JP2010085053A - Abnormality detection method for automatic ice-making machine - Google Patents

Abnormality detection method for automatic ice-making machine Download PDF

Info

Publication number
JP2010085053A
JP2010085053A JP2008256777A JP2008256777A JP2010085053A JP 2010085053 A JP2010085053 A JP 2010085053A JP 2008256777 A JP2008256777 A JP 2008256777A JP 2008256777 A JP2008256777 A JP 2008256777A JP 2010085053 A JP2010085053 A JP 2010085053A
Authority
JP
Japan
Prior art keywords
ice making
ice
abnormality
making
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008256777A
Other languages
Japanese (ja)
Other versions
JP5294781B2 (en
Inventor
Tomohiro Takagi
友裕 高木
Norikazu Morimoto
了司 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2008256777A priority Critical patent/JP5294781B2/en
Priority to US12/586,950 priority patent/US20100077774A1/en
Publication of JP2010085053A publication Critical patent/JP2010085053A/en
Application granted granted Critical
Publication of JP5294781B2 publication Critical patent/JP5294781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/12Producing ice by freezing water on cooled surfaces, e.g. to form slabs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2400/00Auxiliary features or devices for producing, working or handling ice
    • F25C2400/14Water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2500/00Problems to be solved
    • F25C2500/08Sticking or clogging of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2600/00Control issues
    • F25C2600/02Timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2700/00Sensing or detecting of parameters; Sensors therefor
    • F25C2700/04Level of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • F25C5/10Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice using hot refrigerant; using fluid heated by refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/18Storing ice
    • F25C5/182Ice bins therefor
    • F25C5/187Ice bins therefor with ice level sensing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abnormality detection method for an automatic ice-making machine capable of detecting an abnormality at an early stage even if the abnormality such as a delay or the shortening of an ice making time occurs. <P>SOLUTION: The down-flow type ice-making machine 40 is equipped with two ice-making units 41, 41, a control means 48, and an ice storage chamber 34. Each ice-making unit 41 has an ice-making part 14, an ice-making water tank 24 storing ice-making water, a circulating pump 30 circulating and supplying the ice-making water stored in the ice-making water tank 24 to the ice-making part 14, and a float switch 26 detecting an amount of the ice-making water in the ice-making water tank 24. When a preset first abnormality occurrence time has passed from the initial detection of an ice-making completion water level of the float switch 26 in one of the ice-making units 41, and the ice-making completion water level is not detected by the float switch 26 in the other ice-making unit 41, the control means 48 determines that there is an abnormality in one of the ice-making units 41. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、自動製氷機の異常検知方法に関し、更に詳細には、製氷水タンクに貯溜した製氷水を製氷部へ循環供給して氷塊を製造する製氷ユニットを複数備えた自動製氷機の異常検知方法に関するものである。   The present invention relates to an abnormality detection method for an automatic ice maker, and more specifically, an abnormality detection for an automatic ice maker equipped with a plurality of ice making units for producing ice blocks by circulating and supplying ice making water stored in an ice making water tank to an ice making unit. It is about the method.

レストラン等の厨房に設置されて氷を連続的に製造する自動製氷機として、例えば、製氷部に製氷水を流下させて氷塊を製造する流下式の自動製氷機(流下式製氷機)が知られている。このような流下式製氷機のうち、特許文献1に示すように、製氷部および製氷水タンクを備えた製氷ユニットを複数有するものがある。図4は、製氷ユニット10を2つ備えた従来の流下式製氷機12を示す概略図であって、各製氷ユニット10の製氷部14は、対向配置した一対の製氷板16,16を複数並列に配置して構成され、各製氷板16の間に冷凍系(図示せず)から導出する蒸発管18が蛇行配置されている。   As an automatic ice maker installed in a kitchen of a restaurant or the like, for example, a flow-down type automatic ice maker (flow-down type ice maker) that manufactures ice blocks by flowing ice-making water down to the ice making unit is known. ing. Among such flow-down type ice making machines, as shown in Patent Document 1, there is one having a plurality of ice making units including an ice making unit and an ice making water tank. FIG. 4 is a schematic view showing a conventional flow-down ice making machine 12 having two ice making units 10, and the ice making unit 14 of each ice making unit 10 includes a plurality of parallelly arranged pairs of ice making plates 16, 16. An evaporation pipe 18 led out from a refrigeration system (not shown) is arranged between the ice making plates 16 in a meandering manner.

各製氷ユニット10の下方には、他方の製氷ユニット10へ向けて下方傾斜して設けられる氷案内板20を備えている。この氷案内板20には、複数の戻り孔22が開設され、前記製氷部14へ供給されて氷結に至らなかった製氷水(未氷結水)を戻り孔22を介して下方の製氷水タンク24へ回収するようになっている。前記氷案内板20の下方に配設された製氷水タンク24は、その内部に所定量の製氷水を貯溜し得るよう構成されている。また、前記製氷水タンク24の内部にフロートスイッチ26が設けられ、該フロートスイッチ26により製氷水タンク24内の製氷水の量を検知し得るようになっている。   Below each ice making unit 10, an ice guide plate 20 is provided that is inclined downward toward the other ice making unit 10. A plurality of return holes 22 are formed in the ice guide plate 20, and ice-making water that has been supplied to the ice-making unit 14 and has not formed freezing (unfreezing water) is passed through the return holes 22 to the ice-making water tank 24 below. It has come to be collected. The ice making water tank 24 disposed below the ice guide plate 20 is configured to store a predetermined amount of ice making water therein. A float switch 26 is provided inside the ice making water tank 24, and the float switch 26 can detect the amount of ice making water in the ice making water tank 24.

前記製氷水タンク24には、製氷水供給管28が連通接続され、該供給管28を介して製氷水を製氷部14へ供給するようになっている。この製氷水供給管28には、循環ポンプ30が設けられており、該循環ポンプ30により製氷水タンク24内の製氷水を製氷部14へ圧送するようになっている。前記製氷水供給管28は、製氷部14の上方に延在する製氷水散水管32に連通接続される。前記両製氷ユニット10,10の製氷水タンク24の下方には、上方に開口した貯氷庫34が設けられ、両ユニット10,10で製造された氷塊は貯氷庫34へ放出されるようになっている。この貯氷庫34内には、該庫内の氷塊が満杯となったときに作動する貯氷検知手段36が2つ設けられている。すなわち、各貯氷検知手段36は、図4に参照されるように、貯氷庫34内において、各製氷ユニット10で製造された氷塊が堆積して形成される山の頂部(図4の符号B参照)に位置するよう設けられ、該貯氷検知手段36が氷塊を検知したときに、流下式製氷機12に設けた制御手段38が製氷運手を停止させるようになっている。   An ice making water supply pipe 28 is connected in communication with the ice making water tank 24, and ice making water is supplied to the ice making unit 14 through the supply pipe 28. This ice making water supply pipe 28 is provided with a circulation pump 30, and the ice making water in the ice making water tank 24 is pumped to the ice making unit 14 by the circulation pump 30. The ice making water supply pipe 28 is connected in communication with an ice making water sprinkling pipe 32 extending above the ice making section 14. Below the ice making water tank 24 of both ice making units 10, 10, an ice storage 34 that opens upward is provided, and ice blocks produced by both units 10, 10 are discharged to the ice storage 34. Yes. The ice storage 34 is provided with two ice storage detection means 36 that operate when the ice block in the storage becomes full. That is, as shown in FIG. 4, each ice storage detection means 36 has a top of a mountain formed by accumulation of ice blocks produced by each ice making unit 10 in the ice storage 34 (see symbol B in FIG. 4). ), And when the ice storage detection means 36 detects an ice block, the control means 38 provided in the flow-down type ice making machine 12 stops the ice making operator.

製氷運転に際しては、前記循環ポンプ30により製氷水が製氷水散水管32を介して各製氷板16の製氷面に散布供給されると共に、冷凍系から蒸発管18に冷媒が供給される。製氷水は、冷媒により冷却された製氷面を流下することで次第に製氷面上で氷結を始め、該製氷面に氷塊が製造される。一方、製氷水タンク24内の製氷水は、氷塊が成長するに伴ない減少し、前記フロートスイッチ26のフロートは下降していく。そして、一方の製氷ユニット10において、氷塊が所定のサイズとなって製氷が完了したときには、前記製氷水タンク24の製氷水が製氷完了水位に到達する(図4参照)。すると、前記フロートスイッチ26がこれを検知し、この検知信号を制御手段38へ送る。次いで、他方の製氷ユニット10におけるフロートスイッチ26も製氷完了水位を検知すると、制御手段38は製氷が完了したと判定し、製氷運転を終了させる。すなわち、制御手段38は、全てのフロートスイッチ26,26が製氷完了水位を検知したときに、製氷が完了したと判定する。   During the ice making operation, the ice making water is sprayed and supplied to the ice making surface of each ice making plate 16 via the ice making water sprinkling pipe 32 and the refrigerant is supplied from the refrigeration system to the evaporation pipe 18 during the ice making operation. The ice making water gradually freezes on the ice making surface by flowing down the ice making surface cooled by the refrigerant, and ice blocks are produced on the ice making surface. On the other hand, the ice making water in the ice making water tank 24 decreases as the ice block grows, and the float of the float switch 26 descends. In one ice making unit 10, when ice making is completed and ice making is completed, the ice making water in the ice making water tank 24 reaches the ice making complete water level (see FIG. 4). Then, the float switch 26 detects this and sends this detection signal to the control means 38. Next, when the float switch 26 in the other ice making unit 10 also detects the ice making completion water level, the control means 38 determines that the ice making is completed and ends the ice making operation. That is, the control means 38 determines that ice making is completed when all the float switches 26, 26 detect the ice making completion water level.

製氷運転が終了すると、前記制御手段38は除氷運転へ移行し、蒸発管18にホットガスを供給すると共に、図示しない除氷水散水管から常温の除氷水を製氷板16の裏面に供給する。すると、前記製氷部14は、ホットガスおよび除氷水により加熱され、製氷面に形成された氷塊が融解して製氷面から落下する。製氷部14から落下した氷塊は、前記氷案内板20に受け止められ、該案内板20により案内されて前記貯氷庫34へ放出される。   When the ice making operation is completed, the control means 38 shifts to the deicing operation and supplies hot gas to the evaporation pipe 18 and also supplies normal temperature deicing water from the deicing water sprinkling pipe (not shown) to the back surface of the ice making plate 16. Then, the ice making unit 14 is heated by hot gas and deicing water, and the ice blocks formed on the ice making surface melt and fall from the ice making surface. Ice blocks falling from the ice making unit 14 are received by the ice guide plate 20, guided by the guide plate 20, and discharged to the ice storage 34.

ところで前記製氷板16は、長年使用することで、その製氷面等にスケールや不純物等が堆積した汚れが付着することがある。例えば、一方の製氷ユニット10において、製氷板16の何れか1つに汚れが付着したとすると、この汚れにより熱交換率が低下して当該製氷板16に氷塊ができ難くなる。すると、異常が発生した製氷板16で氷結すべき製氷水は他の製氷板16で氷結されることになるので、正常な製氷板16には、通常より大きな氷塊が製造される。この場合、氷塊が大きくなるにつれて製氷面からの距離が離れ熱交換率が低下するので、氷塊が成長するまでに要する時間は長くなる。従って、異常が発生した製氷ユニット10においては、製氷水タンク24内の製氷水はゆっくり減少するので、フロートスイッチ26が製氷完了水位を検知するタイミングは正常な場合に比べ遅延する。一方、正常な製氷ユニット10では、製氷運転は通常通り進行し、製氷完了までに要する時間に遅延は生じない。   By the way, when the ice making plate 16 is used for many years, dirt with scales, impurities, etc. may adhere to its ice making surface. For example, in one ice making unit 10, if dirt is attached to any one of the ice making plates 16, the heat exchange rate decreases due to the dirt, and it becomes difficult to form ice blocks on the ice making plate 16. Then, since the ice making water to be frozen on the ice making plate 16 in which an abnormality has occurred is frozen on the other ice making plate 16, a larger ice block than usual is produced on the normal ice making plate 16. In this case, as the ice mass increases, the distance from the ice making surface increases and the heat exchange rate decreases, so the time required for the ice mass to grow increases. Accordingly, in the ice making unit 10 in which an abnormality has occurred, the ice making water in the ice making water tank 24 decreases slowly, so that the timing at which the float switch 26 detects the ice making completion water level is delayed as compared with the normal case. On the other hand, in the normal ice making unit 10, the ice making operation proceeds as usual, and there is no delay in the time required to complete ice making.

また、前述のような巨大な氷塊が形成されると、製氷面上で上下の氷塊が連結したり、製氷面を仕切る仕切板を乗り越えて左右に氷塊が連結することがある。このように連結した氷塊(以下、連結氷という)は、除氷運転において除氷され難く、製氷板16に連結氷が残留したまま除氷運転が終了することがある。すると、製氷運転で再び連結氷を製氷する二重製氷が発生してしまうが、この場合にも、巨大な連結氷を製氷することとなるので、上記同様な理由により製氷時間が大幅に遅延する要因となる。そこで、従来の流下式製氷機12では、異常により製氷時間が遅延することに鑑み、全てのフロートスイッチ26,26が製氷完了水位を検知するまでに要する時間が予め設定された時間(以下、異常遅延時間という)を超えた場合に、制御手段38は異常が発生したと判定し、製氷運転を終了させるようになっている。
特開2004−69181号公報
In addition, when a large ice block as described above is formed, the upper and lower ice blocks may be connected on the ice making surface, or the ice blocks may be connected to the left and right by going over a partition plate that partitions the ice making surface. The ice blocks connected in this way (hereinafter referred to as “connected ice”) are not easily deiced during the deicing operation, and the deicing operation may end with the connected ice remaining on the ice making plate 16. Then, double ice making that makes connected ice again in ice making operation occurs, but in this case as well, huge connected ice is made, so ice making time is greatly delayed for the same reason as above. It becomes a factor. In view of the fact that the conventional ice making machine 12 has a delay in ice making time due to an abnormality, the time required for all the float switches 26 and 26 to detect the ice making completion water level is a preset time (hereinafter referred to as abnormal). When the delay time is exceeded, the control means 38 determines that an abnormality has occurred and ends the ice making operation.
JP 2004-69181 A

ところが、従来の異常検知方法では、僅かな製氷時間の遅延も異常と誤検知してしまうのを回避するため、異常遅延時間をなるべく大きく設定して誤検知を防止する必要があった。そのため、従来の方法で異常を検知したときには、製氷部14に既に大きな氷塊や連結氷が製造された状態となっていることも多く、復旧作業に時間を要し、メンテナンス費が嵩む難点があった。また、巨大な氷塊によって製氷板16等が変形・破損したりすることもあった。すなわち、従来の方法では、異常な氷塊の製造がかなり進行するまで異常を検知し得ない欠点を有していた。   However, in the conventional abnormality detection method, it is necessary to prevent the erroneous detection by setting the abnormal delay time as large as possible in order to avoid erroneous detection of even a slight ice-making time delay as an abnormality. For this reason, when an abnormality is detected by the conventional method, there are many cases where large ice blocks or connected ice is already manufactured in the ice making unit 14, and it takes time for the restoration work and there is a problem that maintenance costs increase. It was. In addition, the ice making plate 16 or the like may be deformed or damaged by a huge ice block. That is, the conventional method has a defect that the abnormality cannot be detected until the production of the abnormal ice block is considerably advanced.

また、上記異常の発生により巨大な氷塊や連結氷が製造された場合において、仮にこれらの氷塊が除氷運転により除氷できたとしても、当該氷塊が氷案内板20に引っ掛かってしまうことがある。すると、異常が発生した側の製氷ユニット10では、前記製氷部14から製氷水タンク24へ回収されるべき未氷結水の一部が、氷案内板20上の氷塊を伝って貯氷庫34等へ落下してしまい、製氷水タンク24へ回収されなくなる事態が生じてしまう。すると、製氷水タンク24内の製氷水が早く減少し、異常が生じた製氷ユニット10では、短時間で製氷完了水位を検知してしまう。ところが、従来の異常検知方法では、このように製氷時間が短縮されてしまった場合でも、前記異常遅延時間を越えない限り前記制御手段38が異常判定をすることはなく、そのまま運転が続行されてしまう問題があった。すなわち、従来の異常検知方法では、製氷時間が短縮されてしまうような異常を検知し得ない欠点も有していた。   In addition, when a large ice block or connected ice is produced due to the occurrence of the abnormality, even if these ice blocks can be deiced by the deicing operation, the ice blocks may be caught by the ice guide plate 20. . Then, in the ice making unit 10 on the side where the abnormality has occurred, a part of the uniced water to be collected from the ice making unit 14 to the ice making water tank 24 travels along the ice block on the ice guide plate 20 to the ice storage 34 or the like. It will fall and the situation which will not be collect | recovered by the ice-making water tank 24 will arise. Then, the ice making water in the ice making water tank 24 decreases quickly, and the ice making unit 10 in which an abnormality has occurred detects the ice making completion water level in a short time. However, in the conventional abnormality detection method, even when the ice making time is shortened in this way, the control means 38 does not make an abnormality determination unless the abnormal delay time is exceeded, and the operation is continued as it is. There was a problem. That is, the conventional abnormality detection method has a drawback that it cannot detect an abnormality that shortens the ice making time.

そこで、本発明は、前述した従来の技術に内在している前記課題に鑑み、これを好適に解決するべく提案されたものであって、製氷時間が遅延する異常や短縮する異常を早い段階で検知し得る自動製氷機の異常検知方法を提供することを目的とする。   Therefore, in view of the problems inherent in the above-described conventional technology, the present invention has been proposed to suitably solve this problem, and an abnormality that delays or shortens ice making time is detected at an early stage. An object of the present invention is to provide an abnormality detection method for an automatic ice maker that can be detected.

前述した課題を解決し、所期の目的を好適に達成するため、本願の請求項1に係る発明の自動製氷機の異常検知方法は、
冷凍系から供給される冷媒により冷却される製氷部と、製氷水を貯溜する製氷水タンクと、前記製氷水タンクに貯溜された製氷水を前記製氷部へ供給する循環ポンプと、前記製氷水タンクに設けられ、該タンク内の製氷水の量を検知する検知手段とを有し、製氷運転において、前記製氷部へ供給されて氷結に至らなかった未氷結水を製氷水タンクで回収するよう構成された製氷ユニットを複数備え、製氷運転に際し、全ての検知手段が製氷水タンク内の製氷水が製氷完了水位に到達したのを検知したときに、製氷が完了したと判定する制御手段を備えた自動製氷機において、
何れかの製氷ユニットにおける検知手段が、最初に製氷完了水位を検知したときから予め設定された第1異常発生時間の経過時に、他の何れかの製氷ユニットにおける検知手段が製氷完了水位を検知していない場合には、前記制御手段は異常が発生したと判定することを特徴とする。
請求項1の発明によれば、最初に製氷完了水位を検知したときからの経過時間に基づいて異常の判定を行なうようにしたので、製氷時間が遅延したり短縮されたりする異常を早い段階で検知することができる。従って、自動製氷機の復旧作業が容易となり、製氷部の変形・破損等が生ずるのを抑制し得る。
In order to solve the above-described problems and achieve the intended purpose suitably, the abnormality detection method for an automatic ice maker according to claim 1 of the present application is:
An ice making part cooled by a refrigerant supplied from a refrigeration system, an ice making water tank for storing ice making water, a circulation pump for supplying ice making water stored in the ice making water tank to the ice making part, and the ice making water tank And detecting means for detecting the amount of ice making water in the tank, and configured to collect uniced water that has been supplied to the ice making unit and does not freeze in an ice making operation in an ice making water tank. The ice making unit is equipped with a plurality of ice making units, and when the ice making operation is performed, when all the detecting means detect that the ice making water in the ice making water tank has reached the ice making completion level, the control means for determining that the ice making is completed is provided. In an automatic ice maker,
When the first abnormality occurrence time elapses after the detection means in any ice making unit first detects the ice making completion water level, the detection means in any other ice making unit detects the ice making completion water level. If not, the control means determines that an abnormality has occurred.
According to the first aspect of the present invention, the abnormality is determined based on the elapsed time from when the ice making completion water level is first detected, so that an abnormality in which the ice making time is delayed or shortened at an early stage. Can be detected. Therefore, the recovery operation of the automatic ice making machine is facilitated, and deformation or breakage of the ice making unit can be suppressed.

請求項2に係る発明では、製氷運転の開始から予め設定された第2異常発生時間が経過するまでに、全ての製氷ユニットにおける検知手段が製氷完了水位を検知した場合に、前記制御手段は異常が発生したと判定する。
請求項2の発明によれば、全ての製氷ユニットにおいて製氷時間が短縮する異常が同時期に発生した場合であっても、当該異常を検知し得る。
In the invention according to claim 2, when the detection means in all the ice making units detects the ice making completion water level from the start of the ice making operation until the preset second abnormality occurrence time elapses, the control means is abnormal. Is determined to have occurred.
According to the invention of claim 2, even if an abnormality that shortens the ice making time occurs in all ice making units at the same time, the abnormality can be detected.

本発明に係る自動製氷機の異常検知方法によれば、製氷時間が遅延したり、短縮したりする異常を早期に検知することができる。   According to the abnormality detection method for an automatic ice maker according to the present invention, it is possible to detect an abnormality in which the ice making time is delayed or shortened at an early stage.

次に、本発明に係る自動製氷機の異常検知方法につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。なお、実施例では、自動製氷機として流下式製氷機を例に説明を行なう。また、以下の説明において、従来例で示した流下式製氷機と同一の部材については、同じ符号を付して詳細な説明は省略する。   Next, an abnormality detection method for an automatic ice making machine according to the present invention will be described below with reference to the accompanying drawings by giving a preferred embodiment. In the embodiment, a flow-down type ice maker will be described as an example of an automatic ice maker. Moreover, in the following description, about the same member as the flow-down type ice maker shown in the prior art example, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

図1は、実施例に係る異常検知方法が実行される流下式製氷機40の概略構成を示す説明図であって、この流下式製氷機40は、一対の製氷ユニット41,41を備えている。各製氷ユニット41は、対向配置された一対の製氷板16,16を複数並列に配置して製氷部14が構成され、各製氷板16の間には、図示しない冷凍系から導出する蒸発管18が蛇行配置されている。各蒸発管18における製氷部14の入口側に膨張弁42が介挿され、該膨張弁42を経て膨張気化した冷媒により製氷部14を冷却するようになっている。   FIG. 1 is an explanatory diagram illustrating a schematic configuration of a flow-down ice maker 40 in which an abnormality detection method according to an embodiment is executed. The flow-down ice maker 40 includes a pair of ice making units 41 and 41. . Each ice making unit 41 includes a plurality of a pair of ice making plates 16, 16 arranged in parallel to form an ice making unit 14, and between each ice making plate 16, an evaporation pipe 18 led out from a refrigeration system (not shown). Is meandering. An expansion valve 42 is inserted on the inlet side of the ice making section 14 in each evaporation pipe 18, and the ice making section 14 is cooled by the refrigerant that has expanded and vaporized through the expansion valve 42.

各製氷ユニット41における製氷部14の下方に臨む位置には、他方の製氷ユニット41側へ向けて下方傾斜する姿勢で氷案内板20が設けられている。氷案内板20には、複数の戻り孔22が開設され、該戻り孔22を介して未氷結水を製氷水タンク24へ回収するようになっている。前記製氷水タンク24には、フロートスイッチ(検知手段)26が設けられ、該フロートスイッチ26により製氷水の量を検知し得るようになっている。   An ice guide plate 20 is provided at a position facing the lower side of the ice making unit 14 in each ice making unit 41 so as to be inclined downward toward the other ice making unit 41. A plurality of return holes 22 are formed in the ice guide plate 20, and uniced water is collected into the ice making water tank 24 through the return holes 22. The ice making water tank 24 is provided with a float switch (detecting means) 26 so that the amount of ice making water can be detected by the float switch 26.

前記製氷水タンク24には、製氷水供給管28が連通接続され、該供給管28を介して製氷水を製氷部14へ供給するようになっている。この製氷水供給管28には、循環ポンプ30が設けられており、該循環ポンプ30により製氷水タンク24内の製氷水を圧送するようになっている。また、製氷水供給管28は、製氷部14の上方を延在する製氷水散水管32に連通接続され、該製氷水散水管32を介して製氷水を各製氷板16の製氷面へ散布供給するようになっている。   An ice making water supply pipe 28 is connected in communication with the ice making water tank 24, and ice making water is supplied to the ice making unit 14 through the supply pipe 28. The ice making water supply pipe 28 is provided with a circulation pump 30, and the ice making water in the ice making water tank 24 is pumped by the circulation pump 30. The ice making water supply pipe 28 is connected to an ice making water sprinkling pipe 32 extending above the ice making section 14, and the ice making water is sprayed and supplied to the ice making surfaces of the ice making plates 16 through the ice making water sprinkling pipe 32. It is supposed to be.

前記製氷水タンク24には、製氷完了時に製氷水タンク24内に残留した余剰の製氷水(余剰水)を排出する排出管44が設けられている。この排出管44には、図示しないバネ等の付勢手段によって、常には排出管44を閉成する方向へ付勢された排水弁46が介挿されている。すなわち、通常時には、製氷水タンク24内の製氷水の水圧により排水弁46が自然に開放されることはなく、製氷水が排出されることはない。一方、製氷運転終了時に、前記循環ポンプ30が逆回転(製氷水の供給時とは反対の方向)すると、水圧により付勢手段の付勢力に抗して排水弁46が開放され、余剰水が外部へ排出されるようになっている。   The ice making water tank 24 is provided with a discharge pipe 44 for discharging excess ice making water (surplus water) remaining in the ice making water tank 24 when ice making is completed. A drain valve 46 that is always urged in a direction to close the discharge pipe 44 by an urging means such as a spring (not shown) is inserted in the discharge pipe 44. That is, normally, the drain valve 46 is not naturally opened by the water pressure of the ice making water in the ice making water tank 24, and the ice making water is not discharged. On the other hand, at the end of the ice making operation, when the circulation pump 30 rotates in the reverse direction (in the direction opposite to that when the ice making water is supplied), the drain valve 46 is opened against the urging force of the urging means by the water pressure, and the excess water is discharged. It is designed to be discharged outside.

前記両製氷ユニット41,41の製氷水タンク24,24の下方には、上方に開口した貯氷庫34が設けられ、両ユニット41,41の製氷部14,14で製造された氷塊を貯溜するようになっている。貯氷庫34の内部には、氷塊の満杯時に作動する貯氷検知手段36が、両製氷ユニット41,41の略中央(両氷案内板20,20の中間線上)に位置するよう1つだけ設けられている。すなわち、貯氷検知手段36を両ユニット41,41の略中央位置に設けることで、貯氷庫34内に堆積する氷塊の山の裾部が重なる部位(図1の符号A参照)を検知するようになっている。   Below the ice making water tanks 24, 24 of both ice making units 41, 41, an ice storage 34 opened upward is provided so as to store ice blocks produced by the ice making parts 14, 14 of both units 41, 41. It has become. Inside the ice storage 34, only one ice storage detecting means 36 that operates when the ice block is full is provided so as to be located at the approximate center of both ice making units 41, 41 (on the middle line between both ice guide plates 20, 20). ing. In other words, by providing the ice storage detection means 36 at a substantially central position between the units 41 and 41, a portion (see reference numeral A in FIG. 1) where the hems of the ice blocks piled up in the ice storage 34 overlap is detected. It has become.

前記流下式製氷機40は、統括的な運転制御を行なうと共に、各フロートスイッチ26からの検知信号に基づいて運転の異常判定を行なう制御手段48を備えている。制御手段48は、後述するように2つのタイマー(第1タイマー50および第2タイマー52)を内蔵しており、両タイマー50,52の作動制御を行なう。制御手段48は、各フロートスイッチ26と電気的に接続され、フロートスイッチ26が製氷完了水位を検知したときに、その検知信号を受信する。そして、全てのフロートスイッチ26,26からの検知信号を受信したときに、制御手段48は製氷完了の判定を行なうよう設定される。   The flow-down type ice making machine 40 includes control means 48 that performs overall operation control and performs operation abnormality determination based on detection signals from the float switches 26. As will be described later, the control means 48 incorporates two timers (first timer 50 and second timer 52), and controls the operation of both timers 50 and 52. The control means 48 is electrically connected to each float switch 26, and receives the detection signal when the float switch 26 detects the ice making completion water level. When the detection signals from all the float switches 26, 26 are received, the control means 48 is set so as to determine whether ice making is complete.

また、制御手段48は、製氷完了水位を最初に検知したフロートスイッチ26の検知信号を受信したときから、予め設定された第1異常発生時間の経過時に他方の製氷ユニット41(他の何れかの製氷ユニット41)におけるフロートスイッチ26からの検知信号(最後の製氷完了水位の検知)を受信していない場合には、何れかの製氷ユニット41に異常が発生したと判定するよう設定される。すなわち、制御手段48は、両製氷ユニット41,41における製氷時間の差(以後、製氷時間差という)に基づいて、異常判定を行なうようになっている。この製氷時間差は、前記第1タイマー50により計時されるようになっている。すなわち、第1タイマー50は、フロートスイッチ26からの検知信号を制御手段48が最初に受信したときに作動を開始することで、製氷時間差を計時するようになっている。これにより、一方の製氷ユニット41に異常が発生して製氷時間差が大きくなった場合、制御手段48は、異常判定を行なって当該異常を検知し得る。更に、制御手段48は、第1タイマー50の計時時刻が第1異常発生時間を経過した時点で一律に異常判定を行なうので、一方の製氷ユニット41に製氷完了水位が検知不能となる異常が発生したとしても(例えば、製氷不能により製氷水が減少しなくなる等)、当該異常を早期に検知することが可能となる。なお、前記第1異常発生時間は、流下式製氷機40の製氷能力や設置環境等に応じて設定され、また、その設定値を図示しないコントロールパネルを介して自由に変更し得るようになっている。実施例では、第1異常発生時間を5分に設定してある。   Further, the control means 48 receives the detection signal from the float switch 26 that first detects the ice making completion water level, and when the preset first abnormality occurrence time has elapsed, the other ice making unit 41 (any other ice making unit 41). When the detection signal from the float switch 26 (detection of the final ice making water level) in the ice making unit 41) is not received, it is set to determine that an abnormality has occurred in any ice making unit 41. That is, the control means 48 makes an abnormality determination based on the difference in ice making time between the ice making units 41 and 41 (hereinafter referred to as the ice making time difference). This difference in ice making time is measured by the first timer 50. That is, the first timer 50 starts the operation when the control means 48 first receives a detection signal from the float switch 26, thereby measuring the ice making time difference. As a result, when an abnormality occurs in one ice making unit 41 and the ice making time difference becomes large, the control means 48 can perform abnormality determination to detect the abnormality. Further, since the control means 48 uniformly determines the abnormality when the time measured by the first timer 50 has passed the first abnormality occurrence time, an abnormality in which the ice making completion water level cannot be detected occurs in one ice making unit 41. Even if it is performed (for example, ice making water is not reduced due to the inability to make ice), the abnormality can be detected at an early stage. The first abnormality occurrence time is set according to the ice making capacity and installation environment of the flow-down type ice making machine 40, and the set value can be freely changed via a control panel (not shown). Yes. In the embodiment, the first abnormality occurrence time is set to 5 minutes.

また、前記制御手段48は、製氷運転の開始から最後のフロートスイッチ26からの製氷完了の検知信号を受信するまでの時間(製氷完了時間)が、予め設定された第2異常発生時間内であるときは、両製氷ユニット41,41に同時期に異常が発生したと判定するよう設定される。この製氷完了時間は、第2タイマー52が計時するようになっている。すなわち、第2タイマー52は、製氷運転の開始から最後に製氷完了水位の検知信号を制御手段48が受信するまでの間作動することで、製氷完了時間を計時するようになっている。なお、第2異常発生時間についても、第1異常発生時間と同様に、製氷機の機種に応じて適宜設定され、また、その設定値はコントロールパネルを介して変更し得るようになっている。実施例では、第2異常発生時間を15分に設定してある。   Further, the control means 48 has a time (ice making completion time) from the start of the ice making operation to reception of the ice making completion detection signal from the last float switch 26 within the preset second abnormality occurrence time. Is set to determine that an abnormality has occurred in both ice making units 41 and 41 at the same time. The ice making completion time is measured by the second timer 52. That is, the second timer 52 is operated from the start of the ice making operation until the control means 48 receives the ice making completion water level detection signal at the end, thereby measuring the ice making completion time. Note that the second abnormality occurrence time is also set as appropriate according to the type of ice making machine, as with the first abnormality occurrence time, and the set value can be changed via the control panel. In the embodiment, the second abnormality occurrence time is set to 15 minutes.

(実施例の作用)
次に、実施例に係る流下式製氷機40の作用について、図2のフローチャートを参照して説明する。先ず始めに、正常な場合について説明すると、製氷運転に際しては、両製氷ユニット41,41の循環ポンプ30,30が作動して、該循環ポンプ30,30により製氷水タンク24,24内の製氷水が製氷水供給管28,28および製氷水散水管32,32を介して各製氷部14の製氷面に供給される。また、冷凍系から各蒸発管18に冷媒が供給され、該冷媒により製氷部14が冷却される。このとき、制御手段48は、製氷運転の開始と共に第2タイマー52を作動させ、製氷完了時間の計時を開始させる(ステップS1)。各製氷部14へ供給された製氷水は、製氷面を流下する間に熱交換され、次第に製氷面で氷結を始める。そして、製氷面で製氷水が氷結されるに従い、製氷水タンク24内の製氷水は減少し、各フロートスイッチ26のフロートが下降していく。
(Operation of Example)
Next, the operation of the flow-down ice making machine 40 according to the embodiment will be described with reference to the flowchart of FIG. First, a normal case will be described. During ice making operation, the circulation pumps 30 and 30 of both ice making units 41 and 41 are operated, and the ice making water in the ice making water tanks 24 and 24 is operated by the circulation pumps 30 and 30. Is supplied to the ice making surface of each ice making unit 14 through the ice making water supply pipes 28 and 28 and the ice making water sprinkling pipes 32 and 32. In addition, a refrigerant is supplied from the refrigeration system to each evaporation pipe 18, and the ice making unit 14 is cooled by the refrigerant. At this time, the control means 48 activates the second timer 52 simultaneously with the start of the ice making operation, and starts measuring the ice making completion time (step S1). The ice making water supplied to each ice making unit 14 is heat-exchanged while flowing down the ice making surface, and gradually starts freezing on the ice making surface. As the ice making water freezes on the ice making surface, the ice making water in the ice making water tank 24 decreases and the float of each float switch 26 descends.

そして、一方の製氷ユニット41(例えば、図1の左側)における製氷水タンク24の製氷水が最初に製氷完了水位に到達したとすると、フロートスイッチ26がこれを検知し、制御手段48は、該フロートスイッチ26から検知信号を受信する(最初の製氷完了水位の検知,ステップS2のYes)。すると、制御手段48は、第1タイマー50を作動させ(ステップS3)、該第1タイマー50に製氷時間差を計時させる。   When the ice making water in the ice making water tank 24 in one ice making unit 41 (for example, the left side in FIG. 1) first reaches the ice making completion water level, the float switch 26 detects this, and the control means 48 A detection signal is received from the float switch 26 (detection of the first ice-making completed water level, Yes in step S2). Then, the control means 48 operates the first timer 50 (step S3), and causes the first timer 50 to measure the ice making time difference.

次いで、制御手段48は、第1タイマー50の計時時刻が第1異常発生時間を経過しているか否か判定する(ステップS4のYes)。第1タイマー50の計時時刻が第1異常発生時間を経過していない場合(ステップS4のNo)、制御手段48は、他方の製氷ユニット41が製氷を完了したか否か(最後の製氷完了水位)を判定する(ステップS5)。ここで、正常運転の場合、両製氷ユニット41,41の製氷が完了するタイミングは大きくずれることがなく、製氷時間差は小さいので(例えば、1分程度)、第1タイマー50の計時時刻が第1異常発生時間を経過する前に(ステップS4のNo)、他方の製氷ユニット41の製氷が完了する(ステップS5のYes)。すなわち、正常な場合、最後の製氷完了水位は、第1異常発生時間内に検知される。   Next, the control means 48 determines whether or not the time measured by the first timer 50 has passed the first abnormality occurrence time (Yes in step S4). When the time measured by the first timer 50 has not passed the first abnormality occurrence time (No in step S4), the control means 48 determines whether or not the other ice making unit 41 has completed ice making (the last ice making completion water level). ) Is determined (step S5). Here, in the normal operation, the ice making timings of both ice making units 41 and 41 are not greatly shifted, and the difference in ice making time is small (for example, about 1 minute), so the time measured by the first timer 50 is the first time. Before the abnormality occurrence time elapses (No in Step S4), the ice making of the other ice making unit 41 is completed (Yes in Step S5). That is, when normal, the last ice-making completed water level is detected within the first abnormality occurrence time.

すると制御手段48は、第1タイマー50を停止(OFF)させ(ステップS6)、次に第2タイマー52の計時時刻(製氷完了時間)が第2異常発生時間内であるか否か判定する(ステップS7)。正常運転であれば、製氷完了時間は第2異常発生時間より大きいので(ステップS7のNo)、制御手段48は、正常判定を行ない、第2タイマー52を停止させる(ステップS8)。そして、製氷運転を終了させ、除氷運転へ移行する(ステップS9,ステップS10)。なお、製氷運転終了時に製氷水タンク24内に残留する余剰水は、不純物が濃縮しているので、制御手段48は、除氷運転へ移行する前に余剰水を排出する。すなわち、制御手段48は、各製氷ユニット41の循環ポンプ30を逆回転させ、排水弁46を強制開放して余剰水を外部へ排出する。   Then, the control means 48 stops (OFF) the first timer 50 (step S6), and then determines whether or not the time measured by the second timer 52 (ice making completion time) is within the second abnormality occurrence time ( Step S7). If the operation is normal, the ice making completion time is longer than the second abnormality occurrence time (No in step S7), so the control means 48 makes a normal determination and stops the second timer 52 (step S8). Then, the ice making operation is terminated, and the process moves to the deicing operation (steps S9 and S10). The surplus water remaining in the ice making water tank 24 at the end of the ice making operation is concentrated in impurities, so the control means 48 discharges the surplus water before shifting to the deicing operation. That is, the control means 48 reversely rotates the circulation pump 30 of each ice making unit 41, forcibly opens the drain valve 46, and discharges excess water to the outside.

除氷運転に移行すると、両製氷ユニット41,41の蒸発管18,18にホットガスが供給されると共に、図示しない除氷水散水管から常温の除氷水が製氷板16の裏面に供給される。すると、前記製氷部14は、ホットガスおよび除氷水により加熱され、前記製氷面に形成された氷塊と該製氷面との氷結が融解し、該氷塊は製氷面を滑落する。各製氷部14から落下した氷塊は、前記氷案内板20に受け止められ、該案内板20により前記貯氷庫34へ案内される。このとき、氷塊は、貯氷庫34内において2つの山を形成するように堆積されていく(図1参照)。以後同様にして製氷運転および除氷運転が繰り返され、自動製氷が行なわれる。なお、貯氷庫34内の氷塊が満杯になると、前記貯氷検知手段36が2つの山が重なる部分Aの氷塊を検知し、制御手段48は氷塊が満杯となったと判定する。すると、制御手段48は、貯氷検知手段36が氷塊を検知しなくなるまで、製氷運転を中止する制御を行なう。このように、貯氷検知手段36を両製氷ユニット41,41の中央位置に設けることで、各ユニット41毎に貯氷検知手段36を設ける必要がなく、製品コストを低廉にし得る。   When the deicing operation is performed, hot gas is supplied to the evaporation pipes 18 and 18 of both ice making units 41 and 41, and normal temperature deicing water is supplied to the back surface of the ice making plate 16 from a deicing water sprinkling pipe (not shown). Then, the ice making unit 14 is heated by hot gas and deicing water, the ice blocks formed on the ice making surface and the freezing of the ice making surface are melted, and the ice blocks slide down the ice making surface. Ice blocks falling from each ice making unit 14 are received by the ice guide plate 20 and guided to the ice storage 34 by the guide plate 20. At this time, the ice blocks are accumulated so as to form two mountains in the ice storage 34 (see FIG. 1). Thereafter, the ice making operation and the deicing operation are repeated in the same manner, and automatic ice making is performed. When the ice block in the ice storage 34 is full, the ice storage detection unit 36 detects the ice block in the portion A where two mountains overlap, and the control unit 48 determines that the ice block is full. Then, the control means 48 performs control to stop the ice making operation until the ice storage detection means 36 no longer detects ice blocks. Thus, by providing the ice storage detection means 36 at the center position of both ice making units 41, 41, it is not necessary to provide the ice storage detection means 36 for each unit 41, and the product cost can be reduced.

(製氷時間の遅延を招く異常が生じた場合について)
例えば、膨張弁42の開閉不良や製氷板16に汚れが付着することで、当該製氷板16に氷塊が製造され難くなったり、氷塊が全く製造されなくなったとする。すると、他の製氷板16で製造される氷塊が大きくなり、異常が発生した製氷ユニット41の製氷時間に遅延が生ずる。一方、正常な製氷ユニット41の製氷運転は通常通り進行するため、該製氷ユニット41における製氷水タンク24内の製氷水の減少は、異常が生じた製氷ユニット41のように遅延が生じない。この場合、制御手段48は、正常な製氷ユニット41のフロートスイッチ26から最初の製氷完了水位の検知信号を受信することとなる(ステップS2のYes)。すると、制御手段48は、第1タイマー50を作動させ(ステップS3)、製氷時間差の計時を開始させる。
(If an abnormality occurs that delays ice making time)
For example, it is assumed that an ice block is difficult to manufacture on the ice making plate 16 or the ice block is not manufactured at all due to poor opening / closing of the expansion valve 42 or dirt attached to the ice making plate 16. Then, the ice blocks produced by the other ice making plates 16 become large, and the ice making time of the ice making unit 41 in which an abnormality has occurred is delayed. On the other hand, since the ice making operation of the normal ice making unit 41 proceeds as usual, the decrease in ice making water in the ice making water tank 24 in the ice making unit 41 is not delayed as in the ice making unit 41 in which an abnormality has occurred. In this case, the control means 48 receives the detection signal of the first ice making completion water level from the float switch 26 of the normal ice making unit 41 (Yes in step S2). Then, the control means 48 operates the 1st timer 50 (step S3), and starts the time measurement of ice making time difference.

前述のように、異常が発生した製氷ユニット41では製氷時間に遅延が生じているため、第1異常発生時間を経過しても当該製氷ユニット41における製氷は完了していない。従って、他方の製氷ユニット41からの製氷完了の信号を受信しないまま第1タイマー50の計時時刻が第1異常発生時間を経過することとなる(ステップS4のYes)。すると、制御手段48は、何れかの製氷ユニット41に異常が発生したと判定して第1タイマー50を停止させる(ステップS11)。そして、制御手段48は、製氷運転を終了させ(ステップS12)、除氷運転を行なった後に流下式製氷機40の運転を異常停止させる(ステップS13,ステップS14)。   As described above, since the ice making unit 41 in which an abnormality has occurred has a delay in the ice making time, ice making in the ice making unit 41 is not completed even after the first abnormality occurrence time has elapsed. Accordingly, the time measured by the first timer 50 passes the first abnormality occurrence time without receiving the ice making completion signal from the other ice making unit 41 (Yes in step S4). Then, the control means 48 determines that an abnormality has occurred in any one of the ice making units 41 and stops the first timer 50 (step S11). Then, the control means 48 terminates the ice making operation (step S12), and abnormally stops the operation of the flow down type ice making machine 40 after performing the deicing operation (step S13, step S14).

このように、実施例にかかる異常検知方法によれば、最初の製氷完了水位を検知してからの経過時間に基づいて異常の判定を行なうようにしたので、氷塊が巨大となる前の早い段階で異常を検知することができる。従って、流下式製氷機40の復旧作業が容易となり、製氷板16が変形したり、破損したりするのを防止し得る。また、第1異常発生時間を経過すると一律に異常判定を行なうようにしたので、他の製氷完了水位の検知信号を待つ必要がなく、異常の早期発見が可能となる。なお、このような製氷時間が遅延する要因としては、上記のケースに限られる訳ではない。例えば、一方の循環ポンプ30が故障により出力低下を起こし、製氷水の製氷部14への供給量が減少した場合にも、製氷時間が遅延する異常が発生し得る。また、何れかの製氷ユニット41における製氷水供給管28や製氷水散水管32に異物が詰まり、製氷水が製氷板16の一部または全部に供給されなくなった場合にも、製氷時間の遅延は生じ得る。   As described above, according to the abnormality detection method according to the embodiment, the abnormality is determined based on the elapsed time after the first ice-making completion water level is detected, so that an early stage before the ice block becomes huge Can detect abnormalities. Therefore, the recovery operation of the flow-down ice making machine 40 is facilitated, and the ice making plate 16 can be prevented from being deformed or damaged. Further, since the abnormality determination is uniformly performed after the first abnormality occurrence time has elapsed, it is not necessary to wait for another ice making completion water level detection signal, and an abnormality can be detected early. In addition, as a factor which delays such ice making time, it is not necessarily restricted to said case. For example, even when one of the circulation pumps 30 has a reduced output due to a failure and the supply amount of ice making water to the ice making unit 14 is reduced, an abnormality in which the ice making time is delayed may occur. In addition, when the ice making water supply pipe 28 or the ice making water sprinkling pipe 32 in any of the ice making units 41 is clogged with foreign matter and the ice making water is not supplied to a part or all of the ice making plate 16, the ice making time is delayed. Can occur.

(製氷時間の短縮を招く異常が生じた場合について)
例えば、多重製氷により連結氷が発生し、しかも、除氷運転において連結氷が製氷部14から落下して氷案内板20に引っ掛かってしまうことがある。すると、製氷運転中の未氷結水が、氷案内板20に引っ掛かった連結氷を伝って貯氷庫34等へ放出されてしまい、製氷水タンク24に回収されなくなることがある。すると、当該製氷水タンク24における製氷水は早く減少し、異常が生じている製氷ユニット41のフロートスイッチ26が製氷完了水位を通常よりも早いタイミングで検知する。この場合、制御手段48は、異常(連結氷)が生じた側の製氷ユニットにおけるフロートスイッチ26から検知信号を受信し(ステップS2のYes)、第1タイマー50を作動させる(ステップS3)。
(If an abnormality occurs that shortens the ice making time)
For example, coupled ice may be generated by multiple ice making, and the connected ice may fall from the ice making unit 14 and get caught on the ice guide plate 20 in the deicing operation. As a result, unfrozen water during the ice making operation may be discharged to the ice storage 34 or the like through the connected ice caught on the ice guide plate 20 and may not be collected in the ice making water tank 24. Then, the ice making water in the ice making water tank 24 decreases quickly, and the float switch 26 of the ice making unit 41 in which an abnormality has occurred detects the ice making completion water level at an earlier timing than usual. In this case, the control means 48 receives the detection signal from the float switch 26 in the ice making unit on the side where the abnormality (connected ice) has occurred (Yes in step S2), and activates the first timer 50 (step S3).

一方、正常な製氷ユニット41では、通常通り製氷運転が進行しているので、両ユニット41,41の製氷時間差は大きく、最初の製氷完了水位の検知から第1異常発生時間内に正常な製氷ユニット41から製氷完了水位の検知信号を受信することができなくなる。すなわち、正常な製氷ユニット41からの製氷完了水位の検知信号を受信する前に第1タイマー50の計時時刻が第1異常発生時間を経過するので(ステップS4のYes)、制御手段48は、何れかの製氷ユニット41に異常が発生したと判定し(ステップS11)、製氷運転を終了させる(ステップS12)。そして、除氷運転を行なった後に流下式製氷機40の運転を停止させる(ステップS13,S14)。このように、実施例に係る異常検知方法によれば、製氷時間の短縮を招く異常が生じた場合であっても、早い段階で当該異常を検知し得る。   On the other hand, in the normal ice making unit 41, since the ice making operation is proceeding as usual, the ice making time difference between the units 41 and 41 is large, and the normal ice making unit is detected within the first abnormality occurrence time from the detection of the first ice making completed water level. It becomes impossible to receive the detection signal of the ice making completion water level from 41. That is, since the time measured by the first timer 50 passes the first abnormality occurrence time before receiving the detection signal of the ice making completion water level from the normal ice making unit 41 (Yes in step S4), the control means 48 It is determined that an abnormality has occurred in the ice making unit 41 (step S11), and the ice making operation is terminated (step S12). Then, after the deicing operation is performed, the operation of the flow-down ice making machine 40 is stopped (steps S13 and S14). Thus, according to the abnormality detection method according to the embodiment, even when an abnormality that causes a reduction in ice making time occurs, the abnormality can be detected at an early stage.

なお、製氷時間の短縮を招く要因としては、上記のケースに限定される訳ではない。例えば、何れかの製氷水タンク24に設けられた排出管44の排水弁46に異物が噛込み、該排水弁46が常に開放状態となる場合が考えられる。この場合、前記製氷水タンク24内の製氷水は、自然に排出管44を介して排出され、当該製氷水タンク24のフロートスイッチ26は、非常に早い段階で製氷完了水位を検知する。また、他のケースとしては、貯氷庫34に設けられた貯氷検知手段36が故障すると、貯氷庫34内が氷塊で満たされているのに拘らず、製氷運転・除氷運転が継続されてしまう。すると、氷塊が氷案内板20まで溢れてしまい、当該溢れた氷によって製氷運転時に未氷結水が製氷水タンク24へ回収されるのが妨げられてしまう。従って、当該異常が発生した製氷ユニット41では、製氷水の減少が早くなり、フロートスイッチ26は非常に早いタイミングで製氷完了水位を検知することとなる。   It should be noted that the factor causing the ice making time to be shortened is not limited to the above case. For example, there may be a case where foreign matter is caught in the drain valve 46 of the discharge pipe 44 provided in any one of the ice making water tanks 24 and the drain valve 46 is always open. In this case, the ice making water in the ice making water tank 24 is naturally discharged through the discharge pipe 44, and the float switch 26 of the ice making water tank 24 detects the ice making completion water level at a very early stage. As another case, when the ice storage detection means 36 provided in the ice storage 34 breaks down, the ice making operation and the deicing operation are continued even though the ice storage 34 is filled with ice blocks. . Then, the ice block overflows to the ice guide plate 20, and the overflowed ice prevents uncondensed water from being collected in the ice making water tank 24 during the ice making operation. Therefore, in the ice making unit 41 in which the abnormality has occurred, the ice making water decreases quickly, and the float switch 26 detects the ice making completion water level at a very early timing.

(両製氷ユニットに同時期に異常が発生した場合について)
万が一、製氷時間の短縮を招く異常が両製氷ユニット41,41に同時期に発生した場合、両ユニット41,41の製氷時間差は小さく、第1タイマー50の計時時刻が第1異常発生時間を経過する前に(ステップS4のNo)、最後の製氷完了水位が検知されてしまう(ステップS5のYes)。このため、前記制御手段48は、ステップS4において異常判定をすることはない。しかしながら、この場合に制御手段48は、第2タイマー52の計時時刻(製氷完了時間)に基づいて異常を検知し得るようになっている。すなわち、制御手段48は、製氷完了時間が第2異常発生時間内であるか否か判定し(ステップS7)、該製氷完了時間が第2異常発生時間より小さければ(ステップS7のYes)、制御手段48は、両製氷ユニット41,41に異常が同時期に発生したと判定する(ステップS15)。すると、制御手段48は、製氷運転を終了させ(ステップS16)、除氷運転を行なった後に流下式製氷機40の運転を停止させる(ステップS17,ステップS18)。このように、実施例に係る異常検知方法では、両製氷ユニット41,41に製氷時間が短縮される異常が同時期に発生したとしても、第2タイマー52の計時時刻に基づいて当該異常を確実に検知することができる。
(When abnormalities occur in both ice making units at the same time)
In the unlikely event that an abnormality that reduces the ice making time occurs in both ice making units 41, 41, the difference in ice making time between both units 41, 41 is small, and the time measured by the first timer 50 has passed the first abnormality occurrence time. Before performing (No in step S4), the last ice making water level is detected (Yes in step S5). For this reason, the said control means 48 does not perform abnormality determination in step S4. However, in this case, the control means 48 can detect an abnormality based on the time measured by the second timer 52 (ice making completion time). That is, the control unit 48 determines whether or not the ice making completion time is within the second abnormality occurrence time (step S7), and if the ice making completion time is shorter than the second abnormality occurrence time (Yes in step S7), the control is performed. The means 48 determines that an abnormality has occurred in both ice making units 41, 41 at the same time (step S15). Then, the control means 48 ends the ice making operation (step S16), and stops the operation of the flow down type ice making machine 40 after performing the deicing operation (step S17, step S18). Thus, in the abnormality detection method according to the embodiment, even if an abnormality that reduces the ice making time occurs in both ice making units 41 and 41 at the same time, the abnormality is reliably detected based on the time measured by the second timer 52. Can be detected.

(変更例)
実施例では、製氷ユニット41が2つの場合を例示したが、製氷ユニット41を3つ以上備えた製氷機であっても本発明の異常検知方法を実施可能である。例えば、製氷ユニット41を3つ備える場合の異常検知方法について、図3を参照にして簡単に説明すると、製氷運転の開始と同時に、第2タイマー52が作動し(ステップS1)、製氷完了時間を計時する。次に、何れかの製氷ユニット41において最初の製氷完了水位が検知されると(ステップS2のYes)、制御手段48は、第1タイマー50を作動させる(ステップS3)。その後、制御手段48は、第1タイマー50の計時時刻が第1異常発生時間を経過したか否かを判定し(ステップS4)、異常が生じていない場合、第1異常発生時間内に他の製氷ユニット41において次の(2番目の)製氷完了水位が検知される(ステップS4のNo,ステップS5のYes)。
(Example of change)
In the embodiment, the case where there are two ice making units 41 is illustrated, but the abnormality detection method of the present invention can be implemented even with an ice making machine including three or more ice making units 41. For example, the abnormality detection method when three ice making units 41 are provided will be briefly described with reference to FIG. 3. When the ice making operation starts, the second timer 52 operates (step S1), and the ice making completion time is set. Keep time. Next, when the first ice making completion water level is detected in any ice making unit 41 (Yes in step S2), the control means 48 activates the first timer 50 (step S3). Thereafter, the control means 48 determines whether or not the time measured by the first timer 50 has passed the first abnormality occurrence time (step S4). If no abnormality has occurred, the control means 48 determines another time within the first abnormality occurrence time. The next (second) ice making completion water level is detected in the ice making unit 41 (No in step S4, Yes in step S5).

すると、制御手段48は、再び第1タイマー50の計時時刻が第1異常発生時間を経過したか否か判定する(ステップS6)。ここで、残る製氷ユニット41において製氷時間が遅延する異常が生じているとすると、最後の(3番目の)製氷完了水位は第1異常発生時間内に検知されることはないので(ステップS6のYes)、制御手段48は、異常判定を行なって製氷運転を終了させる(ステップS8,ステップS9)。そして、除氷運転をした後、製氷機を異常停止させる(ステップS10,ステップS11)。   Then, the control means 48 determines again whether the time measured by the first timer 50 has passed the first abnormality occurrence time (step S6). Here, if the remaining ice making unit 41 has an abnormality in which the ice making time is delayed, the last (third) ice making completion water level is not detected within the first abnormality occurrence time (in step S6). Yes), the control means 48 makes an abnormality determination and ends the ice making operation (steps S8 and S9). Then, after the deicing operation, the ice making machine is abnormally stopped (step S10, step S11).

なお、最初に製氷完了水位が検知された製氷ユニット41以外の製氷ユニット41,41に何れも製氷時間が遅延する異常が生じている場合、2番目の製氷完了水位を検知する前に、第1タイマー50の計時時刻が第1異常発生時間を経過することとなる(ステップS4のYes)。すなわち、最初以外の製氷ユニット41,41から製氷完了水位を検知する前に第1異常発生時間が経過するので、制御手段48は、異常判定を行なう(ステップS12〜S15参照)。また、何れの製氷ユニット41,41,41も正常である場合には(ステップS7のYes)、実施例と同様に、第1タイマー50を停止させ(ステップS16)、次に、第2タイマー52の計時時刻(製氷完了時間)が第2異常発生時間内であるか否か判定する(ステップS17)。正常な場合(ステップS17のNo)、制御手段48は、正常判定を行なう(ステップS18〜S20)。一方、3つの製氷ユニット41,41,41に対し同時期に異常が発生した場合には、第2タイマー52の計時時刻が第2異常発生時間内であるので(ステップS17のYes)、制御手段48は異常判定を行なう(ステップS21〜S24)。   In the case where there is an abnormality that causes the ice making time to be delayed in any of the ice making units 41, 41 other than the ice making unit 41 in which the ice making completion water level is detected first, the first ice making completion water level is detected before the second ice making completion water level is detected. The time measured by the timer 50 passes the first abnormality occurrence time (Yes in step S4). That is, since the first abnormality occurrence time elapses before the ice making completion water level is detected from the ice making units 41, 41 other than the first, the control means 48 performs abnormality determination (see steps S12 to S15). If any of the ice making units 41, 41, 41 is normal (Yes in step S7), the first timer 50 is stopped (step S16) as in the embodiment, and then the second timer 52 is used. It is determined whether or not the measured time (ice making completion time) is within the second abnormality occurrence time (step S17). If normal (No in step S17), the control means 48 determines normality (steps S18 to S20). On the other hand, if an abnormality occurs in the three ice making units 41, 41, 41 at the same time, the time measured by the second timer 52 is within the second abnormality occurrence time (Yes in step S17), so that the control means 48 performs an abnormality determination (steps S21 to S24).

このように、製氷ユニット41を3つ有する場合であっても、最初に製氷完了を検知したときからの経過時間に基づいて異常判定を行なうので、早い段階で異常を検知することができる。なお、製氷時間が短縮する異常が生じた場合も、同様な手順で異常が検知される。   As described above, even when the three ice making units 41 are provided, the abnormality determination is performed based on the elapsed time since the first completion of ice making is detected, so that the abnormality can be detected at an early stage. Even when an abnormality that shortens the ice making time occurs, the abnormality is detected in the same procedure.

なお、実施例では、検知手段としてフロートスイッチ26を採用したが、製氷完了水位を検知し得るものであれば、水位センサー等、他の手段を適宜採用することができる。また、実施例では、自動製氷機として、各製氷部14を製氷水が流下する流下式製氷機40を例に説明したが、例えば、複数の製氷ユニットを備えた噴射式製氷機等、他の自動製氷機に本発明に係る異常検知方法を実施することも可能である。更に、実施例では、第1タイマー50および第2タイマー52を用いて異常判定を行なうようにしたが、1つのタイマーで製氷時間差および製氷時間を計時するようにしてもよい。   In the embodiment, the float switch 26 is used as the detecting means. However, other means such as a water level sensor can be appropriately used as long as the ice making completion water level can be detected. Further, in the embodiment, the flow-down type ice making machine 40 in which ice making water flows down each ice making unit 14 has been described as an example of an automatic ice making machine. However, for example, other types of ice making machines including a plurality of ice making units, etc. It is also possible to implement the abnormality detection method according to the present invention in an automatic ice making machine. Further, in the embodiment, the abnormality determination is performed using the first timer 50 and the second timer 52, but the ice making time difference and the ice making time may be measured by one timer.

なお、実施例に係る異常検知方法に加え、従来例で説明した異常検知方法を組み合せて異常を検知する方法も可能である。すなわち、全てのフロートスイッチ26が製氷完了水位を検知したとき(製氷完了時間)が、予め設定された異常発生時間を越えた場合にも、制御手段48が異常判定を行なうようにしてもよい。これにより、全ての製氷ユニット41に製氷時間が遅延する異常が同時期に発生した場合であっても、異常を検知することが可能となる。また、製氷運転の開始後、最初の製氷完了水位が検知されるまでの時間が所定の時間内である場合に、制御手段48が異常判定を行なう方法を加えてもよい。   In addition to the abnormality detection method according to the embodiment, a method of detecting an abnormality by combining the abnormality detection methods described in the conventional examples is also possible. In other words, when all the float switches 26 detect the ice making completion water level (ice making completion time), the control means 48 may make an abnormality determination even when a preset abnormality occurrence time is exceeded. As a result, even if an abnormality in which the ice making time is delayed occurs in all the ice making units 41 at the same time, the abnormality can be detected. Further, a method may be added in which the control means 48 performs an abnormality determination when the time from when the ice making operation is started until the first ice making completion water level is detected is within a predetermined time.

実施例に係る流下式製氷機の全体構成を示す概略図である。It is the schematic which shows the whole structure of the flow-down type ice making machine which concerns on an Example. 流下式製氷機の運転方法を示すフローチャートである。It is a flowchart which shows the operating method of a flow-down type ice maker. 変更例に係る流下式製氷機の運転方法を示すフローチャートである。It is a flowchart which shows the operating method of the flow-down type ice maker which concerns on the example of a change. 従来例に係る流下式製氷機の全体構成を示す概略図である。It is the schematic which shows the whole structure of the flow-down type ice making machine which concerns on a prior art example.

符号の説明Explanation of symbols

14 製氷部,24 製氷水タンク,26 フロートスイッチ(検知手段)
30 循環ポンプ,41 製氷ユニット,48 制御手段
14 ice making part, 24 ice making water tank, 26 float switch (detection means)
30 circulation pump, 41 ice making unit, 48 control means

Claims (2)

冷凍系から供給される冷媒により冷却される製氷部(14)と、製氷水を貯溜する製氷水タンク(24)と、前記製氷水タンク(24)に貯溜された製氷水を前記製氷部(14)へ供給する循環ポンプ(30)と、前記製氷水タンク(24)に設けられ、該タンク(24)内の製氷水の量を検知する検知手段(26)とを有し、製氷運転において、前記製氷部(14)へ供給されて氷結に至らなかった未氷結水を製氷水タンク(24)で回収するよう構成された製氷ユニット(41)を複数備え、製氷運転に際し、全ての検知手段(26,26)が製氷水タンク(24)内の製氷水が製氷完了水位に到達したのを検知したときに、製氷が完了したと判定する制御手段(48)を備えた自動製氷機において、
何れかの製氷ユニット(41)における検知手段(26)が、最初に製氷完了水位を検知したときから予め設定された第1異常発生時間の経過時に、他の何れかの製氷ユニット(41)における検知手段(26)が製氷完了水位を検知していない場合には、前記制御手段(48)は異常が発生したと判定する
ことを特徴とする自動製氷機の異常検知方法。
An ice making part (14) cooled by a refrigerant supplied from a refrigeration system, an ice making water tank (24) for storing ice making water, and the ice making water stored in the ice making water tank (24) in the ice making part (14 In the ice making water tank (24), and a detecting means (26) for detecting the amount of ice making water in the tank (24), in ice making operation, The ice making unit (14) is provided with a plurality of ice making units (41) configured to collect uniced water that has not been frozen by the ice making water tank (24) supplied to the ice making unit (14). 26, 26) in an automatic ice making machine equipped with a control means (48) for determining that ice making is completed when it is detected that the ice making water in the ice making water tank (24) has reached the ice making completion water level,
When the detection means (26) in any one of the ice making units (41) first detects the ice making completion water level, when the preset first abnormality occurrence time elapses, in any of the other ice making units (41) An abnormality detection method for an automatic ice making machine, wherein the control means (48) determines that an abnormality has occurred when the detection means (26) has not detected the ice making completion water level.
製氷運転の開始から予め設定された第2異常発生時間が経過するまでに、全ての製氷ユニット(41)における検知手段(26)が製氷完了水位を検知した場合に、前記制御手段(48)は異常が発生したと判定する請求項1記載の自動製氷機の異常検知方法。   When the detection means (26) in all ice making units (41) detects the ice making completion water level from the start of the ice making operation until the preset second abnormality occurrence time elapses, the control means (48) The abnormality detection method for an automatic ice making machine according to claim 1, wherein it is determined that an abnormality has occurred.
JP2008256777A 2008-10-01 2008-10-01 Abnormality detection method of automatic ice machine Active JP5294781B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008256777A JP5294781B2 (en) 2008-10-01 2008-10-01 Abnormality detection method of automatic ice machine
US12/586,950 US20100077774A1 (en) 2008-10-01 2009-09-30 Abnormality detecting method for automatic ice making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008256777A JP5294781B2 (en) 2008-10-01 2008-10-01 Abnormality detection method of automatic ice machine

Publications (2)

Publication Number Publication Date
JP2010085053A true JP2010085053A (en) 2010-04-15
JP5294781B2 JP5294781B2 (en) 2013-09-18

Family

ID=42055952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008256777A Active JP5294781B2 (en) 2008-10-01 2008-10-01 Abnormality detection method of automatic ice machine

Country Status (2)

Country Link
US (1) US20100077774A1 (en)
JP (1) JP5294781B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087050A (en) * 2013-10-30 2015-05-07 ホシザキ電機株式会社 Ice machine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101264618B1 (en) 2010-06-24 2013-05-27 코웨이 주식회사 Method for making ice
US9557089B2 (en) 2013-08-28 2017-01-31 Whirlpool Corporation Stir stick and breaker walls for an ice container
CN104075536B (en) * 2014-07-24 2016-02-10 泰州乐金电子冷机有限公司 Refrigerator
CN108151385B (en) * 2017-12-15 2019-06-28 合肥华凌股份有限公司 Refrigerator and its energy-saving control method, device
CN112771327A (en) * 2018-10-02 2021-05-07 Lg电子株式会社 Refrigerator with a door
CN115325765B (en) * 2021-05-10 2023-11-07 青岛海尔电冰箱有限公司 Control method and control device of ice making device and refrigerator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157974A (en) * 1981-03-25 1982-09-29 Hoshizaki Electric Co Ltd Abnormal ice making preventor for ice making machine
JPS58162477U (en) * 1982-04-23 1983-10-28 三洋電機株式会社 ice maker protection device
JPS61130761A (en) * 1984-11-29 1986-06-18 星崎電機株式会社 Deicer for multi-ice making plate type ice machine
JPS62172159A (en) * 1986-01-24 1987-07-29 松下冷機株式会社 Protective device for ice machine
JPS63233276A (en) * 1987-03-20 1988-09-28 ホシザキ電機株式会社 Deicing control method of ice machine
JPH0160162U (en) * 1987-10-12 1989-04-17
JPH11248308A (en) * 1998-03-03 1999-09-14 Hoshizaki Electric Co Ltd Operating method for automatic ice maker
JP2005201545A (en) * 2004-01-15 2005-07-28 Hoshizaki Electric Co Ltd Multiple ice-making determining method of automatic ice maker, and operation method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2954679A (en) * 1958-10-08 1960-10-04 Honeywell Regulator Co Control apparatus
US3826102A (en) * 1973-06-21 1974-07-30 Gen Electric Refrigerator including automatic ice maker and water reservoir
US4238930A (en) * 1978-12-26 1980-12-16 Whirlpool Corporation Ice maker apparatus
US6401467B1 (en) * 2000-05-01 2002-06-11 Technology Licensing Corporation Ice thickness control system and sensor probe for ice-making machines
US6601399B2 (en) * 2001-07-09 2003-08-05 Hoshizaki Denki Kabushiki Kaisha Ice making machine
US6581392B1 (en) * 2002-02-01 2003-06-24 Scotsman Ice Systems Ice machine and method for control thereof
US6612118B2 (en) * 2002-02-06 2003-09-02 Imi Cornelius Inc. Ice maker control
DE10345835B4 (en) * 2003-10-02 2015-04-09 Bayerische Motoren Werke Aktiengesellschaft Sensor arrangement for monitoring at least two physical quantities
KR100642362B1 (en) * 2004-11-02 2006-11-03 엘지전자 주식회사 Controlling apparatus for supplying water in ice maker and method thereof
US20060174637A1 (en) * 2005-02-07 2006-08-10 The Coppola Companies Electronic timing device
EP1856459A2 (en) * 2005-02-15 2007-11-21 Control Devices, Inc. Methods and apparatus for detecting and making ice
US7849699B2 (en) * 2006-02-03 2010-12-14 Dometic Corporation Digital control of ice making apparatus and output of operating status
US7712322B2 (en) * 2006-02-15 2010-05-11 Maytag Corporation Ice level sensing device for an automatic ice maker in a refrigerator
US20080072610A1 (en) * 2006-09-26 2008-03-27 General Electric Company Apparatus and method for controlling operation of an icemaker
US20080083235A1 (en) * 2006-10-10 2008-04-10 Chin-Hsiang Wang Water level detecting device for an ice-making machine
US20080216490A1 (en) * 2007-03-08 2008-09-11 Hoshizaki Denki Kabushiki Kaisha Operation method for automatic ice maker

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157974A (en) * 1981-03-25 1982-09-29 Hoshizaki Electric Co Ltd Abnormal ice making preventor for ice making machine
JPS58162477U (en) * 1982-04-23 1983-10-28 三洋電機株式会社 ice maker protection device
JPS61130761A (en) * 1984-11-29 1986-06-18 星崎電機株式会社 Deicer for multi-ice making plate type ice machine
JPS62172159A (en) * 1986-01-24 1987-07-29 松下冷機株式会社 Protective device for ice machine
JPS63233276A (en) * 1987-03-20 1988-09-28 ホシザキ電機株式会社 Deicing control method of ice machine
JPH0160162U (en) * 1987-10-12 1989-04-17
JPH11248308A (en) * 1998-03-03 1999-09-14 Hoshizaki Electric Co Ltd Operating method for automatic ice maker
JP2005201545A (en) * 2004-01-15 2005-07-28 Hoshizaki Electric Co Ltd Multiple ice-making determining method of automatic ice maker, and operation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015087050A (en) * 2013-10-30 2015-05-07 ホシザキ電機株式会社 Ice machine

Also Published As

Publication number Publication date
US20100077774A1 (en) 2010-04-01
JP5294781B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5294781B2 (en) Abnormality detection method of automatic ice machine
US8844312B2 (en) Method of operating ice making machine
US9146049B2 (en) Automatic ice making machine
US7194868B2 (en) Multiple ice making decision method and operation method for automatic ice making machine
US8042344B2 (en) Automatic ice making machine and operation method therefor
US20080216490A1 (en) Operation method for automatic ice maker
KR102036897B1 (en) Ice maker control system and control method of the same
WO2008032368A1 (en) Down flow type ice making machine
KR102383466B1 (en) Temperature contorl method for detaching ice of ice maker
KR20190068107A (en) Ice maker control system and control method of the same
JP2008064322A (en) Automatic ice making machine
JP2011179790A (en) Automatic ice making machine
RU2448310C2 (en) Cooling unit with ice generator
JP5591552B2 (en) Ice machine
KR20190068108A (en) Ice maker control system and control method of the same
JP2006090691A (en) Operating method for flow down type ice maker
KR102173128B1 (en) System and method for controlling icing and de-icing of ice maker
JP4420326B2 (en) Ice heat storage system
JP2020118320A (en) Flow-down type ice making machine
JP2020118321A (en) Flow-down type ice making machine
JP7174552B2 (en) automatic ice machine
JP2007046873A (en) Operation method for automatic ice machine
JP2019086250A (en) Ice removal control method of ice making machine
CN111829226A (en) Ice making control method, ice making control device and ice maker
JP2020118323A (en) Automatic ice making machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130611

R150 Certificate of patent or registration of utility model

Ref document number: 5294781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350