JP2006305120A - Optical bioinstrumentation device - Google Patents

Optical bioinstrumentation device Download PDF

Info

Publication number
JP2006305120A
JP2006305120A JP2005132393A JP2005132393A JP2006305120A JP 2006305120 A JP2006305120 A JP 2006305120A JP 2005132393 A JP2005132393 A JP 2005132393A JP 2005132393 A JP2005132393 A JP 2005132393A JP 2006305120 A JP2006305120 A JP 2006305120A
Authority
JP
Japan
Prior art keywords
point
light
measurement
points
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005132393A
Other languages
Japanese (ja)
Inventor
Akihiro Ishikawa
亮宏 石川
Kouji Amita
孝司 網田
Osamu Kono
理 河野
Kimiharu Shimizu
公治 清水
Shoichi Tsuneishi
召一 常石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2005132393A priority Critical patent/JP2006305120A/en
Publication of JP2006305120A publication Critical patent/JP2006305120A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical bioinstrumentation device in which reliability becomes high when the contribution rate of a biological section directly under the middle point of a light-sending point and a light-receiving point is made high to give data in a measuring point. <P>SOLUTION: Two or more pairs of the light-sending points T1 (T2) and the light-receiving points R1 (R2), in which the measuring point M becomes the same position, are established on a living body, a same measuring point two or more measuring section, which separately performs optical measurement about the measuring point M by using a measuring probe 11 for each pair of the light-sending points and the light-receiving points, and a measuring data calculation section, which computes optical measuring data about the measuring point based on two or more measured results separately optically measured by the same measuring point two or more measuring section, are included, and by performing normalizing treatment, the contribution directly under the light-sending point and the light-receiving point is reduced and the contribution directly under the measuring point is raised. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生体内を透過散乱させた光を計測することにより、生体内情報を取得する光生体計測装置に関し、さらに詳細には、複数の送光点と受光点との対から生体内情報を取得する光生体計測装置に関する。本発明の光生体計測装置は、具体的には、例えば、脳内の活性化部位の分布を測定する脳機能診断装置や酸素供給の変化を測定する酸素モニタとして利用される。   The present invention relates to an optical biological measurement apparatus that acquires in-vivo information by measuring light transmitted and scattered in a living body, and more specifically, in-vivo information from a plurality of pairs of light transmission points and light receiving points. The present invention relates to an optical biological measurement apparatus that acquires Specifically, the optical biometric device of the present invention is used as, for example, a brain function diagnostic device that measures the distribution of activated sites in the brain or an oxygen monitor that measures changes in oxygen supply.

血液中のヘモグロビンは、酸素と結合してオキシヘモグロビンとなり、また、酸素から離れてデオキシヘモグロビンとなる。ヘモグロビンは、酸素と結合し分離することができる性質を利用して、生体各部へ酸素を運搬する役割を果たしている。血液中に含まれるヘモグロビン量は、血管の拡張・収縮に応じて増減するため、組織中のヘモグロビンの量を計測することによって、血管の拡張・収縮を検出することが知られている。   Hemoglobin in blood is combined with oxygen to become oxyhemoglobin, and away from oxygen to deoxyhemoglobin. Hemoglobin plays a role of transporting oxygen to various parts of the living body by utilizing the property of being able to bind to and separate from oxygen. Since the amount of hemoglobin contained in blood increases and decreases according to the expansion and contraction of blood vessels, it is known to detect the expansion and contraction of blood vessels by measuring the amount of hemoglobin in the tissue.

血液中のオキシヘモグロビンとデオキシヘモグロビンとは、可視光から近赤外光領域にかけて異なる分光吸収スペクトル特性を有していることから、例えば近赤外光を用いて血液中のヘモグロビンによる光吸収を計測することにより、オキシヘモグロビン濃度およびデオキシヘモグロビン濃度を算出することができる。
このオキシヘモグロビン濃度やデオキシヘモグロビン濃度は、生体内での酸素代謝に対応して変化する。そのため、生体内の脳、各種臓器、筋肉などの血液中のオキシヘモグロビン濃度、デオキシヘモグロビン濃度を、近赤外光の光吸収計測によって無侵襲で測定し、オキシヘモグロビン濃度変化およびデオキシヘモグロビン濃度変化から各生体部位の酸素代謝変化を計測し、その部位の状態を測定する生体の光計測法が確立されている。
Since oxyhemoglobin and deoxyhemoglobin in blood have different spectral absorption spectrum characteristics from visible light to near-infrared light region, for example, light absorption by hemoglobin in blood is measured using near-infrared light By doing so, the oxyhemoglobin concentration and the deoxyhemoglobin concentration can be calculated.
The oxyhemoglobin concentration and deoxyhemoglobin concentration change corresponding to oxygen metabolism in the living body. Therefore, oxyhemoglobin concentration and deoxyhemoglobin concentration in the blood of the brain, various organs, muscles, etc. in the living body are measured non-invasively by optical absorption measurement of near infrared light. An optical measurement method for living bodies has been established that measures changes in oxygen metabolism in each living body part and measures the state of that part.

例えば、脳内では活性化部位で多くの酸素が消費されるが、血流再分配作用によって、当該活性化部位では消費される酸素量以上の酸素供給が行われるのが普通である。その結果、活性化部位ではオキシヘモグロビン濃度が増加する傾向がある。
そこで、複数の送光点および受光点を頭部に格子状に並ぶように配置し、送光プローブにより各送光点に光を導いて生体内に照射し、各受光点から放出される光を検出し、複数の異なる計測点でのオキシヘモグロビン濃度およびデオキシヘモグロビン濃度の変化を測定して、脳内分布を測定することにより、脳内の活性化部位を観察するマルチチャンネル光計測装置が開示されている(例えば特許文献1参照)。
特開2001−337033号公報
For example, in the brain, a large amount of oxygen is consumed at the activated site, but it is normal that oxygen supply exceeding the consumed amount of oxygen is performed at the activated site by the blood flow redistribution action. As a result, the oxyhemoglobin concentration tends to increase at the activated site.
Therefore, a plurality of light transmitting points and light receiving points are arranged in a lattice pattern on the head, and light emitted from each light receiving point is guided by the light transmitting probe to the light transmitting points and irradiated into the living body. A multi-channel optical measurement device that observes activated sites in the brain by measuring changes in the oxyhemoglobin concentration and deoxyhemoglobin concentration at multiple different measurement points and measuring the distribution in the brain (See, for example, Patent Document 1).
JP 2001-337033 A

光生体計測装置には、複数の計測点について光計測を行うことができるように、生体上に複数の送光点と受光点の対を定めて測定を行うマルチチャンネル光計測装置と、一対の送光点と受光点により1つの計測点について測定するシングルチャンネル光計測装置とがある。マルチチャンネル光計測装置であれ、シングルチャンネル光計測装置であれ、1つの計測点に対応して、一対の送光点と受光点の組が設定してあり、対をなす送光点と受光点の中点直下(すなわち送光点と受光点の垂直二等分線上)の生体部位が計測点の位置であるとみなしている。この送光点および受光点の対と計測点との関係についてさらに説明する。   The optical biological measurement device includes a multi-channel optical measurement device that performs measurement by determining a plurality of pairs of light transmission points and light reception points on a living body so that optical measurement can be performed at a plurality of measurement points, There is a single channel optical measurement device that measures one measurement point by a light transmission point and a light reception point. Whether it is a multi-channel optical measurement device or a single-channel optical measurement device, a pair of light transmission point and light reception point is set corresponding to one measurement point. The biological part immediately below the middle point (that is, on the perpendicular bisector of the light transmitting point and the light receiving point) is regarded as the position of the measurement point. The relationship between the pair of light transmission point and light reception point and the measurement point will be further described.

図7(a)は従来からの光生体計測装置の構成を示す図であり、図7(b)はその光生体計測装置における一対の送光点および受光点と、これら送光点および受光点の対により定められる計測点との位置関係を示す平面図である。光生体計測装置10の測定プローブ11は、送光プローブ12と受光プローブ13とからなり、送光プローブ端14が生体B上の送光点Tに押し当てられ、また、受光プローブ端15が生体B上で送光点Tから離隔した受光点Rに押し当てられる。このとき、送光点Tと受光点Rとの中点が計測点Mとみなされる。なお、マルチチャンネル光計測装置では、同様の送光点Tと受光点Rの対が複数設定され、それぞれに対応して複数の計測点Mが存在することになる。   FIG. 7A is a diagram showing a configuration of a conventional optical biometric device, and FIG. 7B shows a pair of light transmitting points and light receiving points, and these light transmitting points and light receiving points in the optical biometric device. It is a top view which shows the positional relationship with the measurement point defined by a pair of. The measurement probe 11 of the optical biological measurement apparatus 10 includes a light transmission probe 12 and a light reception probe 13, the light transmission probe end 14 is pressed against the light transmission point T on the living body B, and the light reception probe end 15 is the living body. It is pressed against the light receiving point R spaced apart from the light transmitting point T on B. At this time, the midpoint between the light transmission point T and the light receiving point R is regarded as the measurement point M. In the multi-channel optical measurement device, a plurality of pairs of the same light transmission point T and light reception point R are set, and there are a plurality of measurement points M corresponding to each pair.

図7(a)に示すように、送光点Tから照射された光は、生体内で組織により散乱されながらランダムに進行し、一部の光は受光点Rに達し、ここから生体外に放出される。受光点Rから放出される光には、生体内で透過散乱光が密に通過する領域での光吸収の情報が多く含まれている。図8は、一対の送光点Tおよび受光点Rによる感度領域S(測定領域)を上から平面的に示した図である。感度領域Sは楕円形状をなしており、受光点Rから放出される光には、この感度領域Sの光吸収の情報が多く含まれていることになる。   As shown in FIG. 7 (a), the light emitted from the light transmission point T travels randomly while being scattered by the tissue in the living body, and a part of the light reaches the light receiving point R, from here to the outside of the living body. Released. The light emitted from the light receiving point R contains a lot of information on light absorption in a region where transmitted scattered light passes densely in the living body. FIG. 8 is a plan view showing a sensitivity region S (measurement region) by a pair of light transmission point T and light reception point R from above. The sensitivity region S has an elliptical shape, and the light emitted from the light receiving point R contains a lot of information on the light absorption of the sensitivity region S.

図9は、送光点Tと受光点Rとを通過するように切り出した断面における、光吸収に関する情報の空間分布(受光点から放出される検出光での寄与率)を濃淡で表した図である。一対の送光点Tおよび受光点Rによる感度領域Sは、バナナ状の領域Rとなすように拡がっている。一方、図7に示したように、一対の送光点Tおよび受光点Rの組により定義される計測点Mは、送光点Tと受光点Rの中点とみなされ、送光点Tと受光点Rとの垂直二等分線上が測定領域とされていることから、図3のバナナ状領域Rと図1の計測点Mとの比較から明らかなように、バナナ状領域Rからの情報を計測点Mからの情報とみなすのは無理がある。すなわち、生体表面からの深さによっては、送光点T、受光点Rの垂直二等分線上での光吸収の情報の割合が少なく、むしろ、送光点T近傍や受光点R近傍の光吸収の情報の割合が大きい場合がある。特に浅い領域では送光点近傍および受光点近傍の光吸収の情報がほとんどである。   FIG. 9 is a diagram showing the spatial distribution of information relating to light absorption (contribution ratio in the detection light emitted from the light receiving point) in light and shade in a section cut out so as to pass the light transmitting point T and the light receiving point R. It is. The sensitivity region S by the pair of light transmitting point T and light receiving point R extends so as to become a banana-shaped region R. On the other hand, as shown in FIG. 7, the measurement point M defined by the pair of the light transmission point T and the light reception point R is regarded as a midpoint between the light transmission point T and the light reception point R. 3 and the light receiving point R is a measurement region, and as is clear from the comparison between the banana-shaped region R in FIG. 3 and the measurement point M in FIG. It is impossible to regard the information as information from the measurement point M. That is, depending on the depth from the living body surface, the ratio of light absorption information on the perpendicular bisector of the light transmitting point T and the light receiving point R is small. Rather, the light near the light transmitting point T and the light receiving point R is light. The percentage of information on absorption may be large. In particular, in a shallow region, most of the light absorption information near the light transmission point and the light reception point is present.

図10、図11は、図7に示した一対の送光点および受光点により光計測した場合の深さd1、d2(d1<d2)における光吸収への寄与分布を説明する図である。
図においてXY方向は、生体表面に沿った面方向を示し、Z方向は、ある深さdでの光吸収の情報量の多さ(寄与率)を表している。
この寄与分布の算出は、例えば以下の論文にて紹介されている計算式により、解析的に求めることができる。
Michael S.Patterson, B. Chance, and B.C. Wilson, 「Time resolved reflectance and trancemittance for the non-invasive measurement of tissue optical properties」,15 June(1989), Vol.28, No.12,p2331-2336, APPLIED OPTICS
FIGS. 10 and 11 are diagrams for explaining the distribution of contribution to light absorption at depths d1 and d2 (d1 <d2) when optical measurement is performed using the pair of light transmission points and light reception points shown in FIG.
In the figure, an XY direction indicates a plane direction along the surface of the living body, and a Z direction indicates a large amount of information (contribution rate) of light absorption at a certain depth d.
The calculation of the contribution distribution can be obtained analytically, for example, by a calculation formula introduced in the following paper.
Michael S. Patterson, B. Chance, and BC Wilson, `` Time resolved reflectance and trancemittance for the non-invasive measurement of tissue optical properties '', 15 June (1989), Vol. 28, No. 12, p2331-2336, APPLIED OPTICS

生体表面に近い浅い領域(深さd1)では、図10に示すように、送光点と受光点に対応する位置に2つの急峻なピークが発生しており送光点、受光点直下の組織からの寄与率が高くなっている。一方、送光点と受光点との中点における深さd1の位置(すなわち計測点直下の位置)にはピークがなく、寄与率がほとんど零に近い値になっている。このことから、深さd1の浅い領域については、計測点直下の情報は計測結果にほとんど影響していない。   In a shallow region (depth d1) close to the surface of the living body, as shown in FIG. 10, two steep peaks are generated at positions corresponding to the light transmitting point and the light receiving point, and the tissue immediately below the light transmitting point and the light receiving point. The contribution rate from is high. On the other hand, there is no peak at the position of the depth d1 at the midpoint between the light transmission point and the light receiving point (that is, the position immediately below the measurement point), and the contribution rate is almost zero. For this reason, in the shallow region of the depth d1, the information immediately below the measurement point has little influence on the measurement result.

一方、深い領域(深さd2、d1<d2)では、図11に示すように、図10に比較して送光点と受光点に対応する位置にある2つのピークがやや緩やかになっているが、寄与率が大きくなっている点はほぼ同じである。また、中点における深さd2の位置には、鞍部が発生しており、寄与率はピークの半値程度ではあるが、計測点直下の深さd2の位置からの影響が計測結果に及んでいる。   On the other hand, in the deep region (depth d2, d1 <d2), as shown in FIG. 11, the two peaks at the positions corresponding to the light transmitting point and the light receiving point are slightly gentler as compared to FIG. However, the contribution ratio is almost the same. In addition, a buttock is generated at the position of the depth d2 at the midpoint, and the contribution rate is about half the peak, but the influence from the position of the depth d2 immediately below the measurement point affects the measurement result. .

したがって、従来の光生体計測装置により得られた計測データは、計測点とみなした中点直下の生体部位からの寄与が多少は存在するものの、十分ではなく、中点を計測点とみなすことが適当ではない場合もあった。特に、送光点や受光点直下の生体部位に特異点が存在すれば、その影響が色濃く反映されたデータとなることから、信頼性が低いデータとなってしまうことがあった。   Therefore, although the measurement data obtained by the conventional optical biometric device has some contribution from the living body part immediately below the midpoint regarded as the measurement point, it is not sufficient, and the midpoint can be regarded as the measurement point. Sometimes it was not appropriate. In particular, if a singular point exists in a living body part directly below a light transmitting point or a light receiving point, the influence of the singular point is reflected in a deep color, and thus the data may be low in reliability.

そこで、本発明は、できるだけ中点直下の生体部位からの寄与率を高くして、計測点でのデータとした場合の信頼性が高くなるようにした光生体計測装置を提供することを目的とする。
また、本発明は、送光点、受光点直下の寄与率をできるだけ平均化し、この部分からの影響を薄めるようにした光生体計測装置を提供することを目的とする。
Therefore, an object of the present invention is to provide an optical biometric measuring device in which the contribution rate from the living body part immediately below the midpoint is increased as much as possible to increase the reliability when the data at the measurement point is used. To do.
It is another object of the present invention to provide an optical biological measurement apparatus that averages the contribution ratios immediately below the light transmitting point and the light receiving point as much as possible and diminishes the influence from this part.

上記課題を解決するためになされた本発明の光生体計測装置は、生体上に対となる送光点と受光点とを設定し、光源光を送光点に導いて照射する送光プローブと受光点から放出される光を光検出器に導く受光プローブとの対からなる測定プローブを用いて送光点から受光点まで生体部位を透過散乱した光を検出し、送光点と受光点の中点をこの測定における計測点とみなして計測点における光計測を行う光生体計測装置であって、生体上に計測点が同一位置となる送光点と受光点との対を複数設定し、それぞれの送光点と受光点の対ごとに測定プローブを用いて当該計測点について別々に光計測を行う同一計測点複数計測部と、同一計測点複数計測部により別々に光計測された複数の計測結果に基づいて当該計測点についての光計測データを算出する計測データ算出部とを備えるようにしている。   An optical living body measuring apparatus of the present invention made to solve the above-described problem is a light transmitting probe that sets a pair of light transmitting point and light receiving point on a living body and guides and irradiates light source light to the light transmitting point. Using a measuring probe that is paired with a light receiving probe that guides the light emitted from the light receiving point to the photodetector, light transmitted through the living body from the light transmitting point to the light receiving point is detected, and the light transmitting point and the light receiving point are detected. An optical biological measurement apparatus that performs light measurement at a measurement point by regarding the midpoint as a measurement point in this measurement, and sets a plurality of pairs of light transmission points and light reception points at which the measurement points are at the same position on the living body, The same measurement point multiple measurement unit that performs optical measurement separately for each measurement point using a measurement probe for each pair of light transmission point and light reception point, and a plurality of light measurements that are separately measured by the same measurement point multiple measurement unit Based on the measurement result, the optical measurement data for the measurement point So that and a measurement data calculation unit for output.

この装置によれば、光計測を行おうとする生体部位を計測点に定めると、計測点に対応して生体上に複数の送光点と受光点との対が設定される。このとき、計測点が送光点と受光点との中点位置になるような複数の送光点および受光点の対が設定される。送光点および受光点の設定は、送光点と受光点との位置関係を定める位置決め用のホルダを用意して、ホルダにプローブを固定するようにしてもよいし、複数対の送光プローブおよび受光プローブが予め位置決めされた測定プローブを用いるようにしてもよい。
同一計測点計測部は、送光点と受光点の対ごと別々に、送光プローブにより、光源からの光を送光点に導き生体内に照射する。光は生体内を散乱しながら透過し、一部が対となる受光点に至り、当該受光点から生体外に放出される。放出された光は、受光プローブによって光検出器に導かれるので、これを検出する。同一計測点計測部は、送光点と受光点との対ごとに、この検出を行い、同一計測点について異なる送光点および受光点の対により、複数の計測結果を得る。送光点と受光点の対ごとに検出されるデータには、計測点直下からの寄与とともに、送光点および受光点直下からの寄与が含まれる。このうち前者(計測点直下)の寄与はすべての対に共通し、後者(送光点および受光点直下)の寄与はすべての対で異なることになる。
そして、計測データ計測部は、同一計測点について別々に得た複数の計測結果に基づいて、平均化処理など送光点、受光点近傍の影響を除去する演算処理を行うことにより、当該計測点直下からの寄与を増幅した光計測データを得る。これにより、当該計測点について、送光点および受光点近傍の影響を低減し、計測点直下の影響を大きくした計測結果を得る。
According to this apparatus, when a living body part to be subjected to optical measurement is determined as a measurement point, a plurality of pairs of light transmission points and light receiving points are set on the living body corresponding to the measurement points. At this time, a plurality of pairs of light transmission points and light reception points are set such that the measurement point is the midpoint position between the light transmission point and the light reception point. The light transmission point and the light reception point may be set by preparing a positioning holder for determining the positional relationship between the light transmission point and the light reception point, and fixing the probe to the holder, or by a plurality of pairs of light transmission probes. Alternatively, a measurement probe in which the light receiving probe is previously positioned may be used.
The same measurement point measurement unit guides the light from the light source to the light transmission point by the light transmission probe and irradiates the living body separately for each pair of the light transmission point and the light reception point. The light passes through the living body while being scattered, and part of the light reaches a pair of light receiving points, and is emitted from the light receiving point outside the living body. Since the emitted light is guided to the photodetector by the light receiving probe, it is detected. The same measurement point measurement unit performs this detection for each pair of a light transmission point and a light reception point, and obtains a plurality of measurement results from different pairs of light transmission points and light reception points for the same measurement point. The data detected for each pair of light transmitting point and light receiving point includes contributions from directly below the measurement point, as well as contributions from directly below the light transmitting point and the light receiving point. Of these, the contribution of the former (just below the measurement point) is common to all pairs, and the contribution of the latter (just below the light transmission point and light reception point) is different in all pairs.
Then, the measurement data measurement unit performs an arithmetic process for removing the influence of the vicinity of the light transmission point and the light reception point, such as an averaging process, based on a plurality of measurement results obtained separately for the same measurement point. Optical measurement data is obtained by amplifying the contribution from directly below. Thereby, about the said measurement point, the measurement result which reduced the influence of the light transmission point and the light reception point vicinity, and enlarged the influence directly under a measurement point is obtained.

ここで、計測点となる部位は、生体上の頭部、胴部、上肢、下肢などいずれでもよい。計測位置により、脳、各種臓器、筋肉についての光計測を行うことができる。
光源光には、近赤外光を用いることが好ましいが、オキシヘモグロビン、デオキシヘモグロビンによる吸収差が検出できる波長の光が照射できる光源であればよい。
Here, the measurement point may be any of the head, trunk, upper limb, and lower limb on the living body. Optical measurement of the brain, various organs, and muscles can be performed according to the measurement position.
Near-infrared light is preferably used as the light source light, but any light source capable of irradiating light having a wavelength capable of detecting an absorption difference due to oxyhemoglobin or deoxyhemoglobin may be used.

送光プローブと受光プローブとからなる測定プローブは、送光点と受光点との対の数に応じて複数本用意し、予め、プローブを生体に固定するためのホルダ等により生体に固定しておくことで、効率的かつ安定的な計測ができるので好ましいが、1つの測定プローブを、順次、異なる送光点と受光点との対に移動させて、使い回すようにして測定することもできる。   Prepare multiple measuring probes consisting of a light-transmitting probe and a light-receiving probe according to the number of pairs of light-transmitting points and light-receiving points, and fix them to the living body in advance using a holder or the like for fixing the probes to the living body. It is preferable that the measurement can be performed efficiently and stably, but it is also possible to perform measurement by moving one measurement probe to a pair of different light transmission points and light reception points in sequence and using them again. .

本発明によれば、送光点と受光点との中点直下の生体部位からの寄与率を大きくした計測データを得ることができるので、送光点と受光点との中点を計測点とみなす場合に、計測結果に対する信頼性を高くすることができる。
また、本発明によれば、送光点、受光点近傍の寄与率が平均化されるので、この部分からの影響を薄めた計測データを得ることができ、送光点、受光点直下に特異点がある場合でも、その影響を弱めることができる。
According to the present invention, it is possible to obtain measurement data in which the contribution ratio from the living body part directly below the midpoint between the light transmission point and the light reception point can be obtained, so that the midpoint between the light transmission point and the light reception point is defined as the measurement point. When it is considered, the reliability of the measurement result can be increased.
In addition, according to the present invention, the contribution ratios in the vicinity of the light transmission point and the light receiving point are averaged, so that measurement data with less influence from this part can be obtained, and the specific data immediately below the light transmission point and the light receiving point can be obtained. Even if there is a point, the effect can be weakened.

(その他の課題を解決するための手段及び効果)
上記発明において、送光点と受光点との対が、計測点を中心とする同心円上に配置されるようにするのが好ましい。
すなわち、1つの送光点と受光点との対を基準とした場合、他の送光点と受光点の対は、計測点を中心として回転した位置にくるように配置する。具体的には、2対の送光点と受光点を用いる場合は、送光点と受光点とが90度ずつ回転した位置に配置される。また、3対の送光点と受光点とを用いる場合は、送光点と受光点とが60度ずつ回転した位置に配置される。
これによれば、それぞれの送光点と受光点の対が作る感度領域であるバナナ状領域は同一形状であり、互いに計測点を中心に回転したものとなるから、平均化処理など送光点、受光点近傍の影響を除去する演算処理が容易となる。
(Means and effects for solving other problems)
In the above invention, it is preferable that the pair of the light transmitting point and the light receiving point be arranged on a concentric circle with the measurement point as the center.
That is, when one light transmission point / light reception point pair is used as a reference, the other light transmission point / light reception point pairs are arranged so as to be rotated around the measurement point. Specifically, when two pairs of light transmission points and light reception points are used, the light transmission points and the light reception points are arranged at positions rotated by 90 degrees. When three pairs of light transmission points and light reception points are used, the light transmission points and the light reception points are arranged at positions rotated by 60 degrees.
According to this, since the banana-shaped region, which is the sensitivity region created by each pair of light transmission point and light reception point, has the same shape and rotates around the measurement point, the light transmission point such as averaging processing Thus, the arithmetic processing for removing the influence of the vicinity of the light receiving point is facilitated.

以下、本発明の光生体計測装置について、図を用いて具体的に説明する。図1は本発明の一実施形態を示すシングルチャンネルの光生体計測装置の構成を示す図であり、図1(a)は光生体計測装置の測定プローブを生体表面にセットしたときの斜視図、図1(b)は二対の送光点および受光点と、これら送光点および受光点の対により定められる計測点との位置関係を示す平面図である。 Hereinafter, the optical biological measurement apparatus of the present invention will be specifically described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a single-channel optical biometric device showing an embodiment of the present invention, and FIG. 1 (a) is a perspective view when a measurement probe of the optical biometric device is set on a biological surface, FIG. 1B is a plan view showing the positional relationship between two pairs of light transmission points and light reception points and measurement points defined by the pairs of light transmission points and light reception points.

光生体計測装置1は、装置本体10と測定プローブ11とから構成される。光生体計測装置1の測定プローブ11は、送光プローブ12a、12bと受光プローブ13a、13bとからなり、送光プローブ端14a、14bが生体B上の送光点T1、T2に押し当てられ、また、受光プローブ端15a、15bが、生体上で送光点T1、T2から離隔した受光点R1、R2に押し当てられる。送光点T1、T2と受光点R1、R2とは、同心円上で90度ずつ回転した位置に配置される。このとき、送光点T1(T2)と受光点R1(R2)との中点が計測点Mとみなされる。   The optical biological measurement apparatus 1 includes an apparatus main body 10 and a measurement probe 11. The measurement probe 11 of the optical biological measurement apparatus 1 includes light transmission probes 12a and 12b and light reception probes 13a and 13b. The light transmission probe ends 14a and 14b are pressed against the light transmission points T1 and T2 on the living body B. Further, the light receiving probe ends 15a and 15b are pressed against the light receiving points R1 and R2 that are separated from the light transmitting points T1 and T2 on the living body. The light transmitting points T1 and T2 and the light receiving points R1 and R2 are arranged at positions rotated 90 degrees on concentric circles. At this time, the midpoint between the light transmission point T1 (T2) and the light receiving point R1 (R2) is regarded as the measurement point M.

装置本体10は、光計測に必要な制御を行う制御部20を備えている。この制御部20が実行する制御を、機能ごとに分けて説明すると、同一点複数計測部21と計測データ算出部とに分けられる。
同一点複数計測部21は、送光点T1(T2)と受光点R1(R2)の対ごと別々に、送光プローブ12a(12b)により、光源(装置本体10に内蔵)からの光を送光点T1(T2)に導き、生体内に照射する制御を行う。光は生体内を散乱しながら透過し、一部が対となる受光点R1(R2)に至り、当該受光点から生体外に放出される。放出された光は、受光プローブ13a(13b)によって光検出器(装置本体10に内蔵)に導かれるので、同一点複数計測部21は、これを検出する制御を行う。さらに、同一計測点計測部21は、送光点と受光点との対ごとに、この検出を行い、計測点Mについて異なる送光点および受光点の対により、複数の計測結果を得る。送光点と受光点の対ごとに検出されるデータには、計測点M直下からの寄与とともに、各送光点T1(T2)および各受光点直下R1(R2)からの寄与が含まれる。このうち前者(計測点直下)の寄与は、すべての対についての計測データに共通に含まれ、後者(送光点および受光点直下)の寄与は、対応する対の計測データのみに含まれることになる。
The apparatus main body 10 includes a control unit 20 that performs control necessary for optical measurement. If the control which this control part 20 performs is demonstrated for every function, it will be divided into the same point multiple measurement part 21 and the measurement data calculation part.
The same point multiple measuring unit 21 transmits light from a light source (built in the apparatus main body 10) separately for each pair of light transmitting point T1 (T2) and light receiving point R1 (R2) by a light transmitting probe 12a (12b). The light is guided to the light spot T1 (T2) and controlled to irradiate the living body. The light is transmitted while being scattered in the living body, reaches a light receiving point R1 (R2) that is partly paired, and is emitted from the light receiving point to the outside of the living body. Since the emitted light is guided to the photodetector (built in the apparatus main body 10) by the light receiving probe 13a (13b), the same point multiple measuring unit 21 performs control to detect this. Further, the same measurement point measurement unit 21 performs this detection for each pair of the light transmission point and the light reception point, and obtains a plurality of measurement results by using different pairs of the light transmission point and the light reception point for the measurement point M. The data detected for each pair of light transmitting point and light receiving point includes contributions from directly below the measurement point M, as well as contributions from each light transmitting point T1 (T2) and R1 (R2) immediately below each light receiving point. Of these, the former (immediately below the measurement point) contribution is included in the measurement data for all pairs in common, and the latter (immediately below the light transmission and reception points) contribution is included only in the corresponding pair of measurement data. become.

計測データ計測部22は、計測点Mについて別々に得た複数の計測データに基づいて、平均化処理を送光点、受光点近傍の影響を除去する演算処理を行うことにより、当該計測点直下からの寄与を増幅した光計測データを得る制御を行う。   The measurement data measurement unit 22 performs an averaging process on the basis of a plurality of measurement data separately obtained for the measurement point M, and performs an arithmetic process for removing the influence of the vicinity of the light transmission point and the light reception point, thereby directly below the measurement point. Control to obtain optical measurement data in which the contribution from is amplified.

図1(a)に示すように、送光点T1(T2)から照射された光は、生体内で組織により散乱されながらランダムに進行し、一部の光は受光点R1(R2)に達し、ここから生体外に放出される。受光点R1(R2)から放出される光は、生体内における透過散乱光が密に通過する領域の光吸収の情報が多く含まれている。図2は、送光点T1および受光点R1の対による感度領域と、送光点T2および受光点R2の対による感度領域とを、上から平面的に重ねて示した図である。感度領域Sは、中央部分で2つの楕円形状の感度領域が重なっており、丸みを帯びた十字形状をしている。   As shown in FIG. 1 (a), the light irradiated from the light transmission point T1 (T2) travels randomly while being scattered by the tissue in the living body, and a part of the light reaches the light receiving point R1 (R2). From here, it is released out of the living body. The light emitted from the light receiving point R1 (R2) contains a lot of information on light absorption in a region where transmitted and scattered light in the living body densely passes. FIG. 2 is a diagram in which a sensitivity region due to a pair of light transmission point T1 and light reception point R1 and a sensitivity region due to a pair of light transmission point T2 and light reception point R2 are shown in a plane overlapping from above. The sensitivity region S has a round cross shape in which two elliptical sensitivity regions overlap at the center.

図3、図4は、図1、図2に示した二対の送光点および受光点によりそれぞれ光計測し、2つの計測データを合算した場合の深さd1、d2(d1<d2)における光吸収への寄与分布を説明する図である。これらは、従来例で説明した図10、図11に対比されるものである。   3 and 4 show optical measurements at the two pairs of light transmission points and light reception points shown in FIGS. 1 and 2, respectively, and the depths d1 and d2 (d1 <d2) when the two measurement data are added together. It is a figure explaining the contribution distribution to light absorption. These are compared with FIGS. 10 and 11 described in the conventional example.

生体表面に近い浅い領域(深さd1)では、図3に示すように、送光点と受光点に対応する位置に4つの急峻なピークが発生しており送光点、受光点直下の組織からの寄与率が強くなっている。一方、中点における深さd1の位置(すなわち計測点M直下の位置)にはピークがほとんどなく、寄与率がほとんど零に近い値になっている。このことから、深さd1の浅い領域については、図10と同様に、計測点M直下の情報は計測結果にほとんど影響していない。
しかしながら、深い領域(深さd2)では、図4に示すように、図11に比較して送光点と受光点に対応する位置にピークが存在するとともに、4つの送光点および受光点に挟まれた値中央部分においてもほぼ同程度のピークが存在している。つまり、計測点Mとなる中点直下の寄与率を高くすることができ、計測データにおける中点近傍影響が強くなっている。
In the shallow region (depth d1) close to the surface of the living body, as shown in FIG. 3, four steep peaks are generated at positions corresponding to the light transmitting point and the light receiving point, and the tissue immediately below the light transmitting point and the light receiving point. The contribution rate from is increasing. On the other hand, there is almost no peak at the position of the depth d1 at the midpoint (that is, the position immediately below the measurement point M), and the contribution rate is almost zero. For this reason, in the shallow region of the depth d1, the information immediately below the measurement point M has little influence on the measurement result, as in FIG.
However, in the deep region (depth d2), as shown in FIG. 4, there are peaks at positions corresponding to the light transmitting point and the light receiving point as compared to FIG. 11, and at the four light transmitting points and the light receiving points. There is a peak of almost the same level in the center of the sandwiched value. That is, it is possible to increase the contribution rate immediately below the midpoint that is the measurement point M, and the midpoint neighborhood influence in the measurement data is strong.

次に、上述した2対の送光点と受光点による計測データを利用するようにした光生体計測装置10の計測動作について説明する。計測点Mについて、まず送光点T1、受光点R1の対による光計測測定を行う。続いて送光点T2、受光点R2の対による光計測測定を行う。そして、2回の光計測データの平均値(すなわち合算データの半値)を算出する。これにより、計測点M直下の寄与率が高められた計測データを得ることができる。   Next, the measurement operation of the optical biological measurement apparatus 10 using the measurement data by the two pairs of light transmission points and light reception points described above will be described. For the measurement point M, first, optical measurement measurement is performed using a pair of a light transmission point T1 and a light reception point R1. Subsequently, optical measurement measurement is performed using a pair of a light transmission point T2 and a light reception point R2. And the average value (namely, half value of total data) of 2 times optical measurement data is calculated. Thereby, measurement data with an increased contribution rate directly below the measurement point M can be obtained.

上記実施形態では、二対の送光点および受光点を設定したが、これに限られず、図5に示したように、三対の送光点T1〜T3、受光点R1〜R3を利用して、3回の計測を合算するようにして計測点直下の寄与率をさらに高めてもよい。この場合は図6に示したように、六方向に丸みを帯びた凸部を有する感度領域Sが形成される。送光点と受光点との対の数をさらに増やせば、計測点直下の寄与率をより高めることができるが、装置コストも増大することになるのでコストとの関係で対の数を定めればよい。   In the above embodiment, two pairs of light transmission points and light reception points are set. However, the present invention is not limited to this. As shown in FIG. 5, three pairs of light transmission points T1 to T3 and light reception points R1 to R3 are used. Thus, the contribution rate directly below the measurement point may be further increased by adding the three measurements. In this case, as shown in FIG. 6, a sensitivity region S having convex portions rounded in six directions is formed. If the number of pairs of light transmission points and light reception points is further increased, the contribution ratio directly under the measurement point can be further increased, but the cost of the apparatus also increases, so the number of pairs can be determined in relation to the cost. That's fine.

また、上記実施形態は、1つの計測点について計測するシングルチャンネルの光生体計測装置であるが、これをマルチチャンネルの光生体計測装置に適用することができることは言うまでもない。   Moreover, although the said embodiment is a single channel optical biometric apparatus which measures about one measurement point, it cannot be overemphasized that this can be applied to a multichannel optical biometric apparatus.

本発明は、脳機能診断装置や酸素モニタ等のヘモグロビンの光吸収を利用した光生体計測装置に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for an optical biological measurement apparatus that uses light absorption of hemoglobin, such as a brain function diagnostic apparatus or an oxygen monitor.

本発明の一実施形態である光生体計測装置の構成を示す図であり、図1(a)は測定プローブを生体に取り付けた状態での斜視図、図1(b)は送光点と受光点と計測点との位置関係を示す図である。It is a figure which shows the structure of the optical biological measurement apparatus which is one Embodiment of this invention, Fig.1 (a) is a perspective view in the state which attached the measurement probe to the biological body, FIG.1 (b) is a light transmission point and light reception. It is a figure which shows the positional relationship of a point and a measurement point. 図1の光生体計測装置における感度領域を説明する図である。It is a figure explaining the sensitivity area | region in the optical biological measurement apparatus of FIG. 図1の光生体計測装置による浅い深さd1での寄与率を説明する図である。It is a figure explaining the contribution rate in shallow depth d1 by the optical biological measuring apparatus of FIG. 図1の光生体計測装置による深い深さd2(d1<d2)での寄与率を説明する図である。It is a figure explaining the contribution rate in deep depth d2 (d1 <d2) by the optical biological measuring apparatus of FIG. 本発明の他の一実施形態である光生体計測装置での送光点と受光点と計測点との位置関係を示す図である。It is a figure which shows the positional relationship of the light transmission point in the optical biological measurement apparatus which is other one Embodiment of this invention, a light receiving point, and a measurement point. 図5の光生体計測装置での感度領域を説明する図である。It is a figure explaining the sensitivity area | region in the optical biological measurement apparatus of FIG. 従来からの光生体計測装置の構成を示す図であり、図7(a)はプローブを生体に取り付けたときの断面図、図1(b)は送光点と受光点と計測点との位置関係を示す図である。It is a figure which shows the structure of the conventional optical biological measuring apparatus, Fig.7 (a) is sectional drawing when a probe is attached to the biological body, FIG.1 (b) is a position of a light transmission point, a light receiving point, and a measurement point. It is a figure which shows a relationship. 従来の光生体計測装置における感度領域を説明する図である。It is a figure explaining the sensitivity area | region in the conventional optical biological measurement apparatus. 光生体計測装置における送光点と受光点との間に形成されるバナナ状領域を説明する図である。It is a figure explaining the banana-shaped area | region formed between the light transmission point in a photobiological measuring device, and a light reception point. 図7の光生体計測装置による浅い深さd1での寄与率を説明する図である。ある。It is a figure explaining the contribution rate in shallow depth d1 by the optical living body measuring device of FIG. is there. 図7の光生体計測装置による深い深さd2(d1<d2)での寄与率を説明する図である。It is a figure explaining the contribution rate in deep depth d2 (d1 <d2) by the optical biological measuring apparatus of FIG.

符号の説明Explanation of symbols

10:光生体計測装置
11:測定プローブ
12a、12b:送光プローブ
13a、13b:受光プローブ
T1、T2:送光点
R1、R2:受光点
M:計測点
S:感度領域
10: Optical biological measurement device 11: Measurement probe 12a, 12b: Light transmission probe 13a, 13b: Light reception probe T1, T2: Light transmission point R1, R2: Light reception point M: Measurement point S: Sensitivity region

Claims (2)

生体上に対となる送光点と受光点とを設定し、光源光を送光点に導いて照射する送光プローブと受光点から放出される光を光検出器に導く受光プローブとの対からなる測定プローブを用いて送光点から受光点まで生体部位を透過散乱した光を検出し、送光点と受光点の中点をこの測定における計測点とみなして計測点における光計測を行う光生体計測装置であって、
生体上に計測点が同一位置となる送光点と受光点との対を複数設定し、それぞれの送光点と受光点の対ごとに測定プローブを用いて当該計測点について別々に光計測を行う同一計測点複数計測部と、
同一計測点複数計測部により別々に光計測された複数の計測結果に基づいて当該計測点についての光計測データを算出する計測データ算出部とを備えたことを特徴とする光生体計測装置。
A pair of a light transmitting point and a light receiving point that are paired on a living body, a light transmitting probe that guides and emits light from the light source to the light transmitting point, and a light receiving probe that guides light emitted from the light receiving point to a photodetector The light transmitted through the living body from the light transmitting point to the light receiving point is detected using a measurement probe consisting of the above, and the midpoint of the light transmitting point and the light receiving point is regarded as the measurement point in this measurement, and light measurement is performed at the measurement point An optical biometric device,
Set multiple pairs of light transmission points and light reception points on the living body where the measurement points are at the same position, and use the measurement probe for each pair of light transmission points and light reception points to perform optical measurement separately for the measurement points. The same measurement point multiple measurement unit to perform,
An optical biological measurement apparatus comprising: a measurement data calculation unit that calculates optical measurement data for the measurement point based on a plurality of measurement results separately measured by the same measurement point multiple measurement unit.
送光点と受光点との対は、計測点を中心とする同心円上に配置されることを特徴とする請求項1に記載の光生体計測装置。 The optical biological measurement apparatus according to claim 1, wherein the pair of the light transmission point and the light reception point is arranged on a concentric circle with the measurement point as a center.
JP2005132393A 2005-04-28 2005-04-28 Optical bioinstrumentation device Pending JP2006305120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132393A JP2006305120A (en) 2005-04-28 2005-04-28 Optical bioinstrumentation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132393A JP2006305120A (en) 2005-04-28 2005-04-28 Optical bioinstrumentation device

Publications (1)

Publication Number Publication Date
JP2006305120A true JP2006305120A (en) 2006-11-09

Family

ID=37472692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132393A Pending JP2006305120A (en) 2005-04-28 2005-04-28 Optical bioinstrumentation device

Country Status (1)

Country Link
JP (1) JP2006305120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027548A1 (en) * 2009-09-04 2011-03-10 パナソニック株式会社 Probe and image reconstruction method using probe
JP2013116210A (en) * 2011-12-02 2013-06-13 Seiko Epson Corp Pulse wave measuring device
JP2017148584A (en) * 2017-05-02 2017-08-31 セイコーエプソン株式会社 Biological information measurement device and biological information measurement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135825A (en) * 1995-11-17 1997-05-27 Hitachi Ltd Living body light measurement device
JP2001337033A (en) * 2000-05-26 2001-12-07 Shimadzu Corp Multichannel photometric instrument
JP2004248849A (en) * 2003-02-19 2004-09-09 Shimadzu Corp Probe for optical measuring instrument, and multichannel optical measuring instrument using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135825A (en) * 1995-11-17 1997-05-27 Hitachi Ltd Living body light measurement device
JP2001337033A (en) * 2000-05-26 2001-12-07 Shimadzu Corp Multichannel photometric instrument
JP2004248849A (en) * 2003-02-19 2004-09-09 Shimadzu Corp Probe for optical measuring instrument, and multichannel optical measuring instrument using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027548A1 (en) * 2009-09-04 2011-03-10 パナソニック株式会社 Probe and image reconstruction method using probe
JP2013116210A (en) * 2011-12-02 2013-06-13 Seiko Epson Corp Pulse wave measuring device
JP2017148584A (en) * 2017-05-02 2017-08-31 セイコーエプソン株式会社 Biological information measurement device and biological information measurement method

Similar Documents

Publication Publication Date Title
US10912504B2 (en) Near-infrared spectroscopy and diffuse correlation spectroscopy device and methods
JP5693548B2 (en) apparatus
JP5271700B2 (en) System and method for correcting light reflectance measurements
WO2018043748A1 (en) Biological measurement device and biological measurement method
JP4097522B2 (en) Biological light measurement device
WO2006040841A1 (en) Instrument for noninvasively measuring blood sugar level
JP2010540964A (en) Optical device components
JP2006218013A (en) Biological information measuring apparatus and controlling method
JP2010240298A (en) Biological light measuring device and biological light measuring method
JP2019501688A (en) Method and apparatus for noninvasive optical measurement of glucose concentration in flowing blood in vivo
JPH08322821A (en) Optical measurement instrument for light absorber
JP5248758B2 (en) Optical measuring device
JP4136704B2 (en) Probe for optical measurement device and multichannel optical measurement device using the same
JP5262102B2 (en) Optical measuring device
JP2006305120A (en) Optical bioinstrumentation device
JP2009106376A (en) Sensing apparatus for biological surface tissue
JP2008289807A (en) Sensing apparatus for biological surface tissue
JP5822444B2 (en) Light measuring device
JP2007267837A (en) Biolight measuring apparatus
JP2010151616A (en) Light measuring device
JP3635331B2 (en) Substance measuring device
JP2005312743A (en) Glucose concentration measuring apparatus
JP2010082370A (en) Brain function measurement instrument
JP2010148794A (en) Optical measurement apparatus
JP4259319B2 (en) Optical measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100907