JP4559995B2 - Tumor testing device - Google Patents

Tumor testing device Download PDF

Info

Publication number
JP4559995B2
JP4559995B2 JP2006095782A JP2006095782A JP4559995B2 JP 4559995 B2 JP4559995 B2 JP 4559995B2 JP 2006095782 A JP2006095782 A JP 2006095782A JP 2006095782 A JP2006095782 A JP 2006095782A JP 4559995 B2 JP4559995 B2 JP 4559995B2
Authority
JP
Japan
Prior art keywords
light
glucose
tumor
concentration
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006095782A
Other languages
Japanese (ja)
Other versions
JP2007267848A (en
Inventor
妙子 浦野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006095782A priority Critical patent/JP4559995B2/en
Priority to US11/686,744 priority patent/US20070232911A1/en
Priority to CNB2007100893783A priority patent/CN100477955C/en
Publication of JP2007267848A publication Critical patent/JP2007267848A/en
Application granted granted Critical
Publication of JP4559995B2 publication Critical patent/JP4559995B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • A61B5/0086Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0091Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4312Breast evaluation or disorder diagnosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Emergency Medicine (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、腫瘍を非侵襲に検知する際に使用する腫瘍検査装置に関する。   The present invention relates to a tumor examination apparatus used when non-invasively detecting a tumor.

癌の早期発見は、癌の治療のために極めて重要であり、早期発見のために、様々な手法、技術が用いられている。   Early detection of cancer is extremely important for the treatment of cancer, and various methods and techniques are used for early detection.

その一手段としては、その主要部位と正常部位との物理定数(X線吸収率・音響インピーダンス)の違いに基づき、正常部位とは異なる領域を描出し、その領域や周囲に発生する新生血管、内部に発生する微細石灰化の大きさや形状(周囲の平滑度など)などの形態を分析することで癌の有無を判断する形態診断が知られている(例えば、特許文献1)。   As one of the means, based on the difference in physical constants (X-ray absorption rate / acoustic impedance) between the main part and the normal part, a region different from the normal part is drawn, and the new blood vessels generated in the region and the surroundings, A morphological diagnosis is known in which the presence or absence of cancer is determined by analyzing the size and shape (such as the smoothness of the surroundings) of fine calcification that occurs inside (for example, Patent Document 1).

しかしながら、このような形態診断は、医師の経験等によるところが大きく、脂肪であるか腫瘍であるかという判断において、様々な課題を有している。   However, such morphological diagnosis largely depends on the experience of doctors and the like, and has various problems in determining whether it is fat or tumor.

近年、癌細胞がかなり小さい段階で発見が可能であるPET(Positron Emission Tomography)検査が注目されている。PET検査は、陽電子を放出するアイソトープで標識されたブドウ糖(グルコース)を体内に注射し、その体内分布を特殊なカメラで画像化して、癌細胞を診断する方法である。この方法では、癌細胞と正常細胞との生理現象の差(癌細胞の方が正常細胞よりもブドウ糖を多く取り込む)を利用して、癌細胞にアイソトープで標識されたブドウ糖を取り込ませ、正常細胞よりも強い放射線を発する細胞を評価する方法であり、生理診断とも言われている(例えば、特許文献2)。 Recently, PET cancer cells are capable of finding a fairly small stage (P ositron E mission T omography) test is noted. PET examination is a method of diagnosing cancer cells by injecting glucose (glucose) labeled with an isotope that emits positrons into the body and imaging its distribution with a special camera. In this method, by utilizing the difference in physiological phenomena between cancer cells and normal cells (cancer cells take in more glucose than normal cells), glucose labeled with an isotope is taken into cancer cells, and normal cells It is a method for evaluating cells that emit stronger radiation, and is also referred to as physiological diagnosis (for example, Patent Document 2).

しかしながら、このような生理診断では、アイソトープで標識されたブドウ糖を体内に注射するという点が、必ずしも、その他の細胞組織に対して、無害であるとは言いがたい。   However, in such a physiological diagnosis, it is difficult to say that injection of glucose labeled with an isotope into the body is harmless to other cellular tissues.

なお、被検者の生体内部の情報を非侵襲的に測定する技術として、組織中のグルコース、ヘモグロビン、水分等の濃度を経皮で光学的に測定して組織内の腫瘍性疾病状況を判定する光学的な診断技術が知られている(例えば、特許文献3)。しかしながら、被検者の生体は、屈折率の異なる微小領域の集合体で構成されているため、光が強い散乱を繰り返すという性質があり、空間分解能が低くなるという問題がある。そこで、このような光学的な診断技術において感度を向上させる技術開発が行われている。   In addition, as a technique for noninvasively measuring information inside the living body of a subject, the concentration of glucose, hemoglobin, water, etc. in the tissue is optically measured transcutaneously to determine the status of neoplastic disease in the tissue An optical diagnostic technique is known (for example, Patent Document 3). However, since the living body of the subject is composed of a collection of minute regions having different refractive indexes, there is a problem that light is repeatedly scattered strongly, and there is a problem that spatial resolution is lowered. Therefore, technical development for improving sensitivity in such an optical diagnostic technique has been performed.

近年では、代表的なものとして、年齢による補正(以下、年齢補正という)を加えることでより光学的な感度を向上させる技術が学会発表されている(非特許文献1)。この年齢補正という考え方は非常に効果が高く、実際に感度が90%以上に向上して他手法をしのぐと言われている。   In recent years, as a representative example, a technology for improving optical sensitivity by adding correction based on age (hereinafter referred to as age correction) has been published in an academic conference (Non-patent Document 1). This concept of age correction is very effective, and it is said that the sensitivity is actually improved to 90% or more and surpasses other methods.

この年齢補正という考え方は、腫瘍全般の診断に適用されている。多くの生体に含まれる物質の濃度は加齢による影響を受けるので、これらを腫瘍マーカーとした場合、常に、年齢補正が必要になる。現在、上述したヘモグロビン等の他にも、多くの生体物質が腫瘍マーカーとして光学的計測に使用されているが、全て年齢補正が必要な化合物であると言われている。
特開2005−328507号 特開2005−164609号 特表2004−531311号 NIH Workshop on Optical Imaging 2004, SPIE
This concept of age correction is applied to the diagnosis of general tumors. Since the concentration of substances contained in many living organisms is affected by aging, age correction is always required when these are used as tumor markers. At present, in addition to the above-described hemoglobin and the like, many biological substances are used for optical measurement as tumor markers, but all are said to be compounds that require age correction.
JP-A-2005-328507 JP 2005-164609 A Special table 2004-531311 NIH Workshop on Optical Imaging 2004, SPIE

しかしながら、加齢による状態の変化には大きな個人差があり、実年齢を用いるだけでは十分な補正ができないという問題があった。また、年齢補正に任意性があると、腫瘍の存在を裏付ける正確な情報を生体物質の濃度から十分に得ることができなかった。結果として、腫瘍検知の感度を十分に高くできず、時には間違った測定結果を導く恐れもあった。   However, there is a great individual difference in the change in the state due to aging, and there is a problem that sufficient correction cannot be made only by using the actual age. In addition, if the age correction is optional, accurate information supporting the presence of the tumor could not be sufficiently obtained from the concentration of the biological substance. As a result, the sensitivity of tumor detection could not be made sufficiently high, and sometimes the wrong measurement result could be led.

以上の問題点に鑑みて、本発明は、生体の測定箇所への物理的なダメージが無く、非侵襲的に生体内部を測定することができ、加齢による個人差の概念を除外して、年齢差に問わず、正確に、腫瘍を検出することができる腫瘍光検出装置を提供することを目的とする。   In view of the above problems, the present invention has no physical damage to the measurement location of the living body, can be measured non-invasively inside the living body, excluding the concept of individual differences due to aging, An object of the present invention is to provide a tumor photodetection device capable of accurately detecting a tumor regardless of age difference.

本発明に係る腫瘍検査装置は、グルコースの光吸収帯の第1の波長を有する第1の光と、水の光吸収帯の第2の波長を有する第2の光を、生体組織の複数の領域に照射する照射手段と、前記照射手段による前記生体組織からの出射光を検出する検出手段と、前記検出手段により検出された前記出射光の前記第1及び前記第2の波長における光の強度の増減を解析して、前記複数の領域におけるグルコース及び水の濃度分布を演算する演算手段と、前記濃度分布を解析して、前記グルコースの濃度が高い領域と前記水の濃度が低い領域とが交互に現れる領域の有無を判定する判定手段とを備えることを特徴とする。   The tumor examination apparatus according to the present invention includes a first light having a first wavelength in a light absorption band of glucose and a second light having a second wavelength in a light absorption band of water. Irradiation means for irradiating a region; detection means for detecting light emitted from the living tissue by the irradiation means; and intensity of light at the first and second wavelengths of the emitted light detected by the detection means And calculating means for calculating the concentration distribution of glucose and water in the plurality of regions, and analyzing the concentration distribution to determine a region where the glucose concentration is high and a region where the water concentration is low. And determining means for determining presence / absence of alternately appearing regions.

生体の測定箇所への物理的なダメージが無く、非侵襲的に生体内部を測定することができ、加齢による個人差の概念を除外して、年齢差に問わず、正確に、腫瘍を検出することができる腫瘍検査装置を提供することができる。   There is no physical damage to the measurement site of the living body, and the inside of the living body can be measured non-invasively. Excluding the concept of individual differences due to aging, tumors can be detected accurately regardless of age difference. It is possible to provide a tumor testing apparatus that can perform the above.

以下、本発明の実施の形態について図面を参照して詳細に説明する。以下の図面の記載において、同一の部分には同一の符号を付し、重複する記載は省略する。また、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものと異なる。更に、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description of the drawings, the same portions are denoted by the same reference numerals, and overlapping descriptions are omitted. The drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Further, there are included portions having different dimensional relationships and ratios between the drawings.

第一に、腫瘍マーカーとして使用する化合物について説明する。   First, a compound used as a tumor marker will be described.

腫瘍マーカーとしての役割を果たすためには、先ず、生体組織内の正常部位と腫瘍部位で濃度が異なる化合物である必要がある。そして、生体組織内の濃度が加齢による影響を受けにくい化合物を腫瘍マーカーとして使用すれば、年齢補正を行う必要がないので、加齢状態という極めて個人差の大きい要素を考慮することなく、腫瘍の存在を裏付ける正確な情報を腫瘍マーカーから得ることができる。「加齢による影響を受けにくい化合物」とは、年齢に関わらず生体組織内での濃度がほとんど変化しない、あるいは年齢を重ねるにつれて生体組織内での濃度は変化するものの、生体組織内の正常部位と腫瘍部位との間でその濃度の差が変化しない化合物をいう。   In order to play a role as a tumor marker, it is first necessary to be a compound having different concentrations at a normal site and a tumor site in a living tissue. If a compound whose concentration in living tissue is less affected by aging is used as a tumor marker, it is not necessary to perform age correction. Accurate information supporting the presence of can be obtained from tumor markers. “A compound that is not easily affected by aging” means that the concentration in the living tissue hardly changes regardless of age, or the concentration in the living tissue changes with age, but the normal site in the living tissue Refers to a compound whose concentration does not change between the tumor site and the tumor site.

そして、生体組織内の正常部位と腫瘍部位で濃度が異なり、かつ加齢により影響を受けにくい化合物の具体的例として、グルコースが挙げられる。上述したように、腫瘍細胞内のグルコース濃度は正常細胞内のグルコース濃度よりも常に高く、この傾向は年齢を重ねても変化しない。従って、生体組織内のグルコース濃度を光学的に計測してグルコース濃度が高い領域を特定すれば、年齢補正を行うこと無しに、腫瘍部位を特定することができる。この際、光学的計測により得られたグルコース濃度を、年齢補正を行わずにそのまま腫瘍の存在を裏付けるデータとして採用することができる。グルコースを検査するには、グルコース特有の光吸収波長に合致した光を用いることが必要となる。具体的には、グルコースの振動モードの結合音である905nm、1450nm、1550nm、1640nm、2130nmの光吸収を利用する。   A specific example of a compound that has different concentrations at normal sites and tumor sites in living tissue and is less susceptible to aging is glucose. As described above, the glucose concentration in tumor cells is always higher than the glucose concentration in normal cells, and this tendency does not change with age. Therefore, if the glucose concentration in the living tissue is optically measured to identify a region having a high glucose concentration, the tumor site can be identified without performing age correction. At this time, the glucose concentration obtained by optical measurement can be used as data supporting the presence of the tumor without performing age correction. In order to examine glucose, it is necessary to use light that matches the light absorption wavelength specific to glucose. Specifically, light absorption at 905 nm, 1450 nm, 1550 nm, 1640 nm, and 2130 nm, which is a combined sound of the vibration mode of glucose, is used.

なお、腫瘍内のグルコース濃度は、正常組織内のグルコース濃度と同様に摂食や運動などの日常生活の行動によって変化する。組織間のグルコース濃度比を大きくすることでグルコースに注目した腫瘍の検知感度を高めることができる。そのため、空腹時にグルコースが含まれる水(糖水等)を摂取した場合と摂取しない場合との計測結果から差分を計測して、腫瘍と正常組織の差を大きくすることができる。   It should be noted that the glucose concentration in the tumor changes depending on daily activities such as eating and exercising in the same manner as the glucose concentration in normal tissue. Increasing the glucose concentration ratio between tissues can increase the detection sensitivity of a tumor focused on glucose. Therefore, the difference between the tumor and the normal tissue can be increased by measuring the difference from the measurement result when the water containing sugar (such as sugar water) is ingested and when not ingesting.

第二に、測定の原理について説明する。   Second, the principle of measurement will be described.

注目する領域に存在する化合物の濃度を計測する手段にはいくつかあるが、化合物の特徴となる波長の光源を用いた光吸収を計測することで、他の化合物による雑音と区別した計測が可能となる。例えば光吸収による反射光強度の減少は光強度そのものを計測するため、比較的簡単な構成で計測装置を組み上げることが可能となる。また光吸収によって化合物に蓄積された光エネルギーは熱や音響波を発生する。発生する音響波を音響素子で計測する手法は光音響法と呼ばれ、光の減少を計測する吸収測定と比較してダイナミックレンジを有効に利用することが可能である。発生する熱を赤外線として検知することも可能である一方、温度変化を超音波の音速変化として検知することも可能である。   There are several ways to measure the concentration of a compound present in the area of interest, but by measuring light absorption using a light source with a wavelength characteristic of the compound, it is possible to measure it separately from noise caused by other compounds. It becomes. For example, a decrease in reflected light intensity due to light absorption measures the light intensity itself, so that a measuring device can be assembled with a relatively simple configuration. The light energy accumulated in the compound by light absorption generates heat and acoustic waves. A method of measuring the generated acoustic wave with an acoustic element is called a photoacoustic method, and can use a dynamic range more effectively than absorption measurement for measuring a decrease in light. While it is possible to detect the generated heat as infrared rays, it is also possible to detect a change in temperature as a change in sound velocity of ultrasonic waves.

注目する化合物が存在する位置を計測するために、光が体内に入射する位置を基準とし、体外に光(または熱、音響波)が出射する位置を複数設定して計測する。使用する光が時間的に連続的な場合(CW光)は空間分解法を用いて、統計的な光経路を推定して逆問題を計算することで吸収体の位置を求める。使用する光が時間によって変化する場合(強度変調光、パルス光)は、計測された光が入射光に対して示す位相または時間の遅れが光経路の長さ(光路長)に該当するので、この情報を用いて逆問題を計算することで吸収体の位置を求める。具体的な装置構成については参考文献(例えば生体情報の可視化技術、コロナ社 1997、 Phys. Med. Biol. Vol. 50, R1-43, 2005)などに記載されている。   In order to measure the position where the compound of interest exists, the position where light enters the body is used as a reference, and a plurality of positions where light (or heat, acoustic waves) are emitted outside the body are set and measured. When the light used is continuous in time (CW light), the position of the absorber is obtained by estimating the statistical light path and calculating the inverse problem using the spatial decomposition method. If the light used changes with time (intensity modulated light, pulsed light), the phase or time delay of the measured light relative to the incident light corresponds to the length of the optical path (optical path length). The position of the absorber is obtained by calculating the inverse problem using this information. Specific device configurations are described in references (for example, visualization technology of biological information, Corona 1997, Phys. Med. Biol. Vol. 50, R1-43, 2005).

音響波を計測する場合には体内を伝達する音速から音響波が発生した位置を推定することができる。上述した計算プロセスを各計測点に対して繰り返して全体として矛盾のないように吸収体の位置決めを行う(Appl.Opt.39,5872-83(2000))。こうして決定した吸収体の位置に対して吸収体の量を割り付けて、空間分布図を作成する。   When measuring an acoustic wave, the position where the acoustic wave is generated can be estimated from the speed of sound transmitted through the body. The calculation process described above is repeated for each measurement point, and the absorber is positioned so that there is no contradiction as a whole (Appl. Opt. 39, 5872-83 (2000)). A spatial distribution map is created by assigning the amount of absorber to the position of the absorber thus determined.

このように腫瘍部位に分布する化合物をその光吸収を利用して検知し、その濃度や分布形状を定量的に閾値と比較することにより、腫瘍と正常組織を区別するだけでなく、腫瘍と良性腫瘍の区別をつけることも可能となる。また、光学的計測は、放射線による被爆の影響もない。従って、既存の医療機器と組み合わせることで、患者の身体的負荷をかけることなく診断精度を大幅に向上することができる。   In this way, the compounds distributed in the tumor site are detected using their light absorption, and the concentration and distribution shape are quantitatively compared with the threshold value to distinguish not only the tumor and normal tissue, but also the tumor and benign It is also possible to distinguish tumors. Optical measurement is not affected by radiation exposure. Therefore, by combining with existing medical devices, the diagnostic accuracy can be greatly improved without applying physical burden on the patient.

第三に、乳癌の有無を判定できる腫瘍検査装置について説明する。   Third, a tumor examination apparatus that can determine the presence or absence of breast cancer will be described.

本発明者は、癌のうち、特に乳癌について鋭意研究を重ねた。乳癌形成過程に付随する石灰化現象は、シュウ酸カルシウムまたはリン酸カルシウムが組織に凝集し、その大きさや形状、乳管構造との分布関係に注目することによって乳癌の検出に利用されている。微細な石灰化領域が点状に集まっている場合や、領域が棘状の形状(スピキュラ)となっている場合、乳管に沿って分布している場合に乳癌の可能性が高まることが知られているため、高い空間分解能で計測することが必要となる(乳癌の診断と治療−最新の研究動向−日本臨床(2000))。マンモグラフィーは100μm以下という高い空間分解能を持っているため、上述した微細石灰化領域やその形状を検知することが可能である。光を用いる計測では多重散乱によって空間分解能が低くなってしまうという短所があり、注目すべき石灰化領域そのものを計測することは困難である。石灰化は組織の一部に発生する現象なので、石灰化領域を含む周辺領域での化合物分布を計測し、その分布傾向から間接的に石灰化現象を計測することが可能となる。石灰化は腫瘍の活動が高まる一方、正常細胞が代謝活動できなくなっている領域であり、腫瘍の中でも石灰化していない領域とは構成物質が異なっている。石灰化を含む領域は水分量が低いという特徴がある。石灰化の大きさが大きいものは悪性でない場合が多いため、悪性を疑われる小さい石灰化を示す場合は、水分量が低い領域が不連続になっている。さらにこの不連続的な領域が乳管に沿った分布を示す場合は、乳癌の乳管に沿った伸展に対応している可能性が高く、分布形状として注目することによって乳癌を検知することが可能となる。   The inventor has conducted extensive research on cancer, particularly breast cancer. The calcification phenomenon that accompanies the breast cancer formation process is utilized for the detection of breast cancer by focusing on the size and shape of the calcium oxalate or calcium phosphate in the tissue and the distribution relationship with the breast duct structure. It is known that the possibility of breast cancer is increased when fine calcified areas are gathered in the form of dots, or when the area is shaped like a spine (spicula) or distributed along the breast duct. Therefore, it is necessary to measure with high spatial resolution (diagnosis and treatment of breast cancer-latest research trend-Japanese clinical (2000)). Since mammography has a high spatial resolution of 100 μm or less, it is possible to detect the above-described fine calcification region and its shape. In the measurement using light, there is a disadvantage that the spatial resolution becomes low due to multiple scattering, and it is difficult to measure the remarkable calcified region itself. Since calcification occurs in a part of the tissue, it is possible to measure the compound distribution in the peripheral region including the calcification region and indirectly measure the calcification phenomenon from the distribution tendency. While calcification increases the activity of the tumor, normal cells are incapable of metabolic activity, and the constituents are different from those in the tumor that are not calcified. A region containing calcification is characterized by a low water content. Since the thing with a big magnitude | size of calcification is not malignant in many cases, when showing the small calcification suspected of malignancy, the area | region with a low water content is discontinuous. Furthermore, when this discontinuous region shows a distribution along the breast duct, it is highly likely that it corresponds to the extension along the breast duct of breast cancer, and it is possible to detect breast cancer by paying attention to the distribution shape. It becomes possible.

上記乳癌の特徴に鑑み、本発明に関わる腫瘍検査装置は、グルコースおよび水の光吸収分布、すなわち濃度分布をそれぞれ計測して、グルコースの濃度が高い領域と水の濃度が低い領域とが交互に現れる領域の有無を判定することで、容易に、乳癌の発生の有無を評価することができる。   In view of the characteristics of the above breast cancer, the tumor examination apparatus according to the present invention measures the light absorption distribution of glucose and water, that is, the concentration distribution, respectively, and alternately alternates between regions having a high glucose concentration and regions having a low water concentration. By determining the presence or absence of an appearing region, the presence or absence of the occurrence of breast cancer can be easily evaluated.

さらに好ましくは、上記装置構成に加え、ヘモグロビンの光吸収分布を同時に計測してもよい。癌組織では新生血管が増殖して血流量が高まることから、ヘモグロビンの総量が大きくなることが知られている。従って、ヘモグロビンおよびグルコースの濃度が高い領域と、水の濃度が低い領域とが交互に現れる領域の有無を判定することで、より精度の高い乳癌の検出が可能となる。   More preferably, in addition to the above apparatus configuration, the light absorption distribution of hemoglobin may be measured simultaneously. It is known that the total amount of hemoglobin increases in cancer tissues because new blood vessels grow and blood flow increases. Therefore, it is possible to detect breast cancer with higher accuracy by determining the presence / absence of a region in which regions having high hemoglobin and glucose concentrations and regions having low water concentrations appear alternately.

本発明の腫瘍検査装置の構成及び動作原理について説明する。   The configuration and operating principle of the tumor examination apparatus of the present invention will be described.

図1に本発明の腫瘍検査装置の一例を示す。ファンクションジュネレータ1に接続された3種類の半導体レーザー(LD)2から複数の所望の測定物質の光吸収帯に合わせた波長の光を発光する。以下の実施例1ではヘモグロビン還元体、ヘモグロビン酸化体、グルコースの光吸収帯に合わせた波長の光を照射している。LDの数は、測定物質の数に応じて適宜増減させる。LDから照射された光を光合波・結合器3で重ね合わせて1本の光照射用の光ファイバー4を介して生体組織(実施例1では生体モデルサンプル5)に照射する(照射手段)。なお、実施例1に示す生体モデルサンプルには、モデル血液を入れる溝14が複数設けられており、その上に脂肪と同じ光学定数を示す薄板12が密着して静置されている。次に、生体組織(実施例1では生体モデルサンプル5から)得られる出射光を1本の光検出用の光ファイバー6を介してOE変換器7にて検出する(検出手段)。OE出力をロックインアンプ8につなぎ、LDドライバー2への信号で外部トリガーをかけることにより各LDの出力を独立して検出できるようにする。更にOE出力をAC結合アンプ9に切り替えられるようにし、信号強度をメインアンプで増幅した後にAD変換器10でAD変換してPCに取り込む。光照射用の光ファイバー4と光検出用の光ファイバー6は、一定の間隔をあけて一つのプローブ11に固定されている。図2にプローブ11の断面図を示す。光照射用と光検出用の光ファイバー20が金属製の筒30の内部に配置され、プローブ先端部がポリマーキャップ40で覆われている。   FIG. 1 shows an example of the tumor inspection apparatus of the present invention. The three types of semiconductor lasers (LD) 2 connected to the function generator 1 emit light having a wavelength that matches the light absorption bands of a plurality of desired measurement substances. In Example 1 below, light having a wavelength matching the light absorption band of hemoglobin reductant, hemoglobin oxidant, and glucose is irradiated. The number of LDs is increased or decreased as appropriate according to the number of substances to be measured. The light irradiated from the LD is overlapped by the optical combiner / coupler 3 and irradiated to the living tissue (biological model sample 5 in the first embodiment) through one optical fiber 4 for light irradiation (irradiation means). In addition, the biological model sample shown in Example 1 is provided with a plurality of grooves 14 for storing model blood, and a thin plate 12 having the same optical constant as that of fat is adhered to the biological model sample. Next, the emitted light obtained from the living tissue (from the living body model sample 5 in the first embodiment) is detected by the OE converter 7 through one optical fiber 6 for light detection (detecting means). By connecting the OE output to the lock-in amplifier 8 and applying an external trigger with the signal to the LD driver 2, the output of each LD can be detected independently. Further, the OE output can be switched to the AC coupling amplifier 9, the signal intensity is amplified by the main amplifier, and then AD-converted by the AD converter 10 and taken into the PC. The optical fiber 4 for light irradiation and the optical fiber 6 for light detection are fixed to one probe 11 with a certain interval. FIG. 2 shows a sectional view of the probe 11. An optical fiber 20 for light irradiation and light detection is disposed inside a metal tube 30, and the tip of the probe is covered with a polymer cap 40.

次に、OE変換器7にて検出された出射光の前記複数の測定物質の光吸収帯に合わせた波長の光のそれぞれにおける光の強度の増減を解析する(解析手段)。以上の照射手段、検出手段及び解析手段を測定したい複数の領域で行い、測定した複数の領域での前記測定物質における光の強度の増減を解析して、測定した複数の領域での前記複数の測定物質の濃度分布を演算する(演算手段)。最後に、その濃度分布を解析して、前記複数の測定物質が交互に確認される領域の有無を判定する(判定手段)。   Next, the increase / decrease in the intensity of the light in each of the wavelengths of light that match the light absorption bands of the plurality of measurement substances of the emitted light detected by the OE converter 7 is analyzed (analysis means). The above irradiation means, detection means and analysis means are performed in a plurality of regions to be measured, and the increase / decrease in light intensity in the measurement substance in the plurality of measured regions is analyzed, and the plurality of regions in the plurality of measured regions are analyzed. The concentration distribution of the measurement substance is calculated (calculation means). Finally, the concentration distribution is analyzed to determine the presence or absence of a region where the plurality of measurement substances are alternately confirmed (determination means).

一方、上述したように、光吸収によって化合物に蓄積された光エネルギーは音響波を発生するので、発生する音響波を音響素子で計測することができる。光音響法によって化合物の濃度を検出する場合、光照射用の光ファイバーと音響素子を図3のように配置する。生体モデルサンプル5のモデル血液を入れる溝14の上方に光照射用の光ファイバー4を設置し、光入射面に対して垂直な面に音響整合層を介して音響素子50を密着させる。図3の(b)は(a)の音響素子50を正面から見た図である。   On the other hand, as described above, since the light energy accumulated in the compound by light absorption generates an acoustic wave, the generated acoustic wave can be measured by an acoustic element. When detecting the concentration of a compound by the photoacoustic method, an optical fiber for light irradiation and an acoustic element are arranged as shown in FIG. An optical fiber 4 for light irradiation is installed above the groove 14 for storing the model blood of the biological model sample 5, and the acoustic element 50 is brought into close contact with a surface perpendicular to the light incident surface through an acoustic matching layer. FIG. 3B is a view of the acoustic element 50 of FIG.

音響波を検出して測定する場合は、複数の所望の測定物質(グルコース、水、ヘモグロビン)の光吸収スペクトル領域に含まれる波長を有し、時間的に強度が変化する光を生体組織に照射して(照射手段)、前記生体組織から発生する音響波を検出し(検出手段)、音響素子で検知する超音波の到達時刻から音響波の発生部位を計算し(演算手段)、前記音響波の発生部位と音響波の振幅値から空間分布画像を構成して、前記空間分布画像内の被検査部における空間分布値と、前記空間分布画像内の正常部位における空間分布値を閾値として、それぞれを比較することでその測定部位における腫瘍の有無を判定する(判定手段)。   When detecting and measuring acoustic waves, a living tissue is irradiated with light having a wavelength included in the light absorption spectrum region of a plurality of desired measurement substances (glucose, water, hemoglobin) and temporally changing intensity. (Irradiation means) detects an acoustic wave generated from the living tissue (detection means), calculates an acoustic wave generation site from the arrival time of the ultrasonic wave detected by the acoustic element (calculation means), and the acoustic wave A spatial distribution image is configured from the generation site of the acoustic wave and the amplitude value of the acoustic wave, and the spatial distribution value in the inspected part in the spatial distribution image and the spatial distribution value in the normal part in the spatial distribution image are used as threshold values To determine the presence or absence of a tumor at the measurement site (determination means).

なお、図1〜3は、本発明の腫瘍検査装置の構成の一例に過ぎず、本発明の腫瘍検査装置には、本発明の構成を満たす全ての態様が含まれる。   1 to 3 are only examples of the configuration of the tumor testing apparatus of the present invention, and all modes that satisfy the configuration of the present invention are included in the tumor testing apparatus of the present invention.

実施例1
測定対象となる吸収体として2種類のヘモグロビン(酸化体・還元体)とグルコースを選んだ。装置性能を評価する際の測定対象として、下記のモデルサンプルを準備した。シリコーン樹脂を母材とし、散乱体(10%脂肪球分散液、製品名:イントラリピッド)と吸収体(近赤外領域用色素、製品名:グリーニッシュグリーン)を分散させた後に硬化させ、脂肪と同じ光学定数(散乱係数・吸収係数)とした。このサンプルを5mm〜30mm厚み(5mm刻み)にスライスした薄板を用意する一方、ブロック表面に幅と長さが5mmから25mm(5mm刻み)で、深さ5mmの溝を作製した。図5にモデルサンプルを上から見た図を示す。
Example 1
Two types of hemoglobin (oxidized body / reduced body) and glucose were selected as the absorber to be measured. The following model samples were prepared as measurement targets for evaluating the device performance. Using a silicone resin as a base material, a scatterer (10% fat sphere dispersion, product name: Intralipid) and an absorber (colorant for near infrared region, product name: Greenish Green) are dispersed and cured to obtain fat. And the same optical constant (scattering coefficient / absorption coefficient). While a thin plate was prepared by slicing this sample to a thickness of 5 mm to 30 mm (in increments of 5 mm), a groove having a width and length of 5 mm to 25 mm (in increments of 5 mm) and a depth of 5 mm was produced on the block surface. FIG. 5 shows a model sample viewed from above.

モデル血液として、ヘモグロビン還元体、ヘモグロビン酸化体の近赤外領域(800nm付近)の吸収スペクトルと一致するスペクトルを示す色素を各々選び、2種類の水溶液を作製した(モデル1:ヘモグロビン還元体の水溶液、モデル2:ヘモグロビン酸化体の水溶液)。各モデル血液にグルコースを0mg/dl〜500mg/dl(100mg/dl刻み)を加え、モデル腫瘍成分とした。ブロックに作製した溝の中に空気が残らないように注意しながらモデル腫瘍成分を注入した(奇数の溝にモデル1、偶数の溝にモデル2)。ブロック上に薄板を注意深く置いて空気層ができないように密着させた。   Two types of aqueous solutions were prepared as model blood by selecting pigments each showing a spectrum that matches the absorption spectrum in the near infrared region (around 800 nm) of hemoglobin reductant and hemoglobin oxidant (Model 1: aqueous solution of hemoglobin reductant) Model 2: Aqueous hemoglobin solution). Glucose was added to each model blood at 0 mg / dl to 500 mg / dl (in increments of 100 mg / dl) to obtain model tumor components. Model tumor components were injected with care not to leave air in the grooves made in the block (Model 1 in odd-numbered grooves and Model 2 in even-numbered grooves). A thin plate was carefully placed on the block so that no air layer was formed.

測定波長をヘモグロビン還元体、ヘモグロビン酸化体、グルコースの吸収帯と合わせて760nm、840nm、905nmとし、光源として3本の近赤外LD(連続発振LDをそれぞれ周波数500kHz、600kHz、700kHzの正弦波で強度変調したもの)を選んだ。各LDから出力する変調光をフィルター上で合波し、1本の光ファイバー(石英シングルコア、250μm径)を介してサンプル上に光照射する形状とした。一方、光ファイバー(プラスチックマルチコア、500μm径)で出射光を転送し、高速応答アバラシェSiフォトダイオードに対数アンプを接続したシステム(OE検出器、サブnW〜10mWまでの出力を検出可能)にて光検出した。2本の光ファイバー間の距離は3cmとした。OE出力をロックインアンプにつなぎ、LDドライバーへの信号で外部トリガーをかけることにより各LDの出力を独立して検出できるようにした。ロックインアンプからの出力をメインアンプで更に増幅した後にAD変換してPCに取り込むようにした。   The measurement wavelength is 760 nm, 840 nm, and 905 nm in combination with the hemoglobin reductant, hemoglobin oxidant, and glucose absorption bands, and three near-infrared LDs as light sources (continuous oscillation LDs are sine waves with frequencies of 500 kHz, 600 kHz, and 700 kHz, respectively). Intensity modulated) was selected. The modulated light output from each LD was combined on a filter, and the sample was irradiated with light through one optical fiber (quartz single core, 250 μm diameter). On the other hand, light is detected by a system (OE detector, which can detect output from sub nW to 10 mW) that transmits outgoing light through an optical fiber (plastic multi-core, 500 μm diameter) and connects a logarithmic amplifier to a high-speed response avalache Si photodiode. did. The distance between the two optical fibers was 3 cm. By connecting the OE output to a lock-in amplifier and applying an external trigger with a signal to the LD driver, the output of each LD can be detected independently. The output from the lock-in amplifier was further amplified by the main amplifier and then AD converted to be taken into the PC.

まず溝のない位置の上にプローブを合わせた状態で各LDからの光出力をロックインアンプで検出し、吸収体がない状態でモデルを通過してくる光強度を計測した。LDに供給する電流値を調整し、3つのLD出力が同程度(10nW〜サブμWレベル)になるようにした。溝のある位置の上をプローブが通過して再び溝のない位置の上に来るまで、プローブを光源ファイバーの位置を中心にして回転させた。一例を図4に示す。これは光源の位置を変えずに検出器の位置だけを変化させることに対応し、光の入射条件をできるだけ一定に保つために行った。プローブは15度刻みに回転させた。0度と180度の場合の測定値を平均した値を吸収体がない場合の計測結果とし、この値と各位置での計測結果との差分を吸収に由来する変化に対応させた。   First, the light output from each LD was detected with a lock-in amplifier while the probe was placed on the position where there was no groove, and the light intensity passing through the model without the absorber was measured. The current value supplied to the LD was adjusted so that the three LD outputs were of the same level (10 nW to sub-μW level). The probe was rotated around the position of the source fiber until the probe passed over the grooved position and again over the grooveless position. An example is shown in FIG. This corresponds to changing only the position of the detector without changing the position of the light source, and was performed in order to keep the light incident condition as constant as possible. The probe was rotated in 15 degree increments. A value obtained by averaging measured values at 0 degrees and 180 degrees was used as a measurement result when there was no absorber, and a difference between this value and a measurement result at each position was made to correspond to a change derived from absorption.

6種類の薄板(厚み5mm〜30mm、5mm刻み)のそれぞれに対して、5種類の溝の幅(5mm〜25mm、5mm刻み)にグルコース濃度0mg/dlである2種類のモデル腫瘍成分(元々のモデル血液)を注入して計測した。すべての薄板について、奇数の溝では760nmLD、偶数の溝では840nmLDに対する信号強度が減少し、他の2波長のLD強度は変化しなかった。この測定結果から、該当する吸収体の存在を検知したと解釈した。溝の幅が25mmから5mmと減少するに従って差分が減少したが、雑音から区別して観測することができた。また薄板の厚みが増すに従って、溝のない位置での通過光強度が大幅に小さくなり、LDに供給する電流値を大きくして光出力を大きくした。   For each of the six types of thin plates (thickness 5 mm to 30 mm, in increments of 5 mm), two types of model tumor components (originally having a glucose concentration of 0 mg / dl in 5 groove widths (5 mm to 25 mm, increments of 5 mm)) Model blood) was injected and measured. For all the thin plates, the signal intensity for 760 nm LD in the odd-numbered grooves and 840 nm LD in the even-numbered grooves decreased, and the LD intensity of the other two wavelengths did not change. From this measurement result, it was interpreted that the presence of the corresponding absorber was detected. Although the difference decreased as the groove width decreased from 25 mm to 5 mm, it could be observed separately from noise. Also, as the thickness of the thin plate increased, the intensity of light passing through the groove-free position was significantly reduced, and the current supplied to the LD was increased to increase the light output.

次に薄板の厚み15mm、溝の幅15mmの場合にグルコース濃度0mg/dl〜500mg/dl(100mg/dl刻み)としたモデル腫瘍成分を各々溝に注入して計測を行った。各LD強度に注目したところ、奇数の溝では760nmLDと905nmLD、偶数の溝では840nmLDと905nmLDに対する信号強度が減少し、残り1波長のLDに対する信号強度には大きな変化が見られなかった。グルコース濃度を大きくするに従って905nmLDの差分は大きくなったが、関数形を決められるほどのSN比は得られなかった。残り2波長のLDの差分にはグルコース濃度の影響が現れなかった。更に溝の幅と差分の関係を調べたところ、溝の幅を小さくすると差分は小さくなり、元のLD強度を大きくすることが必要であった。また薄板の厚みを厚くすると、溝の幅を小さくしたときと同じ傾向が観察された。   Next, when the thickness of the thin plate was 15 mm and the width of the groove was 15 mm, a model tumor component having a glucose concentration of 0 mg / dl to 500 mg / dl (in increments of 100 mg / dl) was injected into each groove for measurement. When attention was paid to each LD intensity, the signal intensity for the 760 nm LD and 905 nm LD in the odd-numbered grooves and the 840 nm LD and 905 nm LD in the even-numbered grooves decreased, and no significant change was observed in the signal intensity for the remaining one wavelength LD. As the glucose concentration was increased, the difference of 905 nm LD was increased, but an SN ratio sufficient to determine the function form was not obtained. The effect of glucose concentration did not appear in the difference between the remaining two wavelengths of LD. Further, when the relationship between the groove width and the difference was examined, the difference was reduced when the groove width was reduced, and it was necessary to increase the original LD intensity. When the thickness of the thin plate was increased, the same tendency as when the groove width was decreased was observed.

これらの結果を総合して、ヘモグロビン酸化体またはヘモグロビン還元体が共存している場合でもグルコースに由来する光吸収を905nm光によって計測することができると解釈した。   By combining these results, it was interpreted that the light absorption derived from glucose can be measured with 905 nm light even in the presence of an oxidized hemoglobin or reduced hemoglobin.

実施例2
実施例1と同一のモデルサンプルを用いて装置の評価を行った。
Example 2
The apparatus was evaluated using the same model sample as in Example 1.

測定波長をヘモグロビン還元体、ヘモグロビン酸化体、グルコースの吸収帯と合わせて760nm、840nm、1640nmとし、光源として3本の近赤外LD(時間幅10ns、繰り返し周波数10Hzでパルス発振させたもの)を選んだ。各LDから出力する変調光をフィルター上で合波し、1本の光ファイバー(石英シングルコア、250μm径)を介してサンプル上に光照射する形状とした。一方、音響素子を光入射面に対して垂直な面に音響整合層を介して密着させた状況で音響波を検出した。音響信号はLDドライバーの信号で外部トリガーをかけたロックインアンプにつなぎ、各LDの出力を独立して検出できるようにした。ロックインアンプからの出力をメインアンプで更に増幅した後にAD変換してPCに取り込むようにした。なおサンプル内に入射する光強度をLDごとにモニタするために実施例1で用いたプローブを流用し、高速応答Siフォトダイオード(760nmと840nm)またはInGaAsフォトダイオード(1640nm)で入射光強度をモニタした。   The measurement wavelength is 760 nm, 840 nm, and 1640 nm including the hemoglobin reductant, hemoglobin oxidant, and glucose absorption bands, and three near-infrared LDs (light pulsed with a time width of 10 ns and a repetition frequency of 10 Hz) as light sources. I chose. The modulated light output from each LD was combined on a filter, and the sample was irradiated with light through one optical fiber (quartz single core, 250 μm diameter). On the other hand, an acoustic wave was detected in a state where the acoustic element was brought into close contact with a surface perpendicular to the light incident surface via an acoustic matching layer. The acoustic signal is connected to a lock-in amplifier with an external trigger applied by the signal from the LD driver so that the output of each LD can be detected independently. The output from the lock-in amplifier was further amplified by the main amplifier and then AD converted to be taken into the PC. In addition, in order to monitor the light intensity incident on the sample for each LD, the probe used in Example 1 is used, and the incident light intensity is monitored with a fast response Si photodiode (760 nm and 840 nm) or an InGaAs photodiode (1640 nm). did.

まず溝のない位置の上に光照射ファイバーを設置した後に各LDからの光出力をロックインアンプで検出し、吸収体がない状態でモデルを通過してくる光強度およびモデルから発生する光音響信号を計測した。光強度をモニタしながらLDに供給する電流値を調整し、3つのLD出力が同程度(10nW〜サブμWレベル)になるようにした。この状態で計測される光音響信号は3種類のLDに同期するものではないため、特定の吸収体に由来しないバックグラウンド雑音と解釈した。   First, after setting the light irradiation fiber on the position where there is no groove, the light output from each LD is detected by a lock-in amplifier, the light intensity passing through the model without the absorber and the photoacoustic generated from the model The signal was measured. The current value supplied to the LD was adjusted while monitoring the light intensity, so that the three LD outputs were of the same level (10 nW to sub-μW level). Since the photoacoustic signal measured in this state is not synchronized with the three types of LDs, it was interpreted as background noise not derived from a specific absorber.

溝のある位置の上に光照射ファイバーを設置し、音響素子が図3と同様の相対配置になるように密着した後に、光音響信号を計測した。6種類の薄板(厚み5mm〜30mm、5mm刻み)のそれぞれに対して、5種類の溝の幅(5mm〜25mm、5mm刻み)にグルコース濃度0mg/dlである2種類のモデル腫瘍成分(元々のモデル血液)を注入して計測した。すべての薄板について、奇数の溝では760nmLD、偶数の溝では840nmLDの周波数に同期する信号強度が観測された。この測定結果から、該当する吸収体の存在を検知したと解釈した。溝の幅が25mmから5mmと減少するに従って同期する音響信号は減少したが、バックグランド雑音から区別して観測することができた。また薄板の厚みが増すに従って、溝のない位置での通過光強度が大幅に小さくなり、LDに供給する電流値を大きくして光出力を大きくした。   The light irradiation fiber was installed on the position with the groove, and after the acoustic elements were brought into close contact with each other in the same relative arrangement as in FIG. 3, the photoacoustic signal was measured. For each of the six types of thin plates (thickness 5 mm to 30 mm, in increments of 5 mm), two types of model tumor components (originally having a glucose concentration of 0 mg / dl in 5 groove widths (5 mm to 25 mm, increments of 5 mm)) Model blood) was injected and measured. For all the thin plates, signal intensity synchronized with the frequency of 760 nm LD in the odd-numbered grooves and 840 nm LD in the even-numbered grooves was observed. From this measurement result, it was interpreted that the presence of the corresponding absorber was detected. As the groove width decreased from 25 mm to 5 mm, the synchronized acoustic signal decreased, but could be observed separately from the background noise. Also, as the thickness of the thin plate increased, the intensity of light passing through the groove-free position was significantly reduced, and the current supplied to the LD was increased to increase the light output.

次に薄板の厚み15mm、溝の幅15mmの場合にグルコース濃度0mg/dl〜500mg/dl(100mg/dl刻み)としたモデル腫瘍成分を各々溝に注入して計測を行った。各LD周波数と同期する音響信号に注目したところ、奇数の溝では760nmLDと1640nmLD、偶数の溝では840nmLDと1640nmLDの周波数に同期する信号強度が観測された。グルコース濃度を大きくするに従って1640nmLDに同期する信号強度は大きくなったが、関数形を決めるのに十分なSN比は得られなかった。残り2波長のLDに同期する信号強度にはグルコース濃度の影響が現れなかった。更に溝の幅と差分の関係を調べたところ、溝の幅を小さくすると同期する信号強度は小さくなり、元のLD強度を大きくすることが必要であった。また薄板の厚みを厚くすると、溝の幅を小さくしたときと同じ傾向が観察された。   Next, when the thickness of the thin plate was 15 mm and the width of the groove was 15 mm, a model tumor component having a glucose concentration of 0 mg / dl to 500 mg / dl (in increments of 100 mg / dl) was injected into each groove for measurement. Focusing on acoustic signals synchronized with each LD frequency, signal intensities synchronized with frequencies of 760 nmLD and 1640 nmLD were observed in the odd-numbered grooves, and 840 nmLD and 1640 nmLD were observed in the even-numbered grooves. As the glucose concentration was increased, the signal intensity synchronized with 1640 nm LD was increased, but an SN ratio sufficient to determine the function shape was not obtained. The effect of glucose concentration did not appear on the signal intensity synchronized with the remaining two wavelengths of LD. Further, when the relationship between the groove width and the difference was examined, when the groove width was reduced, the synchronized signal intensity was reduced, and it was necessary to increase the original LD intensity. When the thickness of the thin plate was increased, the same tendency as when the groove width was decreased was observed.

これらの結果を総合して、ヘモグロビン酸化体またはヘモグロビン還元体が共存している場合でもグルコースに由来する光吸収を1640nm光によって計測することができると解釈した。   By combining these results, it was interpreted that the light absorption derived from glucose can be measured by 1640 nm light even in the presence of a hemoglobin oxidant or a hemoglobin reductant.

本発明の腫瘍検査装置の一例を示す概略図。Schematic which shows an example of the tumor test | inspection apparatus of this invention. 本発明の腫瘍検査装置のプローブを示す概略図。Schematic which shows the probe of the tumor test | inspection apparatus of this invention. 本発明の腫瘍検査装置内の光照射ファイバーと音響素子の配置を示す概略図。Schematic which shows arrangement | positioning of the light irradiation fiber and acoustic element in the tumor test | inspection apparatus of this invention. 本発明の腫瘍検査装置のプローブをモデルサンプル上で回転させている様子を示した図。The figure which showed a mode that the probe of the tumor test | inspection apparatus of this invention was rotated on the model sample. 生体組織のモデルサンプルの上面図。The top view of the model sample of a biological tissue.

符号の説明Explanation of symbols

1 ファンクションジェネレータ
2 LDドライバー+LDヘッド
3 光合波・結合器
4 光照射用の光ファイバー
5 生体モデルサンプル
6 光検出用の光ファイバー
7 OE変換器(フォトダイオード+プリアンプ)
8 ロックインアンプ
9 AC結合アンプ(+メインアンプ)
10 AD変換器+PC
11 プローブ
12 薄板
13 モデルブロック
14 モデル血液いり溝
20 光照射用および光検出用の光ファイバー
30 金属筒
40 ポリマーキャップ
50 音響素子
1 Function generator 2 LD driver + LD head 3 Optical multiplexer / coupler 4 Optical fiber for light irradiation 5 Biological model sample 6 Optical fiber for optical detection 7 OE converter (photodiode + preamplifier)
8 Lock-in amplifier 9 AC coupling amplifier (+ main amplifier)
10 AD converter + PC
DESCRIPTION OF SYMBOLS 11 Probe 12 Thin plate 13 Model block 14 Model blood groove 20 Optical fiber 30 for light irradiation and light detection Metal cylinder 40 Polymer cap 50 Acoustic element

Claims (6)

グルコースの光吸収帯の第1の波長を有する第1の光と、水の光吸収帯の第2の波長を有する第2の光を、生体組織の複数の領域に照射する照射手段と、
前記照射手段による前記生体組織からの出射光を検出する検出手段と、
前記検出手段により検出された前記出射光の前記第1及び前記第2の波長における光の強度の増減を解析して、前記複数の領域におけるグルコース及び水の濃度分布を演算する演算手段と、
前記濃度分布を解析して、前記グルコースの濃度が高い領域と前記水の濃度が低い領域とが交互に現れる領域の有無を判定する判定手段とを備えることを特徴とする腫瘍検査装置。
Irradiation means for irradiating a plurality of regions of biological tissue with first light having a first wavelength in the light absorption band of glucose and second light having a second wavelength in the light absorption band of water;
Detecting means for detecting light emitted from the living tissue by the irradiation means;
Analyzing the increase and decrease of the light intensity at the first and second wavelengths of the emitted light detected by the detection means, computing means for computing the concentration distribution of glucose and water in the plurality of regions,
A tumor examination apparatus comprising: a determination unit that analyzes the concentration distribution and determines the presence / absence of a region in which a region having a high glucose concentration and a region having a low water concentration appear alternately.
前記照射手段では、前記第1及び第2の光を同一光路上で重ね合わせることを特徴とする請求項1に記載の腫瘍検査装置。   The tumor examination apparatus according to claim 1, wherein the irradiation unit superimposes the first and second lights on the same optical path. グルコースの光吸収帯の第1の波長を有する第1の光と、水の光吸収帯の第2の波長を有する第2の光と、ヘモグロビンの光吸収帯の第3の波長を有する第3の光を、生体組織の複数の領域に照射する照射手段と、
前記照射手段による前記生体組織からの出射光を検出する検出手段と、
前記検出手段により検出された前記出射光の前記第1、前記第2及び前記第3の波長における光の強度の増減を解析して、前記複数の領域におけるグルコース、水及びヘモグロビンの濃度分布を演算する演算手段と、
前記濃度分布を解析して、前記グルコースの濃度及び前記ヘモグロビンが高い領域と前記水の濃度が低い領域とが交互に現れる領域の有無を判定する判定手段とを備えることを特徴とする腫瘍検査装置。
A first light having a first wavelength in the light absorption band of glucose, a second light having a second wavelength in the light absorption band of water, and a third light having a third wavelength in the light absorption band of hemoglobin. Irradiating means for irradiating a plurality of regions of biological tissue with
Detecting means for detecting light emitted from the living tissue by the irradiation means;
Analyzing increase / decrease in light intensity at the first, second and third wavelengths of the emitted light detected by the detection means, and calculating concentration distribution of glucose, water and hemoglobin in the plurality of regions Computing means for
A tumor examination apparatus comprising: a determination unit that analyzes the concentration distribution and determines whether or not there is a region in which a region where the glucose concentration and the hemoglobin are high and a region where the water concentration is low appear alternately .
前記照射手段では、前記第1、第2及び第3の光を同一光路上で重ね合わせることを特徴とする請求項3に記載の腫瘍検査装置。   The tumor examination apparatus according to claim 3, wherein the irradiation unit superimposes the first, second, and third lights on the same optical path. 前記測定手段は、前記照射手段を固定して、前記検出手段を回転させることを特徴とする請求項1乃至4のいずれか1項に記載の腫瘍検査装置。   5. The tumor examination apparatus according to claim 1, wherein the measurement unit fixes the irradiation unit and rotates the detection unit. 6. グルコースの光吸収帯の波長を有する第1の光と、水の光吸収帯の波長を有する第2の光を、生体組織の測定部位に照射する照射手段と、
前記測定部位から発生する音響波を検出する検出手段と、
前記検出手段で検知する超音波の到達時刻から前記音響波の発生部位を演算する演算手段と、
前記音響波の発生部位と音響波の振幅値から空間分布画像を構成し、前記空間分布画像内の被検査部における空間分布値と、前記空間分布画像内の正常部位における空間分布値を閾値として、それぞれを比較する判定手段と、
を備えることを特徴とする腫瘍検査装置。
An irradiation means for irradiating a measurement site of biological tissue with a first light having a wavelength of a light absorption band of glucose and a second light having a wavelength of a light absorption band of water;
Detecting means for detecting an acoustic wave generated from the measurement site;
Calculation means for calculating the generation site of the acoustic wave from the arrival time of the ultrasonic wave detected by the detection means;
A spatial distribution image is constructed from the acoustic wave generation site and the acoustic wave amplitude value, and the spatial distribution value in the inspected part in the spatial distribution image and the spatial distribution value in the normal site in the spatial distribution image are used as threshold values. Determining means for comparing each;
A tumor examination apparatus comprising:
JP2006095782A 2006-03-30 2006-03-30 Tumor testing device Expired - Fee Related JP4559995B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006095782A JP4559995B2 (en) 2006-03-30 2006-03-30 Tumor testing device
US11/686,744 US20070232911A1 (en) 2006-03-30 2007-03-15 Device for photodetecting tumor
CNB2007100893783A CN100477955C (en) 2006-03-30 2007-03-23 Device for photodetecting tumor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095782A JP4559995B2 (en) 2006-03-30 2006-03-30 Tumor testing device

Publications (2)

Publication Number Publication Date
JP2007267848A JP2007267848A (en) 2007-10-18
JP4559995B2 true JP4559995B2 (en) 2010-10-13

Family

ID=38560162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095782A Expired - Fee Related JP4559995B2 (en) 2006-03-30 2006-03-30 Tumor testing device

Country Status (3)

Country Link
US (1) US20070232911A1 (en)
JP (1) JP4559995B2 (en)
CN (1) CN100477955C (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405560B (en) * 2009-12-15 2013-08-21 Nat Univ Tsing Hua Imaging method and system for microcalcification in tissue
JP5736116B2 (en) * 2010-03-15 2015-06-17 ソニー株式会社 Calculation device
WO2011152747A1 (en) * 2010-06-01 2011-12-08 H.L Human Laser Limited Photoacoustic material analysis
CN102313718B (en) * 2011-08-05 2014-04-30 华南师范大学 Detection device for biological tissue light-transfer characteristic
EP2554115B1 (en) * 2011-08-05 2015-02-25 Canon Kabushiki Kaisha Apparatus and method for acquiring information on subject
JP5367196B1 (en) * 2012-09-10 2013-12-11 株式会社シンクロン Measuring apparatus and film forming apparatus
CN104146714B (en) * 2014-08-21 2017-03-22 天津大学 Organizer local oxyhemoglobin saturation variation topology imaging device and method
JP6352750B2 (en) * 2014-09-26 2018-07-04 シスメックス株式会社 Blood analyzer and blood analysis method
JP6551723B2 (en) * 2014-11-13 2019-07-31 株式会社リコー Optical sensor, optical inspection apparatus, and optical property detection method
CN104382557A (en) * 2014-11-20 2015-03-04 西安邮电大学 Infrared spectrum analysis based cancer cell early-warning method and system
US10067056B2 (en) * 2015-01-06 2018-09-04 Ricoh Company, Ltd. Optical sensor, optical inspection device, and optical property detection method for detecting light propagated inside a test object
CN106618501B (en) * 2016-12-29 2021-05-04 哈尔滨工业大学 Tumor imaging system based on near infrared spectrum blood oxygen concentration measurement and experimental detection method thereof
CN108720809B (en) * 2018-06-13 2021-07-13 西安艾迪爱激光影像股份有限公司 QA model of human breast imitation and manufacturing method
CN110367999B (en) * 2019-07-17 2021-07-09 李宏杰 Breast blood oxygen function imaging assisted with thermal therapy early-stage breast cancer detection system
KR102466236B1 (en) * 2020-11-17 2022-11-15 ㈜에이치엠이스퀘어 Photoacoustic diagnosis apparatus and method using a combination of laser having a single wavelength.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506202A (en) * 1995-06-07 1999-06-02 オプティクス エルピー Method for minimizing scatter and improving tissue sampling in non-invasive examination and imaging
JP2004147940A (en) * 2002-10-31 2004-05-27 Toshiba Corp Method and instrument for noninvasive measurement of biological information
JP2004531311A (en) * 2001-04-13 2004-10-14 アボット・ラボラトリーズ Optically measuring tissue to determine disease state or analyte concentration
JP2005021380A (en) * 2003-07-02 2005-01-27 Toshiba Corp Living body information imaging apparatus
JP2005218684A (en) * 2004-02-06 2005-08-18 Toshiba Corp Apparatus and method for noninvasive biological information image

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4515165A (en) * 1980-02-04 1985-05-07 Energy Conversion Devices, Inc. Apparatus and method for detecting tumors
US4968137A (en) * 1986-12-05 1990-11-06 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon Health Sciences University Devices and procedures for in vitro testing of pulse oximetry monitors
US5782755A (en) * 1993-11-15 1998-07-21 Non-Invasive Technology, Inc. Monitoring one or more solutes in a biological system using optical techniques
US5225672A (en) * 1990-10-03 1993-07-06 Spacelabs Medical, Inc. Method and apparatus for detecting movement of an electro-optical transducer
US5371368A (en) * 1992-07-23 1994-12-06 Alfano; Robert R. Ultrafast optical imaging of objects in a scattering medium
DE4337570A1 (en) * 1993-11-04 1995-05-11 Boehringer Mannheim Gmbh Method for the analysis of glucose in a biological matrix
US5983122A (en) * 1997-12-12 1999-11-09 Ohmeda Inc. Apparatus and method for improved photoplethysmographic monitoring of multiple hemoglobin species using emitters having optimized center wavelengths
US6615061B1 (en) * 1998-11-23 2003-09-02 Abbott Laboratories Optical sensor having a selectable sampling distance for determination of analytes
US6205353B1 (en) * 1998-12-22 2001-03-20 Research Foundation Of Cuny Time-resolved optical backscattering tomographic image reconstruction in scattering turbid media
US6680172B1 (en) * 2000-05-16 2004-01-20 Regents Of The University Of Michigan Treatments and markers for cancers of the central nervous system
CN100483106C (en) * 2002-09-29 2009-04-29 天津市先石光学技术有限公司 Optical method for detecting discerptible medium skin layer and deep layer information
US7706862B2 (en) * 2003-04-17 2010-04-27 Research Foundation Of The City University Of New York Detecting human cancer through spectral optical imaging using key water absorption wavelengths
US7251516B2 (en) * 2004-05-11 2007-07-31 Nostix Llc Noninvasive glucose sensor
CA2581400C (en) * 2004-09-24 2017-10-31 Art, Advanced Research Technologies Inc. Optical imaging method for tissue characterization
CN101188968B (en) * 2005-03-09 2010-09-29 拉米尔·法里托维奇·穆辛 Method and device for microcalorimetrically measuring a tissue local metabolism speed, intracellular tissue water content, blood biochemical component concentration and a cardio-vascular system tensio
WO2007100937A2 (en) * 2006-01-19 2007-09-07 The Regents Of The University Of Michigan System and method for spectroscopic photoacoustic tomography

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506202A (en) * 1995-06-07 1999-06-02 オプティクス エルピー Method for minimizing scatter and improving tissue sampling in non-invasive examination and imaging
JP2004531311A (en) * 2001-04-13 2004-10-14 アボット・ラボラトリーズ Optically measuring tissue to determine disease state or analyte concentration
JP2004147940A (en) * 2002-10-31 2004-05-27 Toshiba Corp Method and instrument for noninvasive measurement of biological information
JP2005021380A (en) * 2003-07-02 2005-01-27 Toshiba Corp Living body information imaging apparatus
JP2005218684A (en) * 2004-02-06 2005-08-18 Toshiba Corp Apparatus and method for noninvasive biological information image

Also Published As

Publication number Publication date
US20070232911A1 (en) 2007-10-04
CN100477955C (en) 2009-04-15
JP2007267848A (en) 2007-10-18
CN101044978A (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP4559995B2 (en) Tumor testing device
JP5349839B2 (en) Biological information imaging device
JP7458078B2 (en) Tissue measurement sensor
US10912504B2 (en) Near-infrared spectroscopy and diffuse correlation spectroscopy device and methods
JP5197779B2 (en) Biological information imaging apparatus, biological information analysis method, and biological information imaging method
US7551950B2 (en) Optical apparatus and method of use for non-invasive tomographic scan of biological tissues
JP4490587B2 (en) Device for noninvasive detection of oxygen metabolism in tissues
JP4469903B2 (en) Biological information imaging device
JP5219440B2 (en) measuring device
JP5183381B2 (en) Measuring apparatus and measuring method
US20090069674A1 (en) Measurement apparatus
US8426819B2 (en) Method for the non-invasive optic determination of the temperature of a medium
JP2006521869A (en) Photoacoustic analysis evaluation method and apparatus
JP2008168137A (en) Optical distance optional type method for atraumatic measurement of human body component, and apparatus therefor
EP2950711A1 (en) Detection, diagnosis and monitoring of osteoporosis by a photo-acoustic method
US20160051149A1 (en) Photoacoustic Probe for Burn Injury Diagnosis
JP2019055293A (en) Biological information imaging apparatus, biological information analysis method, and biological information imaging method
JP2007267837A (en) Biolight measuring apparatus
JP2007082658A (en) Cerebral circulation blood flow measuring device
JP2009232876A (en) Biopsy probe, and biopsy apparatus
CN104880468B (en) Visit distance and determine method and system in a kind of millimeter wave probe source
KR102542585B1 (en) Free-region scanning pen-type photoacoustic tomographic sensing for melanin assessment under the skin surface
Kothapalli et al. Imaging of optical scattering contrast using ultrasound-modulated optical tomography
Vitkin et al. The use of polarized light for the measurement of glucose concentration and the study of multiple scattering in turbid chiral media
Mostafa Guang Yang, Eghbal Amidi, Sreyankar Nandy, Atahar

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees