by Ciba Specialty Chemicals) -[4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one (trade name: Irgacu 2959, manufactured by Ciba Specialty Chemicals Co., Ltd.) A resin varnish B for forming a core layer was prepared by the same method and conditions as in the above production example except that 1 part by mass and 40 parts by mass of propylene glycol monomethyl ether acetate were used as the organic solvent. did. Thereafter, pressure filtration and degassing under reduced pressure were performed under the same method and conditions as in the above production example.
On the non-treated surface of the PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 μm), which is a support film, the core layer-forming resin varnish B obtained above is used. Apply and dry in the same manner as above, and then attach a release PET film (trade name: PUREX A31, Teijin DuPont Films, Inc., thickness: 25 μm) as a protective film so that the release surface is on the resin side A resin film for forming a core layer was obtained. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this example, the thickness of the resin film for forming the core layer used is described in the examples. The film thickness of the core layer forming resin film described in the examples is the film thickness after coating.

[開口部付き基板の作製]
基板1として150mm×150mmのポリイミドフィルム((ポリイミド;ユーピレックスRN(宇部日東化成製)、厚み;25μmに、ドリル加工にて直径150μmの開口部を2箇所(開口部中心間距離;100mm)形成し、開口部2付き基板1を得た。
[Production of substrate with opening]
150 mm × 150 mm polyimide film ((polyimide; Upilex RN (manufactured by Ube Nitto Kasei), thickness: 25 μm), drilled to form two openings with a diameter of 150 μm (distance between center of opening: 100 mm) as substrate 1 A substrate 1 with an opening 2 was obtained.

[柱状透明部材の形成]
上記で得られた25μm厚みのクラッド層形成用樹脂フィルムを透明樹脂A及び透明樹脂Bとして、それぞれ保護フィルムを剥離後、上記で得られた開口部2付き基板1の両面に、真空加圧式ラミネータ((株)名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度110℃、加圧時間30秒の条件にて加熱圧着して、ラミネートした(図1(a)参照)。
[Formation of columnar transparent member]
The resin film for forming a clad layer having a thickness of 25 μm obtained above is used as a transparent resin A and a transparent resin B, and after peeling off the protective films, a vacuum pressure laminator is formed on both surfaces of the substrate 1 with an opening 2 obtained above. (MLP Co., Ltd., MVLP-500) was evacuated to 500 Pa or less, and then thermocompression bonded under the conditions of a pressure of 0.4 MPa, a temperature of 110 ° C., and a pressurization time of 30 seconds to laminate ( FIG. 1 (a)).

次いで、紫外線露光機((株)オーク製作所製、EXM−1172)にて透明樹脂層3側から、支持フィルムを通して紫外線(波長365nm)を300mJ/cm2照射し、透明樹脂硬化部402と透明樹脂未硬化部401を形成した。なお、このとき、透明樹脂Aは光硬化していた。
その後、両面の支持フィルムを剥離し、現像液(1%炭酸カリウム水溶液)を用いて、透明樹脂未硬化部401をエッチングした。続いて、水洗浄し、170℃で1時間加熱乾燥及び硬化し、柱状透明部材5を形成した(図1(b)参照)。
Next, ultraviolet light (wavelength 365 nm) is irradiated through the support film from the transparent resin layer 3 side with an ultraviolet exposure machine (ExM-1172, manufactured by Oak Manufacturing Co., Ltd.) at 300 mJ / cm 2, and the transparent resin cured portion 402 and the transparent resin are irradiated. An uncured portion 401 was formed. At this time, the transparent resin A was photocured.
Thereafter, the support films on both sides were peeled off, and the transparent resin uncured portion 401 was etched using a developer (1% potassium carbonate aqueous solution). Subsequently, it was washed with water, dried by heating at 170 ° C. for 1 hour and cured to form a columnar transparent member 5 (see FIG. 1B).

上記で得られた基板の透明樹脂層3上に、上記で得られた15μm厚みのクラッド層形成用樹脂フィルムを下部クラッド層6として、保護フィルムを剥離後、上記で得られた開口部2付き基板1の両面に、真空加圧式ラミネータ((株)名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度110℃、加圧時間30秒の条件にて加熱圧着して、ラミネートした。続いて、上記紫外線露光機を用いて、下部クラッド層6の支持フィルム側から紫外線(波長365nm)を3.0J/cm2照射し、支持フィルムを剥離後、170℃で1時間加熱乾燥及び硬化し、下部クラッド層6を形成した。 On the transparent resin layer 3 of the substrate obtained above, the protective film is peeled off using the 15 μm-thick resin film for clad layer formation obtained above as the lower clad layer 6, and then the opening 2 obtained above is attached. A vacuum pressurization laminator (MVLP-500, manufactured by Meiki Seisakusho Co., Ltd.) was used on both surfaces of the substrate 1 and evacuated to 500 Pa or less. Then, the pressure was 0.4 MPa, the temperature was 110 ° C., and the pressurization time was 30 seconds. Was laminated by thermocompression bonding. Subsequently, ultraviolet rays (wavelength 365 nm) were irradiated from the support film side of the lower clad layer 6 with 3.0 J / cm 2 using the above-described UV exposure machine, the support film was peeled off, and then dried and cured at 170 ° C. for 1 hour. Then, the lower clad layer 6 was formed.

次いで、上記で形成した下部クラッド層6上に、上記で得られた50μm厚みのコア層形成用樹脂フィルムをコア層7として、保護フィルを剥離した後に、ロールラミネータ(日立化成テクノプラント(株)製、HLM−1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件をラミネートし、次いで上記の真空加圧式ラミネータ((株)名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度70℃、加圧時間30秒の条件にて加熱圧着した。   Next, on the lower clad layer 6 formed above, the protective film was peeled off using the 50 μm-thick core layer-forming resin film obtained above as a core layer 7, and then a roll laminator (Hitachi Chemical Technoplant Co., Ltd.). Manufactured by HLM-1500) under the conditions of pressure 0.4 MPa, temperature 50 ° C., laminating speed 0.2 m / min, and then the above-mentioned vacuum pressure laminator (manufactured by Meiki Seisakusho, MVLP-500) After vacuuming to 500 Pa or less, thermocompression bonding was performed under the conditions of a pressure of 0.4 MPa, a temperature of 70 ° C., and a pressing time of 30 seconds.

続いて、その後、コアパターン幅50μmの開口部を有するネガ型フォトマスクを、該コアパターンが、開口部上に形成されるように位置合わせし、上記紫外線露光機を用いて、支持フィルム側から紫外線(波長365nm)を0.8J/cm2照射し、次いで80℃で5分間露光後加熱を行った。その後、支持フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンをエッチングした。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥し、コアパターンを形成した。 Subsequently, a negative photomask having an opening with a core pattern width of 50 μm is aligned so that the core pattern is formed on the opening, and from the support film side using the ultraviolet exposure machine. Ultraviolet rays (wavelength 365 nm) were irradiated at 0.8 J / cm 2 , and then after exposure for 5 minutes at 80 ° C., heating was performed. Thereafter, the PET film as the support film was peeled off, and the core pattern was etched using a developer (propylene glycol monomethyl ether acetate / N, N-dimethylacetamide = 8/2, mass ratio). Then, it wash | cleaned using the washing | cleaning liquid (isopropanol), and heat-dried at 100 degreeC for 10 minute (s), and formed the core pattern.

得られたコアパターン上から、上記で得られた55μm厚みのクラッド層形成用樹脂フィルムを上部クラッド層8として、保護フィルムを剥離後、真空加圧式ラミネータ((株)名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度110℃、加圧時間30秒の条件にて加熱圧着して、ラミネートした。続いて、上記紫外線露光機を用いて、上部クラッド層8の支持フィルム側から紫外線(波長365nm)を3.0J/cm2照射し、支持フィルムを剥離後、170℃で1時間加熱乾燥及び硬化し、光導波路を形成した(図1(d)参照)。 From the obtained core pattern, the protective film was peeled off using the 55 μm-thick clad layer-forming resin film obtained above as the upper clad layer 8, and then a vacuum-pressurized laminator (MVLP-, manufactured by Meiki Seisakusho Co., Ltd.). 500) and evacuated to 500 Pa or less, and then laminated by thermocompression bonding under conditions of a pressure of 0.4 MPa, a temperature of 110 ° C., and a pressurization time of 30 seconds. Subsequently, ultraviolet rays (wavelength 365 nm) were irradiated from the support film side of the upper cladding layer 8 with 3.0 J / cm 2 using the UV exposure machine, and the support film was peeled off, followed by heat drying and curing at 170 ° C. for 1 hour. Thus, an optical waveguide was formed (see FIG. 1D).

(ミラー部の形成)
得られた光導波路の上部クラッド層8側からダイシングソー(DAC552、(株)ディスコ社製)を用いて45°のミラー部9を開口部2の直上部に形成した(図1(e)参照)。これにより、基板1表面から25μm突出した柱状透明部材5を有するミラー付き光導波路を得た。
(Formation of mirror part)
A 45 ° mirror portion 9 was formed immediately above the opening 2 using a dicing saw (DAC552, manufactured by Disco Corporation) from the upper clad layer 8 side of the obtained optical waveguide (see FIG. 1 (e)). ). As a result, an optical waveguide with a mirror having a columnar transparent member 5 protruding from the surface of the substrate 1 by 25 μm was obtained.

(ミラー部の光損失の測定)
光導波路のミラー部から光ファイバA(GI50、NA=0.2)を用いて850nmの光信号を入射し、コアパターンを透過して別のミラー部から出力された光信号を、光ファイバB(GI50、NA=0.2)を用いて受光した時の光損失(A)を測定した。このとき、基板1表面と光ファイバA及び光ファイバBとの距離は30μm(柱状透明部材5と光ファイバA及びBとの距離;5μm)とした。次いで、2箇所のミラー部を上記のダイシングソーを用いて切断し、ミラーなしの光導波路を得た。次いで、上記の光ファイバA及び光ファイバBを用い、コアパターンと同軸方向に入射部側に光ファイバAを、出射部側に光ファイバBを調芯し、光損失(B)を測定した。
2箇所のミラー部の合計光損失(C)を以下の式に従って算出した。
(式)(C)=(A)−(B)
得られたミラー付き光導波路の2箇所のミラー部の合計光損失は、2.10dBであった。
(Measurement of optical loss of mirror part)
An optical signal of 850 nm is incident from the mirror part of the optical waveguide using the optical fiber A (GI50, NA = 0.2), and the optical signal transmitted through the core pattern and output from another mirror part is converted into the optical fiber B. The optical loss (A) when receiving light using (GI50, NA = 0.2) was measured. At this time, the distance between the surface of the substrate 1 and the optical fibers A and B was 30 μm (the distance between the columnar transparent member 5 and the optical fibers A and B; 5 μm). Next, the two mirror portions were cut using the above dicing saw to obtain an optical waveguide without a mirror. Next, using the optical fiber A and the optical fiber B, the optical fiber A was aligned on the incident part side and the optical fiber B was aligned on the output part side in the direction coaxial with the core pattern, and the optical loss (B) was measured.
The total light loss (C) of the two mirror parts was calculated according to the following formula.
(Formula) (C) = (A)-(B)
The total optical loss of the two mirror portions of the obtained optical waveguide with a mirror was 2.10 dB.

実施例2
実施例1において、透明樹脂層3を25μmとし、下部クラッド層6として用いた以外は同様の方法で、ミラー付き光導波路を作製した(図2参照)。
得られたミラー付き光導波路の2箇所のミラー部の合計光損失は、2.00dBであった。
Example 2
An optical waveguide with a mirror was produced in the same manner as in Example 1 except that the transparent resin layer 3 was 25 μm and the lower clad layer 6 was used (see FIG. 2).
The total optical loss of the two mirror portions of the obtained optical waveguide with a mirror was 2.00 dB.

実施例3
実施例2において、透明樹脂層4として、厚さ15μmのクラッド層形成用樹脂フィルムを用い、下部クラッド層6と兼用した透明樹脂層3及び透明樹脂層4とを露光する際に、開口部の中心(80μm)を遮光部としたネガ型フォトマスクを介して紫外線(波長365nm)を0.3J/cm2照射し、開口部の中心をエッチング除去した後、水洗し、さらに、上記の露光機を用いて下部クラッド層6側から、3.0J/cm2照射し、170℃で1時間加熱乾燥及び硬化した。
次いで下部クラッド層上に保護フィルムを剥離したコア層形成用樹脂フィルムをラミネートし、透明樹脂層4として、基板1の裏面側に上記と同様の25μm厚のコア層形成用樹脂フィルムを、保護フィルムを剥離した後ラミネートした。2箇所の直径200μmの開口部と、該開口部同士を結ぶ50μmの開口部を有するネガ型フォトマスクを介し、直径200μmの開口部と、基板1の開口部2とを位置合わせした後、上記紫外線露光機を用いて、支持フィルム側から紫外線(波長365nm)を0.8J/cm2照射し、次いで80℃で5分間露光後加熱を行った。その後、支持フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンをエッチングした。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥し、コアパターンを形成した。
その後の工程は、実施例2と同様に行い、ミラー付き光導波路を得た(図3参照)。
得られたミラー付き光導波路の2箇所のミラー部の合計光損失は、1.90dBであった。
Example 3
In Example 2, when a transparent resin layer 3 having a thickness of 15 μm was used as the transparent resin layer 4 and the transparent resin layer 3 and the transparent resin layer 4 also used as the lower clad layer 6 were exposed, Irradiation with ultraviolet rays (wavelength 365 nm) of 0.3 J / cm 2 through a negative photomask with the center (80 μm) as a light-shielding part, etching away the center of the opening, washing with water, and the above exposure apparatus Was irradiated from the lower clad layer 6 side with 3.0 J / cm 2 , heated and dried at 170 ° C. for 1 hour, and cured.
Next, a core layer forming resin film from which the protective film has been peeled is laminated on the lower clad layer, and a 25 μm thick core layer forming resin film similar to the above is formed on the back side of the substrate 1 as the transparent resin layer 4. Was peeled and laminated. After positioning the 200 μm diameter opening and the opening 2 of the substrate 1 through two negative 200 μm diameter openings and a negative photomask having a 50 μm opening connecting the openings, the above-mentioned Using an ultraviolet light exposure machine, ultraviolet light (wavelength 365 nm) was irradiated from the support film side at 0.8 J / cm 2 , and then after exposure at 80 ° C. for 5 minutes, heating was performed. Thereafter, the PET film as the support film was peeled off, and the core pattern was etched using a developer (propylene glycol monomethyl ether acetate / N, N-dimethylacetamide = 8/2, mass ratio). Then, it wash | cleaned using the washing | cleaning liquid (isopropanol), and heat-dried at 100 degreeC for 10 minute (s), and formed the core pattern.
Subsequent steps were performed in the same manner as in Example 2 to obtain an optical waveguide with a mirror (see FIG. 3).
The total light loss of the two mirror portions of the obtained optical waveguide with a mirror was 1.90 dB.

実施例4
裏面側に電気配線を有する基板1を用い、実施例2と同様に、透明樹脂Bを露光した後に、透明樹脂B側から、該電気配線保護層パターンを有したネガ型フォトマスクを介して、紫外線(波長365nm)を0.3J/cm2照射し、透明樹脂Bを再度パターン露光した以外は同様の方法で、ミラー付き光導波路を作製した(図4参照)。
得られたミラー付き光導波路の2箇所のミラー部の合計光損失は、2.10dBであった。
Example 4
In the same manner as in Example 2, using the substrate 1 having electrical wiring on the back side, after exposing the transparent resin B, from the transparent resin B side, through a negative photomask having the electrical wiring protective layer pattern, An optical waveguide with a mirror was produced in the same manner except that ultraviolet rays (wavelength 365 nm) were irradiated at 0.3 J / cm 2 and the transparent resin B was subjected to pattern exposure again (see FIG. 4).
The total optical loss of the two mirror portions of the obtained optical waveguide with a mirror was 2.10 dB.

比較例1
実施例1において、基板1の開口部2を形成せず、透明樹脂層4を形成しなかった以外は同様の方法でミラー付き光導波路を作製した。
得られたミラー付き光導波路の2箇所のミラー部の合計光損失は、2.89dBであった。なお、このときの光ファイバA及び光ファイバBと基板1表面との距離は30μmであった。
Comparative Example 1
In Example 1, an optical waveguide with a mirror was produced in the same manner except that the opening 2 of the substrate 1 was not formed and the transparent resin layer 4 was not formed.
The total optical loss of the two mirror portions of the obtained optical waveguide with a mirror was 2.89 dB. At this time, the distance between the optical fibers A and B and the surface of the substrate 1 was 30 μm.

比較例2
実施例2において、基板1の開口部2を形成せず、透明樹脂層4を形成しなかった以外は同様の方法でミラー付き光導波路を作製した。
得られたミラー付き光導波路の2箇所のミラー部の合計光損失は、2.85dBであった。なお、このときの光ファイバA及び光ファイバBと基板1表面との距離は30μmであった。
Comparative Example 2
In Example 2, an optical waveguide with a mirror was prepared in the same manner except that the opening 2 of the substrate 1 was not formed and the transparent resin layer 4 was not formed.
The total optical loss of the two mirror portions of the obtained optical waveguide with a mirror was 2.85 dB. At this time, the distance between the optical fibers A and B and the surface of the substrate 1 was 30 μm.

本発明の光導波路は、基板の種類によらず光信号の伝達が可能で、かつ光学素子と光導波路基板との間の空間ギャップが小さいため、ミラー部から反射された光信号の広がりを押さえ低損失で信号伝搬が可能である。したがって、本発明の光導波路は、各種光学装置、光インタコネクション等の幅広い分野に適用可能である。   The optical waveguide of the present invention can transmit an optical signal regardless of the type of the substrate, and since the spatial gap between the optical element and the optical waveguide substrate is small, the spread of the optical signal reflected from the mirror portion is suppressed. Signal propagation is possible with low loss. Therefore, the optical waveguide of the present invention can be applied to various fields such as various optical devices and optical interconnections.

1.基板
2.開口部
3.透明樹脂層
4.透明樹脂層
401.透明樹脂未硬化部
402.透明樹脂硬化部
5.柱状透明部材
6.下部クラッド層
7.コア層
8.上部クラッド層
9.ミラー部
10.電気配線
11.電気配線保護層
1. Substrate 2. Opening 3. 3. Transparent resin layer Transparent resin layer 401. Transparent resin uncured portion 402. 4. Transparent resin curing part Columnar transparent member6. 6. Lower clad layer Core layer 8. 8. Upper clad layer Mirror part 10. Electrical wiring11. Electrical wiring protective layer

Claims (16)

基板上に、下部クラッド層、コア層及び上部クラッド層が順に積層され、かつ該コア層にミラー部が形成されてなる光導波路であって、該基板に開口部を有し、該開口部から基板の裏面方向に向かって突出した柱状透明部材を有する光導波路。   An optical waveguide in which a lower clad layer, a core layer, and an upper clad layer are sequentially laminated on a substrate, and a mirror portion is formed on the core layer. The optical waveguide has an opening in the substrate. An optical waveguide having a columnar transparent member protruding toward the back surface of the substrate. 前記ミラー部が、前記開口部の直上部に形成されてなる請求項1に記載の光導波路。   The optical waveguide according to claim 1, wherein the mirror portion is formed immediately above the opening. 前記基板と前記下部クラッド層の間に透明樹脂Aからなる透明樹脂層を有し、該透明樹脂Aが前記基板の開口部の少なくとも一部に充填され、該開口部内の透明樹脂Aに接して透明樹脂Bからなる前記柱状透明部材が突出する請求項1又は2に記載の光導波路。   A transparent resin layer made of transparent resin A is provided between the substrate and the lower clad layer, and the transparent resin A is filled in at least a part of the opening of the substrate and is in contact with the transparent resin A in the opening. The optical waveguide according to claim 1, wherein the columnar transparent member made of transparent resin B protrudes. 前記透明樹脂Aが、クラッド層形成用樹脂組成物又はコア層形成用樹脂組成物からなる請求項3に記載の光導波路。   The optical waveguide according to claim 3, wherein the transparent resin A comprises a resin composition for forming a cladding layer or a resin composition for forming a core layer. 前記下部クラッド層を構成するクラッド層形成用樹脂組成物が前記基板の開口部の少なくとも一部に充填され、該開口部内の該樹脂組成物に接して透明樹脂Bからなる前記柱状透明部材が突出する請求項1又は2に記載の光導波路。   The resin composition for forming the cladding layer constituting the lower cladding layer is filled in at least a part of the opening of the substrate, and the columnar transparent member made of the transparent resin B protrudes in contact with the resin composition in the opening. The optical waveguide according to claim 1 or 2. 前記コア層を構成するコア層形成用樹脂組成物が前記基板の開口部の少なくとも一部に充填され、該開口部内の該樹脂組成物に接して透明樹脂Bからなる前記柱状透明部材が突出する請求項1又は2に記載の光導波路。   The resin composition for forming a core layer constituting the core layer is filled in at least a part of the opening of the substrate, and the columnar transparent member made of the transparent resin B protrudes in contact with the resin composition in the opening. The optical waveguide according to claim 1 or 2. 前記透明樹脂Bが、感光性の樹脂組成物である請求項3〜6のいずれかに記載の光導波路。   The optical waveguide according to claim 3, wherein the transparent resin B is a photosensitive resin composition. 前記透明樹脂Bが、クラッド層形成用樹脂組成物又はコア層形成用樹脂組成物である請求項7に記載の光導波路。   The optical waveguide according to claim 7, wherein the transparent resin B is a resin composition for forming a cladding layer or a resin composition for forming a core layer. 前記透明樹脂Bが、電気配線保護用の感光性樹脂組成物である請求項7に記載の光導波路。   The optical waveguide according to claim 7, wherein the transparent resin B is a photosensitive resin composition for protecting electrical wiring. 前記基板が、前記透明樹脂Bを光硬化するための活性光線を遮光可能な基板である請求項3〜9のいずれかに記載の光導波路。   The optical waveguide according to claim 3, wherein the substrate is a substrate capable of shielding an actinic ray for photocuring the transparent resin B. 請求項1〜10のいずれかに記載の光導波路の製造方法であって、開口部を有する基板の一方の面に透明樹脂Aを積層するとともに、基板の開口部の少なくとも一部に透明樹脂Aを充填し、もう一方の面に透明樹脂Bを積層する工程A、該透明樹脂Aを形成した面側から該開口部を露光し、該開口部内及び該開口部上の前記透明樹脂Bを光硬化する工程Bを有する光導波路の製造方法。   It is a manufacturing method of the optical waveguide in any one of Claims 1-10, Comprising: While transparent resin A is laminated | stacked on one surface of the board | substrate which has an opening part, transparent resin A is formed in at least one part of the opening part of a board | substrate. Step A of laminating transparent resin B on the other surface, exposing the opening from the surface side where the transparent resin A is formed, and exposing the transparent resin B in the opening and on the opening to light A manufacturing method of an optical waveguide which has process B which hardens. 前記工程Bの後に未硬化部の前記透明樹脂Bを現像除去し、柱状透明部材を形成する工程Cを有する請求項11に記載の光導波路の製造方法。   The method for producing an optical waveguide according to claim 11, further comprising a step C of developing and removing the transparent resin B in an uncured portion after the step B to form a columnar transparent member. 前記工程B又は前記工程Cの後に前記透明樹脂A上に下部クラッド層、コア層、上部クラッド層を形成する工程D1、前記コア層にミラー部を形成する工程Eを有する請求項11又は12に記載の光導波路の製造方法。 The step B or the lower cladding layer on the transparent resin A after the step C, the core layer, step D 1 to form an upper clad layer, according to claim 11 or 12 comprising the step E of forming a mirror on the core layer The manufacturing method of the optical waveguide as described in any one of. 前記透明樹脂Aが下部クラッド層形成用樹脂組成物であって、前記工程B又は前記工程Cの後に、形成された下部クラッド層上にコア層、上部クラッド層を形成する工程D2、該コア層にミラー部を形成する工程Eを有する請求項11又は12に記載の光導波路の製造方法。 The transparent resin A is a resin composition for forming a lower clad layer, and after the step B or the step C, a step D 2 of forming a core layer and an upper clad layer on the formed lower clad layer, the core The method for manufacturing an optical waveguide according to claim 11, further comprising a step E of forming a mirror portion in the layer. 請求項1〜10のいずれかに記載の光導波路の製造方法であって、基板の一方の面に、少なくとも基板の開口部の一部が開口された状態を維持するように、基板上に下部クラッド層を形成した後、該下部クラッド層上にコア層形成用樹脂組成物を積層するとともに、基板の開口部の少なくとも一部にコア層形成用樹脂組成物を充填し、もう一方の面に透明樹脂Bを積層する工程A、該コア層側から該開口部を露光し、該開口部内及び該開口部上の前記透明樹脂Bを光硬化する工程B、未硬化部の該透明樹脂Bを現像除去し、柱状透明部材を形成する工程C、該コア層上に上部クラッド層を形成する工程D3、該コア層にミラー部を形成する工程Eを有する光導波路の製造方法。 11. The method for manufacturing an optical waveguide according to claim 1, wherein a lower portion is formed on the substrate so as to maintain a state in which at least a part of the opening of the substrate is opened on one surface of the substrate. After forming the cladding layer, the core layer forming resin composition is laminated on the lower cladding layer, and at least a part of the opening of the substrate is filled with the core layer forming resin composition, and the other surface is filled. Step A for laminating the transparent resin B, Step B for exposing the opening from the core layer side, photocuring the transparent resin B in the opening and on the opening, and the transparent resin B in the uncured portion A method of manufacturing an optical waveguide, comprising: a step C of developing and removing to form a columnar transparent member; a step D 3 of forming an upper cladding layer on the core layer; and a step E of forming a mirror portion on the core layer. 前記透明樹脂Bが、電気配線保護用の感光性樹脂組成物であり、かつ基板が少なくとも透明樹脂B形成面側の前記基板表面に電気配線を有する基板であって、前記工程Aの後、又は前記工程Bの後に、前記透明樹脂Bをパターン露光し、前記配線保護用の電気配線保護層を形成する工程Fを有する請求項11〜15のいずれかに記載の光導波路の製造方法。   The transparent resin B is a photosensitive resin composition for electrical wiring protection, and the substrate is a substrate having electrical wiring on at least the substrate surface on the transparent resin B forming surface side, after the step A, or The method for producing an optical waveguide according to claim 11, further comprising a step F of performing pattern exposure of the transparent resin B after the step B to form an electric wiring protective layer for protecting the wiring.
JP2012003587A 2012-01-11 2012-01-11 Optical waveguide and method for manufacturing the same Expired - Fee Related JP6069836B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2012003587A JP6069836B2 (en) 2012-01-11 2012-01-11 Optical waveguide and method for manufacturing the same
TW101151032A TWI575270B (en) 2012-01-11 2012-12-28 Optical waveguide and its manufacturing method
US14/371,591 US9513434B2 (en) 2012-01-11 2012-12-28 Optical waveguide and manufacturing method thereof
PCT/JP2012/084139 WO2013105471A1 (en) 2012-01-11 2012-12-28 Optical waveguide and manufacturing method thereof
CN201280066784.7A CN104040391A (en) 2012-01-11 2012-12-28 Optical waveguide and manufacturing method thereof
KR1020147019254A KR20140114829A (en) 2012-01-11 2012-12-28 Optical waveguide and manufacturing method thereof
US15/213,428 US20170010413A1 (en) 2012-01-11 2016-07-19 Optical waveguide and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012003587A JP6069836B2 (en) 2012-01-11 2012-01-11 Optical waveguide and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2013142825A true JP2013142825A (en) 2013-07-22
JP6069836B2 JP6069836B2 (en) 2017-02-01

Family

ID=49039404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012003587A Expired - Fee Related JP6069836B2 (en) 2012-01-11 2012-01-11 Optical waveguide and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP6069836B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992871A (en) * 1995-09-22 1997-04-04 Sharp Corp Waveguide type photodetection apparatus and manufacturing method thereof
JP2005266119A (en) * 2004-03-17 2005-09-29 Sharp Corp Manufacturing method of photoelectric wiring board
JP2006351718A (en) * 2005-06-14 2006-12-28 Nec Corp Optical element and optical module using it
WO2007105419A1 (en) * 2006-03-10 2007-09-20 Ibiden Co., Ltd. Photo/electrical mixed mounting substrate and method for producing the same
JP2010085438A (en) * 2008-09-29 2010-04-15 Kyocera Corp Optical transmission substrate, optical module, and method of manufacturing optical transmission substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992871A (en) * 1995-09-22 1997-04-04 Sharp Corp Waveguide type photodetection apparatus and manufacturing method thereof
JP2005266119A (en) * 2004-03-17 2005-09-29 Sharp Corp Manufacturing method of photoelectric wiring board
JP2006351718A (en) * 2005-06-14 2006-12-28 Nec Corp Optical element and optical module using it
WO2007105419A1 (en) * 2006-03-10 2007-09-20 Ibiden Co., Ltd. Photo/electrical mixed mounting substrate and method for producing the same
JP2010085438A (en) * 2008-09-29 2010-04-15 Kyocera Corp Optical transmission substrate, optical module, and method of manufacturing optical transmission substrate

Also Published As

Publication number Publication date
JP6069836B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
TW201341866A (en) Optical waveguide with mirror, optical fiber connector, and manufacturing method thereof
US20170010413A1 (en) Optical waveguide and manufacturing method thereof
WO2012070585A1 (en) Optical waveguide
JP5691493B2 (en) Optical fiber connector and manufacturing method thereof
JP5966470B2 (en) Optical waveguide and method for manufacturing the same
JP5736743B2 (en) Optical fiber connector and manufacturing method thereof
JP6069836B2 (en) Optical waveguide and method for manufacturing the same
JP5691561B2 (en) Optical fiber connector and manufacturing method thereof
JP2014038133A (en) Method for manufacturing optical waveguide and optical waveguide
JP5834926B2 (en) Manufacturing method of optical fiber connector
JP2015043050A (en) Optical waveguide and method for manufacturing the same
JP5707969B2 (en) Optical waveguide with mirror and manufacturing method thereof, flexible waveguide with mirror and manufacturing method thereof, optical fiber connector with mirror and manufacturing method thereof
JP6070214B2 (en) Lens member, optical waveguide with lens member, and manufacturing method thereof
JP2013142827A (en) Optical waveguide and method for manufacturing the same
JP2013142826A (en) Method for manufacturing optical waveguide
JP2015025907A (en) Method for manufacturing optical waveguide and optical waveguide obtained thereby
JP5716416B2 (en) Optical fiber connector and manufacturing method thereof
JP2015203841A (en) Light guide and production method of the same
JP2013142828A (en) Optical waveguide and method for manufacturing the same
JP2012150241A (en) Optical waveguide substrate and method of manufacturing the same
JP2015004855A (en) Optical waveguide with mirrors, and method for producing the same
JP2015025953A (en) Optical fiber connector, manufacturing method therefor, and optical fiber cable with the same
JP5776333B2 (en) Optical fiber connector and manufacturing method thereof
JP2012133236A (en) Optical fiber connector and manufacturing method therefor
JP2012150345A (en) Optical fiber wiring board and composite substrate of optical fiber electric wiring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20161104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R151 Written notification of patent or utility model registration

Ref document number: 6069836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees