JP2010083223A - Vehicular air conditioner - Google Patents

Vehicular air conditioner Download PDF

Info

Publication number
JP2010083223A
JP2010083223A JP2008252137A JP2008252137A JP2010083223A JP 2010083223 A JP2010083223 A JP 2010083223A JP 2008252137 A JP2008252137 A JP 2008252137A JP 2008252137 A JP2008252137 A JP 2008252137A JP 2010083223 A JP2010083223 A JP 2010083223A
Authority
JP
Japan
Prior art keywords
heat exchanger
ventilation
temperature
air conditioner
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008252137A
Other languages
Japanese (ja)
Other versions
JP5055236B2 (en
Inventor
Sadao Sekiya
禎夫 関谷
Masanao Kotani
正直 小谷
Tomotari Shibuya
知足 澁谷
Yoshio Maruno
善生 丸野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008252137A priority Critical patent/JP5055236B2/en
Publication of JP2010083223A publication Critical patent/JP2010083223A/en
Application granted granted Critical
Publication of JP5055236B2 publication Critical patent/JP5055236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner with a ventilation function capable of being stably operated when a temperature of outside air is changed. <P>SOLUTION: This conditioner comprises an exhaust fan for exhausting air in a compartment to the outside of the compartment, a refrigerating cycle sequentially connecting a compressor, a condenser, a pressure-reduction means and an evaporator with a refrigerant pipe in an annular manner, a ventilating heat exchanger arranged between the condenser and the pressure-reduction means and exchanging the heat between the air exhausted to the outside of the compartment by the exhaust fan and a refrigerant in the refrigerating cycle, and a bypass circuit communicating the refrigerant pipe connecting the condenser and the ventilating heat exchanger with a refrigerant pipe connecting the compressor and the condenser. A control valve for making a communication condition of the bypass circuit variable is provided on the bypass circuit. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、車両用空気調和装置に関する。   The present invention relates to a vehicle air conditioner.

車室内の換気装置を備えた鉄道車両では、換気によって室内より高温の外気を車室内へ取り込む一方、低温の車室内空気を外気へ放出するため、空調負荷が大きいという課題を有している。   A railway vehicle equipped with a vehicle interior ventilation device has a problem that the air conditioning load is large because the outdoor air that is hotter than the interior of the vehicle is taken into the vehicle interior by ventilation and the cold interior air is discharged to the outside air.

また一般住宅における換気による空調負荷の増加を抑制するため、特許文献1には、換気給気用熱交換器と減圧器と換気排気用熱交換器を直列に接続してなる換気用補助回路を、冷房時の冷媒流れ方向で、室内熱交換器の上流側に設け、かつ、換気吸気用熱交換器を室内熱交換器側に位置させる技術が開示されている。特許文献1によると、換気給気空気の予冷と、換気排気空気の排熱回収を、冷媒を介しておこなうことができ、省エネルギー性を高めることができるとしている。   Further, in order to suppress an increase in air conditioning load due to ventilation in a general house, Patent Document 1 discloses a ventilation auxiliary circuit formed by connecting a ventilation air supply heat exchanger, a decompressor, and a ventilation exhaust heat exchanger in series. In addition, a technique is disclosed in which the ventilation intake air heat exchanger is positioned on the indoor heat exchanger side in the direction of the refrigerant flow during cooling and provided on the upstream side of the indoor heat exchanger. According to Patent Document 1, precooling of ventilation supply air and exhaust heat recovery of ventilation exhaust air can be performed via a refrigerant, and energy saving can be improved.

特開平11−257793号公報Japanese Patent Laid-Open No. 11-257793

車両用空気調和装置は、狭い車室内に多くの乗客がいるだけでなく、日射負荷の影響が大きいため、外気温度が比較的低い場合でも冷房負荷が発生する場合がある。図6は、外気温度変化時のp−h線図を示しており、実線は高外気温時の冷凍サイクルを、破線が低外気温時の冷凍サイクルを示している。外気温度が低くなると、図からわかるように蒸発器における蒸発エンタルピー差がΔhからΔh′のように増加し、この変化に伴い、蒸発温度も低下する。この低下幅が大きくなると、蒸発温度が凍結温度まで低下する不具合が生じる可能性がある。   In the vehicle air conditioner, not only there are many passengers in a narrow passenger compartment, but also the influence of solar radiation load is large, so that a cooling load may be generated even when the outside air temperature is relatively low. FIG. 6 shows a ph diagram when the outside air temperature changes. The solid line indicates a refrigeration cycle at a high outside air temperature, and the broken line indicates a refrigeration cycle at a low outside air temperature. As the outside air temperature decreases, the evaporation enthalpy difference in the evaporator increases from Δh to Δh ′ as can be seen from the figure, and the evaporation temperature also decreases with this change. When this decrease width becomes large, there is a possibility that the evaporating temperature is lowered to the freezing temperature.

ところで、特許文献1では、凝縮器から流出する高温の液冷媒と、比較的低温の換気排気空気との熱交換をおこなう換気排気用熱交換器を設けるとしており、液冷媒温度を低下させ、過冷却度を高めることにより、蒸発エンタルピー差すなわち冷房能力を増大させ、換気による空調負荷を抑制できるとしている。   By the way, in Patent Document 1, a ventilation exhaust heat exchanger that performs heat exchange between the high-temperature liquid refrigerant flowing out of the condenser and the relatively low-temperature ventilation exhaust air is provided. By increasing the degree of cooling, the evaporation enthalpy difference, that is, the cooling capacity is increased, and the air conditioning load due to ventilation can be suppressed.

このとき換気排気用熱交換器出口の過冷却度は、車室内空気温度によって変化するので、車室内空気温度が高く、過冷却度が確保し難い状態でも十分な能力が得られるように、圧縮機の容量や熱交換器を設計する必要がある。このため逆に車室内空気温度が低い場合など過冷却度が大きくなる条件では、冷房能力が過剰となる。したがって、前述のように外気温度が低い条件では能力が過剰になり易く、蒸発温度が凍結温度まで低下する可能性があるが、この点について特許文献1では考慮されていなかった。   At this time, the degree of supercooling at the outlet of the heat exchanger for ventilation exhaust changes depending on the air temperature in the passenger compartment. It is necessary to design the capacity and heat exchanger of the machine. For this reason, on the contrary, under the condition that the degree of supercooling is large, such as when the air temperature in the passenger compartment is low, the cooling capacity becomes excessive. Therefore, as described above, the capacity tends to be excessive under the condition where the outside air temperature is low, and the evaporation temperature may be lowered to the freezing temperature. However, this point has not been taken into consideration in Patent Document 1.

また、圧縮機を安定して運転するためには、圧縮機出入口に所定の圧力差を確保する必要があるが、外気が低下すると凝縮温度も低下するため、圧縮機出入口における圧力差は小さくなる傾向がある。特に、特許文献1に示されるように、換気排気を用いて過冷却度を増大させる場合、同一冷房能力時の必要な冷媒循環量は減少するので、凝縮器からの放熱量も減少し、必要な圧縮機出入口圧力差を確保できなくなる可能性もあった。   Moreover, in order to operate the compressor stably, it is necessary to secure a predetermined pressure difference at the compressor inlet / outlet. However, since the condensation temperature also decreases when the outside air decreases, the pressure difference at the compressor inlet / outlet becomes small. Tend. In particular, as shown in Patent Document 1, when the degree of supercooling is increased using ventilated exhaust, the necessary amount of refrigerant circulation at the same cooling capacity decreases, so the amount of heat released from the condenser also decreases and is necessary. Therefore, there is a possibility that it becomes impossible to ensure a sufficient compressor inlet / outlet pressure difference.

また、さらに外気温度が低下し、車室内空気温度と外気空気温度が逆転すると、凝縮器で冷却・凝縮された冷媒が、換気排気空気との熱交換により逆に加熱される可能性もある。この場合減圧手段の入口冷媒状態が液単相から気液二相状態となるため、減圧幅が大きくなり、蒸発温度の大幅な低下などの不具合を引き起こす可能性もあった。   Further, when the outside air temperature is further lowered and the passenger compartment air temperature and the outside air temperature are reversed, the refrigerant cooled and condensed by the condenser may be heated reversely by heat exchange with the ventilation exhaust air. In this case, since the inlet refrigerant state of the decompression means is changed from the liquid single phase to the gas-liquid two-phase state, the decompression width is increased, and there is a possibility of causing problems such as a significant decrease in the evaporation temperature.

本発明の目的は、上記課題を解決し、低外気温度時にも安定して換気排気空気を利用した運転が可能な空気調和装置を提供することにある。   An object of the present invention is to solve the above-described problems and provide an air conditioner that can be operated stably using ventilation exhaust air even at a low outside air temperature.

前記課題を解決するために本発明の車両用空気調和装置は、車室内の空気を車室外に排気する排気用ファンと、圧縮機,凝縮器,減圧手段,蒸発器を順次冷媒配管で環状に接続した冷凍サイクルと、前記凝縮器と前記減圧手段との間に配置され、前記排気用ファンによって車室外へ排気される空気と前記冷凍サイクル内の冷媒との熱交換をおこなう換気用熱交換器と、前記凝縮器と前記換気用熱交換器を接続する冷媒配管と、前記圧縮機と前記凝縮器を接続する冷媒配管と、を連通させるバイパス回路と、前記バイパス回路の連通状態を可変とするための制御弁を前記バイパス回路上に設けたものである。   In order to solve the above-described problems, an air conditioner for a vehicle according to the present invention includes an exhaust fan for exhausting air in a vehicle compartment to the outside of the vehicle compartment, a compressor, a condenser, a decompression means, and an evaporator in an annular manner in order by refrigerant piping. A ventilation heat exchanger that is disposed between a connected refrigeration cycle, the condenser and the decompression means, and performs heat exchange between the air exhausted out of the passenger compartment by the exhaust fan and the refrigerant in the refrigeration cycle. And a refrigerant circuit connecting the condenser and the ventilation heat exchanger, a bypass circuit connecting the compressor and the condenser, and a communication state of the bypass circuit is variable. A control valve is provided on the bypass circuit.

本発明によれば、低外気温度時にも安定して換気排気空気を利用した運転が可能な空気調和装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the air conditioning apparatus which can be drive | operated using the ventilation exhaust air stably also at the time of low external air temperature can be provided.

本発明における実施形態に係わる空気調和装置について、図1〜図6を用いて、以下詳細に説明する。   The air conditioner according to the embodiment of the present invention will be described in detail below with reference to FIGS.

本発明の第一の実施形態を、図1を用いて説明する。図1は、本発明の第一の実施形態を示すシステム系統図である。冷房運転時には、圧縮機1で圧縮された冷媒(図示せず)は、四方切換弁2を実線で示すように通って室外熱交換器3へ入り、室外熱交換器3では、室外ファン6で送風される車室外の室外空気50に放熱することによって凝縮した後、換気用熱交換器4に流入する。換気用熱交換器4には換気排気用ファン9によって車室内30からの換気排気空気51が導入されており、換気排気空気51との熱交換により、冷媒はさらに凝縮して液化される。その後減圧手段10にて減圧された低温・低圧の冷媒は室内熱交換器5で蒸発し、四方切換弁2を介して再度圧縮機1へ戻り冷凍サイクルを構成する。このとき、室内熱交換器5へ流入する空気は、換気給気用ファン8によって車室外から導入された換気給気空気53と、車室内30から抽出された室内抽出空気52との混合気であり、室内熱交換器5で冷却された後に車室内30へ吹出されることで冷房をおこなう。   A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a system diagram showing a first embodiment of the present invention. During the cooling operation, the refrigerant (not shown) compressed by the compressor 1 passes through the four-way switching valve 2 as indicated by a solid line and enters the outdoor heat exchanger 3, and in the outdoor heat exchanger 3, the outdoor fan 6 After being condensed by dissipating heat to the outdoor air 50 outside the passenger compartment, the air flows into the ventilation heat exchanger 4. Ventilation exhaust air 51 from the vehicle interior 30 is introduced into the ventilation heat exchanger 4 by a ventilation exhaust fan 9, and the refrigerant is further condensed and liquefied by heat exchange with the ventilation exhaust air 51. Thereafter, the low-temperature and low-pressure refrigerant decompressed by the decompression means 10 evaporates in the indoor heat exchanger 5 and returns to the compressor 1 through the four-way switching valve 2 to constitute a refrigeration cycle. At this time, the air flowing into the indoor heat exchanger 5 is a mixture of the ventilation supply air 53 introduced from the outside of the vehicle interior by the ventilation air supply fan 8 and the indoor extraction air 52 extracted from the vehicle interior 30. Yes, after being cooled by the indoor heat exchanger 5, it is cooled by being blown out into the vehicle interior 30.

比較のため、換気用熱交換器を備えていない従来のシステム系統図を図5に示す。この場合、冷房運転時には、室外熱交換器3で車室外の室外空気50と熱交換することで、凝縮・液化した冷媒(図示せず)が、そのまま減圧手段10にて減圧され、室内熱交換器5へ流入する点が、図1に示す実施例とは異なっており、換気排気用ファン9から車室外への排気される換気排気空気51は、冷媒と熱交換することなく、車室外へ排気される。   For comparison, FIG. 5 shows a conventional system diagram that does not include a ventilation heat exchanger. In this case, during the cooling operation, the outdoor heat exchanger 3 exchanges heat with the outdoor air 50 outside the passenger compartment, so that the condensed and liquefied refrigerant (not shown) is decompressed as it is by the decompression means 10 and is subjected to indoor heat exchange. 1 differs from the embodiment shown in FIG. 1 in that the ventilated exhaust air 51 exhausted from the ventilating exhaust fan 9 to the outside of the passenger compartment is transferred to the outside of the passenger compartment without exchanging heat with the refrigerant. Exhausted.

このように、従来システムでは低温の換気排気空気をそのまま車室外へ放出していたが、図1に示した実施例では、この換気排気空気との熱交換をおこなう換気用熱交換器4を、室外熱交換器3と直列に配置することで、凝縮器の性能を向上させ冷凍サイクルの効率を高めることができる。   As described above, in the conventional system, the low-temperature ventilation exhaust air is directly discharged to the outside of the passenger compartment. However, in the embodiment shown in FIG. 1, the ventilation heat exchanger 4 that performs heat exchange with the ventilation exhaust air is By arrange | positioning in series with the outdoor heat exchanger 3, the performance of a condenser can be improved and the efficiency of a refrigerating cycle can be improved.

この冷凍サイクルの効率向上効果を図2にp−h線図で示す。実線で示されるように、圧縮機1でd点からa点まで圧縮された冷媒は、室外熱交換器3でe点まで放熱し、その後換気用熱交換器4にてさらに放熱・液化し、b点に至る。その後減圧手段10にてc点まで減圧され、室内熱交換器5にて車室内空気から熱を奪うことで蒸発し、d点へと至る。なお図2に破線で示すサイクルは換気用熱交換器4が無い従来のサイクルを示している。本実施例では、換気用熱交換器4を凝縮器の一部としたことにより、凝縮圧力を抑制することが可能となっている。   The efficiency improvement effect of this refrigeration cycle is shown by a ph diagram in FIG. As indicated by the solid line, the refrigerant compressed from the point d to the point a by the compressor 1 radiates heat to the point e by the outdoor heat exchanger 3, and then further radiates and liquefies by the ventilation heat exchanger 4, It reaches b point. Thereafter, the pressure is reduced to the point c by the decompression means 10, and the interior heat exchanger 5 evaporates by taking heat from the air in the passenger compartment to reach the point d. In addition, the cycle shown with the broken line in FIG. 2 has shown the conventional cycle without the heat exchanger 4 for ventilation. In this embodiment, the ventilation heat exchanger 4 is a part of the condenser, so that the condensation pressure can be suppressed.

したがって、蒸発エンタルピー差を同等として冷房能力を保ったままで、圧縮機1における圧縮動力を抑制することができ、省エネルギー性を高めることができる。   Therefore, it is possible to suppress the compression power in the compressor 1 while maintaining the cooling capacity with the same evaporation enthalpy difference, and it is possible to improve energy saving.

次に、図1において外気温度が低下した場合の動作態様について説明する。外気温度が低下した場合には、制御弁12を開き圧縮機1から室外熱交換器3へと流れる冷媒の一部をバイパスさせ、直接換気用熱交換器4に流入するバイパス冷媒経路11を利用する。制御弁12が閉じている場合には、冷媒は室外熱交換器3で熱交換した後で換気用熱交換器4へ流入していたが、制御弁12を開くことによって、一部の冷媒が室外熱交換器3をバイパスすることになるので、換気用熱交換器4入口における冷媒は十分に凝縮されていない状態となり、換気用熱交換器4での必要な放熱量が増大する。放熱量を増加させるために空気との温度差を大きくする必要が生じるので、凝縮温度が高くなり、低外気温時の凝縮温度低下を抑制することが可能となる。したがって、蒸発温度低下等の不具合を回避することが可能な構成となっている。   Next, an operation mode when the outside air temperature is lowered in FIG. 1 will be described. When the outside air temperature decreases, the control valve 12 is opened to bypass a part of the refrigerant flowing from the compressor 1 to the outdoor heat exchanger 3, and the bypass refrigerant path 11 flowing directly into the ventilation heat exchanger 4 is used. To do. When the control valve 12 is closed, the refrigerant has flowed into the ventilation heat exchanger 4 after exchanging heat with the outdoor heat exchanger 3, but by opening the control valve 12, some refrigerant is Since the outdoor heat exchanger 3 is bypassed, the refrigerant at the inlet of the ventilation heat exchanger 4 is not sufficiently condensed, and a necessary heat radiation amount in the ventilation heat exchanger 4 is increased. Since it is necessary to increase the temperature difference from the air in order to increase the amount of heat release, the condensation temperature becomes high, and it is possible to suppress a decrease in the condensation temperature at a low outside air temperature. Therefore, it is possible to avoid problems such as a decrease in evaporation temperature.

次に、この効果を図3のp−h線図を用いて示す。実線がバイパス時の冷凍サイクル、破線がバイパス弁を閉じた状態での冷凍サイクルを示している。制御弁12を閉じたままの場合には、破線で示されるように、外気温度の低下とともに凝縮温度が低下し、室内熱交換器5におけるエンタルピー差Δh′が増大するので、蒸発温度の低下といった不具合を生じる可能性があった。一方、制御弁12を開いた場合には、e点の室外熱交換器3出口冷媒と、a点の圧縮機1吐出冷媒が合流したf点が換気用熱交換器4の入口条件となる。したがって、換気用熱交換器4出口のb点までのエンタルピー差、すなわち必要放熱量が増大する。この効果により、凝縮温度が上がり、換気用熱交換器4出口のb点の比エンタルピーも高くなる。このため、蒸発器における蒸発エンタルピー差が増大することによる不具合を回避することが可能となっている。   Next, this effect is shown using the ph diagram of FIG. The solid line indicates the refrigeration cycle during bypass, and the broken line indicates the refrigeration cycle with the bypass valve closed. When the control valve 12 remains closed, as shown by the broken line, the condensation temperature decreases as the outside air temperature decreases, and the enthalpy difference Δh ′ in the indoor heat exchanger 5 increases. There was a possibility of causing problems. On the other hand, when the control valve 12 is opened, the point f at which the refrigerant at the outlet e of the outdoor heat exchanger 3 and the refrigerant discharged from the compressor 1 at the point a merge becomes the inlet condition of the ventilation heat exchanger 4. Therefore, the enthalpy difference up to point b at the outlet of the heat exchanger 4 for ventilation, that is, the necessary heat dissipation amount increases. By this effect, the condensation temperature rises and the specific enthalpy at the point b at the outlet of the ventilation heat exchanger 4 also increases. For this reason, it is possible to avoid problems due to an increase in the evaporation enthalpy difference in the evaporator.

また、本実施例では、凝縮温度を高く保つことが可能となっているので、圧縮機における必要な圧力差も同時に確保することができ、安定した運転が可能となっている。   Further, in this embodiment, since the condensation temperature can be kept high, a necessary pressure difference in the compressor can be secured at the same time, and stable operation is possible.

また本実施例では、室外熱交換器3へ流入する室外空気温度を、温度検出手段41を用いて検知することで、制御装置40から制御弁12の開閉制御をおこなうとしたが、制御弁12の制御は、他の温度情報を用いておこなうとしてもよい。例えば、本実施例では室外熱交換器3と換気用熱交換器4を接続する冷媒配管の温度を測定する温度検出手段42を備える構成とした。温度検出手段42を用いて凝縮温度を検知することができるので、制御装置40からの指令によって制御弁12の開閉状態を制御することが可能となっている。したがって、例えば温度検出手段42で検知した凝縮温度が、事前に定めてある値よりも低い場合には、制御弁12を開く指令を出すことができる。外気温度を検知して制御する場合よりも、直接凝縮温度を検知することで、より確実に凝縮温度の低下を検知することが可能となっている。このように、凝縮温度を高め、安定した冷房運転を継続することが可能となる。   In the present embodiment, the control valve 40 controls the opening and closing of the control valve 12 by detecting the outdoor air temperature flowing into the outdoor heat exchanger 3 by using the temperature detecting means 41. This control may be performed using other temperature information. For example, in this embodiment, the temperature detecting means 42 for measuring the temperature of the refrigerant pipe connecting the outdoor heat exchanger 3 and the ventilation heat exchanger 4 is provided. Since the condensation temperature can be detected using the temperature detection means 42, the open / close state of the control valve 12 can be controlled by a command from the control device 40. Therefore, for example, when the condensation temperature detected by the temperature detection means 42 is lower than a predetermined value, a command to open the control valve 12 can be issued. Rather than detecting and controlling the outside air temperature, it is possible to detect the decrease in the condensation temperature more reliably by directly detecting the condensation temperature. As described above, it is possible to increase the condensation temperature and continue the stable cooling operation.

なお、本実施例では制御弁12を開閉可能な弁としているが、複数個並列に並べる、もしくは流量可変な弁形状としてもよく、この場合には、前述のような温度検出手段41や42の情報に基づいて、バイパス冷媒経路11を流れる冷媒の流量を調整させるとしても良い。   In this embodiment, the control valve 12 is a valve that can be opened and closed. However, a plurality of valves may be arranged in parallel or the flow rate may be variable. In this case, the temperature detection means 41 or 42 as described above may be used. Based on the information, the flow rate of the refrigerant flowing through the bypass refrigerant path 11 may be adjusted.

また、換気排気空気51の換気用熱交換器4への流入温度を検出するための、温度検出手段43を設けるとしてもよく、温度検出手段42で検知された凝縮温度が、常に温度検出手段43で検知される換気排気空気51の温度よりも高くなるように制御しても良い。この場合には、室外熱交換器3で凝縮した冷媒が、換気用熱交換器4で加熱される事態を確実に回避することが可能となる。   Further, a temperature detecting means 43 for detecting the inflow temperature of the ventilation exhaust air 51 to the ventilation heat exchanger 4 may be provided, and the condensation temperature detected by the temperature detecting means 42 is always the temperature detecting means 43. It may be controlled so as to be higher than the temperature of the ventilated exhaust air 51 detected in step (1). In this case, it is possible to reliably avoid the situation where the refrigerant condensed in the outdoor heat exchanger 3 is heated in the ventilation heat exchanger 4.

ところで、低外気温時の凝縮圧力低下を抑制する手段の一つとして、換気用熱交換器4のバイパスを設ける方法も考えられるが、本実施例では冷媒が室外熱交換器をバイパスする回路を設けるとした。これは冷媒量変動による不具合を回避することが目的である。換気用熱交換器4をバイパスする回路を設けた場合であっても、換気排気用ファンは動作しているため、換気用熱交換器4内の冷媒と換気排気される換気排気空気51は常に熱交換することになる。このため換気排気される換気排気空気51の温度と、凝縮温度の関係に応じて冷凍サイクル内の冷媒量が変動することになる。   By the way, a method of providing a bypass for the heat exchanger 4 for ventilation can be considered as one of means for suppressing a decrease in the condensation pressure at a low outside air temperature. In this embodiment, a circuit for bypassing the outdoor heat exchanger with a refrigerant is provided. It was decided to provide it. This is for the purpose of avoiding problems due to refrigerant amount fluctuations. Even when a circuit that bypasses the ventilation heat exchanger 4 is provided, the ventilation exhaust fan is operating, so that the refrigerant in the ventilation heat exchanger 4 and the ventilation exhaust air 51 to be ventilated are always present. The heat will be exchanged. For this reason, the amount of refrigerant in the refrigeration cycle varies according to the relationship between the temperature of the ventilation exhaust air 51 to be ventilated and the condensation temperature.

すなわち凝縮温度に対して換気排気空気51の温度が低い場合には、換気用熱交換器4内に液冷媒が寝込む状態となり、冷凍サイクル内の冷媒量が不足する可能性がある。一方、凝縮温度に対して換気排気空気51の温度が高い場合には、逆に換気用熱交換器4内はガス冷媒となり、冷凍サイクル内の冷媒量が過剰になる可能性がある。本実施例では、このような状況を避けるために、直列に接続した室外熱交換器3と換気用熱交換器4のうち、上流側に配置している室外熱交換器3を一部バイパスさせる構成としており、換気用熱交換器4への冷媒の寝込み等による不具合を回避できる構成となっている。   That is, when the temperature of the ventilation exhaust air 51 is lower than the condensing temperature, the liquid refrigerant stagnates in the ventilation heat exchanger 4, and the refrigerant amount in the refrigeration cycle may be insufficient. On the other hand, when the temperature of the ventilation exhaust air 51 is higher than the condensation temperature, conversely, the ventilation heat exchanger 4 becomes a gas refrigerant, and the amount of refrigerant in the refrigeration cycle may be excessive. In the present embodiment, in order to avoid such a situation, the outdoor heat exchanger 3 arranged on the upstream side of the outdoor heat exchanger 3 and the ventilation heat exchanger 4 connected in series is partially bypassed. The configuration is such that problems due to the stagnation of refrigerant in the ventilation heat exchanger 4 can be avoided.

また本実施例では、換気排気用ファン9を換気用熱交換器4の下流側風路へ配置している。換気排気ファン9では、ファン用モータの発熱だけでなく、断熱圧縮により空気温度が上昇するため、換気用熱交換器4の上流側へ配置すると、冷媒との温度差が小さくなり効果的に熱交換することができなくなるという問題がある。   In this embodiment, the ventilation exhaust fan 9 is arranged in the downstream air passage of the ventilation heat exchanger 4. In the ventilation exhaust fan 9, the air temperature rises not only due to the heat generated by the fan motor but also due to adiabatic compression. Therefore, if the ventilation exhaust fan 9 is arranged upstream of the ventilation heat exchanger 4, the temperature difference from the refrigerant is reduced and heat is effectively generated. There is a problem that it cannot be exchanged.

そこで、本実施例では換気排気用ファン9を換気用熱交換器4の下流側へ配置する構成とし、換気排気空気51の温度を上昇させずに換気用熱交換器4へ流入させることで、冷媒との温度差を大きく保ち熱交換性能を向上させている。   Therefore, in this embodiment, the ventilation exhaust fan 9 is arranged downstream of the ventilation heat exchanger 4 and the ventilation exhaust air 51 is allowed to flow into the ventilation heat exchanger 4 without increasing the temperature. The heat exchange performance is improved by maintaining a large temperature difference from the refrigerant.

また、本実施例では室外熱交換器3と換気用熱交換器4を、換気用熱交換器4のパス数と同じ2本の冷媒用の接続配管13で接続する構成とした。両者を1本の配管で接続する場合には、換気用熱交換器4において分配器が必要となり、この分配器における圧力損失によって、換気用熱交換器4における冷媒凝縮温度が低下し、換気排気空気51との温度差が小さくなるので、熱交換性能が低下することになる。そこで、本実施例では室外熱交換器3から換気用熱交換器4までを、換気用熱交換器4のパス数と同じ配管本数で接続することで、換気用熱交換器4への分配器設置を不要とした。このため換気用熱交換器4の凝縮温度が圧力損失によって低下することを防ぐことができるので、排気空気との熱交換性能を高く保つことができる。   Further, in the present embodiment, the outdoor heat exchanger 3 and the ventilation heat exchanger 4 are connected by the two refrigerant connection pipes 13 having the same number of paths as the ventilation heat exchanger 4. When both are connected by one pipe, a distributor is required in the ventilation heat exchanger 4, and the refrigerant condensing temperature in the ventilation heat exchanger 4 decreases due to a pressure loss in the distributor, thereby ventilating exhaust. Since a temperature difference with the air 51 becomes small, heat exchange performance will fall. Therefore, in this embodiment, the distributor from the outdoor heat exchanger 3 to the ventilation heat exchanger 4 is connected to the ventilation heat exchanger 4 by connecting the same number of pipes as the number of paths of the ventilation heat exchanger 4. Installation is unnecessary. For this reason, since it can prevent that the condensation temperature of the heat exchanger 4 for ventilation falls by pressure loss, the heat exchange performance with exhaust air can be kept high.

また、本実施例では冷房運転と暖房運転の切換を可能とするため、四方切換弁2を備える構成としている。四方切換弁2を切換えた場合の動作態様を説明する。圧縮機1で圧縮された高温のガス冷媒は四方切換弁2を破線で示すように通り、室内熱交換器5にて室内から抽出された室内抽出空気52と換気給気空気53の混合気へ放熱することによって、凝縮液化する。このとき、加熱された空気は車室内30へ戻り暖房をおこなう。その後、減圧手段10にて減圧された低温となった冷媒は換気用熱交換器4で一部蒸発したのち、室外熱交換器3で完全に蒸発しガス冷媒となり、再度四方切換弁2を介して圧縮機1へ戻る冷凍サイクルを構成する。このとき、換気用熱交換器4と室外熱交換器3がともに蒸発器として作用するので、蒸発温度を高め冷凍サイクルの効率を向上させることができる。さらに、換気用熱交換器4に流入する換気排気空気は、通常外気温度よりも高いので、換気用熱交換器4を利用することで、蒸発性能を向上させることができる。   In the present embodiment, the four-way switching valve 2 is provided to enable switching between the cooling operation and the heating operation. An operation mode when the four-way switching valve 2 is switched will be described. The high-temperature gas refrigerant compressed by the compressor 1 passes through the four-way switching valve 2 as indicated by a broken line, and becomes a mixture of the indoor extracted air 52 and the ventilation supply air 53 extracted from the room by the indoor heat exchanger 5. It is condensed and liquefied by dissipating heat. At this time, the heated air returns to the vehicle interior 30 to perform heating. Thereafter, the refrigerant having a low temperature reduced by the decompression means 10 partially evaporates in the ventilation heat exchanger 4 and then completely evaporates in the outdoor heat exchanger 3 to become a gas refrigerant. Thus, a refrigeration cycle returning to the compressor 1 is configured. At this time, since both the heat exchanger 4 for ventilation and the outdoor heat exchanger 3 function as an evaporator, the evaporation temperature can be increased and the efficiency of the refrigeration cycle can be improved. Furthermore, since the ventilation exhaust air flowing into the ventilation heat exchanger 4 is normally higher than the outside air temperature, the evaporation performance can be improved by using the ventilation heat exchanger 4.

したがって、本実施例では暖房運転をおこなう場合であっても、冷凍サイクルの効率を高めることが可能となっている。   Therefore, in the present embodiment, it is possible to increase the efficiency of the refrigeration cycle even when the heating operation is performed.

暖房運転時のp−h線図を図4に示す。圧縮機1でd点からa点まで圧縮された冷媒は、室内熱交換器にて放熱し、b点に至る。その後減圧手段10にてc点まで減圧された冷媒は、換気用熱交換器4でe点まで蒸発し、その後室外熱交換器3でさらに蒸発し、d点に至る。図には換気用熱交換器4のない従来のシステムにおける冷凍サイクル線図を、破線で示している。従来のシステムに対して、本実施例のサイクルでは、蒸発器性能を向上できるため、蒸発温度が高く、圧縮機1における圧縮動力を抑制でき、省エネルギー性の高いシステムとすることが可能となっている。   FIG. 4 shows a ph diagram during heating operation. The refrigerant compressed from the point d to the point a by the compressor 1 radiates heat in the indoor heat exchanger and reaches the point b. Thereafter, the refrigerant depressurized to the point c by the decompression means 10 evaporates to the point e in the ventilation heat exchanger 4, and further evaporates in the outdoor heat exchanger 3, and reaches the point d. In the figure, a refrigeration cycle diagram in a conventional system without the heat exchanger 4 for ventilation is shown by a broken line. Compared to the conventional system, in the cycle of the present embodiment, the evaporator performance can be improved, so the evaporation temperature is high, the compression power in the compressor 1 can be suppressed, and a system with high energy saving can be achieved. Yes.

本発明の第一の実施形態における冷房運転時の動作態様を示す構成図。The block diagram which shows the operation | movement aspect at the time of the air_conditionaing | cooling operation in 1st embodiment of this invention. 本発明の第一の実施形態における冷房運転時の動作態様を示すp−h線図。The ph diagram which shows the operation | movement aspect at the time of the cooling operation in 1st embodiment of this invention. 低外気温時の凝縮温度低下抑制効果を示すp−h線図。The ph diagram which shows the condensation temperature fall suppression effect at the time of low external temperature. 本発明の第一の実施形態における暖房運転時の動作態様を示すp−h線図。The ph diagram which shows the operation | movement aspect at the time of the heating operation in 1st embodiment of this invention. 従来技術における冷房運転時の動作態様を示す構成図。The block diagram which shows the operation | movement aspect at the time of air_conditionaing | cooling operation in a prior art. 従来技術における低外気温時の変化を示すp−h線図。The ph diagram which shows the change at the time of the low external temperature in a prior art.

符号の説明Explanation of symbols

1 圧縮機
2 四方切換弁
3 室外熱交換器
4 換気用熱交換器
5 室内熱交換器
6 室外ファン
7 室内ファン
8 換気給気用ファン
9 換気排気用ファン
10 減圧手段
11 バイパス冷媒経路
12 制御弁
13 接続配管
30 車室内
40 制御装置
41,42,43 温度検出手段
50 室外空気
51 換気排気空気
52 室内抽出空気
53 換気給気空気
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way selector valve 3 Outdoor heat exchanger 4 Ventilation heat exchanger 5 Indoor heat exchanger 6 Outdoor fan 7 Indoor fan 8 Ventilation supply fan 9 Ventilation exhaust fan 10 Decompression means 11 Bypass refrigerant path 12 Control valve 13 Connection piping 30 Car interior 40 Control devices 41, 42, 43 Temperature detection means 50 Outdoor air 51 Ventilation exhaust air 52 Indoor extraction air 53 Ventilation supply air

Claims (5)

車室内の空気を車室外に排気する排気用ファンと、圧縮機,凝縮器,減圧手段,蒸発器を順次冷媒配管で環状に接続した冷凍サイクルと、前記凝縮器と前記減圧手段との間に配置され、前記排気用ファンによって車室外へ排気される空気と前記冷凍サイクル内の冷媒との熱交換をおこなう換気用熱交換器と、前記凝縮器と前記換気用熱交換器を接続する冷媒配管と、前記圧縮機と前記凝縮器を接続する冷媒配管と、を連通させるバイパス回路と、前記バイパス回路の連通状態を可変とするための制御弁を前記バイパス回路上に設けたことを特徴とする車両用空気調和装置。   An exhaust fan that exhausts the air in the passenger compartment to the outside of the passenger compartment, a refrigeration cycle in which a compressor, a condenser, a decompression unit, and an evaporator are sequentially connected in an annular manner through a refrigerant pipe, and the condenser and the decompression unit A ventilation heat exchanger arranged to exchange heat between the air exhausted out of the passenger compartment by the exhaust fan and the refrigerant in the refrigeration cycle, and a refrigerant pipe connecting the condenser and the ventilation heat exchanger And a bypass circuit for connecting the compressor and the refrigerant pipe connecting the condenser, and a control valve for changing the communication state of the bypass circuit is provided on the bypass circuit. Air conditioner for vehicles. 請求項1記載の車両用空気調和装置において、前記室外熱交換器へ流入する空気の温度と、前記換気熱交換器へ流入する空気の温度と、冷房運転時の凝縮温度、のうち少なくとも1つの温度を検出する温度検出手段と、前記温度検出手段により検知された温度情報を基に、前記制御弁の開度を変化させるように制御をおこなう制御部と、を備えたことを特徴とする車両用空気調和装置。   2. The vehicle air conditioner according to claim 1, wherein at least one of a temperature of air flowing into the outdoor heat exchanger, a temperature of air flowing into the ventilation heat exchanger, and a condensing temperature during cooling operation. A vehicle comprising: temperature detection means for detecting temperature; and a control unit that performs control to change the opening of the control valve based on temperature information detected by the temperature detection means. Air conditioner for use. 請求項2記載の車両用空気調和装置において、冷房運転時の凝縮温度を検出する温度検出手段は、前記室外熱交換器と前記換気用熱交換器を接続する冷媒配管に配置されていることを特徴とする車両用空気調和装置。   3. The vehicle air conditioner according to claim 2, wherein the temperature detection means for detecting the condensation temperature during cooling operation is disposed in a refrigerant pipe connecting the outdoor heat exchanger and the ventilation heat exchanger. A vehicle air conditioner. 請求項1記載の車両用空気調和装置において、前記排気用ファンを換気用熱交換器の下流側に配置したことを特徴とする車両用空気調和装置。   2. The vehicle air conditioner according to claim 1, wherein the exhaust fan is disposed downstream of the ventilation heat exchanger. 請求項1記載の車両用空気調和装置において、前記室外熱交換器出口のパス数と、前記換気用熱交換器入口のパス数と、を等しくし、かつ両熱交換器のパスが一対一で対応するように、冷媒配管で各々接続したことを特徴とする車両用空気調和装置。   2. The vehicle air conditioner according to claim 1, wherein the number of passes at the outlet of the outdoor heat exchanger is equal to the number of passes at the inlet of the heat exchanger for ventilation, and the paths of both heat exchangers are one-to-one. A vehicle air conditioner characterized by being connected to each other by a refrigerant pipe so as to correspond.
JP2008252137A 2008-09-30 2008-09-30 Air conditioner for vehicles Active JP5055236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008252137A JP5055236B2 (en) 2008-09-30 2008-09-30 Air conditioner for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252137A JP5055236B2 (en) 2008-09-30 2008-09-30 Air conditioner for vehicles

Publications (2)

Publication Number Publication Date
JP2010083223A true JP2010083223A (en) 2010-04-15
JP5055236B2 JP5055236B2 (en) 2012-10-24

Family

ID=42247623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252137A Active JP5055236B2 (en) 2008-09-30 2008-09-30 Air conditioner for vehicles

Country Status (1)

Country Link
JP (1) JP5055236B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244784A (en) * 2012-05-24 2013-12-09 Mitsubishi Electric Corp Vehicle air conditioner
JP2023064265A (en) * 2021-10-26 2023-05-11 ダイキン工業株式会社 air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189444A (en) * 1984-10-05 1986-05-07 株式会社東芝 Refrigeration cycle
JPH05155245A (en) * 1991-12-02 1993-06-22 Honda Motor Co Ltd Automotive air-conditioner
JPH06135221A (en) * 1992-10-27 1994-05-17 Nippondenso Co Ltd Air conditioner
JP2005042980A (en) * 2003-07-22 2005-02-17 Mitsubishi Electric Corp Heat accumulating type air conditioner
JP2008224210A (en) * 2008-05-12 2008-09-25 Mitsubishi Electric Corp Air conditioner and operation control method of air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189444A (en) * 1984-10-05 1986-05-07 株式会社東芝 Refrigeration cycle
JPH05155245A (en) * 1991-12-02 1993-06-22 Honda Motor Co Ltd Automotive air-conditioner
JPH06135221A (en) * 1992-10-27 1994-05-17 Nippondenso Co Ltd Air conditioner
JP2005042980A (en) * 2003-07-22 2005-02-17 Mitsubishi Electric Corp Heat accumulating type air conditioner
JP2008224210A (en) * 2008-05-12 2008-09-25 Mitsubishi Electric Corp Air conditioner and operation control method of air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013244784A (en) * 2012-05-24 2013-12-09 Mitsubishi Electric Corp Vehicle air conditioner
JP2023064265A (en) * 2021-10-26 2023-05-11 ダイキン工業株式会社 air conditioner
JP7495625B2 (en) 2021-10-26 2024-06-05 ダイキン工業株式会社 Air Conditioning Equipment

Also Published As

Publication number Publication date
JP5055236B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
EP1659348B1 (en) Freezing apparatus
JP4597180B2 (en) Vehicle air conditioning system
EP3534090B1 (en) Heat pump cycle apparatus
KR100821728B1 (en) Air conditioning system
KR101903108B1 (en) Heat Pump For a Vehicle
WO2008032645A1 (en) Refrigeration device
JP2008121985A (en) Heat exchange system
WO2008032558A1 (en) Refrigeration device
JP4553761B2 (en) Air conditioner
WO2015097787A1 (en) Air conditioner
KR101811762B1 (en) Heat Pump For a Vehicle
WO2018008053A1 (en) Refrigeration cycle system
US9732993B2 (en) Refrigerant circuit and method of controlling such a circuit
JP4273493B2 (en) Refrigeration air conditioner
JP4317793B2 (en) Cooling system
JP2007107859A (en) Gas heat pump type air conditioner
JP2007051841A (en) Refrigeration cycle device
KR101903140B1 (en) Heat Pump For a Vehicle
US9267716B2 (en) Heat exchanger and an air conditioning system having the same
JP2006010137A (en) Heat pump system
JP5055236B2 (en) Air conditioner for vehicles
JP2007032857A (en) Refrigerating device
KR20180080376A (en) Heat Pump For a Vehicle
JP2008175430A (en) Air conditioner
WO2012114451A1 (en) Air conditioning apparatus, method for controlling operation of air conditioning apparatus, and cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120730

R151 Written notification of patent or utility model registration

Ref document number: 5055236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3