JP2010080185A - Microwave heating apparatus - Google Patents

Microwave heating apparatus Download PDF

Info

Publication number
JP2010080185A
JP2010080185A JP2008245831A JP2008245831A JP2010080185A JP 2010080185 A JP2010080185 A JP 2010080185A JP 2008245831 A JP2008245831 A JP 2008245831A JP 2008245831 A JP2008245831 A JP 2008245831A JP 2010080185 A JP2010080185 A JP 2010080185A
Authority
JP
Japan
Prior art keywords
unit
reflected wave
output
frequency
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008245831A
Other languages
Japanese (ja)
Inventor
Makoto Mihara
誠 三原
Tomotaka Nobue
等隆 信江
Kenji Yasui
健治 安井
Yoshiharu Omori
義治 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2008245831A priority Critical patent/JP2010080185A/en
Publication of JP2010080185A publication Critical patent/JP2010080185A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/705Feed lines using microwave tuning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem of causing a change in the frequency at which a reflective wave gets minimum, according to a change during heating of food. <P>SOLUTION: This microwave heating apparatus includes microwave generating sections 3a-3d having output parts 2a-2d connected to a plurality of semiconductor oscillating parts 1a-1d; reflected wave monitoring sections 6a-6d always monitoring a heating chamber 5 and a reflected wave level; a control section 4 receiving the signals and controlling output; and a threshold 10 for not resulting in breakage. When the respective values of signals of the reflected wave monitoring sections 6a-6d exceed the threshold 10, a semiconductor is prevented from breakage by performing negative feedback control so that the output of the semiconductor oscillating parts 1a-1d are the threshold 10 or less. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、マイクロ波を照射して加熱対象物である被加熱物加熱処理するマイクロ波加熱装置に関するものである。   The present invention relates to a microwave heating apparatus that heats an object to be heated, which is an object to be heated, by irradiating microwaves.

マイクロ波により対象物を加熱処理するマイクロ波加熱装置の代表的な装置としては電子レンジがある。電子レンジにおいては、マイクロ波発生装置においてマイクロ波が金属性の加熱室の内部に放射され、加熱室内部の被加熱物を放射されたマイクロ波により加熱処理される。   There is a microwave oven as a typical device of a microwave heating device that heats an object by using a microwave. In a microwave oven, microwaves are radiated into a metallic heating chamber in a microwave generator, and an object to be heated in the heating chamber is heated by the radiated microwaves.

従来、このマイクロ波加熱装置としては半導体発振部とこの半導体発振部の発振出力を複数に分割する分割部と分割された発振出力を各々増幅する分割器と分割された発振出力を各々増幅する合成部とを備えるとともに、この合成器と加熱室とのあいだの反射波を検出する検出手段を設け、この検出手段が検出する反射波の量に応じて発振器の発振状態を変化させるものであった。
特開昭56−134491号公報
Conventionally, as this microwave heating apparatus, a semiconductor oscillating unit, a dividing unit that divides the oscillation output of the semiconductor oscillating unit into a plurality, a divider that amplifies each divided oscillation output, and a synthesis that amplifies each divided oscillation output. And a detecting means for detecting a reflected wave between the synthesizer and the heating chamber, and changing the oscillation state of the oscillator according to the amount of the reflected wave detected by the detecting means. .
JP-A-56-134491

しかしながら、前記従来の構成では各々の半導体発振部を合成部で合成しているため一箇所の給電口からの発振出力に関しての反射波を常に監視して、反射波がある程度以上大きくなったならば、発振器の発振を停止するか、または発振周波数を変化させるか、または停止させるか、または発振出力を変化させ小さくすることによって、アイソレータなどの半導体発振部用保護手段を用いずとも、半導体部を破壊させないものであった。   However, in the conventional configuration, since the semiconductor oscillation units are synthesized by the synthesis unit, the reflected wave related to the oscillation output from one power supply port is always monitored, and the reflected wave becomes larger than a certain level. By stopping the oscillation of the oscillator, changing or stopping the oscillation frequency, or changing and reducing the oscillation output, the semiconductor unit can be reduced without using a protection means for the semiconductor oscillation unit such as an isolator. It was something that could not be destroyed.

また、発振出力を変化させ小さくするといっても、どこまで小さくするのかということが不明確である。また、その制御律則も極めて不明確である。また加熱室との間の反射波を検出する検出手段を検知すると言及しているが、合成部の反射波を検出している場合においては、半導体発振器各々にどれだけ反射波負担が加わっているのかが不明確で、完全に半導体発振器を保護し得ているのかに不確かさが残る。   Moreover, even if the oscillation output is changed and reduced, it is unclear how much it is reduced. Also, the control law is very unclear. In addition, although it is said that the detection means for detecting the reflected wave between the heating chamber is detected, how much the reflected wave burden is applied to each semiconductor oscillator when the reflected wave of the synthesis unit is detected. It is unclear whether the semiconductor oscillator can be completely protected.

また、複数の半導体発振部とそれに続く給電口を設け、加熱室内部で空間合成する場合においては、一切触れられていない。   In addition, when a plurality of semiconductor oscillating units and subsequent power supply ports are provided and space synthesis is performed in the heating chamber, no mention is made.

本発明は上記課題を解決するもので、複数の半導体発振部を設けた構成においても各々の反射波負担を検出し、いずれか一つの半導体発振部に過大な反射波がかからないで、かつ最大限にマイクロ波を照射することができるマイクロ波加熱装置を提供することを目的とする。   The present invention solves the above-described problem. Even in a configuration in which a plurality of semiconductor oscillation units are provided, each reflected wave load is detected, and no excessive reflected wave is applied to any one of the semiconductor oscillation units. An object of the present invention is to provide a microwave heating apparatus that can irradiate microwaves.

前記従来の課題を解決するために、本発明のマイクロ波加熱装置は、少なくとも1個以上の半導体発振部に繋がる出力部を有するマイクロ波発生部と、被加熱物を収納する加熱室と、出力部の後段に位置し反射波レベルを常時監視する反射波モニター部を設けたものである。半導体発振部が破壊しない反射波レベルを決定するしきい値を備え、前記制御部は各々の前記反射波モニター部の信号が前記しきい値を超えると半導体発振部の出力をしきい値以下になるように発振周波数に対する負帰還制御をかけることによって、半導体発振部に過大な反射波エネルギーが加わらないように保護するとともに、反射波を許容する
しきい値まではマイクロ波加熱を行うためしきい値を超えない範囲まででの加熱の継続性を維持することができる。
In order to solve the above-described conventional problems, a microwave heating apparatus according to the present invention includes a microwave generation unit having an output unit connected to at least one semiconductor oscillation unit, a heating chamber for storing an object to be heated, and an output. The reflection wave monitor part which is located in the back | latter stage and always monitors a reflected wave level is provided. A threshold value for determining a reflected wave level at which the semiconductor oscillating unit is not destroyed, and the control unit reduces the output of the semiconductor oscillating unit to a threshold value or less when a signal of each of the reflected wave monitoring units exceeds the threshold value; By applying negative feedback control to the oscillation frequency so that excessive reflected wave energy is not applied to the semiconductor oscillation part, microwave heating is performed up to the threshold value that allows the reflected wave. The continuity of heating up to a range not exceeding the value can be maintained.

また本発明のマイクロ波加熱装置は、半導体発振部が破壊しない反射波レベルを決定する各々の出力部に応じたしきい値を備え、発振周波数に対する負帰還がかかる変化量がある所定量を超えた場合には加熱室からの反射量が増加した発振状態となっていると判断し、反射波モニター部の信号から検出される反射レベルが最小となる周波数を探り動作周波数を変更する構成とするため、再度反射が最小となる周波数に設定しなおすことができ、マイクロ波発振周波数に対して負帰還制御をかけマイクロ波発生部の発振周波数を変化させる出力を最大限にする最適周波数での加熱を再現することができる。   Further, the microwave heating apparatus of the present invention includes a threshold value corresponding to each output unit that determines a reflected wave level at which the semiconductor oscillation unit does not break down, and the amount of change to which negative feedback with respect to the oscillation frequency exceeds a predetermined amount. In such a case, it is determined that the oscillation state is such that the amount of reflection from the heating chamber is increased, and the operating frequency is changed by searching for the frequency at which the reflection level detected from the signal of the reflected wave monitoring unit is minimized. Therefore, the frequency at which reflection is minimized can be set again, and negative feedback control is applied to the microwave oscillation frequency, and heating at the optimum frequency that maximizes the output that changes the oscillation frequency of the microwave generator Can be reproduced.

本発明のマイクロ波加熱装置は、複数の半導体発振部に繋がる出力部を有するマイクロ波発生部と、被加熱物を収納する加熱室と、出力部の後段に位置し反射波レベルを常時監視する反射波モニター部と、反射波モニター部の信号を受け出力部の出力をコントロールする制御部と、半導体発振部が破壊しない反射波レベルを決定するしきい値とを備え、制御部は各々の反射波モニター部の信号の各々の反射モニター部の信号がしきい値を超えると前記半導体発振部の出力をしきい値以下になるように負帰還制御をかける構成としたものである。加熱中の食品の転倒や食品ラップが膨らんで被加熱物の嵩が膨大化する等が生じて加熱室のインピーダンスが変化する現象が生じても、その変化に負帰還制御をかけ、しきい値を超えないように半導体発振部の発振周波数が適切な周波数になるように作用し、反射波を抑制して過大な反射波が半導体発振部に戻り半導体素子が破壊することを防ぐものである。これによって常に反射波レベルを低く抑え食品への加熱集中を最大化することができる。   The microwave heating device of the present invention is located at the rear stage of the output unit, the microwave generation unit having the output unit connected to the plurality of semiconductor oscillation units, the heating chamber for storing the object to be heated, and constantly monitors the reflected wave level. A reflected wave monitor unit; a control unit that receives a signal from the reflected wave monitor unit and controls the output of the output unit; and a threshold value that determines a reflected wave level that the semiconductor oscillation unit does not destroy. When the signal of each reflection monitor part of the signal of the wave monitor part exceeds a threshold value, negative feedback control is performed so that the output of the semiconductor oscillation part becomes equal to or less than the threshold value. Even if the food is overheated or the food wrap swells and the volume of the object to be heated increases, causing the impedance of the heating chamber to change, negative feedback control is applied to the change, and the threshold value The oscillation frequency of the semiconductor oscillating unit is set to an appropriate frequency so as not to exceed the value, and the reflected wave is suppressed to prevent the excessively reflected wave from returning to the semiconductor oscillating unit and destroying the semiconductor element. This makes it possible to always keep the reflected wave level low and maximize the heating concentration on the food.

第1の発明は、複数の半導体発振部に繋がる出力部を有するマイクロ波発生部と、被加熱物を収納する加熱室と、出力部の後段に位置し反射波レベルを常時監視する反射波モニター部と、反射波モニター部の信号を受け出力部の出力をコントロールする制御部と、半導体発振部が破壊しない反射波レベルを決定する各々の出力部に応じたしきい値とを備え、制御部は各々の反射波モニター部がしきい値レベルを超えるとマイクロ波発生部の発振周波数を変化させることにより半導体発振部の出力をしきい値以下になるようにするものである。   A first invention is a microwave generation unit having an output unit connected to a plurality of semiconductor oscillation units, a heating chamber that houses an object to be heated, and a reflected wave monitor that is positioned downstream of the output unit and constantly monitors the level of the reflected wave A control unit that receives a signal from the reflected wave monitor unit and controls the output of the output unit, and a threshold value corresponding to each output unit that determines a reflected wave level that the semiconductor oscillation unit does not destroy. When each reflected wave monitoring unit exceeds a threshold level, the oscillation frequency of the microwave generation unit is changed so that the output of the semiconductor oscillation unit falls below the threshold value.

負帰還制御をかけマイクロ波発生部の発振周波数を変化させることにより、加熱中の食品の転倒や食品ラップが膨らんで被加熱物の嵩が膨大化する等が生じて加熱室のインピーダンスが変化する現象が生じても半導体発振部の発振周波数が適切な周波数になるように作用し、反射波を抑制して過大な反射波が半導体発振部に戻り半導体素子が破壊することを防ぐものである。これによって常に反射波レベルを低く抑え食品への加熱集中を最大化することができる。   By applying negative feedback control and changing the oscillation frequency of the microwave generator, the food being heated is overturned, the food wrap expands, the bulk of the object to be heated increases, and the impedance of the heating chamber changes. Even if the phenomenon occurs, the semiconductor oscillation unit operates so that the oscillation frequency becomes an appropriate frequency, and the reflected wave is suppressed to prevent the excessive reflected wave from returning to the semiconductor oscillation unit and destroying the semiconductor element. This makes it possible to always keep the reflected wave level low and maximize the heating concentration on the food.

第2の発明は、制御部としてマイクロコンピューターを用いるものである。各種演算処理、記憶機能等のデジタル演算処理がプロセス処理に必要となってくる本アプリケーションでは、他の多くの家電機器で数多く採用されているマイクロコンピューターは取り扱う数量も多くまたプロセスルールの微細化、ウェハの大口径化もあいまってトレンドとしては急激に低価格化しており経済的な面や性能面で優れている。そのような観点で将来的にも多くコストパフォーマンスが進化予想されるマイクロコンピューターを採用することは本機器にとって非常に経済面、性能面で有利な状態を築くことができる。   The second invention uses a microcomputer as the control unit. In this application, where digital processing such as various types of processing and storage functions are required for process processing, many microcomputers used in many other home appliances handle many quantities, and process rules are becoming finer. Along with the increase in diameter of wafers, the trend is drastically lowering the price, which is excellent in terms of economy and performance. From this point of view, adopting a microcomputer whose cost performance is expected to evolve in the future can be very economical and performance advantageous for this equipment.

第3の発明は、機器全体を制御しているマイクロコンピューター上の本発明の装置のマ
イクロコンピューターの機能を移植し冗長度を大幅に削減し経済的効果を発揮するとともに、2部品を1部品化するという観点から部品点数の削減にも繋がりシステム全体を簡素化することができる。
The third invention transplants the microcomputer function of the device of the present invention on the microcomputer that controls the entire device, greatly reduces the redundancy and exerts the economic effect, and combines two parts into one part. From the viewpoint of achieving this, the number of parts can be reduced, and the entire system can be simplified.

第4の発明は、複数の半導体発振部に繋がる出力部を有するマイクロ波発生部と、被加熱物を収納する加熱室と、出力部の後段に位置し反射波レベルを常時監視する反射波モニター部と、反射波モニター部の信号を受け出力部の出力をコントロールする制御部と、半導体発振部が破壊しない反射波レベルを決定する各々の出力部に応じた限界しきい値とを備え、負帰還がかかる変化量が限界しきい値を超えた場合には加熱室からの反射量が増加した発振状態となっていると判断し、制御部は反射波モニター部の出力を速やかに低下する。   According to a fourth aspect of the present invention, there is provided a microwave generation unit having an output unit connected to a plurality of semiconductor oscillation units, a heating chamber for storing an object to be heated, and a reflected wave monitor that is positioned downstream of the output unit and constantly monitors a reflected wave level. A control unit that receives a signal from the reflected wave monitor unit and controls the output of the output unit, and a threshold threshold value corresponding to each output unit that determines a reflected wave level at which the semiconductor oscillation unit does not break down. When the amount of change to which the feedback exceeds the limit threshold, it is determined that the oscillation state is such that the amount of reflection from the heating chamber is increased, and the control unit quickly decreases the output of the reflected wave monitoring unit.

これにより、過渡的な過大反射波に対しても半導体が破壊しない信頼性の高いシステムを実現することができる。その後反射波モニター部の信号から検出される反射レベルが最小となる周波数を探りマイクロ波発生部の発振周波数を変更した後出力を元の高いレベルに戻した後は負帰還制御をかけマイクロ波発生部の発振周波数を変化させる構成としたもので、一時的には出力は低下するが反射波の少ない周波数を決定した後は従来通りの高出力がえられるため、加熱室内のインピーダンスが変化しても速やかに元の出力に回復し加熱時間が極度に伸びることなく使い勝手に優れた機器を提供することができる。   As a result, it is possible to realize a highly reliable system in which the semiconductor is not destroyed even by a transient excessive reflected wave. After that, the frequency at which the reflection level detected from the signal of the reflected wave monitor is minimized, the oscillation frequency of the microwave generator is changed, the output is returned to the original high level, and then negative feedback control is applied to generate microwaves. The output frequency is temporarily reduced, but after determining a frequency with less reflected waves, the same high output is obtained as before, so the impedance in the heating chamber changes. In addition, it is possible to provide a device that is quickly recovered to its original output and that is easy to use without extremely increasing the heating time.

第5の発明は、負帰還がかかる頻度を積算し、ある所定量を超えた場合には加熱室からの反射量が増加した発振状態となっていると判断し、反射波モニター部の信号から検出される反射レベルが最小となる周波数を探りマイクロ波発生部の発振周波数を変更するもので負帰還がかかる頻度の増加を見て反射波の最小周波数からのずれを検知し速やかに最小周波数を再設定するもので、半導体への反射波のフィードバックを検知し半導体が破壊する前にマイクロ波発生部の発振周波数を反射波の少ない最適周波数に変更して反射波に対する耐性を著しく向上させるものである。   According to a fifth aspect of the present invention, the frequency at which negative feedback is applied is integrated, and when a certain predetermined amount is exceeded, it is determined that the amount of reflection from the heating chamber is in an oscillating state, and the reflected wave monitor signal is used. The frequency at which the detected reflection level is minimized is searched and the oscillation frequency of the microwave generator is changed.The frequency of negative feedback is increased and the deviation of the reflected wave from the minimum frequency is detected to quickly determine the minimum frequency. This is a reset to detect the feedback of the reflected wave to the semiconductor and change the oscillation frequency of the microwave generation part to the optimum frequency with few reflected waves before the semiconductor breaks down, so that the resistance to the reflected wave is remarkably improved. is there.

第6の発明は、負帰還がかかる頻度を積算し、ある所定量以下の場合には制御部は反射波モニター部の監視頻度を間引くもので、安定して加熱し反射波についても大きな変動がない場合に負帰還制御をモニタリングインターバル伸ばす構成とし、そのジョブを他の制御とタイムシェアリングすることで全体的な制御部バランスを低位平準化し、ひいては制御部の低廉化にも寄与しようとするものである。   In the sixth aspect of the invention, the frequency at which negative feedback is applied is integrated, and if the frequency is less than a predetermined amount, the control unit thins out the monitoring frequency of the reflected wave monitoring unit, and the reflected wave is greatly heated and greatly fluctuated. When there is not, the negative feedback control is configured to extend the monitoring interval, and the job is time-shared with other controls to lower the overall control unit balance and thereby contribute to the control unit cost reduction. It is.

第7の発明は、第一のしきい値と第二のしきい値を設け、第二のしきい値は第一のしきい値より大なるしきい値とし、制御部は反射波モニター部からの出力が第一しきい値を超え第二のしきい値未満の時には負帰還制御を行い、第二のしきい値を超える場合には加熱室からの反射量が増加した発振状態となっていると判断し、反射波モニター部の信号から検出される反射レベルが最小となる周波数を探りマイクロ波発生部の発振周波数を変更する。   The seventh invention provides a first threshold value and a second threshold value, the second threshold value is a threshold value larger than the first threshold value, and the control unit is a reflected wave monitor unit Negative feedback control is performed when the output from the generator exceeds the first threshold value and less than the second threshold value. When the output exceeds the second threshold value, the oscillation state is increased in the amount of reflection from the heating chamber. The oscillation frequency of the microwave generator is changed by searching for the frequency at which the reflection level detected from the signal of the reflected wave monitor is minimized.

こうすることによって、第二しきい値を超える過大な反射波に対しては速やかに反射レベルが最小となる周波数を探り、再設定するため反射波に対する耐性を著しく向上させるとともに平常時、通常の負帰還制御を実施するため反射波の一定制御(安定制御)は維持できるため信頼性の高い反射波防御システムを提供することができる。   In this way, for excessive reflected waves exceeding the second threshold, the frequency at which the reflection level is minimized is quickly found and reset, so that the resistance to the reflected waves is significantly improved, and in normal times, normal Since the negative feedback control is performed, the constant control (stable control) of the reflected wave can be maintained, so that a highly reliable reflected wave protection system can be provided.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明のマイクロ波発生部3a〜3dは半導体そしを用いて構成した出力部2a〜2dと加熱室5内から反射してくる反射電力を検知する反射波モニター部6a〜6dから構成されている。マイクロ波を発生する基本微弱信号は、半導体発振部1a〜1dによって作成される。また、この実施の形態の場合、各々の給電部7a〜7dから発振されるマイクロ波の周波数を個別に制御するために、上述したように半導体発振部1a〜1dを設けている。これにより加熱室5内の電磁界分布の自由度を増すことができ任意に配置された所望の被加熱物9に対して、そこに電磁波を集中させることができる。このように、給電部7a〜7dから照射されるマイクロ波を自由にコントロールできるのが、本実施の形態の特徴である。
(Embodiment 1)
In FIG. 1, the microwave generators 3 a to 3 d of the present invention are output units 2 a to 2 d configured using a semiconductor substrate and reflected wave monitor units 6 a to 6 d that detect reflected power reflected from the inside of the heating chamber 5. It is configured. Basic weak signals that generate microwaves are created by the semiconductor oscillators 1a to 1d. In the case of this embodiment, the semiconductor oscillation units 1a to 1d are provided as described above in order to individually control the frequencies of the microwaves oscillated from the respective power feeding units 7a to 7d. Thereby, the degree of freedom of electromagnetic field distribution in the heating chamber 5 can be increased, and electromagnetic waves can be concentrated on a desired object 9 to be heated arbitrarily arranged. Thus, the feature of the present embodiment is that the microwaves irradiated from the power feeding units 7a to 7d can be freely controlled.

また、本発明のマイクロ波処理装置は、被加熱物9を収納する略直方体構造からなる加熱室5を有し、加熱室5は金属材料からなる左壁面、右壁面、底壁面、上壁面、奥壁面および被加熱物9を収納するために開閉する開閉扉(図示していない)と、被加熱物9を載置する載置台から構成し、供給されるマイクロ波を内部に閉じ込めるように構成している。そして、マイクロ波発生部3a〜3dの出力が伝送され、そのマイクロ波を加熱室5内に放射供給する給電部7a〜7dが、加熱室5を構成する壁面に配置されている。この給電部7a〜7dの配置は、本実施の形態に拘束されるものではなく、いずれかの壁面に複数の給電部を設けてもよいし、対向面ではない、例えば右壁面と底壁面のような隣接する組合せで、対となる給電部を構成しても構わない。   Further, the microwave processing apparatus of the present invention has a heating chamber 5 having a substantially rectangular parallelepiped structure that accommodates an object 9 to be heated, and the heating chamber 5 has a left wall surface, a right wall surface, a bottom wall surface, an upper wall surface made of a metal material, An open / close door (not shown) that opens and closes to store the inner wall and the object 9 to be heated, and a mounting table on which the object 9 is mounted, and is configured to confine the supplied microwave inside. is doing. And the output of the microwave generation parts 3a-3d is transmitted, and the electric power feeding parts 7a-7d which radiate | emit the microwave into the heating chamber 5 are arrange | positioned at the wall surface which comprises the heating chamber 5. FIG. The arrangement of the power feeding portions 7a to 7d is not limited to the present embodiment, and a plurality of power feeding portions may be provided on any wall surface, and are not opposed surfaces, for example, the right wall surface and the bottom wall surface. You may comprise the electric power feeding part used as a pair by such an adjacent combination.

出力部2a〜2d内の電力増幅部は、プリント基板上のカスケードアンプで数十dB以上増幅されるが、低誘電損失材料から構成した誘電体基板の片面に形成した導電体パターンにて回路を構成し、各増幅部の増幅素子である半導体素子を良好に動作させるべく各半導体素子の入力側と出力側にそれぞれ整合回路を配している。   The power amplifiers in the output units 2a to 2d are amplified by several tens of dB or more by a cascade amplifier on the printed circuit board. The circuit is formed by a conductor pattern formed on one side of a dielectric substrate made of a low dielectric loss material. The matching circuit is arranged on the input side and the output side of each semiconductor element so that the semiconductor element which is an amplifying element of each amplifying section is operated satisfactorily.

各々の機能ブロックを接続するマイクロ波伝送路は、誘電体基板の片面に設けた導電体パターンによって、特性インピーダンスが略50Ωの伝送回路を形成している。   The microwave transmission path connecting each functional block forms a transmission circuit having a characteristic impedance of about 50Ω by a conductor pattern provided on one surface of the dielectric substrate.

制御部4は、できるだけ反射波が少ない周波数を選択するほうが、被加熱物9の受ける授熱電力を最大化できスピード調理にも貢献できるし、反射波電力による半導体素子の熱損失も軽減でき半導体の耐熱信頼性も向上する。   When the control unit 4 selects a frequency with as few reflected waves as possible, it can maximize the heat transfer power received by the article 9 to be heated, contribute to speed cooking, and reduce the heat loss of the semiconductor element due to the reflected wave power. The heat resistance reliability is improved.

しかし、調理途上で種々、被加熱物9がマイクロ波加熱の温度の影響を受けることは避けられない。例えば、加熱途中で加熱膨張して被加熱物9が転倒するとか、転がるとかということも希に発生する。また、食品の温度上昇につれて誘電率が徐々に変化することも考えられる。また、ラップをする習慣が、マイクロ波加熱装置ではよく見かけられるが、これも加熱途中膨らんで、被加熱物9の嵩が膨大化することも見かけられる。このような時、加熱室5から見た加熱室5内部のインピーダンスは変化し、図2に示すように、最小反射周波数が刻々と変化することが予測される。   However, it is inevitable that the object to be heated 9 is affected by the temperature of microwave heating during cooking. For example, it rarely occurs that the article 9 to be heated falls due to thermal expansion during heating or falls. It is also conceivable that the dielectric constant gradually changes as the food temperature rises. Moreover, although the habit of wrapping is often seen in the microwave heating apparatus, it can be seen that this also swells during heating and the volume of the article 9 to be heated increases. At such time, the impedance inside the heating chamber 5 as viewed from the heating chamber 5 changes, and it is predicted that the minimum reflection frequency changes every moment as shown in FIG.

図2に示すa点は、初期の周波数特性である。被加熱物9の物性変化が現れると、図2に示す点線のb点の曲線に推移する。そして、加熱途中で加熱膨張して被加熱物9が転倒したり、転がったり、食品の温度上昇につれて誘電率が変化したり、ラップをした被加熱物9が膨大化したりすると、例えば、図2に示すように、一点鎖線のc点のようなところまで、周波数特性が変化することが予測される。その時、反射率は図2に示すd分だけ、上昇することになる。即ち、反射が多い状態で、使用していることになる。これは、半導体の反射責務を増やすことになり、例えば、もっと大きく変化すれば、反射が増大して破壊することも想定される。   A point a shown in FIG. 2 is an initial frequency characteristic. When a change in physical properties of the article 9 to be heated appears, a transition is made to a dotted line b curve shown in FIG. Then, when the object to be heated 9 falls down or rolls over during heating, rolls, the dielectric constant changes as the temperature of the food rises, or the wrapped object 9 to be heated becomes enormous, for example, FIG. As shown in FIG. 5, it is predicted that the frequency characteristic changes up to a point c of the alternate long and short dash line. At that time, the reflectance increases by d as shown in FIG. That is, it is used in a state where there are many reflections. This increases the reflection duty of the semiconductor. For example, if the change is larger, the reflection is expected to increase and break down.

従って、それを回避する手段として、周波数極小の周波数になるように、常に負帰還制
御をかけて、変化をさせないように補う必要がある。図3を用いて説明する。まずルーチンが初期からスタートしてステップ1で反射波モニター部からの反射をモニターする。次にステップ2で各反射モニター部6a〜6dの反射の各々を計算で算出する。そこで、各々の周波数を前記獲得データと比較して、反射波が増加しているものについては、次にステップ3では、所定の微小周波数変動量△fだけ下げる。その下げた状態で、各反射モニター部6a〜6dの反射を計算で算出する。
Therefore, as a means for avoiding this, it is necessary to always perform negative feedback control so that the frequency becomes a minimum frequency so as not to change the frequency. This will be described with reference to FIG. First, the routine starts from the beginning, and in step 1, the reflection from the reflected wave monitoring unit is monitored. Next, in step 2, each of the reflections of the reflection monitor units 6a to 6d is calculated. Accordingly, each frequency is compared with the acquired data, and the reflected wave is increased, and then in step 3, it is lowered by a predetermined minute frequency fluctuation amount Δf. In the lowered state, the reflections of the reflection monitor units 6a to 6d are calculated.

次に、ステップ5で、反射が増加したかどうか反射波モニター部6a〜6dを監視して判断する。もしYesであれば、ステップ6で△f周波数を上げる。次に、ステップ7で、各反射モニター部6a〜6dの反射の各々を計算で算出する。次に、ステップ8で、反射が増加したかどうかを判断して、もしNoであれば、負帰還制御が完結して周波数が確定する。もしYesであれば、ステップ2に戻る。ステップ2〜ステップ8のループで繰り返すようであれば、所定回数カウントして、それを満たせば周波数を確定する。   Next, in step 5, it is determined by monitoring the reflected wave monitoring units 6a to 6d whether the reflection has increased. If yes, the Δf frequency is increased in step 6. Next, in step 7, each of the reflections of the reflection monitor units 6a to 6d is calculated. Next, in Step 8, it is determined whether or not the reflection has increased. If No, the negative feedback control is completed and the frequency is determined. If yes, go back to step 2. If it repeats in the loop of step 2 to step 8, it counts a predetermined number of times, and if it is satisfied, the frequency is determined.

一方、ステップ5でNoであれば、ステップ10で、△f周波数を下げる。次に、ステップ11で、各反射モニター部6a〜6dの反射の各々を計算で算出する。ステップ12で、反射が増加したものがあるかを判定し、Yesであれば周波数を確定する。Noであればステップ6にジャンプし、△f周波数を上げるルーチンに分岐する。以降は前述した通り、周波数が確定する。周波数の可変範囲はISMバンド(2.45G±0.05G)となっており、このシーケンスに従って、自在に上記シーケンスで、負帰還のための周波数可変が可能である。このシーケンスを各々の給電部7a〜7dから発振されるマイクロ波に対して、並行して実施することになる。例えば、相互の給電部7a〜7dが結合性を帯び、影響し合っている可能性があるので、1つの給電口のブロックを変化させると、それに結合性を帯びた別のブロックが影響を受けて、変化する可能性があるからである。そのような相互干渉の関係から、なかなかベスト状態に収束しない可能性もあるが、その時は所定時間を区切って、シーケンスの実行を終息させる必要がある。例えば、所定時間内で2つのブロックが周波数確定すれば、シーケンスを終了するとか何らかの律則は必要かもしれない。   On the other hand, if No in Step 5, the Δf frequency is lowered in Step 10. Next, in step 11, each of the reflections of the reflection monitor units 6a to 6d is calculated. In step 12, it is determined whether there is an increase in reflection. If Yes, the frequency is determined. If No, the process jumps to Step 6 and branches to a routine for increasing the Δf frequency. Thereafter, the frequency is determined as described above. The variable range of the frequency is the ISM band (2.45 G ± 0.05 G). According to this sequence, the frequency for negative feedback can be varied freely in the above sequence. This sequence is performed in parallel with respect to the microwaves oscillated from the respective power feeding units 7a to 7d. For example, there is a possibility that the power feeding units 7a to 7d have mutual connectivity and influence each other. Therefore, if one power supply block is changed, another block having connectivity is affected. Because there is a possibility of change. There is a possibility that it will not converge to the best state due to such a mutual interference relationship, but at that time, it is necessary to terminate the execution of the sequence by dividing a predetermined time. For example, if two blocks have a fixed frequency within a predetermined time, the sequence may be terminated or some rule may be necessary.

また、システムを簡略化するために、別に存在する機器全体をコントロールするマイクロコンピューターがあるが、その中にこのタスクを入れ込むことによって、1つのマイクロコンピューターによってタスクを並列実施し、システムの大幅な省部品化を実施し経済効果を発揮することもできる。   In order to simplify the system, there is a microcomputer that controls the entire existing equipment, but by inserting this task into it, the task can be performed in parallel by one microcomputer, and the system is greatly improved. It is also possible to reduce the number of parts and achieve an economic effect.

しかし、上述したように調理途上で種々、被加熱物9がマイクロ波加熱の温度の影響を受けることは避けられない。例えば、加熱途中で加熱膨張して被加熱物9が転倒するとか、転がるとかということも希に発生する。また、食品の温度上昇につれて、誘電率が徐々に変化することも考えられる。また、ラップをする習慣がマイクロ波加熱装置ではよく見かけるが、これも加熱途中膨らんで、被加熱物9の嵩が膨大化することも見かけられる。このような時、加熱室5から見た加熱室内部のインピーダンスは変化し図2に示すように最小反射周波数が刻々と変化することが予測される。   However, as described above, it is inevitable that the object to be heated 9 is affected by the temperature of microwave heating during cooking. For example, it rarely occurs that the article 9 to be heated falls due to thermal expansion during heating or falls. It is also conceivable that the dielectric constant gradually changes as the food temperature rises. Moreover, although the habit of wrapping is often seen in the microwave heating apparatus, it can be seen that this also swells in the middle of heating and the volume of the article 9 to be heated increases. In such a case, the impedance in the heating chamber as viewed from the heating chamber 5 changes, and it is predicted that the minimum reflection frequency changes every moment as shown in FIG.

また、各々の出力部に応じた限界しきい値を備え、負帰還がかかる変化量が限界しきい値を超えた場合には、加熱室5からの反射量が増加した発振状態となっていると判断する。そして、制御部4は、反射波モニター部6a〜6dの出力を速やかに低下した後、反射波モニター部6a〜6dの信号から検出される反射レベルが最小となる周波数を探り、半導体発振部1a〜1dの発振周波数をISMバンド内で再度反射が最小値となる周波数に変更する。その後出力を元に戻し、負帰還制御をかけ負帰還制御シーケンスに戻り、半導体発振部1a〜1dの発振周波数を変化させる構成とすることにより、信頼性の高いシステムを構築することもできる。   Moreover, the threshold value according to each output part is provided, and when the variation | change_quantity which a negative feedback applies exceeds a limit threshold value, it will be in the oscillation state which the amount of reflections from the heating chamber 5 increased. Judge. Then, the control unit 4 quickly decreases the outputs of the reflected wave monitoring units 6a to 6d, and then searches for the frequency at which the reflection level detected from the signals of the reflected wave monitoring units 6a to 6d is minimized, and the semiconductor oscillation unit 1a. The oscillation frequency of ˜1d is changed again to a frequency at which reflection becomes the minimum value within the ISM band. Thereafter, the output is returned to the original state, negative feedback control is performed, the process returns to the negative feedback control sequence, and the oscillation frequency of the semiconductor oscillation units 1a to 1d is changed, whereby a highly reliable system can be constructed.

また、負帰還がかかる頻度を積算し、ある所定量を超えた場合には加熱室5からの反射量が増加した発振状態となっていると判断し、反射波モニター部6a〜6dの信号から検出される反射レベルが最小となる周波数を探り、半導体発振部1a〜1dの発振周波数を変更する構成とすればより信頼性の高いシステムを構築することもできる。   Further, the frequency of the negative feedback is integrated, and when a certain predetermined amount is exceeded, it is determined that the oscillation state in which the amount of reflection from the heating chamber 5 is increased, and from the signals of the reflected wave monitoring units 6a to 6d. By searching for the frequency at which the detected reflection level is minimized and changing the oscillation frequency of the semiconductor oscillators 1a to 1d, a more reliable system can be constructed.

逆に、負帰還がかかる頻度が少ない安定な状態が継続している場合は、監視の頻度を間引き、制御部4は別のタスクを処理する方に専念し、タスクを有効に活用することができ、トータル的な制御部4のパフォーマンスをアップすることもできる。   Conversely, if a stable state where the frequency of negative feedback is low continues, the monitoring frequency is thinned out, and the control unit 4 can concentrate on processing another task and effectively use the task. The total performance of the control unit 4 can be improved.

また、第一のしきい値と第二のしきい値を設け、第二のしきい値は、第一のしきい値より大なるしきい値とし、制御部4は反射波モニター部6a〜6dからの出力が、第一のしきい値を超え第二のしきい値未満の時には、上述した負帰還制御を行い、第二のしきい値を超える場合には、加熱室5からの反射量が増加した発振状態となっていると判断し、反射波モニター部6a〜6dの信号から検出される反射レベルが最小となる周波数を探り、半導体発振部1a〜1dの発振周波数を変更する構成とすることで、より信頼性の高いシステムを構築することもできる。   In addition, a first threshold value and a second threshold value are provided, the second threshold value is set to a threshold value larger than the first threshold value, and the control unit 4 includes the reflected wave monitor units 6a to 6a. When the output from 6d exceeds the first threshold value and is less than the second threshold value, the negative feedback control described above is performed, and when the output exceeds the second threshold value, reflection from the heating chamber 5 is performed. A configuration in which it is determined that the oscillation state is increased and the frequency at which the reflection level detected from the signals of the reflected wave monitoring units 6a to 6d is minimized is searched, and the oscillation frequency of the semiconductor oscillation units 1a to 1d is changed. By doing so, it is also possible to construct a more reliable system.

以上のように、本発明にかかるマイクロ波加熱装置は、複数の給電部を有しマイクロ波を放射する給電部へ戻ってきた反射波から半導体の破壊を阻止する装置を提供できるので、電子レンジで代表されるような誘電加熱を利用した加熱装置や生ゴミ処理機、あるいは半導体製造装置であるプラズマ電源のマイクロ波電源などの用途にも適用できる。   As described above, the microwave heating device according to the present invention can provide a device that has a plurality of power feeding units and prevents the destruction of the semiconductor from the reflected waves that have returned to the power feeding unit that radiates microwaves. The present invention can also be applied to applications such as a heating device using dielectric heating, a garbage disposal machine, or a microwave power source of a plasma power source that is a semiconductor manufacturing device.

本発明の実施の形態におけるマイクロ波加熱装置のシステム構成図The system block diagram of the microwave heating apparatus in embodiment of this invention 本発明の被加熱物の変化に伴う周波数スペクトラムの変化を示す特性図The characteristic view which shows the change of the frequency spectrum accompanying the change of the to-be-heated material of this invention 本発明の実施の形態における負帰還制御の流れを示すフローチャートThe flowchart which shows the flow of the negative feedback control in embodiment of this invention

符号の説明Explanation of symbols

1 半導体発振部
2 出力部
3 マイクロ波発生部
4 制御部
5 加熱室
6 反射モニター部
10 しきい値
DESCRIPTION OF SYMBOLS 1 Semiconductor oscillation part 2 Output part 3 Microwave generation part 4 Control part 5 Heating chamber 6 Reflection monitor part 10 Threshold value

Claims (7)

半導体発振部に接続された出力部を有する複数のマイクロ波発生部と、被加熱物を収納する加熱室と、前記出力部の後段に位置し反射波レベルを常時監視する反射波モニター部と、前記反射波モニター部の信号を受け前記出力部の出力をコントロールする制御部と、前記半導体発振部が破壊しない反射波レベルを決定する各々の前記出力部に応じたしきい値とを備え、前記制御部は各々の前記反射波モニター部の信号が前記しきい値を超えると前記半導体発振部の出力を前記しきい値以下になるように負帰還制御をかけ前記半導体発振部の発振周波数を変化させる構成としたマイクロ波加熱装置。 A plurality of microwave generators having an output unit connected to the semiconductor oscillation unit, a heating chamber for storing an object to be heated, a reflected wave monitor unit that is positioned downstream of the output unit and constantly monitors the reflected wave level; A control unit that receives a signal from the reflected wave monitor unit and controls the output of the output unit; and a threshold value corresponding to each output unit that determines a reflected wave level at which the semiconductor oscillation unit does not break down, and The control unit performs negative feedback control to change the oscillation frequency of the semiconductor oscillation unit so that the output of the semiconductor oscillation unit becomes less than the threshold value when the signal of each reflected wave monitor unit exceeds the threshold value. A microwave heating device configured to be made to operate. 制御部はマイクロコンピューターを用い常時負帰還制御をかける構成とした請求項1に記載のマイクロ波加熱装置。 The microwave heating apparatus according to claim 1, wherein the control unit is configured to always perform negative feedback control using a microcomputer. マイクロコンピューターはマイクロ波加熱装置を制御するマイクロコンピューターを併用して処理を実施する構成とした請求項1または2に記載のマイクロ波加熱装置。 The microwave heating apparatus according to claim 1 or 2, wherein the microcomputer is configured to perform processing in combination with a microcomputer that controls the microwave heating apparatus. 半導体発振部に接続された出力部を有する複数のマイクロ波発生部と、被加熱物を収納する加熱室と、前記出力部の後段に位置し反射波レベルを常時監視する反射波モニター部と、前記反射波モニター部の信号を受け前記出力部の出力をコントロールする制御部と、前記半導体発振部が破壊しない反射波レベルを決定する各々の前記出力部に応じた限界しきい値とを備え、負帰還がかかる変化量が前記限界しきい値を超えた場合には前記制御部は前記反射波モニター部の出力を速やかに低下した後、前記反射波モニター部の信号から検出される反射レベルが最小となる周波数を探り、前記半導体発振部の発振周波数を変更した後出力を元に戻し負帰還制御をかけ前記半導体発振部の発振周波数を変化させる構成としたマイクロ波加熱装置。 A plurality of microwave generators having an output unit connected to the semiconductor oscillation unit, a heating chamber for storing an object to be heated, a reflected wave monitor unit that is positioned downstream of the output unit and constantly monitors the reflected wave level; A control unit that receives a signal of the reflected wave monitor unit and controls the output of the output unit; and a threshold threshold value according to each of the output units that determines a reflected wave level at which the semiconductor oscillation unit does not break down, When the amount of change in which negative feedback is applied exceeds the limit threshold, the control unit quickly decreases the output of the reflected wave monitor unit, and then the reflection level detected from the signal of the reflected wave monitor unit is A microwave heating apparatus configured to search for a minimum frequency, change the oscillation frequency of the semiconductor oscillating unit, change the oscillation frequency of the semiconductor oscillating unit by returning the output to the original and performing negative feedback control. 負帰還がかかる頻度を積算し、ある所定量を超えた場合には反射波モニター部の信号から検出される反射レベルが最小となる周波数を探り、マイクロ波発生部の発振周波数を変更する構成とした請求項1〜4のいずれか1項に記載のマイクロ波加熱装置。 The frequency of negative feedback is integrated, and when a certain predetermined amount is exceeded, the frequency at which the reflection level detected from the signal of the reflected wave monitor is minimized is searched, and the oscillation frequency of the microwave generator is changed. The microwave heating device according to any one of claims 1 to 4. 負帰還がかかる頻度を積算し、ある所定量以下の場合には制御部は反射波モニター部の監視頻度を間引く構成とした請求項1〜5のいずれか1項に記載のマイクロ波加熱装置。 The microwave heating device according to any one of claims 1 to 5, wherein the frequency of negative feedback is integrated and the control unit is configured to thin out the monitoring frequency of the reflected wave monitoring unit when the frequency is less than a predetermined amount. 第一のしきい値と第二のしきい値を設け、前記第二のしきい値は前記第一のしきい値より大なるしきい値とし、制御部は反射波モニター部からの出力が前記第一しきい値を超え前記第二のしきい値未満の時には負帰還制御を行い、前記第二のしきい値を超える場合には前記反射波モニター部の信号から検出される反射レベルが最小となる周波数を探り、前記マイクロ波発生部の前記発振周波数を変更する構成とした請求項1〜6のいずれか1項に記載のマイクロ波加熱装置。 A first threshold value and a second threshold value are provided, the second threshold value is a threshold value greater than the first threshold value, and the control unit outputs an output from the reflected wave monitor unit. Negative feedback control is performed when the first threshold value is exceeded and less than the second threshold value, and when the second threshold value is exceeded, the reflection level detected from the signal of the reflected wave monitor unit is The microwave heating device according to any one of claims 1 to 6, wherein a minimum frequency is searched and the oscillation frequency of the microwave generation unit is changed.
JP2008245831A 2008-09-25 2008-09-25 Microwave heating apparatus Pending JP2010080185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008245831A JP2010080185A (en) 2008-09-25 2008-09-25 Microwave heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008245831A JP2010080185A (en) 2008-09-25 2008-09-25 Microwave heating apparatus

Publications (1)

Publication Number Publication Date
JP2010080185A true JP2010080185A (en) 2010-04-08

Family

ID=42210391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008245831A Pending JP2010080185A (en) 2008-09-25 2008-09-25 Microwave heating apparatus

Country Status (1)

Country Link
JP (1) JP2010080185A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906504A (en) * 2010-05-26 2013-01-30 Lg电子株式会社 Cooking apparatus and operating method thereof
JP2014529871A (en) * 2011-08-31 2014-11-13 ゴジ リミテッド Detecting the processing state of objects using RF radiation
JP2019202533A (en) * 2018-05-21 2019-11-28 マイクロ波化学株式会社 Molding apparatus, mold, and method for manufacturing molded product
JP2020192817A (en) * 2018-05-21 2020-12-03 マイクロ波化学株式会社 Molding apparatus, mold, and method for manufacturing molded product
WO2024053657A1 (en) * 2022-09-07 2024-03-14 パナソニックIpマネジメント株式会社 Radio wave emitting device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134491A (en) * 1980-03-26 1981-10-21 Hitachi Netsu Kigu Kk High frequency heater
JPH0199116A (en) * 1987-10-12 1989-04-18 Fujitsu Ltd Method for controlling high frequency power source
JPH09116980A (en) * 1995-10-18 1997-05-02 Matsushita Electric Ind Co Ltd Cordless remote controlled hot water supply
JP3001658B2 (en) * 1991-03-28 2000-01-24 日本原子力研究所 High frequency heating equipment
JP2007173171A (en) * 2005-12-26 2007-07-05 Matsushita Electric Ind Co Ltd Condition detection device for detecting operating condition of high-frequency heating device
JP2007317458A (en) * 2006-05-25 2007-12-06 Matsushita Electric Ind Co Ltd Microwave utilization device
JP2008066292A (en) * 2006-08-08 2008-03-21 Matsushita Electric Ind Co Ltd Microwave processor
JP2008108491A (en) * 2006-10-24 2008-05-08 Matsushita Electric Ind Co Ltd Microwave treatment device
JP2008146966A (en) * 2006-12-08 2008-06-26 Matsushita Electric Ind Co Ltd Microwave generation device and microwave heating apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56134491A (en) * 1980-03-26 1981-10-21 Hitachi Netsu Kigu Kk High frequency heater
JPH0199116A (en) * 1987-10-12 1989-04-18 Fujitsu Ltd Method for controlling high frequency power source
JP3001658B2 (en) * 1991-03-28 2000-01-24 日本原子力研究所 High frequency heating equipment
JPH09116980A (en) * 1995-10-18 1997-05-02 Matsushita Electric Ind Co Ltd Cordless remote controlled hot water supply
JP2007173171A (en) * 2005-12-26 2007-07-05 Matsushita Electric Ind Co Ltd Condition detection device for detecting operating condition of high-frequency heating device
JP2007317458A (en) * 2006-05-25 2007-12-06 Matsushita Electric Ind Co Ltd Microwave utilization device
JP2008066292A (en) * 2006-08-08 2008-03-21 Matsushita Electric Ind Co Ltd Microwave processor
JP2008108491A (en) * 2006-10-24 2008-05-08 Matsushita Electric Ind Co Ltd Microwave treatment device
JP2008146966A (en) * 2006-12-08 2008-06-26 Matsushita Electric Ind Co Ltd Microwave generation device and microwave heating apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102906504A (en) * 2010-05-26 2013-01-30 Lg电子株式会社 Cooking apparatus and operating method thereof
JP2014529871A (en) * 2011-08-31 2014-11-13 ゴジ リミテッド Detecting the processing state of objects using RF radiation
US10088436B2 (en) 2011-08-31 2018-10-02 Goji Ltd. Object processing state sensing using RF radiation
US11009468B2 (en) 2011-08-31 2021-05-18 Goji Limited Object processing state sensing using RF radiation
JP2019202533A (en) * 2018-05-21 2019-11-28 マイクロ波化学株式会社 Molding apparatus, mold, and method for manufacturing molded product
JP2020192817A (en) * 2018-05-21 2020-12-03 マイクロ波化学株式会社 Molding apparatus, mold, and method for manufacturing molded product
JP7352965B2 (en) 2018-05-21 2023-09-29 マイクロ波化学株式会社 Molding equipment, molds and molded product manufacturing methods
WO2024053657A1 (en) * 2022-09-07 2024-03-14 パナソニックIpマネジメント株式会社 Radio wave emitting device

Similar Documents

Publication Publication Date Title
JP5167678B2 (en) Microwave processing equipment
JP5142364B2 (en) Microwave processing equipment
JP5195255B2 (en) Microwave heating device
CN101884245B (en) Pread-spectrum high-frequency heating device
JP4935188B2 (en) Microwave equipment
JP5280372B2 (en) Microwave heating device
JP5286905B2 (en) Microwave processing equipment
JP5262250B2 (en) Microwave processing equipment
JP2010080185A (en) Microwave heating apparatus
JP2008108491A (en) Microwave treatment device
JP5169371B2 (en) Microwave processing equipment
JP2009252346A5 (en)
JP6826461B2 (en) High frequency heating device
JP5127038B2 (en) High frequency processing equipment
JP4839994B2 (en) Microwave equipment
JP2010092795A (en) Microwave processor
JP5092863B2 (en) Microwave processing equipment
CN109952811B (en) Method for managing a microwave heating device and microwave heating device
JP5467341B2 (en) Microwave processing equipment
JP5286898B2 (en) Microwave processing equipment
JP5195008B2 (en) Microwave heating device
JP5444734B2 (en) Microwave processing equipment
JP2010073467A (en) Microwave heating apparatus
JP2010073383A (en) Microwave heating apparatus
JP2011060530A (en) Microwave treatment device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806