JP2010082370A - Brain function measurement instrument - Google Patents
Brain function measurement instrument Download PDFInfo
- Publication number
- JP2010082370A JP2010082370A JP2008257509A JP2008257509A JP2010082370A JP 2010082370 A JP2010082370 A JP 2010082370A JP 2008257509 A JP2008257509 A JP 2008257509A JP 2008257509 A JP2008257509 A JP 2008257509A JP 2010082370 A JP2010082370 A JP 2010082370A
- Authority
- JP
- Japan
- Prior art keywords
- brain
- electromagnetic wave
- light
- brain function
- infrared light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
本発明は、電磁波を用いた脳機能計測装置に関する。 The present invention relates to a brain function measuring apparatus using electromagnetic waves.
従来、生体組織に対して透過性が高い近赤外光を用いて、生体組織における血流変化を検出することが行われている。 Conventionally, detection of a change in blood flow in a living tissue has been performed using near-infrared light that is highly permeable to the living tissue.
例えば、特許文献1及び2には、近赤外光を頭部や筋肉などの生体組織に向けて照射し、生体組織を透過した近赤外光を分析することで、生体組織を流れる血液中のヘモグロビン酸素化状態の変化を調べる方法が開示されている。 For example, Patent Documents 1 and 2 disclose that in a blood flowing through a living tissue, near infrared light is irradiated toward a living tissue such as a head or muscle, and the near infrared light transmitted through the living tissue is analyzed. A method for investigating changes in the hemoglobin oxygenation state is disclosed.
この方法は、生体組織の透過時における近赤外光の光吸収量を測定することで、血流の増加に伴い生じる酸素化ヘモグロビンの増加と脱酸素化ヘモグロビンの減少を観測するものであって、一般に近赤外分光法(NIRS:Near−Infrared Spectroscopy)と呼ばれ、非浸襲的な実施が可能であるため、安全な手法として知られている。 This method measures the increase in oxygenated hemoglobin and the decrease in deoxygenated hemoglobin caused by an increase in blood flow by measuring the amount of light absorbed by near-infrared light during transmission through living tissue. In general, it is called near-infrared spectroscopy (NIRS) and is known as a safe technique because it can be implemented non-invasively.
図3は、近赤外分光法により大脳皮質における活動を検出する従来の脳機能計測装置40を示している。この脳機能計測装置40は、頭皮2上に設けた光源41から脳5に近赤外光Lを照射して、この照射により生じた反射光および散乱光を、頭皮2上に設けた受光器42によって受光することで、脳5の血流変化(血液中のヘモグロビン酸素化状態の変化)を検出するようになっている。 FIG. 3 shows a conventional brain function measuring apparatus 40 that detects activity in the cerebral cortex by near infrared spectroscopy. The brain function measuring device 40 irradiates the brain 5 with near-infrared light L from a light source 41 provided on the scalp 2, and receives a reflected light and scattered light generated by the irradiation on the scalp 2. By receiving light by 42, a change in blood flow in the brain 5 (change in oxygenated state of hemoglobin in the blood) is detected.
ところで図3に示す脳機能計測装置40では、脳5の構造が複雑であるため、受光器42が受光した光の経路を特定することができない。このため、図3に示す脳機能計測装置40では、脳5における活動部位を高精度に特定することが困難である。 By the way, in the brain function measuring apparatus 40 shown in FIG. 3, since the structure of the brain 5 is complicated, the path | route of the light which the light receiver 42 received cannot be specified. For this reason, in the brain function measuring device 40 shown in FIG. 3, it is difficult to specify the active site in the brain 5 with high accuracy.
また、大脳皮質50の血流変化を計測するためには、光源41と受光器42とを30mm程度間隔をあけて配置する必要がある。このため、受光器42を高密度に配置できないため、高い空間分解能を得ることができない。 Moreover, in order to measure the blood flow change of the cerebral cortex 50, it is necessary to arrange the light source 41 and the light receiver 42 with an interval of about 30 mm. For this reason, since the light receivers 42 cannot be arranged with high density, high spatial resolution cannot be obtained.
本発明はこうした状況に鑑みてなされたものであり、その目的は、脳の活動部位を高精度に特定できるとともに、高い空間分解能が得られる脳機能計測装置を提供することである。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a brain function measuring apparatus that can specify an active site of the brain with high accuracy and obtain high spatial resolution.
本発明の脳機能計測装置は、脳に向けて電磁波を出射する電磁波発生手段と、脳を透過した前記電磁波を検出する電磁波検出手段とを備え、前記電磁波検出手段は、頭皮上に設けられ、前記電磁波発生手段は、前記電磁波検出手段と脳を介して反対側に設けられることを特徴とする。 The brain function measuring device of the present invention comprises an electromagnetic wave generating means for emitting an electromagnetic wave toward the brain, and an electromagnetic wave detecting means for detecting the electromagnetic wave transmitted through the brain, the electromagnetic wave detecting means being provided on the scalp, The electromagnetic wave generating means is provided on the opposite side of the electromagnetic wave detecting means via the brain.
好ましくは、前記電磁波発生手段は、前記電磁波としての近赤外光を脳に向けて出射する光源であり、前記電磁波検出手段は、脳を透過した前記近赤外光を受光する受光器アレイであることを特徴とする。 Preferably, the electromagnetic wave generating means is a light source that emits near infrared light as the electromagnetic wave toward the brain, and the electromagnetic wave detecting means is a light receiver array that receives the near infrared light transmitted through the brain. It is characterized by being.
好ましくは、前記電磁波発生手段は、前記電磁波としてのテラヘルツ波を脳に向けて出射するテラヘルツ波発生装置であり、前記電磁波検出手段は、脳を透過した前記テラヘルツ波を検出する検出器であることを特徴とする。 Preferably, the electromagnetic wave generation means is a terahertz wave generation device that emits terahertz waves as the electromagnetic waves toward the brain, and the electromagnetic wave detection means is a detector that detects the terahertz waves that have passed through the brain. It is characterized by.
好ましくは、前記電磁波発生手段は、口腔内に配置されることを特徴とする。 Preferably, the electromagnetic wave generating means is arranged in the oral cavity.
好ましくは、前記電磁波発生手段は、鼻腔内に配置されることを特徴とする。 Preferably, the electromagnetic wave generating means is arranged in the nasal cavity.
好ましくは、前記電磁波発生手段は、一つ設けられることを特徴とする。 Preferably, one electromagnetic wave generating means is provided.
好ましくは、前記電磁波検出手段は、前記頭皮上の異なる位置に複数設けられることを特徴とする。 Preferably, a plurality of the electromagnetic wave detection means are provided at different positions on the scalp.
好ましくは、前記電磁波発生手段には、前記電磁波の出射方向を調整する光ファイバが設けられることを特徴とする。 Preferably, the electromagnetic wave generating means is provided with an optical fiber that adjusts an emission direction of the electromagnetic wave.
好ましくは、前記光ファイバの出射部には、前記電磁波を放射状に拡散する球面状のレンズが設けられることを特徴とする。 Preferably, the emitting portion of the optical fiber is provided with a spherical lens that diffuses the electromagnetic waves radially.
本発明によれば、電磁波検出手段を頭皮上に設け、電磁波発生手段を電磁波検出手段と脳を介して反対側に設けるようにしたことから、電磁波検出手段で受光される電磁波には、脳への照射で反射した電磁波はほとんど含まれず、脳を透過した電磁波が大部分となる。また、感覚や運動等の機能を司る大脳皮質は脳の表面近くにあり、電磁波検出手段で検出される電磁波には電磁波検出手段から近い距離にある大脳皮質での血流変化が反映される。これにより、脳の活動部位を高精度に特定することができる。 According to the present invention, the electromagnetic wave detection means is provided on the scalp, and the electromagnetic wave generation means is provided on the opposite side of the electromagnetic wave detection means and the brain. The electromagnetic wave reflected by the irradiation is hardly included, and the electromagnetic wave transmitted through the brain is mostly. The cerebral cortex that controls functions such as sensation and movement is close to the surface of the brain, and the electromagnetic wave detected by the electromagnetic wave detection means reflects a change in blood flow in the cerebral cortex at a short distance from the electromagnetic wave detection means. Thereby, the active site | part of a brain can be pinpointed with high precision.
また上述の電磁波検出手段と電磁波発生手段との位置関係により、電磁波検出手段を電磁波発生手段による制限なく配置することができる。このため、電磁波検出手段を高密度に配置することができるため、高い空間分解能を得ることができる。 Further, the electromagnetic wave detecting means can be arranged without limitation by the electromagnetic wave generating means due to the positional relationship between the electromagnetic wave detecting means and the electromagnetic wave generating means. For this reason, since electromagnetic wave detection means can be arranged with high density, high spatial resolution can be obtained.
以下、この発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and description thereof will not be repeated.
図1は、本発明の実施の形態における脳機能計測装置1を示している。脳機能計測装置1は、頭皮2上に設けられた複数の受光器アレイ3と、口腔4内に配置されることで受光器アレイ3と脳5を介して反対側に設けられた、一つの光源6とを備えている。 FIG. 1 shows a brain function measuring apparatus 1 according to an embodiment of the present invention. The brain function measuring device 1 includes a plurality of light receiver arrays 3 provided on the scalp 2 and a single one provided on the opposite side via the light receiver array 3 and the brain 5 by being disposed in the oral cavity 4. And a light source 6.
各受光器アレイ3は、頭皮2上の異なる位置に設けられており、直径が1cm程度の受光面を有し、該受光面に受光された光の強度を計測可能である。 Each light receiver array 3 is provided at a different position on the scalp 2, has a light receiving surface with a diameter of about 1 cm, and can measure the intensity of light received by the light receiving surface.
図2は、光源6を拡大して示す概略図である。光源6は、例えば、近赤外光Lを発生させる発生部7と、発生部7で発生した近赤外光Lの出射方向を調整する光ファイバ8とによって構成される。光ファイバ8は、近赤外光Lが脳5に向けて出射されるように、出射部9の向きが調整される。また、光ファイバ8の出射部9には球面状のレンズ10が取り付けられ、レンズ10は、出射部9から出射した近赤外光Lを放射状に拡散する。 FIG. 2 is a schematic view showing the light source 6 in an enlarged manner. The light source 6 includes, for example, a generation unit 7 that generates near-infrared light L and an optical fiber 8 that adjusts the emission direction of the near-infrared light L generated by the generation unit 7. In the optical fiber 8, the direction of the emitting portion 9 is adjusted so that the near-infrared light L is emitted toward the brain 5. A spherical lens 10 is attached to the emitting portion 9 of the optical fiber 8, and the lens 10 diffuses the near infrared light L emitted from the emitting portion 9 radially.
以上の構成を有する脳機能計測装置1によれば、口腔4内に配置された光源6から、脳5に向けて近赤外光Lが出射されることで、近赤外光Lは、脳5内を上方へ進行して、脳5の頭皮2近傍に位置する大脳皮質50を透過する。この際、光源6から出射された近赤外光Lは、レンズ10により放射状に拡散されることで大脳皮質50のあらゆる位置を透過し、大脳皮質50の血液中のヘモグロビンに吸収される。そして、大脳皮質50を透過した各近赤外光Lは、その進行方向の先に存在する受光器アレイ3に受光されて、大脳皮質50の透過後における強度が計測される。そして、この計測された強度と光源6からの出射時における強度との差から、近赤外光Lの大脳皮質50透過時における吸収量が得られ、この吸収量に基づき、大脳皮質50の血流変化(大脳皮質50における血液中のヘモグロビン酸素化状態)が観測される。 According to the brain function measuring apparatus 1 having the above configuration, the near-infrared light L is emitted from the light source 6 disposed in the oral cavity 4 toward the brain 5, so that the near-infrared light L is Proceeds upward in 5 and passes through the cerebral cortex 50 located in the vicinity of the scalp 2 of the brain 5. At this time, the near-infrared light L emitted from the light source 6 is diffused radially by the lens 10 so as to pass through any position of the cerebral cortex 50 and absorbed by hemoglobin in the blood of the cerebral cortex 50. And each near-infrared light L which permeate | transmitted the cerebral cortex 50 is received by the light receiver array 3 which exists ahead of the advancing direction, and the intensity | strength after the permeation | transmission of the cerebral cortex 50 is measured. Then, from the difference between the measured intensity and the intensity at the time of emission from the light source 6, the amount of absorption of the near-infrared light L when transmitted through the cerebral cortex 50 is obtained. Based on this amount of absorption, the blood of the cerebral cortex 50 A flow change (hemoglobin oxygenation state in blood in the cerebral cortex 50) is observed.
本実施の形態では、受光器アレイ3を頭皮2上に配置し、光源6を、受光器アレイ3と脳5を介する反対側に設けるようにしたことから、受光器アレイ3で受光される近赤外光Lには、脳5への照射により生じた反射光はほとんど含まれず、脳5を透過した近赤外光Lが大部分となる。近赤外光Lの吸収が検出された受光器アレイ3(出射時における強度よりも低い強度が計測された受光器アレイ3)が存在する場合には、その受光器アレイ3と近い大脳皮質50の部位に血流変化が生じていると判断できる。これにより、脳5の活動部位を特定することができる。 In the present embodiment, the light receiver array 3 is arranged on the scalp 2 and the light source 6 is provided on the opposite side of the light receiver array 3 and the brain 5. The infrared light L includes almost no reflected light generated by irradiation of the brain 5, and most of the near-infrared light L transmitted through the brain 5. When there is a light receiver array 3 in which the absorption of the near-infrared light L is detected (a light receiver array 3 whose intensity is lower than the intensity at the time of emission), the cerebral cortex 50 close to the light receiver array 3 is present. It can be determined that a change in blood flow has occurred in the region. Thereby, the active site of the brain 5 can be specified.
また、受光器アレイ3が配置される頭皮2上には光源6を設けないことから、受光器アレイ3を、光源6による制限を受けることなく配置することができる。これにより、受光器アレイ3を高密度に配置することができるため、高い空間分解能を得ることができる。 In addition, since the light source 6 is not provided on the scalp 2 where the light receiver array 3 is disposed, the light receiver array 3 can be disposed without being restricted by the light source 6. Thereby, since the light receiver array 3 can be arrange | positioned with high density, high spatial resolution can be obtained.
また、受光器アレイ3を光源6による制限なく配置できるため、高い感度を有する大型の受光器アレイ3を使用することができる。これにより、脳5透過後の近赤外光Lを漏れなく受光器アレイ3に受光させることができるため、脳5のあらゆる位置で生じた活動を検出することができる。 Moreover, since the light receiver array 3 can be arranged without limitation by the light source 6, a large light receiver array 3 having high sensitivity can be used. Thereby, since the near-infrared light L after passing through the brain 5 can be received by the light receiver array 3 without omission, it is possible to detect the activity occurring at any position of the brain 5.
また、受光器アレイ3を頭皮2上に配置することで、頭皮2に近い位置に存在する大脳皮質50で生じた光吸収が鮮鋭に検出される。このため、感覚、運動、思考、記憶など高次機能を司る大脳皮質50における血流変化を的確に計測することができる。 In addition, by arranging the light receiver array 3 on the scalp 2, light absorption generated in the cerebral cortex 50 located near the scalp 2 is sharply detected. For this reason, the blood flow change in the cerebral cortex 50 that controls higher-order functions such as sensation, movement, thought, and memory can be accurately measured.
また、光源6を口腔4内に配置することで、高強度の近赤外光Lを発する大型の光源6を使用することができる。このため、脳5の透過に十分な強度を有する近赤外光Lを、脳5に向けて照射することができる。これにより、脳5透過後の近赤外光Lが受光器アレイ3において確実に検出されるため、脳5の活動を確実に捉えることができる。 Moreover, the large sized light source 6 which emits the high intensity | strength near-infrared light L can be used by arrange | positioning the light source 6 in the oral cavity 4. FIG. For this reason, it is possible to irradiate the brain 5 with near-infrared light L having sufficient intensity for transmission through the brain 5. Thereby, since the near-infrared light L after passing through the brain 5 is reliably detected in the light receiver array 3, the activity of the brain 5 can be reliably captured.
また、光源6を口腔4内に配置することで、非浸襲で、光源6を取り付けることができる。このため、光源6の取り付けが容易且つ安全に行われる。 Moreover, by arranging the light source 6 in the oral cavity 4, the light source 6 can be attached in a non-invasive manner. For this reason, the light source 6 can be easily and safely attached.
また、光源6が配置される口腔4は脳5に近い位置に存在するために、近赤外光Lが脳5に至る過程で生じる光吸収を小さく抑えることができる。これにより、脳5に高強度の近赤外光Lを照射することや、脳5における正確な光吸収量を測定する上で有利になる。 Moreover, since the oral cavity 4 in which the light source 6 is disposed is located near the brain 5, light absorption generated in the process in which the near-infrared light L reaches the brain 5 can be suppressed to a low level. This is advantageous in irradiating the brain 5 with high-intensity near-infrared light L and measuring the exact amount of light absorption in the brain 5.
また、口腔4の壁面を構成する口蓋表面は滑らかであるために、光源6を口腔4内に配置するにあたって、光源6を口蓋表面に密着させることができる。これにより、光の漏れを小さくすることができるため、近赤外光Lが脳5に至る過程で生じる光吸収を、さらに一層小さく抑えることができる。 Moreover, since the palate surface which comprises the wall surface of the oral cavity 4 is smooth, when arrange | positioning the light source 6 in the oral cavity 4, the light source 6 can be stuck to the palate surface. Thereby, since the leakage of light can be reduced, light absorption that occurs in the process in which the near-infrared light L reaches the brain 5 can be further reduced.
また、光源6を口腔4内に配置することで、近赤外光Lに外部から加えられる光ノイズを軽減させることができる。 Moreover, by arranging the light source 6 in the oral cavity 4, optical noise applied from the outside to the near infrared light L can be reduced.
また、光ファイバ8によって近赤外光Lの出射方向を調整するようにしたことから、近赤外光Lを確実に脳5へ照射することができる。また光ファイバ8の出射部9に設けたレンズ10により、近赤外光Lを放射状に拡散するようにしたので、脳5のあらゆる位置に近赤外光Lを透過させることができる。これにより、さらに高い空間分解能が得られる。 Moreover, since the emission direction of the near infrared light L is adjusted by the optical fiber 8, the near infrared light L can be reliably irradiated to the brain 5. Further, since the near infrared light L is diffused radially by the lens 10 provided at the emitting portion 9 of the optical fiber 8, the near infrared light L can be transmitted to any position of the brain 5. Thereby, higher spatial resolution can be obtained.
また、光源6を一つのみ設けていることで、脳機能計測装置1のハードウェア構成は簡易になる。 Further, by providing only one light source 6, the hardware configuration of the brain function measuring apparatus 1 is simplified.
なお、本発明は、上記の実施形態に限られず、種々改変することができる。 The present invention is not limited to the above-described embodiment, and various modifications can be made.
例えば、光源6は鼻腔12(図1参照)内に配置されてもよい。このようにしても、光源6は、非浸襲で、容易且つ安全に人体に取り付けられる。また光源6が口腔4内に配置される場合に比して、より脳5に近い位置に光源6が配置されるので、近赤外光Lが脳5に至るまでの過程で生じる光吸収を小さく抑えることができる。これにより、小型の光源6を使用したとしても、適当な強度の近赤外光Lが受光器アレイ3において検出される。 For example, the light source 6 may be disposed in the nasal cavity 12 (see FIG. 1). Even in this case, the light source 6 is non-invasive and can be easily and safely attached to the human body. In addition, since the light source 6 is disposed closer to the brain 5 than when the light source 6 is disposed in the oral cavity 4, the light absorption generated in the process until the near-infrared light L reaches the brain 5 is absorbed. It can be kept small. Thereby, even if the small light source 6 is used, near-infrared light L having an appropriate intensity is detected in the light receiver array 3.
また光源6は、光ファイバ8のみを口腔4内や鼻腔12内に配置し、発生部7については口腔4や鼻腔12の外側に配置してもよい。このようにしても、近赤外光Lを口腔4や鼻腔12から脳5に向けて照射することができるとともに、発生部7として大型の機器を使用することができるために、より確実に適当な強度の近赤外光を受光器アレイ3に検出させることができる。 Moreover, the light source 6 may arrange | position only the optical fiber 8 in the oral cavity 4 or the nasal cavity 12, and may arrange | position the generation | occurrence | production part 7 in the oral cavity 4 or the nasal cavity 12 outside. Even if it does in this way, while being able to irradiate the near-infrared light L toward the brain 5 from the oral cavity 4 or the nasal cavity 12, since a large sized apparatus can be used as the generation | occurrence | production part 7, it is more appropriate. The near-infrared light having a high intensity can be detected by the light receiver array 3.
また、脳5の活動が神経細胞の電気活動により生じることに基づき、脳5の活動を検出する電磁波としてテラヘルツ波が使用されてもよい。このテラヘルツ波は、微弱電流に吸収される特性を有することから、集積回路の電気的な欠陥部位を調べるために使用されるが、神経細胞の電気活動においてもテラヘルツ波を吸収し得る電流が発生することから、神経細胞の電気活動を検出する電磁波としてテラヘルツ波は好適である。 Further, a terahertz wave may be used as an electromagnetic wave for detecting the activity of the brain 5 based on the activity of the brain 5 caused by the electrical activity of nerve cells. This terahertz wave has the property of being absorbed by a weak current, so it is used to investigate the electrical defect part of an integrated circuit. However, a current that can absorb the terahertz wave is also generated in the electrical activity of a nerve cell. Therefore, terahertz waves are suitable as electromagnetic waves for detecting the electrical activity of nerve cells.
以下、図1,2を再び用いて、テラヘルツ波による検出を行う脳機能計測装置の構成を説明する。なお、この構成を示す符号は括弧内に表記する。 Hereinafter, the configuration of a brain function measuring apparatus that performs detection using terahertz waves will be described with reference to FIGS. In addition, the code | symbol which shows this structure is described in a parenthesis.
図1に示すように、テラヘルツ波Tによる検出を行う脳機能計測装置30は、頭皮2上に設けられる複数の検出器31と、検出器31と脳5を介して反対側に設けられる、一つのテラヘルツ波発生装置32とから構成される。 As shown in FIG. 1, a brain function measuring device 30 that performs detection using a terahertz wave T includes a plurality of detectors 31 provided on the scalp 2 and provided on the opposite side via the detectors 31 and the brain 5. And two terahertz wave generators 32.
各検出器31は頭皮2上の異なる位置に配置され、テラヘルツ波発生装置32は、口腔4内に配置されることで前記検出器31の反対側に設けられる。 Each detector 31 is arranged at a different position on the scalp 2, and the terahertz wave generation device 32 is provided in the opposite side of the detector 31 by being arranged in the oral cavity 4.
テラヘルツ波発生装置32は、図2に示すように、テラヘルツ波Tを発生させる発生部33と、発生部33で発生したテラヘルツ波Tの出射方向を調整する光ファイバ34とによって構成される。光ファイバ34は、テラヘルツ波Tが脳5に向けて出射されるように、出射部35の向きが調整される。また、光ファイバ34の出射部35には、テラヘルツ波Tを放射状に拡散する球面状のレンズ36が取り付けられる。 As shown in FIG. 2, the terahertz wave generation device 32 includes a generation unit 33 that generates a terahertz wave T and an optical fiber 34 that adjusts the emission direction of the terahertz wave T generated by the generation unit 33. In the optical fiber 34, the direction of the emitting portion 35 is adjusted so that the terahertz wave T is emitted toward the brain 5. Further, a spherical lens 36 that diffuses the terahertz wave T radially is attached to the emitting portion 35 of the optical fiber 34.
以上の構成を有する脳機能計測装置30では、口腔4内に配置されたテラヘルツ波発生装置32から、脳5に向けてテラヘルツ波Tが出射されることで、テラヘルツ波Tは、脳5内を上方へ進行する。この際、テラヘルツ波発生装置32から出射されたテラヘルツ波Tは、レンズ36により放射状に拡散されることで、脳5の幅広い範囲を透過し、この過程で大脳皮質50などの神経細胞を流れる電流に吸収される。そして、脳5を透過した各テラヘルツ波Tは、その進行方向の先に存在する検出器31に検出されて、脳5の透過後における強度が計測される。そして、この計測された強度とテラヘルツ波発生装置32からの出射時における強度との差から、テラヘルツ波Tの脳透過時における吸収量が得られ、この吸収量に基づき、脳5における神経細胞の電気活動が観測される。 In the brain function measuring device 30 having the above-described configuration, the terahertz wave T is emitted from the terahertz wave generating device 32 disposed in the oral cavity 4 toward the brain 5, so that the terahertz wave T passes through the brain 5. Proceed upward. At this time, the terahertz wave T emitted from the terahertz wave generating device 32 is diffused radially by the lens 36, thereby passing through a wide range of the brain 5, and in this process, a current flowing through nerve cells such as the cerebral cortex 50. To be absorbed. Then, each terahertz wave T transmitted through the brain 5 is detected by the detector 31 existing ahead in the traveling direction, and the intensity after transmission through the brain 5 is measured. Then, from the difference between the measured intensity and the intensity at the time of emission from the terahertz wave generation device 32, the amount of absorption of the terahertz wave T when transmitted through the brain is obtained. Electric activity is observed.
この脳機能計測装置30によれば、検出器31が頭皮上に設けられ、テラヘルツ波発生装置32が、検出器31と脳5を介して反対側に設けられることで、検出器31では、脳5を直線的に透過したテラヘルツ波Tが受光される。このため、検出器31に受光されるテラヘルツ波Tの経路が確定されるため、脳5の活動部位を特定することができる。 According to this brain function measuring device 30, the detector 31 is provided on the scalp, and the terahertz wave generating device 32 is provided on the opposite side via the detector 31 and the brain 5. The terahertz wave T linearly transmitted through 5 is received. For this reason, since the path of the terahertz wave T received by the detector 31 is determined, the active site of the brain 5 can be specified.
また、頭皮2上にテラヘルツ波発生装置32を設けないようにしたことで、検出器31をテラヘルツ波発生装置32による制限なく頭皮2上に配置することができる。これにより、検出器31を高密度に配置することができるため、高い空間分解能を得ることができる。 Further, since the terahertz wave generating device 32 is not provided on the scalp 2, the detector 31 can be disposed on the scalp 2 without restriction by the terahertz wave generating device 32. Thereby, since the detectors 31 can be arranged with high density, high spatial resolution can be obtained.
また、脳機能計測装置30によれば、近赤外光Lを用いる脳機能計測装置1に比して、より直接的に脳5の活動を捉えることができる。すなわち、近赤外光Lによる検出は、血流におけるヘモグロビンの酸素化状態の変化を検出するものであるが、ヘモグロビン酸素化状態の変化は神経細胞の電気活動の数秒後に生じるものであるとともに、その変化が生じる位置は、電気活動を生じた神経細胞の位置とは必ずしも一致しない。このため、近赤外光Lによる検出では、その検出時間及び検出位置が、神経細胞の電気活動の発生時間及び発生位置からずれる虞れがある。これに対して、上述のテラヘルツ波Tを用いる脳機能計測装置30によれば、神経細胞の電気活動を直接的に捉えることから、該神経細胞の電気活動が発生した時間や位置を正確に把握することができる。 Moreover, according to the brain function measuring device 30, the activity of the brain 5 can be captured more directly as compared with the brain function measuring device 1 using the near infrared light L. That is, the detection by the near-infrared light L detects a change in the oxygenated state of hemoglobin in the bloodstream, but the change in the hemoglobin oxygenated state occurs after a few seconds after the electrical activity of the nerve cell, The position where the change occurs does not necessarily coincide with the position of the nerve cell that caused the electrical activity. For this reason, in the detection by the near-infrared light L, the detection time and detection position may deviate from the generation time and generation position of the electrical activity of the nerve cell. On the other hand, according to the brain function measuring apparatus 30 using the above-described terahertz wave T, the electrical activity of the nerve cell is directly captured, so that the time and position where the electrical activity of the nerve cell is generated can be accurately grasped. can do.
また、テラヘルツ波発生装置32にテラヘルツ波Tをミリ秒間隔で放出させることにより、神経細胞の電気活動をミリ秒オーダーで検出できる。これにより、高い時間分解能が得られる。 Further, by causing the terahertz wave generator 32 to emit the terahertz waves T at intervals of milliseconds, it is possible to detect the electrical activity of the nerve cell in the order of milliseconds. Thereby, high time resolution is obtained.
なお、テラヘルツ波発生装置32を脳5により近接した位置に設けるべく、テラヘルツ波発生装置32は、鼻腔12内に配置され得る。 Note that the terahertz wave generation device 32 may be disposed in the nasal cavity 12 in order to provide the terahertz wave generation device 32 at a position closer to the brain 5.
1,30 脳機能計測装置
2 頭皮
3 受光器アレイ
4 口腔
5 脳
6 光源
7,33 発生部
8,34 光ファイバ
9,35 出射部
10,36 レンズ
12 鼻腔
31 検出器
32 テラヘルツ波発生装置
50 大脳皮質
DESCRIPTION OF SYMBOLS 1,30 Brain function measuring apparatus 2 Scalp 3 Light receiver array 4 Oral cavity 5 Brain 6 Light source 7,33 Generation | occurrence | production part 8,34 Optical fiber 9,35 Emitting part 10,36 Lens 12 Nasal cavity 31 Detector 32 Terahertz wave generator 50 Cerebrum cortex
Claims (9)
脳を透過した前記電磁波を検出する電磁波検出手段とを備え、
前記電磁波検出手段は、頭皮上に設けられ、
前記電磁波発生手段は、前記電磁波検出手段と脳を介して反対側に設けられることを特徴とする脳機能計測装置。 Electromagnetic wave generating means for emitting electromagnetic waves toward the brain;
An electromagnetic wave detecting means for detecting the electromagnetic wave transmitted through the brain,
The electromagnetic wave detection means is provided on the scalp,
The apparatus for measuring brain function, wherein the electromagnetic wave generating means is provided on the opposite side of the electromagnetic wave detecting means via the brain.
前記電磁波検出手段は、脳を透過した前記近赤外光を受光する受光器アレイであることを特徴とする請求項1に記載の脳機能計測装置。 The electromagnetic wave generating means is a light source that emits near-infrared light as the electromagnetic wave toward the brain,
2. The brain function measuring apparatus according to claim 1, wherein the electromagnetic wave detecting means is a light receiver array that receives the near infrared light transmitted through the brain.
前記電磁波検出手段は、脳を透過した前記テラヘルツ波を検出する検出器であることを特徴とする請求項1に記載の脳機能計測装置。 The electromagnetic wave generating means is a terahertz wave generator that emits a terahertz wave as the electromagnetic wave toward the brain,
The brain function measuring apparatus according to claim 1, wherein the electromagnetic wave detecting means is a detector that detects the terahertz wave transmitted through the brain.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008257509A JP5360540B2 (en) | 2008-10-02 | 2008-10-02 | Brain function measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008257509A JP5360540B2 (en) | 2008-10-02 | 2008-10-02 | Brain function measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010082370A true JP2010082370A (en) | 2010-04-15 |
JP5360540B2 JP5360540B2 (en) | 2013-12-04 |
Family
ID=42246898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008257509A Expired - Fee Related JP5360540B2 (en) | 2008-10-02 | 2008-10-02 | Brain function measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5360540B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011125714A1 (en) | 2010-03-31 | 2011-10-13 | 国立大学法人神戸大学 | Germination-stimulant carbamate derivatives and process for preparation thereof |
JP2013530741A (en) * | 2010-05-28 | 2013-08-01 | ザ ジェネラル ホスピタル コーポレーション | Apparatus, system, method and computer-accessible medium for analyzing information on cardiovascular disease and cardiac function |
US20180220911A1 (en) * | 2017-02-03 | 2018-08-09 | MIYUKI GIKEN Co., Ltd. | Brain function measuring apparatus |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57115232A (en) * | 1980-07-09 | 1982-07-17 | Deyuuku Univ Inc | Apparatus for measuring metabolic action in internal organ |
JPS6411528A (en) * | 1987-07-06 | 1989-01-17 | Kobe Iyou Kiki Kenkyusho Kk | Apparatus for measuring amount of intracerebral bio-substance |
JPH0759782A (en) * | 1993-08-23 | 1995-03-07 | Hitachi Ltd | Living body light measuring apparatus |
JPH07209177A (en) * | 1993-12-01 | 1995-08-11 | Hamamatsu Photonics Kk | Method and apparatus for measuring scattering absorbing member |
JP2000325319A (en) * | 1999-05-20 | 2000-11-28 | Hitachi Ltd | Brain function signal input device |
JP2005074188A (en) * | 2003-09-04 | 2005-03-24 | Hamano Life Science Research Foundation | Biological information measuring method and biological information measuring apparatus |
JP2005287964A (en) * | 2004-04-02 | 2005-10-20 | Olympus Corp | Observation apparatus for observing living body, organ and tissue |
JP2006090863A (en) * | 2004-09-24 | 2006-04-06 | Pentax Corp | Component analysis method, and specimen identification method |
JP2007011175A (en) * | 2005-07-04 | 2007-01-18 | Seiko Epson Corp | Optical sheet, method for manufacturing optical sheet, liquid droplet discharging device, planar illumination device, and electro-optic device |
JP2008168118A (en) * | 2006-12-15 | 2008-07-24 | Hitachi Ltd | Thin type authentication sensor |
-
2008
- 2008-10-02 JP JP2008257509A patent/JP5360540B2/en not_active Expired - Fee Related
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57115232A (en) * | 1980-07-09 | 1982-07-17 | Deyuuku Univ Inc | Apparatus for measuring metabolic action in internal organ |
JPS6411528A (en) * | 1987-07-06 | 1989-01-17 | Kobe Iyou Kiki Kenkyusho Kk | Apparatus for measuring amount of intracerebral bio-substance |
JPH0759782A (en) * | 1993-08-23 | 1995-03-07 | Hitachi Ltd | Living body light measuring apparatus |
JPH07209177A (en) * | 1993-12-01 | 1995-08-11 | Hamamatsu Photonics Kk | Method and apparatus for measuring scattering absorbing member |
JP2000325319A (en) * | 1999-05-20 | 2000-11-28 | Hitachi Ltd | Brain function signal input device |
JP2005074188A (en) * | 2003-09-04 | 2005-03-24 | Hamano Life Science Research Foundation | Biological information measuring method and biological information measuring apparatus |
JP2005287964A (en) * | 2004-04-02 | 2005-10-20 | Olympus Corp | Observation apparatus for observing living body, organ and tissue |
JP2006090863A (en) * | 2004-09-24 | 2006-04-06 | Pentax Corp | Component analysis method, and specimen identification method |
JP2007011175A (en) * | 2005-07-04 | 2007-01-18 | Seiko Epson Corp | Optical sheet, method for manufacturing optical sheet, liquid droplet discharging device, planar illumination device, and electro-optic device |
JP2008168118A (en) * | 2006-12-15 | 2008-07-24 | Hitachi Ltd | Thin type authentication sensor |
Non-Patent Citations (1)
Title |
---|
JPN6013005980; 松波 謙一: '"テラヘルツ技術の脳科学への応用-ヒトの脳高次機能の解明を目指した非侵襲的方法-"' 電気評論 第91巻第7号 , 20060710, 58〜63頁 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011125714A1 (en) | 2010-03-31 | 2011-10-13 | 国立大学法人神戸大学 | Germination-stimulant carbamate derivatives and process for preparation thereof |
JP2013530741A (en) * | 2010-05-28 | 2013-08-01 | ザ ジェネラル ホスピタル コーポレーション | Apparatus, system, method and computer-accessible medium for analyzing information on cardiovascular disease and cardiac function |
US20180220911A1 (en) * | 2017-02-03 | 2018-08-09 | MIYUKI GIKEN Co., Ltd. | Brain function measuring apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP5360540B2 (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5324999B2 (en) | Biological light measurement device and biological light measurement method | |
JP3796086B2 (en) | Biological light measurement device | |
JP4559995B2 (en) | Tumor testing device | |
RU2727242C2 (en) | Method and device for non-invasive optical in vivo determination of glucose concentration in leaking blood | |
US20140051971A1 (en) | Light irradiating apparatus, control method therefor, and object information acquiring apparatus | |
JP2006051374A (en) | Sensor, method and device for optical measurement of blood oxygen saturation | |
JP2011160936A (en) | Photoacoustic image forming apparatus and photoacoustic image forming method | |
US10265544B2 (en) | Real-time tumor perfusion imaging during radiation therapy delivery | |
JP6108902B2 (en) | Processing apparatus, photoacoustic apparatus, processing method, and program | |
JP2007020735A (en) | Biological light measuring device | |
JP6000778B2 (en) | SUBJECT INFORMATION ACQUISITION DEVICE AND METHOD FOR CONTROLLING SUBJECT INFORMATION ACQUISITION DEVICE | |
US10034611B2 (en) | Subject information obtaining apparatus and subject information obtaining method | |
JP5360540B2 (en) | Brain function measurement device | |
US20050277817A1 (en) | Noninvasive measurement system for monitoring activity condition of living body | |
WO2019225612A1 (en) | Blood vessel detection device and method therefor | |
JP5262102B2 (en) | Optical measuring device | |
JP4477568B2 (en) | Component concentration measuring apparatus and component concentration measuring apparatus control method | |
KR101190351B1 (en) | Near infrared spectroscopy detection unit, apparatus having the same unit and method for controlling the same apparatus | |
JP2007111461A (en) | Bio-optical measurement apparatus | |
JP2007267837A (en) | Biolight measuring apparatus | |
JP6245863B2 (en) | SUBJECT INFORMATION ACQUISITION DEVICE AND METHOD FOR CONTROLLING SUBJECT INFORMATION ACQUISITION DEVICE | |
Almajidy et al. | On the design of a multi-channel NIR system to monitor functional brain activity | |
JP3635331B2 (en) | Substance measuring device | |
JP2006305120A (en) | Optical bioinstrumentation device | |
US20130116553A1 (en) | Biological measuring apparatus and biological measuring method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20101027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110201 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110805 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130412 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130813 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130822 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5360540 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |