JP2010084210A - Method for refining molten metal - Google Patents
Method for refining molten metal Download PDFInfo
- Publication number
- JP2010084210A JP2010084210A JP2008255996A JP2008255996A JP2010084210A JP 2010084210 A JP2010084210 A JP 2010084210A JP 2008255996 A JP2008255996 A JP 2008255996A JP 2008255996 A JP2008255996 A JP 2008255996A JP 2010084210 A JP2010084210 A JP 2010084210A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- refining
- molten metal
- slag component
- mgo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007670 refining Methods 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 33
- 239000002184 metal Substances 0.000 title claims abstract description 33
- 239000002994 raw material Substances 0.000 claims abstract description 35
- 239000000463 material Substances 0.000 claims abstract description 19
- 239000002893 slag Substances 0.000 claims description 91
- 239000003607 modifier Substances 0.000 claims description 50
- 239000003795 chemical substances by application Substances 0.000 claims description 25
- 239000000126 substance Substances 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 11
- 238000000465 moulding Methods 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 3
- 230000003628 erosive effect Effects 0.000 abstract description 6
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 158
- 239000000395 magnesium oxide Substances 0.000 description 79
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 18
- 238000007664 blowing Methods 0.000 description 16
- 239000000292 calcium oxide Substances 0.000 description 9
- 235000012255 calcium oxide Nutrition 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 239000010459 dolomite Substances 0.000 description 5
- 229910000514 dolomite Inorganic materials 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 3
- OMOVVBIIQSXZSZ-UHFFFAOYSA-N [6-(4-acetyloxy-5,9a-dimethyl-2,7-dioxo-4,5a,6,9-tetrahydro-3h-pyrano[3,4-b]oxepin-5-yl)-5-formyloxy-3-(furan-3-yl)-3a-methyl-7-methylidene-1a,2,3,4,5,6-hexahydroindeno[1,7a-b]oxiren-4-yl] 2-hydroxy-3-methylpentanoate Chemical compound CC12C(OC(=O)C(O)C(C)CC)C(OC=O)C(C3(C)C(CC(=O)OC4(C)COC(=O)CC43)OC(C)=O)C(=C)C32OC3CC1C=1C=COC=1 OMOVVBIIQSXZSZ-UHFFFAOYSA-N 0.000 description 3
- 238000005261 decarburization Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 235000019738 Limestone Nutrition 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- WETINTNJFLGREW-UHFFFAOYSA-N calcium;iron;tetrahydrate Chemical compound O.O.O.O.[Ca].[Fe].[Fe] WETINTNJFLGREW-UHFFFAOYSA-N 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- -1 MgCO 3 content Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000011822 basic refractory Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
Images
Landscapes
- Carbon Steel Or Casting Steel Manufacturing (AREA)
Abstract
Description
本発明は、MgOを主体とする内張り耐火物を備えた精錬容器で行う溶融金属の精錬方法に関する。 The present invention relates to a molten metal refining method performed in a refining vessel provided with a refractory lining mainly composed of MgO.
転炉などの精錬容器を用いて行われる鉄鋼精錬では、スラグの塩基度(CaO/SiO2)を高くすると脱P反応が促進されるため、炉体の長寿命化のために炉体内張り耐火物にはMgOを主体とした塩基性耐火物(例えば、マグネシア・カーボンレンガなど)が使用されている。しかし、この内張り耐火物は、流動する溶融スラグとの接触によって溶損(耐火物の脱炭とそれに伴うマグネシア粒の脱落による溶損)しやすい問題がある。
従来、内張り耐火物の溶損を抑える方法として、吹錬中にCaO原料やMgO原料を投入し、スラグ中のCaO濃度、MgO濃度を高める方法が知られている。この方法では、CaO原料として生石灰、石灰石などが、MgO原料として生ドロマイト、軽焼ドロマイト、マグネシアクリンカーなどが用いられる。
In steel refining using a refining vessel such as a converter, the de-P reaction is promoted by increasing the basicity of slag (CaO / SiO 2 ). Basic refractories mainly composed of MgO (for example, magnesia, carbon brick, etc.) are used. However, this lining refractory has a problem that it is easily melted by contact with the flowing molten slag (melting due to decarburization of the refractory and accompanying dropping of magnesia grains).
Conventionally, as a method for suppressing melting loss of the lining refractory, a method is known in which a CaO raw material or an MgO raw material is introduced during blowing to increase the CaO concentration or MgO concentration in the slag. In this method, quick lime, limestone, or the like is used as the CaO raw material, and raw dolomite, light-burned dolomite, magnesia clinker, or the like is used as the MgO raw material.
例えば、特許文献1には、CaO原料、MgO原料およびFe2O3原料を混合・焼成して得られたものであって、構成成分として、カルシウムフェライト、CaOおよびMgOを含むスラグ成分調整剤を、上記のような方法に使用することが提案されている。この方法によれば、スラグ成分調整剤中のカルシウムフェライトが、従来使用されている生石灰や石灰石などのCaO原料に較べて溶融温度が低いため、スラグに迅速に溶解して早期にスラグ塩基度を高めることができ、且つMgOも早期にスラグ中に溶解してスラグ中のMgO濃度を高めることができるため、内張り耐火物の溶損を効果的に抑制できるとしている。
しかし、特許文献1の方法では、スラグ成分調整剤が焼成物であり、揮発分が残っていないため、スラグの溶解は固化体表面からとなる。このため、吹錬中に投入されたスラグ成分調整剤の溶解が不十分であり、内張り耐火物の溶損を抑制することはできるものの、その効果は十分ではない。
一方、溶解性の高いスラグ成分調整剤として、粉体MgO(軽焼MgO)に水を加えて成形したスラグ成分調整剤の使用が考えられる。このスラグ成分調整剤は、MgOの一部が水和してMg(OH)2となり、MgOとMg(OH)2とが混合した成形体として使用されることになると考えられる。しかし、本発明者らが検討した結果では、このようなスラグ成分調整剤を炉に投入すると、炉口から噴出するフレームが大きくなり、操業に支障をきたす場合があることが判明した。そして、その原因について調査・検討した結果、Mg(OH)2からのH2Oの乖離温度が250〜300℃と低いため、スラグ成分調整剤の投入と同時にH2Oが発生し、炉口からのガス吹き出しが大きくなるためであることが判った。
However, in the method of
On the other hand, as a highly soluble slag component adjusting agent, use of a slag component adjusting agent formed by adding water to powdered MgO (light calcined MgO) can be considered. This slag component modifier is considered to be used as a molded body in which a part of MgO is hydrated to become Mg (OH) 2 and MgO and Mg (OH) 2 are mixed. However, as a result of investigations by the present inventors, it has been found that when such a slag component adjusting agent is introduced into the furnace, the frame ejected from the furnace port becomes large, which may hinder the operation. And as a result of investigating and examining the cause, since the detachment temperature of H 2 O from Mg (OH) 2 is as low as 250 to 300 ° C., H 2 O is generated simultaneously with the introduction of the slag component modifier, It turned out that it was because the gas blowing out from became large.
したがって本発明の目的は、上記のような従来技術の課題を解決し、炉に投入したスラグ成分調整剤を速やかに溶解させ、内張り耐火物の溶損を効果的に抑制することができるとともに、スラグ成分調整剤を投入した際に炉口からの急激なガス吹き出しを防止することができる溶融金属の精錬方法を提供することにある。 Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, quickly dissolve the slag component modifier charged in the furnace, and effectively suppress the refractory lining erosion, An object of the present invention is to provide a molten metal refining method capable of preventing a sudden gas blow-out from a furnace port when a slag component modifier is introduced.
上記課題を解決するための本発明の要旨は以下のとおりである。
[1]MgOを主体とする内張り耐火物を備えた精錬容器にて溶融金属の精錬を行う方法において、Mg含有原料を主材とする粉粒状原料を成形し、固化させた成形体であって、ガス発生温度が400℃以下であるガス発生物質(A)とガス発生温度が600℃以上であるガス発生物質(B)を含有するスラグ成分調整剤を、精錬容器に投入して溶融金属の精錬を行うことを特徴とする溶融金属の精錬方法。
The gist of the present invention for solving the above problems is as follows.
[1] In a method for refining molten metal in a refining vessel equipped with a refractory lining mainly composed of MgO, a molded body obtained by molding and solidifying a powdery raw material mainly composed of a Mg-containing raw material. A slag component adjusting agent containing a gas generating material (A) having a gas generating temperature of 400 ° C. or lower and a gas generating material (B) having a gas generating temperature of 600 ° C. or higher is charged into a smelting vessel to A method for refining molten metal, comprising refining.
[2]上記[1]の溶融金属の精錬方法において、スラグ成分調整剤は、ガス発生物質(A)としてMg(OH)2を含有し、ガス発生物質(B)としてMgCO3を含有することを特徴とする溶融金属の精錬方法。
[3]上記[1]または[2]の溶融金属の精錬方法において、スラグ成分調整剤は、バインダーとして水または/および有機物質を加えて混練した粉粒状原料を成形し、固化させた成形体であることを特徴とする溶融金属の精錬方法。
[4]上記[2]または[3]の溶融金属の精錬方法において、スラグ成分調整剤は、MgO、MgCO3およびMg(OH)2を主成分とすることを特徴とする溶融金属の精錬方法。
[2] In the molten metal refining method according to [1], the slag component adjusting agent contains Mg (OH) 2 as the gas generating substance (A) and MgCO 3 as the gas generating substance (B). A method for refining molten metal characterized by the following.
[3] In the molten metal refining method according to [1] or [2], the slag component modifier is a molded body obtained by molding and solidifying a granular raw material kneaded by adding water or / and an organic substance as a binder. A method for refining molten metal, characterized in that:
[4] The method for refining a molten metal according to the above [2] or [3], wherein the slag component adjusting agent comprises MgO, MgCO 3 and Mg (OH) 2 as main components. .
[5]上記[4]の溶融金属の精錬方法において、スラグ成分調整剤は、含有するMg化合物中での割合で、MgO含有量が35〜80質量%、MgCO3含有量が15〜50質量%、Mg(OH)2含有量が5〜40質量%であることを特徴とする溶融金属の精錬方法。
[6]上記[2]〜[5]のいずれかの溶融金属の精錬方法において、スラグ成分調整剤は、ガス発生物質(B)として、さらにCaCO3を含有することを特徴とする溶融金属の精錬方法。
[7]上記[1]〜[6]のいずれかの溶融金属の精錬方法において、スラグ成分調整剤は、Ig.Loss量が15〜35質量%であることを特徴とする溶融金属の精錬方法。
[5] In the molten metal refining method of the above [4], the slag component adjusting agent is a proportion in the Mg compound contained, and the MgO content is 35 to 80% by mass, and the MgCO 3 content is 15 to 50% by mass. %, Mg (OH) 2 content is 5-40 mass%, The refining method of the molten metal characterized by the above-mentioned.
[6] In the molten metal refining method according to any one of the above [2] to [5], the slag component adjusting agent further contains CaCO 3 as a gas generating substance (B). Refining method.
[7] The method for refining a molten metal according to any one of the above [1] to [6], wherein the slag component adjusting agent has an Ig.Loss amount of 15 to 35% by mass. .
本発明の溶融金属の精錬方法によれば、精錬容器に投入されるスラグ成分調整剤は、炉内温度でガスを発生させるガス発生物質を含むため溶解性が高く、炉に投入した際に速やかに溶解して内張り耐火物の溶損を効果的に抑制することができるとともに、炉に投入した際に、ガス発生物質(A)からのガス発生(例えば、Mg(OH)2からのH2Oの乖離)とガス発生物質(B)からのガス発生(例えば、MgCO3からのCO2の乖離)が時間差をもって生じるため、ガス(例えば、H2O、CO2)の発生が穏やかになり、炉口からの急激なガス吹き出しを防止することができる。 According to the molten metal refining method of the present invention, the slag component adjusting agent charged into the refining vessel contains a gas generating substance that generates gas at the furnace temperature, and thus has high solubility, and when it is charged into the furnace, erosion it is possible to effectively suppress the dissolution to refractory lining, when charged into the furnace, the gas generated from the gas generating material (a) (eg, H 2 from Mg (OH) 2 O) and gas generation from the gas generating substance (B) (for example, CO 2 from MgCO 3 ) occur with a time difference, so that the generation of gas (for example, H 2 O, CO 2 ) becomes gentle. A sudden gas blow-out from the furnace port can be prevented.
本発明の溶融金属の精錬方法は、MgOを主体とする内張り耐火物を備えた精錬容器にて溶融金属の精錬を行う方法であり、Mg含有原料を主材とする粉粒状原料を成形し、固化させた成形体であって、ガス発生温度が400℃以下であるガス発生物質Aとガス発生温度が600℃以上であるガス発生物質Bを含有するスラグ成分調整剤を、精錬容器に投入して溶融金属の精錬を行うものである。ここで、ガス発生物質とは、加熱されることで熱分解を生じ、ガスが発生(乖離)する物質を指す。
このようなスラグ成分調整剤は、ガス発生物質A,Bを含むため溶解性が高く、炉に投入した際に速やかに溶解するとともに、ガス発生物質Aからのガス発生とガス発生物質Bからのガス発生が時間差をもって生じるため、ガスの発生が穏やかになる利点がある。
本発明が適用される溶融金属の精錬は、MgOを主体とする内張り耐火物を備えた精錬容器にて行われる精錬であれば特別な制限はなく、鉄鋼以外の金属の精錬プロセスにも適用できる。また、鉄鋼製造プロセスの場合には、製鋼プロセスである転炉脱炭精錬や溶銑予備処理での精錬(例えば、脱硫処理、脱燐処理など)、溶融還元精錬などに適用できる。
The molten metal refining method of the present invention is a method of refining molten metal in a refining vessel equipped with a lining refractory mainly composed of MgO, molding a granular raw material mainly composed of a Mg-containing raw material, A slag component adjusting agent containing a gas generating material A having a gas generation temperature of 400 ° C. or lower and a gas generating material B having a gas generation temperature of 600 ° C. or higher is charged into a refining vessel. In this way, molten metal is refined. Here, the gas generating substance refers to a substance that generates heat (dissociates) by being thermally decomposed when heated.
Since such a slag component modifier contains gas generating substances A and B, it has high solubility, and when it is put into the furnace, it dissolves quickly, and the gas generation from the gas generating substance A and the gas generating substance B Since the gas generation occurs with a time difference, there is an advantage that the gas generation becomes gentle.
The refining of molten metal to which the present invention is applied is not particularly limited as long as it is performed in a refining vessel equipped with a refractory mainly composed of MgO, and can be applied to a refining process of metals other than steel. . In the case of a steel manufacturing process, it can be applied to converter decarburization refining, refining in hot metal preliminary treatment (for example, desulfurization treatment, dephosphorization treatment, etc.), smelting reduction refining and the like.
以下、本発明で使用するスラグ成分調整剤について説明する。
粉粒状原料を成形体とするのは、粉粒状原料のまま炉に投入すると、炉から発生するガス中に飛散してしまうからである。粉粒状原料(特に、Mg含有原料)は、溶解性を確保するために粒径10mm以下のものが好ましい。
通常、スラグ成分調整剤を構成する成形体は、バインダーとして水または/および有機物質などを加えて混練した粉粒状原料を成形し、固化させることにより得られる。このように水や有機物質などのバインダーで固形化することにより、炉に投入した際の粉化(崩壊)性が高くなり、より優れた溶解性が得られる。
バインダーとなる有機物質としては、例えば、例えば、澱粉、タール系物質、ピッチ系物質などが挙げられ、これらの1種以上を用いることができる。このような有機物質も、高温に加熱されると分解してCO2やH2Oなどのガスを発生させるので、ガス発生物質Aまたはガス発生物質Bとして機能する場合がある。
Hereinafter, the slag component adjusting agent used in the present invention will be described.
The reason why the powdery raw material is formed into a compact is that if the powdery raw material is put into the furnace as it is, it will be scattered in the gas generated from the furnace. The granular raw material (particularly Mg-containing raw material) preferably has a particle diameter of 10 mm or less in order to ensure solubility.
Usually, the molded object which comprises a slag component regulator is obtained by shape | molding and solidifying the granular raw material knead | mixed by adding water or / and an organic substance etc. as a binder. Thus, by solidifying with binders, such as water and an organic substance, the powdering (disintegration) property at the time of throwing into a furnace becomes high, and more excellent solubility is obtained.
As an organic substance used as a binder, starch, a tar type material, a pitch type material etc. are mentioned, for example, One or more types of these can be used. Such an organic substance also decomposes when heated to a high temperature to generate a gas such as CO 2 or H 2 O, and thus may function as the gas generating substance A or the gas generating substance B.
本発明で使用するスラグ成分調整剤は、Mg含有原料を主材とする粉粒状原料から得られるものであるので、ガス発生物質AとしてはMg(OH)2が、ガス発生物質BとしてはMgCO3が、それぞれ好適であり、特に、スラグ成分調整剤はMgO、MgCO3およびMg(OH)2を主成分とすることが好ましい。
Mg(OH)2は250〜300℃程度でH2Oが乖離するため、MgOとMg(OH)2を主成分とするスラグ成分調整剤の場合には、炉に投入すると直ぐにMg(OH)2からH2Oが乖離し、炉口からの急激なガス吹き出しを生じてしまう。これに対して、MgCO3は600〜700℃まで昇熱しないとCO2が乖離しないので、スラグ成分調整剤が、上記のようにガス発生物質AとしてMg(OH)2を、ガス発生物質BとしてMgCO3をそれぞれ含有する場合(特に好ましくは、MgO、MgCO3およびMg(OH)2を主成分とする場合)には、炉に投入した際にMg(OH)2からのH2Oの乖離と、MgCO3からのCO2の乖離が時間差をもって生じ、この結果、ガス(H2O、CO2)の発生が穏やかになり、炉口からの急激なガス吹き出しを抑えることができる。
Since the slag component modifier used in the present invention is obtained from a granular raw material mainly composed of an Mg-containing raw material, Mg (OH) 2 is used as the gas generating material A, and MgCO is used as the gas generating material B. 3 is preferable, and it is particularly preferable that the slag component modifier is composed mainly of MgO, MgCO 3 and Mg (OH) 2 .
Mg (OH) for 2 where H 2 O at about 250 to 300 ° C. deviates, in the case of slag component adjusted composed mainly of MgO and Mg (OH) 2, as soon as charged into the furnace Mg (OH) 2 H 2 O is deviated from, it occurs a blowoff rapid gas from the furnace opening. In contrast, since the MgCO 3 is Without Noborinetsu CO 2 does not deviate to 600 to 700 ° C., the slag component modifier, the Mg (OH) 2 as the gas generating substance A as described above, the gas generating material B Each containing MgCO 3 (particularly preferably, MgO, MgCO 3 and Mg (OH) 2 as main components), when H 2 O from Mg (OH) 2 is introduced into the furnace. The deviation and the deviation of CO 2 from MgCO 3 occur with a time difference. As a result, the generation of gas (H 2 O, CO 2 ) becomes gentle, and a rapid gas blow-out from the furnace port can be suppressed.
ここで、MgO源、Mg(OH)2源となる粉粒状原料としては、軽焼マグネシア、マグネシアクリンカー、軽焼ドロマイトなどが挙げられ、これらの1種以上を用いることができる。また、MgCO3源となる粉粒状原料としては、マグネサイト、生ドロマイトなどが挙げられ、これらの1種以上を用いることができる。
スラグ成分調整剤に含まれるMg(OH)2は、元々その成分の原料として配合されたものでもよいが、通常は、原料であるMgOの一部が水和(大気中の水分、製造時に添加される水などによる水和)することで生成したものである。
Here, as a granular raw material used as a MgO source and a Mg (OH) 2 source, a light-burning magnesia, a magnesia clinker, a light-burning dolomite, etc. are mentioned, 1 or more types of these can be used. As the particulate material becomes MgCO 3 source, magnesite, etc. raw dolomite and the like, can be used one or more of these.
Mg (OH) 2 contained in the slag component modifier may be originally blended as a raw material of the component, but usually a part of the raw material MgO is hydrated (water in the atmosphere, added during production) Hydrated with water or the like).
本発明で使用するスラグ成分調整剤がMgO、MgCO3およびMg(OH)2を主成分とする場合、含有するMg化合物中での割合で、MgO含有量が35〜80質量%、MgCO3含有量が15〜50質量%、Mg(OH)2含有量が5〜40質量%であることが好ましい。
MgO含有量が35質量%未満では、相対的にMgCO3とMg(OH)2の含有量が高くなる結果、ガス発生量が全体的に過剰になるとともに、MgOの絶対量が不足するため、内張り耐火物の溶損が進行しやすい。一方、80質量%を超えると、相対的にMgCO3とMg(OH)2の含有量が少なくなるためにガス発生量が不足し、成形体の粉化(崩壊)性が低下し、溶解性が不十分となりやすい。
When the slag component modifier used in the present invention is mainly composed of MgO, MgCO 3 and Mg (OH) 2 , the MgO content is 35 to 80% by mass and the MgCO 3 content is a ratio in the contained Mg compound. The amount is preferably 15 to 50% by mass, and the Mg (OH) 2 content is preferably 5 to 40% by mass.
When the content of MgO is less than 35% by mass, the content of MgCO 3 and Mg (OH) 2 is relatively high. As a result, the gas generation amount becomes excessive as a whole, and the absolute amount of MgO is insufficient. Erosion of lining refractories tends to progress. On the other hand, when it exceeds 80 wt%, relative MgCO 3 and Mg (OH) gas generation rate for the content of 2 decreases is insufficient, powdering of the molded body (disintegration) may be lowered, solubility Tends to be insufficient.
また、MgCO3含有量が15質量%未満では、ガス発生物質BとしてMgCO3を含有させることによる本発明の効果が低下する。一方、MgCO3含有量が50質量%を超えると、MgCO3から発生するCO2によるガス吹き出しの問題が大きくなるとともに、MgOの絶対量が少なくなるので、内張り耐火物の溶損が進行しやすい。また、以上の観点から、より好ましいMgCO3含有量は30〜50質量%である。
また、Mg(OH)2含有量が5質量%未満ではMg(OH)2から発生するH2Oガスが不足し、成形体の粉化(崩壊)が低下し、溶解性が不十分となりやすい。一方、Mg(OH)2含有量が40質量%を超えると、Mg(OH)2から発生するH2Oガスによるガス吹き出しの問題が大きくなるとともに、MgOの絶対量が少なくなるので、内張り耐火物の溶損が進行しやすい。
Further, MgCO 3 content is less than 15 wt%, decreases the effect of the present invention by the inclusion of MgCO 3 as the gas generating material B. On the other hand, if the MgCO 3 content exceeds 50% by mass, the problem of gas blowing due to CO 2 generated from MgCO 3 increases, and the absolute amount of MgO decreases, so that the refractory of the lining refractory tends to progress. . From the above viewpoint, the more preferable MgCO 3 content is 30 to 50% by mass.
In addition, if the Mg (OH) 2 content is less than 5% by mass, the H 2 O gas generated from Mg (OH) 2 is insufficient, and the powdered (collapsed) shape of the molded product is reduced, so that the solubility tends to be insufficient. . On the other hand, if the Mg (OH) 2 content exceeds 40% by mass, the problem of gas blowing by H 2 O gas generated from Mg (OH) 2 increases, and the absolute amount of MgO decreases, so the lining fire resistance The erosion of objects tends to progress.
MgO、MgCO3およびMg(OH)2からなるスラグ成分調整剤であって、MgCO3含有量を種々変化させたスラグ成分調整剤(MgCO3含有量:0質量%のものを含む)を製造し、これらを吹錬中の転炉に投入し、スラグ成分調整剤のMgCO3含有量と発生ガスの吹き出し状況との関係を調べた。なお、スラグ成分調整剤中のMgO含有量とMg(OH)2含有量は、それぞれ0〜60質量%、0〜40質量%とした。
図1は、その結果を示すもので、縦軸は転炉に投入したスラグ成分調整剤から発生するガス(H2O,CO2)の吹き出し状況を指数化した吹出指数であり、この値が大きいほど炉口からのガス吹き出しの程度が大きく、好ましくないことを示している。吹出指数の評価は以下のとおりである。
4:吹錬中止レベル
3:送酸速度ダウンレベル
2:地金付着レベル(操業条件変更不要)
1:問題なし
MgO, a slag component modifier consisting of MgCO 3 and Mg (OH) 2, MgCO 3 content of various altered so slag component modifier (MgCO 3 content: 0 include those of mass%) to prepare a These were introduced into the converter during blowing, and the relationship between the MgCO 3 content of the slag component modifier and the state of blowing out the generated gas was investigated. Incidentally, MgO content in the slag component modifier and Mg (OH) 2 content is 0-60 wt%, respectively, and 0 to 40 wt%.
FIG. 1 shows the result, and the vertical axis represents the blowing index obtained by indexing the blowing state of the gas (H 2 O, CO 2 ) generated from the slag component modifier charged in the converter. The larger the value, the greater the degree of gas blowing from the furnace port, which is not preferable. The blowout index is evaluated as follows.
4: Blowing cancellation level 3: Acid feed rate down level 2: Metal adhesion level (no change in operating conditions)
1: No problem
図1によると、スラグ成分調整剤がMgCO3を含まない場合には、発生ガスはすべてMg(OH)2からのH2Oであり、炉に投入して直ぐに大量のH2Oが発生するのでガス吹き出しが大きく、吹出指数が高い。これに対して、MgCO3が配合されると、発生ガスの一部がMgCO3から発生するCO2に置き換わり、しかも乖離温度の違いからCO2はH2Oよりも遅れて発生するため、含有するMgCO3がある程度の比率になると、ガスの発生が平均化して穏やかになり、吹出指数は小さくなる。具体的には、MgCO3含有量が15質量%以上において、その効果が顕在化し、特に30質量%以上において最も効果が大きくなる。 According to FIG. 1, when the slag component modifier does not contain MgCO 3 , the generated gas is all H 2 O from Mg (OH) 2 , and a large amount of H 2 O is generated immediately after being introduced into the furnace. Therefore, the gas blowout is large and the blowout index is high. On the other hand, when MgCO 3 is blended, part of the generated gas is replaced with CO 2 generated from MgCO 3 , and CO 2 is generated later than H 2 O due to the difference in the dissociation temperature. When the ratio of MgCO 3 to be reached becomes a certain ratio, the generation of gas is averaged and becomes milder, and the blowing index becomes smaller. Specifically, when the MgCO 3 content is 15% by mass or more, the effect becomes obvious, and particularly when the MgCO 3 content is 30% by mass or more, the effect is greatest.
本発明で使用するスラグ成分調整剤は、Ig.Loss量が15〜35質量%であることが好ましい。ここで、Ig.Loss量とは1000℃に加熱して失われる揮発成分の質量%を指す。炉に投入されたスラグ成分調整剤がその機能を速やかに発揮するには、スラグ成分調整剤の成形体が速やかに崩壊・粉化し、スラグに溶解することが必要である。炉に投入された成形体はそれ自体の発生ガス(Mg(OH)2から発生するH2O、MgCO3から発生するCO2)によって崩壊・粉化することが好ましく、したがって、スラグ成分調整剤にはある程度のIg.Lossがあった方がよい。スラグ成分調整剤のIg.Loss量が15質量%未満では、発生ガスによるスラグ成分調整剤の崩壊・粉化が進みにくい。一方、スラグ成分調整剤のIg.Loss量が多くなると、発生ガスによるスラグ成分調整剤の崩壊・粉化は進むが、スラグ成分調整剤の構成成分のMgO濃度(MgO換算濃度)が低くなるので効率が悪くなり、特に35質量%を超えると、後述するような有効MgO濃度指数が十分でなくなる。また、以上の観点からより好ましいIg.Loss量は15〜25質量%である。 As for the slag component regulator used by this invention, it is preferable that the amount of Ig.Loss is 15-35 mass%. Here, the amount of Ig.Loss refers to the mass% of the volatile component lost by heating to 1000 ° C. In order for the slag component adjusting agent charged in the furnace to exhibit its function quickly, it is necessary that the molded body of the slag component adjusting agent rapidly disintegrate / pulverize and dissolve in the slag. It is preferable that the molded body put into the furnace is disintegrated and pulverized by its own generated gas (H 2 O generated from Mg (OH) 2 , CO 2 generated from MgCO 3 ). Should have some Ig.Loss. When the Ig.Loss amount of the slag component modifier is less than 15% by mass, the slag component modifier is not easily disintegrated or powdered by the generated gas. On the other hand, when the amount of Ig.Loss of the slag component modifier increases, the slag component modifier is disintegrated and powdered by the generated gas, but the MgO concentration (MgO equivalent concentration) of the constituent components of the slag component modifier decreases. If the efficiency is deteriorated, particularly exceeding 35% by mass, an effective MgO concentration index as will be described later becomes insufficient. Further, from the above viewpoint, the more preferable amount of Ig.Loss is 15 to 25% by mass.
MgO、MgCO3およびMg(OH)2からなるスラグ成分調整剤であって、Ig.Loss量を種々変化させたスラグ成分調整剤を製造し、これらを吹錬中の転炉に投入し、スラグ成分調整剤中のIg.Loss量がスラグ成分調整剤の機能に及ぼす影響を調べた。なお、スラグ成分調整剤中のMgO含有量、MgCO3含有量、Mg(OH)2含有量は、それぞれ0〜100質量%、0〜60質量%、0〜40質量%とした。
図2は、その結果を示すもので、縦軸は転炉に投入したスラグ成分調整剤のMgOが溶解して有効に機能したかどうかを指数化した「有効MgO指数」であり、この値が大きいほど好ましい。図2によると、スラグ成分調整剤中のIg.Loss量が少なすぎると、発生ガスによるスラグ成分調整剤の崩壊・粉化が進みにくいので、有効MgO指数は低い。これに対してスラグ成分調整剤のIg.Loss量が15質量%以上となると、有効MgO指数は十分に高いレベルになる。
MgO, a slag component modifier consisting of MgCO 3 and Mg (OH) 2, to produce a slag component modifier was varied to Ig.Loss amount was charged with these converter in blowing, slag The effect of the amount of Ig.Loss in the component modifier on the function of the slag component modifier was investigated. Incidentally, MgO content in the slag component modifier, MgCO 3 content, Mg (OH) 2 content is 0 to 100 wt%, respectively, 0 to 60 wt%, and 0 to 40 wt%.
FIG. 2 shows the result, and the vertical axis is an “effective MgO index” obtained by indexing whether or not the MgO of the slag component modifier charged into the converter has dissolved and functioned effectively. Larger is preferable. According to FIG. 2, if the amount of Ig.Loss in the slag component modifier is too small, the effective MgO index is low because the slag component modifier is not easily disintegrated and powdered by the generated gas. On the other hand, when the amount of Ig.Loss of the slag component modifier is 15% by mass or more, the effective MgO index becomes a sufficiently high level.
図3は、図2の有効MgO指数と、スラグ成分調整剤の構成成分のMgO換算濃度(=[%MgO]+[%Mg(OH)2]×0.67+[%MgCO3]×0.47)との積を「有効MgO濃度」として求め、この有効MgO濃度とスラグ成分調整剤中のIg.Loss量との関係を示したものである。この有効MgO濃度は、スラグ中に溶解したMgO濃度を示すもので、この値が大きいほど溶解が良好であることを示す。図3によると、スラグ成分調整剤のIg.Loss量:約20質量%を境として、それ以下の領域ではIg.Loss量が多いほど有効MgO濃度は高くなるが、Ig.Loss量:約20質量%超の領域では、有効MgO指数(図2)は高いものの、スラグ成分調整剤の構成成分のMgO換算濃度が低くなることにより、有効MgO濃度は低下に転じ、Ig.Loss量が多いほど有効MgO濃度は低くなる。具体的には、Ig.Loss量が15〜35質量%では有効MgO濃度は十分高いレベルになり、特に15〜25質量%が最も高いレベルになる。 FIG. 3 shows the effective MgO index of FIG. 2 and the MgO equivalent concentration (= [% MgO] + [% Mg (OH) 2 ] × 0.67 + [% MgCO 3 ] × 0. 47) is obtained as “effective MgO concentration”, and the relationship between this effective MgO concentration and the amount of Ig.Loss in the slag component adjusting agent is shown. This effective MgO concentration indicates the MgO concentration dissolved in the slag, and the larger this value, the better the dissolution. According to FIG. 3, the amount of Ig.Loss of the slag component modifier: about 20% by mass as a boundary, the effective MgO concentration increases as the amount of Ig.Loss increases, but the amount of Ig.Loss: about 20 In the region exceeding mass%, the effective MgO index (FIG. 2) is high, but as the MgO equivalent concentration of the constituent component of the slag component modifier decreases, the effective MgO concentration starts to decrease, and the greater the amount of Ig. The effective MgO concentration is lowered. Specifically, when the amount of Ig.Loss is 15 to 35% by mass, the effective MgO concentration is sufficiently high, and particularly 15 to 25% by mass is the highest level.
スラグ成分調整剤は、さらに、CaCO3を含有することができる。このCaCO3は、600〜700℃程度でCO2を乖離するのでガス発生物質Bとして機能し、また、CaCO3を含有することによりスラグ塩基度の調整も可能となる。
CaCO3含有量は10mass%以下が好ましい。CaCO3含有量が10mass%超えるとMgOの絶対量が不足するために、内張り耐火物の溶損が進行しやすい。
以上のように本発明で使用するスラグ成分調整剤は、好ましくはMgO、MgCO3およびMg(OH)2を主成分とし、必要に応じてCaCO3を含有するものである。このようなスラグ成分調整剤は、炉に投入された際にその構成成分からCO2、H2Oガスが発生(乖離)し、このガスにより成形体が崩壊・粉化してスラグ中に分散され、速やかに溶解する。
The slag component adjusting agent can further contain CaCO 3 . This CaCO 3 functions as a gas generating substance B because it dissociates CO 2 at about 600 to 700 ° C., and the slag basicity can be adjusted by containing CaCO 3 .
The CaCO 3 content is preferably 10 mass% or less. When the CaCO 3 content exceeds 10 mass%, the absolute amount of MgO is insufficient, so that the lining refractory tends to melt.
Slag component modifiers for use in the present invention as described above are preferably those MgO, a main component MgCO 3 and Mg (OH) 2, containing CaCO 3 as necessary. When such a slag component modifier is introduced into the furnace, CO 2 and H 2 O gas are generated (dissociated) from the constituent components, and the molded body is disintegrated and powdered by this gas and dispersed in the slag. Dissolves quickly.
次に、以上のようなスラグ成分調整剤の好ましい製造方法について説明する。
この製造方法では、少なくともMgOとMgCO3を含む粉粒状原料にバインダーを加えて混練し、この混練物を成形した後、固化させる。
バインダーとしては、水または/および有機物質が適している。有機物質としては、さきに述べたように、例えば、澱粉、タール系物質、ピッチ系物質などが挙げられ、これらの1種以上を用いることができる。
水をバインダーとする場合には、MgOの水和硬化により成形体が固化する。スラグ成分調整剤のMg(OH)2含有量は、粉粒状原料の元々の水分量やバインダーとして添加する水の量などにより、調整可能である。
Next, the preferable manufacturing method of the above slag component regulators is demonstrated.
In this manufacturing method, a binder is added to a granular raw material containing at least MgO and MgCO 3 and kneaded, and the kneaded product is molded and then solidified.
Water or / and organic substances are suitable as the binder. Examples of the organic material include starch, tar-based material, pitch-based material, and the like as described above, and one or more of these can be used.
When water is used as a binder, the molded body is solidified by hydration hardening of MgO. The Mg (OH) 2 content of the slag component adjusting agent can be adjusted by the original moisture content of the granular raw material, the amount of water added as a binder, and the like.
粉粒状原料として使用できるMgO源、MgCO3源は、さきに述べたとおりである。具体的な製造条件としては、例えば、軽焼ドロマイトなどのMgO源:35〜80質量%、軽焼マグネシアなどのMgCO3源:20〜50質量%を配合し(さらに、必要に応じて他の粉粒状原料を適量配合する)、この粉粒状原料に対して、バインダーである水を10〜20質量%加えて混錬し、この混練物を型などを用いて成形する。この成形体を適当に養生して固化させる。これにより、所定の含有量のMgO、MgCO3およびMg(OH)2を主成分とする本発明のスラグ成分調整剤を得ることができる。 The MgO source and MgCO 3 source that can be used as the powdery raw material are as described above. As specific production conditions, for example, MgO source such as light-burned dolomite: 35 to 80% by mass, MgCO 3 source such as light-burned magnesia: 20 to 50% by mass (in addition, if necessary, other An appropriate amount of the granular raw material is blended), and 10 to 20% by mass of water as a binder is added to the granular raw material and kneaded, and the kneaded product is molded using a mold or the like. This molded body is appropriately cured and solidified. This makes it possible to obtain a predetermined MgO content, the slag component modifier of the present invention composed mainly of MgCO 3 and Mg (OH) 2.
焼MgO、MgCO3の粉粒状原料を用い、これらの粉粒状原料にバインダーである水を加えて混練し、この混練物を型を用いて成形し、表1に示す成分組成とIg.Loss量のスラグ成分調整剤を製造した。
このスラグ成分調整剤を転炉脱炭吹錬において炉内に投入し、スラグ成分調整剤から発生するガス(H2O,CO2)の吹き出し状況、スラグ成分調整剤による炉体内張り耐火物の溶損抑制効果を調べた。その結果を表1に併せて示す。スラグ成分調整剤から発生するガスの吹き出し状況は、図1と同じ吹出指数で評価した。また、炉体内張り耐火物の溶損抑制効果は、有効MgO濃度(=[MgO濃度(x)]×[有効MgO指数(y)])に応じて、下記の評価基準で評価した。
◎:有効MgO濃度65mass%以上
○:有効MgO濃度50mass%以上、65mass%未満
×:有効MgO濃度50mass%未満
Using powdered raw materials of baked MgO and MgCO 3 , water as a binder is added to these powdered raw materials and kneaded. The kneaded product is molded using a mold, and the component composition and Ig.Loss amount shown in Table 1 are used. The slag component modifier was manufactured.
The slag component modifier was introduced into the furnace in the converter decarburization blowing, the gas generated from the slag component modifier (
◎: Effective MgO concentration of 65 mass% or more ○: Effective MgO concentration of 50 mass% or more and less than 65 mass% ×: Effective MgO concentration of less than 50 mass%
Claims (7)
Mg含有原料を主材とする粉粒状原料を成形し、固化させた成形体であって、ガス発生温度が400℃以下であるガス発生物質(A)とガス発生温度が600℃以上であるガス発生物質(B)を含有するスラグ成分調整剤を、精錬容器に投入して溶融金属の精錬を行うことを特徴とする溶融金属の精錬方法。 In a method of refining molten metal in a refining vessel equipped with a refractory lining mainly composed of MgO,
A molded body obtained by molding and solidifying a powdery raw material mainly composed of an Mg-containing raw material, and a gas generating material (A) having a gas generation temperature of 400 ° C. or lower and a gas having a gas generation temperature of 600 ° C. or higher A molten metal refining method, wherein a slag component adjusting agent containing a generated substance (B) is charged into a refining vessel and the molten metal is refined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008255996A JP5463644B2 (en) | 2008-10-01 | 2008-10-01 | Method for refining molten metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008255996A JP5463644B2 (en) | 2008-10-01 | 2008-10-01 | Method for refining molten metal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010084210A true JP2010084210A (en) | 2010-04-15 |
JP5463644B2 JP5463644B2 (en) | 2014-04-09 |
Family
ID=42248455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008255996A Active JP5463644B2 (en) | 2008-10-01 | 2008-10-01 | Method for refining molten metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5463644B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013079161A (en) * | 2011-10-03 | 2013-05-02 | Teijin Engineering Ltd | Method for producing magnesium oxide composition, magnesium oxide composition, neutralizing agent for desulfurization, method for desulfurizing flue gas, and apparatus for desulfurizing flue gas |
CN103451374A (en) * | 2013-09-22 | 2013-12-18 | 新疆中合大正商贸有限公司 | Production process of aluminium slag adjusting agent for LF refining furnace |
US20160115080A1 (en) * | 2013-06-10 | 2016-04-28 | Refractory Intellectual Property Gmbh & Co. Kg | Batch composition for producing an unshaped refractory ceramic product, method for producing a fired refractory ceramic product, fired refractory ceramic product, and use of an unshaped refractory ceramic product |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55161018A (en) * | 1979-05-31 | 1980-12-15 | Kobe Steel Ltd | Slagging agent and its manufacture |
JPS57145918A (en) * | 1981-02-27 | 1982-09-09 | Shinagawa Rozai Kk | Slag forming material |
JPH08134526A (en) * | 1994-03-04 | 1996-05-28 | Osaka Koukai Kk | Magnesia-base slag formation promoter for refining limy flux and its production |
JPH10317040A (en) * | 1997-05-22 | 1998-12-02 | Nisshin Steel Co Ltd | Mgo(magnesium oxide) briquette for adjusting slag concentration |
JP2005082839A (en) * | 2003-09-05 | 2005-03-31 | Intocast Japan Kk | Compound slag-making material and its producing method |
JP2005344153A (en) * | 2004-06-02 | 2005-12-15 | Nissan Motor Co Ltd | Method for producing member made of foamed aluminum alloy |
JP2006028458A (en) * | 2004-07-21 | 2006-02-02 | Matsushita Electric Ind Co Ltd | Method for producing phosphor, phosphor, fluorescent lamp and lighting fixture |
JP2006105578A (en) * | 2004-09-07 | 2006-04-20 | Kurita Water Ind Ltd | Treatment method of exhaust gas |
-
2008
- 2008-10-01 JP JP2008255996A patent/JP5463644B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55161018A (en) * | 1979-05-31 | 1980-12-15 | Kobe Steel Ltd | Slagging agent and its manufacture |
JPS57145918A (en) * | 1981-02-27 | 1982-09-09 | Shinagawa Rozai Kk | Slag forming material |
JPH08134526A (en) * | 1994-03-04 | 1996-05-28 | Osaka Koukai Kk | Magnesia-base slag formation promoter for refining limy flux and its production |
JPH10317040A (en) * | 1997-05-22 | 1998-12-02 | Nisshin Steel Co Ltd | Mgo(magnesium oxide) briquette for adjusting slag concentration |
JP2005082839A (en) * | 2003-09-05 | 2005-03-31 | Intocast Japan Kk | Compound slag-making material and its producing method |
JP2005344153A (en) * | 2004-06-02 | 2005-12-15 | Nissan Motor Co Ltd | Method for producing member made of foamed aluminum alloy |
JP2006028458A (en) * | 2004-07-21 | 2006-02-02 | Matsushita Electric Ind Co Ltd | Method for producing phosphor, phosphor, fluorescent lamp and lighting fixture |
JP2006105578A (en) * | 2004-09-07 | 2006-04-20 | Kurita Water Ind Ltd | Treatment method of exhaust gas |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013079161A (en) * | 2011-10-03 | 2013-05-02 | Teijin Engineering Ltd | Method for producing magnesium oxide composition, magnesium oxide composition, neutralizing agent for desulfurization, method for desulfurizing flue gas, and apparatus for desulfurizing flue gas |
US20160115080A1 (en) * | 2013-06-10 | 2016-04-28 | Refractory Intellectual Property Gmbh & Co. Kg | Batch composition for producing an unshaped refractory ceramic product, method for producing a fired refractory ceramic product, fired refractory ceramic product, and use of an unshaped refractory ceramic product |
US9975810B2 (en) * | 2013-06-10 | 2018-05-22 | Refractory Intellectual Property Gmbh & Co. Kg | Composition for producing a refractory ceramic product and method |
US10155696B2 (en) | 2013-06-10 | 2018-12-18 | Refractory Intellectual Property GMBH & Co. LG | Composition for providing a batch refractory ceramic product and method |
CN103451374A (en) * | 2013-09-22 | 2013-12-18 | 新疆中合大正商贸有限公司 | Production process of aluminium slag adjusting agent for LF refining furnace |
Also Published As
Publication number | Publication date |
---|---|
JP5463644B2 (en) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5042586B2 (en) | Powder granulation method using desulfurized slag | |
JP5525939B2 (en) | Lime-based flux and its manufacturing method | |
JPH05507764A (en) | Compositions and methods for synthesizing Tribe slag, compositions and methods for treating Tribe slag, and compositions and methods for refractory lining coatings. | |
JP4683428B2 (en) | Lime-based refining flux and its production method | |
JPS5839203B2 (en) | Slag forming agent and its manufacturing method | |
JP4683427B2 (en) | Lime-based refining flux | |
KR100741491B1 (en) | Deoxidizing refractory composition for preparing steel with high purity and preparing method thereof | |
TW200948980A (en) | Producing method of reduced iron | |
JP5463644B2 (en) | Method for refining molten metal | |
JP2000248309A (en) | Production of calcium-ferrite for refining molten iron | |
JP5441093B2 (en) | Slag component modifier for protecting refractories stretched in furnace and method for producing the same | |
JP3985471B2 (en) | Method for producing slag after refining treatment | |
JP2006290925A (en) | Granular fuel for sintering and method for producing the same | |
JP5098518B2 (en) | Hot phosphorus dephosphorization method | |
JP4102065B2 (en) | Refractory for casting construction | |
JPH11323424A (en) | Slag component conditioner for slag-coating converter lining refractory, its production and protection method of converter lining refractory by the same | |
JP2005082839A (en) | Compound slag-making material and its producing method | |
JP2007253031A (en) | Production method of subsidiary material for iron making | |
JPS6221046B2 (en) | ||
JP2733644B2 (en) | Non-phosphoric acid spray repair material | |
JP3733819B2 (en) | How to remove hot metal | |
JP2010138428A (en) | MATERIAL FOR ADJUSTING CONCENTRATION OF MgO IN CONVERTER SLAG, AND STEEL MANUFACTURING PROCESS IN CONVERTER | |
JP2016084499A (en) | Powdery lime for refining | |
JPH01131077A (en) | Lance-coating material | |
KR100668792B1 (en) | Vanadium dioxide ingot for substituting ferro-vanadium and method of producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110824 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131008 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131127 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140106 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5463644 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |