JP2010077424A - Granular material for coating, and heat insulating coating or sound insulating coating containing granular material - Google Patents

Granular material for coating, and heat insulating coating or sound insulating coating containing granular material Download PDF

Info

Publication number
JP2010077424A
JP2010077424A JP2009198581A JP2009198581A JP2010077424A JP 2010077424 A JP2010077424 A JP 2010077424A JP 2009198581 A JP2009198581 A JP 2009198581A JP 2009198581 A JP2009198581 A JP 2009198581A JP 2010077424 A JP2010077424 A JP 2010077424A
Authority
JP
Japan
Prior art keywords
paint
coating
granule
particles
granular material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009198581A
Other languages
Japanese (ja)
Other versions
JP5643495B2 (en
Inventor
Masaaki Noguchi
雅朗 野口
Hideki Wachi
秀樹 和知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2009198581A priority Critical patent/JP5643495B2/en
Publication of JP2010077424A publication Critical patent/JP2010077424A/en
Application granted granted Critical
Publication of JP5643495B2 publication Critical patent/JP5643495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a granular material for a coating which has particles not easily broken when mixed with other coating ingredients, and acts as a hollow form even if cracked partially, readily giving smooth surface, and capable of providing sufficient heat insulating and sound insulating functions with addition of a smaller amount than conventional ones; and to provide the coating comprising the same. <P>SOLUTION: The granular material for the coating is fine hollow silica particles to be compounded in a coating, has an average particle size of 5-100 μm, in which the particle has an inner space composed of a plurality of closed cells partitioned with partitioning walls; the granular material for coating preferably has a floating residual rate at 8 MPa hydrostatic pressure of 50% or more, a water absorption rate of 3% or less, an SiO<SB>2</SB>content of 65-90 mass%, a weight per unit volume of 0.16-0.35 g/cm<SP>3</SP>, and a particle size of 1-50 μm when used for heat insulation and a particle size of 1-200 μm when used for sound insulation. The coating containing the granular material is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、シリカ質の中空微粒子からなる塗料用粒材に関し、特に断熱性および遮音性に優れた塗料用粒材とこの粒材を用いた塗料に関する。 The present invention relates to a granule for paint composed of siliceous hollow fine particles, and particularly to a granule for paint excellent in heat insulation and sound insulation and a paint using the granule.

近年、様々な機能を持たせた塗料が開発され、市販されている。たとえば、省エネルギーの観点から、屋根からの熱を遮断するため、塗料に熱や赤外線を遮断または反射する材料を混合して、断熱性、遮熱性を有する塗料が開発されている。具体的には、塗料中に熱や赤外線を反射する例えば緻密質のシリサイド等の材料(例えば、特許文献1参照)や、酸化チタン、酸化アルミニウム等の緻密質セラミックス粒子(例えば、特許文献2参照)を加えて、その効果を得ている。 In recent years, paints having various functions have been developed and marketed. For example, from the viewpoint of energy saving, in order to block heat from the roof, a coating material having heat insulating properties and heat blocking properties has been developed by mixing a material that blocks or reflects heat and infrared rays into the coating material. Specifically, a material such as dense silicide that reflects heat and infrared rays in the paint (for example, see Patent Document 1), and dense ceramic particles such as titanium oxide and aluminum oxide (for example, see Patent Document 2). ) Is added to obtain the effect.

このような材料に求められる性質としては、断熱性や遮熱性の機能の他に、塗料としての耐久性、施工性の観点から軽量性や施工面の平滑性が得られやすいものが要求される。軽量性や施工面の平滑性を得るのに有利な添加粒子としては、数μmから数十μmの有機樹脂質の中空粒子を混合する方法が知られている(例えば、特許文献3参照)。 Properties required for such materials are required to be lightweight and easy to obtain smoothness of the construction surface from the viewpoint of durability and paintability as well as heat insulation and heat shielding functions. . As additive particles advantageous for obtaining light weight and smoothness of a construction surface, a method of mixing organic resinous hollow particles of several μm to several tens of μm is known (see, for example, Patent Document 3).

しかし、有機樹脂は長時間高熱でさらされると、酸化して中空状態が維持できず、性能劣化や変形を生じる。また、金属製粒子は中空構造にしても軽量化や断熱性に限界があり、耐食性に劣るため経年劣化が大きい。 However, when the organic resin is exposed to high heat for a long time, it cannot oxidize and maintain a hollow state, resulting in performance deterioration and deformation. Moreover, even if a metal particle has a hollow structure, there is a limit to weight reduction and heat insulation, and since it is inferior in corrosion resistance, the deterioration over time is large.

一方、ガラスや結晶質化合物などの非金属無機系中空粒子を用いる場合には、軽量であることに加え、耐熱性、耐久性は良好である(例えば、特許文献4〜5参照)。しかし、非金属無機系中空粒子は弾性が実質的に無く、強度も低いので、粘性の高い塗料に混合したときに、せん断力が負荷して中空粒子が破損することが多い。破壊された粒子は所定の性能を得ることができないため、実際には破損粒発生割合を見込んだより多い中空粒子添加量が必要となる。ところが、中空粒子の添加量は少ないほうが塗料としての塗装性に影響する接着成分等を十分量確保できるので好ましいため、中空微粒子の量が多いものは塗装性の点から不利である。 On the other hand, when non-metallic inorganic hollow particles such as glass and crystalline compounds are used, in addition to being lightweight, heat resistance and durability are good (see, for example, Patent Documents 4 to 5). However, since non-metallic inorganic hollow particles have substantially no elasticity and low strength, when mixed with a highly viscous paint, a shearing force is often applied to break the hollow particles. Since the broken particles cannot obtain the predetermined performance, in reality, a larger amount of hollow particles is required than the amount of broken particles. However, it is preferable that the amount of hollow particles added is small because a sufficient amount of adhesive components and the like that affect the paintability as a paint can be secured, so that a large amount of hollow fine particles is disadvantageous from the viewpoint of paintability.

一方、大きな粒径の中空粒子を使用した場合には、塗料の平滑性が損なわれる不都合がある。また単一気泡からなる中空粒子では粒子外殻が薄いほど熱放射に対するバリア機能は低下し、また空隙内で対流熱が伝搬し易い。そして、粒子外殻が厚いものほど、或いは粒子内空隙容積割合が低いものほど熱伝導が活発になり易いため、塗装性を犠牲にすることなく、断熱や遮熱作用が高い塗料は得難いと云う問題がある。 On the other hand, when hollow particles having a large particle diameter are used, there is a disadvantage that the smoothness of the paint is impaired. Further, in the case of hollow particles composed of single bubbles, the thinner the outer shell of the particle, the lower the barrier function against heat radiation, and the more easily convection heat propagates in the voids. And, the thicker the particle outer shell, or the lower the void volume ratio in the particle, the more easily the heat conduction becomes, so it is difficult to obtain a paint having a high heat insulation and heat shielding effect without sacrificing the paintability. There's a problem.

破損抵抗性が高い高強度の中空粒子を使用した場合には(例えば、特許文献6参照)、概して、高い強度のセラミックス質粒子を製造するには、シリカ、アルミナ、カルシアなどの高融点成分を比較的大量に含有せねばならず、低強度因子であるアルカリ金属化合物などの低融点成分が少なくなるので、加熱発泡し難く、安定して中空化するには製造が困難になり、しかも、一般に容重が大きく、粒子に対する内部の気泡容積割合が小さくなるため、断熱性、遮音性が劣化する傾向がある。 When high-strength hollow particles having high damage resistance are used (see, for example, Patent Document 6), generally high-melting-point components such as silica, alumina, and calcia are used to produce high-strength ceramic particles. It must be contained in a relatively large amount, and low melting point components such as alkali metal compounds, which are low strength factors, are less likely to be heated and foamed. Since the volume is large and the internal volume ratio of the bubbles relative to the particles is small, the heat insulating property and the sound insulating property tend to deteriorate.

具体的には、シリカ分50〜60質量%およびアルミナ分40〜45質量%の中空微粒子が知られており、これは軽量で高強度(嵩比重0.35g/cm3、圧縮強度700kg/cm3)であるとされている(例えば、特許文献7)。しかし、上記嵩比重と圧縮強度を有するシリカアルミナ中空微粒子は通常の溶融発泡による製造方法で得ることは甚だ困難であり、一般的ではない。 Specifically, hollow fine particles having a silica content of 50 to 60% by mass and an alumina content of 40 to 45% by mass are known, which are lightweight and have high strength (bulk specific gravity 0.35 g / cm 3 , compressive strength 700 kg / cm 3. (For example, Patent Document 7). However, silica alumina hollow fine particles having the above-mentioned bulk specific gravity and compressive strength are extremely difficult to obtain by a usual production method by melt foaming, and are not general.

特開2007−137950号公報JP 2007-137950 A 特開平2−185572号公報Japanese Patent Laid-Open No. 2-185572 特開2001−348530号公報JP 2001-348530 A 特開平8−127739号公報JP-A-8-127739 特開2008−169252号公報JP 2008-169252 A 特開2008―155459号公報JP 2008-155659 A 特開2005―307129号公報JP 2005-307129 A

本発明は、従来の中空微粒子における上記問題を解決したものであり、塗料成分に配合する場合に、粒子が壊れ難く、かつ部分的に亀裂などが生じても中空状態の機能を保持することができ、施工の際には容易に平滑性が得られ、また熱に対する耐久性が高い塗装物を形成することができ、しかも従来品よりも少ない添加量で十分な断熱機能および遮音機能を得ることができる塗料用粒材とその塗料を提供する。 The present invention solves the above-mentioned problems in conventional hollow fine particles, and when blended in a paint component, the particles are difficult to break and can retain the function of a hollow state even if cracks or the like partially occur. It can be easily smoothed during construction, can form a paint with high heat resistance, and has sufficient heat insulation and sound insulation functions with less addition than conventional products. A granular material for coating material and its coating material are provided.

本発明は、以下に示す構成によって上記問題を解決した塗料用粒材と、該粒材を用いた塗料に関する。
〔1〕塗料に配合されるシリカ質の中空微粒子であって、平均粒径5〜100μmであり、内部空間が隔壁によって区切られた複数の独立気泡によって形成されていることを特徴とする塗料用粒材。
〔2〕8MPa静水圧浮揚残存率が50%以上であって、吸水率が3%以下である上記[1]に記載する塗料用粒材。
〔3〕化学成分のSiO2含有量が65〜90質量%である上記[1]または上記[2]に記載の塗料用粒材。
〔4〕容重が0.16〜0.35g/cm3である上記[1]〜上記[3]に記載する塗料用粒材。
〔5〕隔壁によって区切られた複数の独立気泡によって形成されている内部空間を有する粒子100個中60個以上含む上記[1]〜上記[4]の何れかに記載する塗料用粒材。
〔6〕上記[1]〜上記[5]の何れか記載する塗料用粒材であって、粒子径1〜50μmの塗料用粒材からなる断熱塗料用粒材。
〔7〕上記[1]〜上記[5]の何れか記載する塗料用粒材であって、粒子径1〜250μmの塗料用粒材からなる遮音塗料用粒材。
〔8〕上記[6]に記載する断熱塗料用粒材を含有してなる断熱用塗料。
〔9〕上記[7]に記載する遮音塗料用粒材を含有してなる遮音用塗料。
The present invention relates to a coating material granule that solves the above-described problems with the following configuration, and a coating material using the granule.
[1] Silica hollow fine particles blended in a paint, having an average particle diameter of 5 to 100 μm, and having an internal space formed by a plurality of closed cells separated by partition walls Granules.
[2] The paint granule according to the above [1], wherein the residual rate of 8 MPa hydrostatic pressure levitation is 50% or more and the water absorption is 3% or less.
[3] The granule for paint according to the above [1] or [2], wherein the chemical component has an SiO 2 content of 65 to 90% by mass.
[4] The coating material granule according to the above [1] to [3], having a weight of 0.16 to 0.35 g / cm 3 .
[5] The coating material granule according to any one of [1] to [4] above, comprising 60 or more of 100 particles having an internal space formed by a plurality of closed cells separated by partition walls.
[6] A granule for heat-insulating paint, which is the paint granule described in any one of [1] to [5] above, and is made of a paint granule having a particle diameter of 1 to 50 μm.
[7] A particle material for sound insulation paint, which is the paint particle material according to any one of [1] to [5] above, and is made of a paint particle material having a particle diameter of 1 to 250 μm.
[8] A heat insulating paint comprising the granule material for heat insulating paint described in [6].
[9] A sound insulating paint comprising the sound insulating paint granule according to [7].

本発明の塗料用粒材(中空微粒子)は、粒子の内部空間に隔壁を有するので、隔壁のない単一空間からなる中空粒子に比較して粒子の強度が大きい。このため粘度の高い塗料に中空の塗料用粒材を混合して攪拌する際に、強度の低い粒材は攪拌によるせん断によって破壊され易いが、本発明の塗料用粒材は強度が大きいので破壊され難く、中空状態が維持したまま均一に混合することができる。 Since the granular material for coating (hollow fine particles) of the present invention has partition walls in the internal space of the particles, the particle strength is higher than that of hollow particles composed of a single space without partition walls. For this reason, when mixing hollow paint particles with a high viscosity paint and stirring, the low-strength granules are easily broken by shearing by stirring, but the paint granules of the present invention are broken because they are strong. It is difficult to achieve uniform mixing while maintaining a hollow state.

また、本発明の塗料用粒材は、隔壁によって区切られた独立気泡からなる複数の内部空間を有するので、粒材に局部的な亀裂や破損が生じても、残りの内部空間によって中空状態が維持されるので、断熱性および遮音性に優れた塗膜を形成することができる。具体的には、気泡径の小さい多数の独立した内部空間と多くの隔壁で形成されているので、内部空間の熱移動が小さくなり(熱伝導は内部が緻密な粒材よりも少なく、熱放射は単一中空粒より少なく、熱対流は殆ど起こらない)、断熱性に優れている。 In addition, since the granular material for coating according to the present invention has a plurality of internal spaces composed of closed cells separated by partition walls, even if local cracks or breakage occurs in the granular material, a hollow state is caused by the remaining internal space. Since it is maintained, a coating film excellent in heat insulation and sound insulation can be formed. Specifically, since it is formed of a large number of independent internal spaces with a small bubble diameter and a large number of partition walls, the heat transfer in the internal space is small (the heat conduction is less than that of dense granular materials, and heat radiation Is less than a single hollow particle and hardly causes thermal convection) and has excellent heat insulation.

以下、本発明を実施形態に基づいて具体的に説明する。
本発明の塗料用粒材は、塗料に配合されるシリカ質の中空微粒子であって、平均粒径5〜100μmであり、内部空間が隔壁によって区切られた複数の独立気泡によって形成されていることを特徴とする塗料用粒材である。
Hereinafter, the present invention will be specifically described based on embodiments.
The coating material granule of the present invention is a siliceous hollow fine particle blended in the coating material, has an average particle size of 5 to 100 μm, and is formed by a plurality of closed cells in which the internal space is partitioned by partition walls. It is a granule for paints characterized by.

本発明の塗料用粒材は、内部空間が隔壁によって区切られた複数の独立気泡によって形成された中空粒微粒子である。好ましくは、8MPa静水圧浮揚残存率が50%以上であって、吸水率が3%以下の中空微粒子である。 The granular material for coating of the present invention is hollow fine particles formed by a plurality of closed cells whose internal spaces are separated by partition walls. Preferably, the hollow fine particles have an 8 MPa hydrostatic pressure levitation residual rate of 50% or more and a water absorption rate of 3% or less.

本発明の中空微粒子は、粒子の内部空間が隔壁によって隔てられた互いに連通しない独立気泡によって形成されているので、部分的に亀裂が生じても水が浸透する範囲が限られ、また上記独立気泡は粒子表面に開口しない密閉気泡であるので、加圧下の静水圧浮揚残存率が高い。静水圧浮揚残存率とは、加圧していない常圧下における水中浮揚率(浮水率)W1に対する静水圧で加圧した粒子の加圧後の常圧下における水中浮揚率W2の比率〔浮揚残存率=W2/W1×100(%)〕である。 Since the hollow fine particles of the present invention are formed by closed cells that are separated from each other by the partition walls and do not communicate with each other, the range in which water penetrates is limited even if partial cracks occur. Is a closed cell that does not open on the particle surface, and therefore has a high hydrostatic pressure levitation residual rate under pressure. The hydrostatic levitation survival rate is the ratio of the underwater buoyancy rate W2 under normal pressure after pressurization of particles pressurized under hydrostatic pressure to the underwater levitation rate (floating rate) W1 under normal pressure without pressure [the levitation residual rate = W2 / W1 × 100 (%)].

本発明の中空微粒子は、具体的には、例えば8MPa静水圧下での浮揚残存率が50%以上であり、好ましくは60%以上、より好ましくは70%以上である。浮揚残存率が50%を下回るものは粒子強度が低く、かつ粒子の内部空間が独立気泡によって形成されている割合が少ない。 Specifically, the hollow fine particles of the present invention have, for example, a residual levitation rate of 8 MPa under hydrostatic pressure of 50% or more, preferably 60% or more, more preferably 70% or more. Those having a buoyancy remaining rate of less than 50% have a low particle strength and a small proportion of the internal space of the particles formed by closed cells.

また、本発明の中空微粒子は、好ましくは上記独立気泡が粒子表面に開口しない密閉気泡であるので、吸水率が格段に小さい。具体的には、例えば、常圧下での吸水率が3%以下であり、好ましくは1.5%以下である。 In addition, the hollow fine particles of the present invention are preferably closed bubbles in which the closed cells do not open on the particle surface, and thus have a significantly low water absorption rate. Specifically, for example, the water absorption under normal pressure is 3% or less, preferably 1.5% or less.

本発明の中空微粒子について、粒子の内部空間が密閉された独立気泡によって形成されているとは、例えば、8MPa静水圧下での浮揚残存率が50%以上であることを云い、好ましくはさらに吸水率3%以下であることを云う。 In the hollow fine particles of the present invention, the fact that the internal space of the particles is formed by closed closed cells means, for example, that the residual rate of levitation under 8 MPa hydrostatic pressure is 50% or more, preferably further water absorption The rate is 3% or less.

本発明の中空微粒子は、粒子内部の空間が表面に開口のない独立気泡によって形成されているので吸水率が低く、かつ大きな内部空間を有するので軽量であり、水中での浮揚率が高い。また、強度が大きいので加圧下でも亀裂が生じ難く、部分的に亀裂が生じても内部空間が隔壁によって区切られているので水が浸透する範囲が限られ、加圧水下での浮揚残存率が格段に高い。 The hollow fine particles of the present invention are low in water absorption because the internal space of the particles is formed by closed cells having no openings on the surface, have a large internal space, are lightweight, and have a high floating rate in water. In addition, since the strength is high, cracks are unlikely to occur even under pressure, and even if there are partial cracks, the internal space is divided by the partition walls, so the range of water penetration is limited, and the residual levitation rate under pressurized water is exceptional. Very expensive.

本発明の中空微粒子は内部空間の隔壁は2個以上あることが好ましい。複数の隔壁を有することによって、粒子の強度がさらに向上する。具体的には、例えば、圧縮強度15MPa以上である。従って、この中空微粒子からなる本発明の塗料用粒材は、塗料と混合する際、特に生産規模で機械的に混合する場合でも、強度が大きいので壊れ難く、中空構造が維持されるので、高い断熱性能および遮音性能を有することができる。なお、強度が小さい粒材は塗料と混合する際に壊れやすく、中空構造を維持できないので、十分な断熱性、遮音性を得るには粒材の使用量を多くしなければならず、また壊れた粒子やその破片は、塗膜の性能を低下させる。 The hollow fine particles of the present invention preferably have two or more partition walls in the internal space. By having a plurality of partition walls, the strength of the particles is further improved. Specifically, for example, the compressive strength is 15 MPa or more. Therefore, the coating material granule of the present invention composed of the hollow fine particles is high in strength, because it has high strength and is not easily broken even when mechanically mixed on the production scale, and the hollow structure is maintained. It can have heat insulation performance and sound insulation performance. Since granular materials with low strength are fragile when mixed with paint and cannot maintain a hollow structure, the amount of granular materials must be increased in order to obtain sufficient heat insulation and sound insulation. Particles and fragments thereof deteriorate the performance of the coating film.

本発明の塗料用粒材において、内部空間に隔壁を有するものの割合は、100個中60個以上(約60%以上)が好ましく、約70%以上がより好ましい。内部空間に隔壁を有する粒子数がこれより少ないと、粒子の強度が低いので塗料に混合したときに破損する割合が多くなり適当ではない。 In the coating material granule of the present invention, the ratio of those having partition walls in the internal space is preferably 60 or more (about 60% or more) out of 100, and more preferably about 70% or more. If the number of particles having partition walls in the internal space is less than this, the strength of the particles is low, so that the rate of breakage when mixed with a paint increases, which is not suitable.

本発明の塗料用粒材はシリカ質微粒子であり、シリカ(SiO2)を主成分とする無機系材料から製造することができる。具体的には、シラス、真珠岩、黒曜石、松脂岩などのシリカ含有量70〜90%の天然ガラス質岩石を平均粒径100μm以下の微粒子に粉砕し、該岩石微粒子を900℃〜1500℃に加熱して発泡させて中空微粒子にし、この中空微粒子から内部空間が隔壁によって区切られたものを選択することによって製造することができる。また、本発明の塗料用粒材は、上記天然ガラス質岩石に限らず、例えば、岩石粉末に発泡原料を混合して造粒し、加熱発泡させることによって製造することができる。 The coating material granule of the present invention is siliceous fine particles, and can be produced from an inorganic material mainly composed of silica (SiO 2 ). Specifically, natural glassy rocks having a silica content of 70 to 90%, such as shirasu, pearlite, obsidian, and pine sebite, are crushed into fine particles having an average particle size of 100 μm or less, and the rock fine particles are adjusted to 900 ° C. to 1500 ° C. It can be produced by heating and foaming into hollow fine particles, and selecting the hollow fine particles whose internal spaces are separated by partition walls. Moreover, the granule for coatings of this invention is not restricted to the said natural glassy rock, For example, it can manufacture by mixing a foaming raw material with rock powder, granulating, and making it heat-foam.

本発明の塗料用粒材に用いるシリカ質の中空微粒子は、化学成分としてのSiO2含有量(シリカ含有量)が65〜90質量%のものが好ましく、70〜80質量%のものがより好ましい。シリカ含有量が65質量%未満であると高強度で発泡し難く、ガラス質の中空構造体が得難くなる。さらに不純物が多く含有されやすくなるため、均一な発泡もできなるので好ましくない。一方、シリカ含有量が90質量%を超えると融点が高くなるため発泡温度が高くなり、もしくは高温でも発泡しなくなるため、適当ではない。 The siliceous hollow fine particles used in the coating material granule of the present invention preferably have a SiO 2 content (silica content) of 65 to 90% by mass, more preferably 70 to 80% by mass as a chemical component. . When the silica content is less than 65% by mass, it is difficult to foam with high strength, and it becomes difficult to obtain a glassy hollow structure. Furthermore, since many impurities are easily contained, uniform foaming can be achieved, which is not preferable. On the other hand, if the silica content exceeds 90% by mass, the melting point becomes high, the foaming temperature becomes high, or foaming does not occur even at a high temperature, so it is not appropriate.

本発明の塗料用粒材は、以上のように、内部空間が隔壁によって区切られた複数の独立気泡によって形成されている内部に大きな空間を有するシリカガラス質の粒子であるので、光学顕微鏡によって内部空間や隔壁構造を確認することができる。 As described above, the coating material granule according to the present invention is a silica vitreous particle having a large space inside formed by a plurality of closed cells in which the internal space is divided by the partition walls. The space and the partition structure can be confirmed.

本発明の塗料用粒材は、隔壁によって区切られた複数の内部空間を有するので、塗料に混合する際に、せん断によって表面の一部が破壊されても、残りの内部空間によって中空構造が維持されるので、断熱性および遮音性を保つことができる。 Since the granule for coating material of the present invention has a plurality of internal spaces separated by partition walls, the hollow structure is maintained by the remaining internal space even when part of the surface is destroyed by shearing when mixed with the coating material. Therefore, heat insulation and sound insulation can be maintained.

一方、従来のように、開口気孔からなる多孔質粒子でなく閉口気孔の粒子であっても内部空間が連続気泡によって形成されている粒子からなる塗料用粒材では、部分的に亀裂が生じると、粒子内部の空間全体に液体が浸透して充満し、中空状態を維持できなくなり、十分な断熱性および遮音性が得られなくなる。 On the other hand, as in the past, in the coating material granule composed of particles in which the internal space is formed by open cells even if the particles are closed pores instead of the porous particles composed of open pores, when cracks occur partially The liquid penetrates and fills the entire space inside the particles, so that the hollow state cannot be maintained, and sufficient heat insulation and sound insulation cannot be obtained.

本発明の塗料用粒材の粒子径は平均粒径5〜100μmが適当であり、5〜70μmが好ましい。平均粒径が100μmより大きいと、塗料を塗布するとき表面の平滑性が損なわれるので好ましくない。また、平均粒径が5μmより小さいと、粒子どうしの凝集が起こりやすく、均一に分散し難くなる。 The particle diameter of the granular material for coating of the present invention is suitably an average particle diameter of 5 to 100 μm, preferably 5 to 70 μm. When the average particle size is larger than 100 μm, the smoothness of the surface is impaired when a paint is applied, which is not preferable. On the other hand, if the average particle size is smaller than 5 μm, the particles tend to aggregate and become difficult to disperse uniformly.

本発明の粒材(中空微粒子)を断熱用として使用する場合には、平均粒径が5〜100μmの範囲であって、粒子径が1〜50μmのものが好ましい。後述の実施例1に示すように、試料A1〜A6は平均粒径5〜100μmであるので何れも断熱性は良いが、最大粒径50μmの試料A2を用いたものは、最も上昇温度が低く、断熱性に優れている。従って、本発明の中空微粒子を断熱用として使用する場合には、平均粒径5〜100μmであって、最小粒子径1μm以上〜最大粒子径50μm以下のものが好ましい。 When the granule (hollow fine particles) of the present invention is used for heat insulation, it is preferable that the average particle diameter is in the range of 5 to 100 μm and the particle diameter is 1 to 50 μm. As shown in Example 1 described later, the samples A1 to A6 have an average particle size of 5 to 100 μm, and thus all have good heat insulation properties, but those using the sample A2 having a maximum particle size of 50 μm have the lowest rising temperature. Excellent thermal insulation. Therefore, when the hollow fine particles of the present invention are used for heat insulation, those having an average particle diameter of 5 to 100 μm and a minimum particle diameter of 1 μm or more to a maximum particle diameter of 50 μm or less are preferable.

本発明の粒材(中空微粒子)を遮音用として使用する場合には、平均粒径が5〜100μmの範囲であって、粒子径が1〜250μmのものが好ましい。後述の実施例1に示すように、試料A1〜A6は平均粒径5〜100μm、および粒子径1〜250μmであるので、何れも遮音性は良い。なお、最大粒子径212μmの試料A4を用いたものは最も外部音圧が低く、遮音性に優れている。従って、本発明の中空微粒子を遮音用として使用する場合には、平均粒径5〜100μmであって、最小粒子径1μm以上〜最大粒子径200μm以下のものが好ましい。なお、望ましくは、粒子径が上記範囲内において広い粒度分布を有するものが、より広い範囲の周波数の音を吸収できるので好ましい。 When the granular material (hollow fine particles) of the present invention is used for sound insulation, it is preferable that the average particle diameter is in the range of 5 to 100 μm and the particle diameter is 1 to 250 μm. As shown in Example 1 described later, since the samples A1 to A6 have an average particle diameter of 5 to 100 μm and a particle diameter of 1 to 250 μm, all have good sound insulation. The sample using the sample A4 having a maximum particle diameter of 212 μm has the lowest external sound pressure and excellent sound insulation. Therefore, when the hollow fine particles of the present invention are used for sound insulation, those having an average particle diameter of 5 to 100 μm and a minimum particle diameter of 1 μm or more to a maximum particle diameter of 200 μm or less are preferable. Desirably, those having a wide particle size distribution within the above range are preferable because they can absorb sound in a wider range of frequencies.

本発明の粒材は、内部が中空の微粒子であるため、粒子内部に熱が伝達し難く、高い断熱性を有すると共に、粒子内部に音が伝わり難いので、高い遮音性を有する。この中空微粒子の容重は0.16〜0.35g/cm3の範囲が好ましい。容重が0.35g/cm3を超えると、内部空間の割合が少なく、断熱効果が小さい。一方、容重が0.16g/cm3より小さいと、粒子の膜厚が薄いため、強度が低下する。 Since the granule of the present invention is a fine particle having a hollow inside, it is difficult for heat to be transferred to the inside of the particle and has high heat insulating properties, and it is difficult for sound to be transmitted to the inside of the particle, and thus has high sound insulation. The volume of the hollow fine particles is preferably in the range of 0.16 to 0.35 g / cm 3 . If the weight exceeds 0.35 g / cm 3 , the proportion of the internal space is small and the heat insulating effect is small. On the other hand, when the weight is smaller than 0.16 g / cm 3 , the strength is lowered because the film thickness of the particles is thin.

本発明の粒材は塗料に混合して用いられる。塗料に混合する粒材の量は制限されないが、一般的には、塗料中の粒材の含有量が5質量%以上であると機能が十分発現されるので好ましい。具体的には、断熱用塗料では粒材の含有量は5〜50質量%が好ましく、遮音用塗料では粒材の含有量は10〜100質量%が好ましい。 The granular material of the present invention is used by mixing with a paint. The amount of the granular material to be mixed with the paint is not limited, but in general, the content of the granular material in the paint is preferably 5% by mass or more because the function is sufficiently expressed. Specifically, the content of the granular material is preferably 5 to 50% by mass in the heat insulating coating, and the content of the granular material is preferably 10 to 100% by mass in the sound insulating coating.

本発明の粒材を含有する塗料において、粒材以外の成分は液体が好ましいが、本発明の効果を阻害しない限り、液体に限定されず、例えば塗料に使用される公知の溶剤や樹脂、増粘剤、糊剤、分散剤、着色顔料、その他の添加物などを含むことができる。 In the paint containing the granular material of the present invention, the components other than the granular material are preferably liquids, but are not limited to liquids as long as they do not impair the effects of the present invention. It can contain a sticking agent, a paste, a dispersant, a coloring pigment, other additives, and the like.

具体的には、溶剤として例えば、トルエン、ヘキサン、キシレン等の炭化水素化合物、アセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、エタノール、プロパノール、ブタノール、グリコール等のアルコール類、エーテル系やその他の水性溶媒(水を含む)等を用いることができる。塗料中の溶媒の好適な使用量は10〜80質量%が適当である。 Specifically, as the solvent, for example, hydrocarbon compounds such as toluene, hexane, xylene, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, alcohols such as ethanol, propanol, butanol and glycol, Ether-based and other aqueous solvents (including water) can be used. 10-80 mass% is suitable for the suitable usage-amount of the solvent in a coating material.

また、樹脂として例えば、ルキド樹脂、アクリル樹脂、エポキシ樹脂、ポリウレタン樹脂、フッ素樹脂、シリコン樹脂、フェノール樹脂、塩化ビニル樹脂等の合成樹脂、松脂、コハク等の天然樹脂、亜麻仁油、サフラワー油、大豆油、ひまし油、菜種油等の油類等を用いることができる。塗料中の樹脂の好適な使用量は10〜60質量%が適当である。 In addition, as resins, for example, synthetic resins such as alkyd resin, acrylic resin, epoxy resin, polyurethane resin, fluororesin, silicon resin, phenol resin, vinyl chloride resin, natural resins such as pine resin, agate, flaxseed oil, safflower oil, Oils such as soybean oil, castor oil, and rapeseed oil can be used. 10-60 mass% is suitable for the suitable usage-amount of resin in a coating material.

また、増粘剤として例えば、セルロース誘導体、糊剤として例えば、澱粉や酢酸ビニル等を用いることができる。塗料中の増粘剤や糊剤の好適な使用量は0.1〜10質量%が適当である。 Moreover, as a thickener, for example, a cellulose derivative, and as a paste, for example, starch or vinyl acetate can be used. 0.1-10 mass% is suitable for the suitable usage-amount of the thickener and paste in a coating material.

また、分散剤として例えば、ポリカルボン酸系重合体、リグニンスルホン酸やナフタレンスルホン酸ホルマリン縮合物等を用いることができ、特にグラフトポリマー構造のものが好適である。塗料中の分散剤の好適な使用量は0.05〜5質量%が適当である。 Further, as the dispersant, for example, a polycarboxylic acid polymer, lignin sulfonic acid, naphthalene sulfonic acid formalin condensate or the like can be used, and those having a graft polymer structure are particularly suitable. A suitable amount of the dispersant used in the paint is suitably 0.05 to 5% by mass.

また、着色顔料として例えば、二酸化チタン、亜鉛華、鉛白、亜鉛黄、カーボンブラック、パーマネントレッド、べんがら、黄色鉛、シアニンブルー、紺青、群青、シアニングリーン、酸化鉄など顔料を用いることができる。塗料中の着色顔料の好適な使用量は1〜20質量%が適当である。 In addition, for example, pigments such as titanium dioxide, zinc white, lead white, zinc yellow, carbon black, permanent red, red pepper, yellow lead, cyanine blue, bitumen, ultramarine blue, cyanine green, and iron oxide can be used as the color pigment. A suitable amount of the color pigment used in the paint is 1 to 20% by mass.

さらに、他の添加剤として、可塑剤、硬化剤、顔料分散剤、乳化剤、乾燥剤、消泡剤、防腐剤、防錆剤、凍結防止剤、防カビ剤、撥水剤などを用いることができ、何れも適量を塗料中に含有させて使用することができる。これらの成分を混合することによって得られる本発明の断熱用塗料または遮音用塗料は、塗布対象となる素材は金属、セラミックス、木材、樹脂等何れのものにも使用でき、また塗布方法も特に限定されず、例えば、刷毛、ローラー、筆、鏝、噴霧装置等を使用でき、さらには静電塗装やカーテン塗装等による方法にも使用できる。 Further, as other additives, plasticizers, curing agents, pigment dispersants, emulsifiers, drying agents, antifoaming agents, antiseptics, rust inhibitors, antifreezing agents, antifungal agents, water repellents, etc. may be used. In any case, an appropriate amount can be contained in the paint and used. The heat insulating paint or sound insulating paint of the present invention obtained by mixing these components can be used for any material such as metal, ceramics, wood, resin, etc., and the application method is also particularly limited. For example, a brush, a roller, a brush, a scissors, a spray device, etc. can be used, Furthermore, it can be used also for the method by electrostatic coating, curtain coating, etc.

以下、本発明を実施例によって具体的に示す。なお、粒子の平均粒径、浮水率、容重、吸水率、静水圧浮揚残存率、隔壁の割合、平滑度、断熱性、遮音性は以下の方法によって測定した。 Hereinafter, the present invention will be specifically described by way of examples. In addition, the average particle diameter, the floating rate, the volume, the water absorption rate, the hydrostatic pressure levitation remaining rate, the partition wall ratio, the smoothness, the heat insulating property, and the sound insulating property were measured by the following methods.

〔平均粒径〕
レーザー回折粒度分布測定装置を用い、日機装社製測定器(マイクロトラック)によって測定した。
〔隔壁粒子の割合〕
プレパラート上にアルコールで分散させた試料を滴下し、均一にならして乾燥させる。これを透過型の顕微鏡で観察し、100個中の隔壁がある個数をカウントした。
[Average particle size]
Using a laser diffraction particle size distribution measuring device, measurement was performed with a measuring instrument (Microtrack) manufactured by Nikkiso Co., Ltd.
[Ratio of partition wall particles]
A sample dispersed with alcohol is dropped on the preparation, and the sample is uniformly dried. This was observed with a transmission microscope, and the number of 100 partitions was counted.

〔容重〕
一定容積S(cm3)の容重枡に試料を充填し、開口からはみ出た部分をすり切り、全体の重量G1を測定し、これから容器の重量G2を差し引いて粉末重量G3(g)を求め、上記容積Sに対する粉末重量G3の比〔G3/S〕g/cm3を容重とした。
[Weight]
A sample is filled into a container with a constant volume S (cm 3 ), the portion protruding from the opening is ground, the total weight G1 is measured, and the weight G2 of the container is subtracted from this to obtain the powder weight G3 (g). The ratio of the powder weight G3 to the volume S [G3 / S] g / cm 3 was defined as the volume.

〔浮水率〕
浮水率は、試料粒子を水に浸漬したときに、水面上に浮いた粒子の全試料粒子に占める体積割合であり、加圧し常圧下の浮揚率である。約10gの試料を200mlメスシリンダーに入れて水を浸し、十分に攪拌した後に静置し、水の濁りがなくなるまで置き、浮いた試料Vaと沈んだ試料の容積Vbを測定し、Va/(Va+Vb)×100の式に基づいて浮水率を算出した。
[Floating rate]
The float ratio is the volume ratio of the particles floating on the water surface to the total sample particles when the sample particles are immersed in water, and is the float ratio under pressure and normal pressure. About 10 g of sample is put in a 200 ml graduated cylinder, soaked in water, allowed to stand after sufficiently stirring, placed until there is no turbidity in water, the volume Vb of the floated sample Va and the sinked sample is measured, Va / ( The floating rate was calculated based on the formula of Va + Vb) × 100.

〔吸水率〕
約200g試料を十分な量の水中に入れ、24時間放置する。これを5種Aのろ紙で自然濾過させる。これを時計皿に薄く均一に延ばして風乾させ、試料を採取し、吸水試料質量maを測定する。これを105℃の乾燥機で恒量になるまで乾燥し、乾燥試料質量mbを測定する。(ma-mb)/mb×100の式から吸水率を算出した。
[Water absorption rate]
About 200 g sample is put in a sufficient amount of water and left for 24 hours. This is naturally filtered with 5 types A filter paper. This is thinly and evenly spread on a watch glass, air-dried, a sample is taken, and the water absorption sample mass ma is measured. This is dried to a constant weight with a dryer at 105 ° C., and the dry sample mass mb is measured. The water absorption was calculated from the formula (ma-mb) / mb × 100.

〔静水圧浮揚残存率〕
試料を試料容器と共に水で満たされた加圧容器内へ入れ、8MPaで1分間加圧する。加圧後、加圧した試料の全量を取り出してメスシリンダー入れ、水200mlを加えて静置する。静置後、水の濁りが無くなってきたら、上記浮水率測定方法に準じた方法で浮いた試料粒子の体積を計測し、8MPa加圧下での加圧浮揚率(浮水率)W2とする。加圧試料と同量の試料について、加圧せずに常圧下とした以外は同様の測定方法で測定し、非加圧下の浮揚率(浮水率)W1とする。加圧試料浮揚率W2/非加圧浮揚率W1×100の式に基づいて静水圧浮揚残存率を算出した。
[Remaining hydrostatic pressure levitation rate]
The sample is put into a pressurized container filled with water together with the sample container, and pressurized at 8 MPa for 1 minute. After pressurization, the entire amount of the pressurized sample is taken out and placed in a graduated cylinder, and 200 ml of water is added and left to stand. When the turbidity of water disappears after standing, the volume of the sample particles floating is measured by a method according to the above method for measuring the floating rate, and is set as a pressurized floating rate (floating rate) W2 under a pressure of 8 MPa. A sample having the same amount as the pressurized sample is measured by the same measurement method except that the sample is not pressurized and is at normal pressure, and is defined as a non-pressurized floating rate (floating rate) W1. The hydrostatic pressure levitation residual rate was calculated based on the formula of pressurized sample buoyancy rate W2 / non-pressurized levitation rate W1 × 100.

〔平滑度、断熱性、遮音性試験の試料作成方法〕
粒材を市販水性塗料(品名「水性スーパーコート白」、アサヒペン会社製)100質量部に対し30質量部を添加し、ハンドミキサーで混合して試験塗料を作製した。各試験塗料は、縦30cm、横30cm、厚さ3mmの鋼製平板の片面に刷毛で膜厚が約300μm程度となるように斑無く塗布し、常温大気中で乾燥させて塗膜を形成した。この塗膜について、塗膜表面の平滑性と断熱性を測定した。
[Sample preparation method for smoothness, heat insulation, sound insulation test]
30 parts by mass of the granule was added to 100 parts by mass of a commercially available water-based paint (product name “aqueous supercoat white”, manufactured by Asahi Pen Co., Ltd.), and mixed with a hand mixer to prepare a test paint. Each test paint was applied to one side of a steel flat plate 30 cm long, 30 cm wide and 3 mm thick with a brush so that the film thickness would be about 300 μm, and dried in air at room temperature to form a coating film. . About this coating film, the smoothness and heat insulation of the coating-film surface were measured.

〔平滑性〕
塗膜表面を手で触り、次の3段階で評価した。
×:ざらざら、△:比較的滑らか、○:滑らかとした。
〔断熱性〕
500Wの写真用レフランプを30cmの高さから平板塗布面に5分間照射し、裏面の温度を温度センサーによって上昇温度を測定した。この値によって断熱性を次の3段階で評価した。
×:71℃以上、△:70〜66℃、○:65℃以下とした。
[Smoothness]
The surface of the coating film was touched by hand and evaluated in the following three stages.
×: Rough, Δ: Relatively smooth, ○: Smooth.
〔Thermal insulation properties〕
A 500 W photographic reflex lamp was irradiated on the flat plate coating surface from a height of 30 cm for 5 minutes, and the temperature of the back surface was measured by a temperature sensor. With this value, the heat insulation was evaluated in the following three stages.
X: 71 ° C. or higher, Δ: 70 to 66 ° C., ○: 65 ° C. or lower.

〔遮音性〕
一面のみ開口した約30cmの立方体形のプラスチック箱(厚さ2mm)の内表面の全面に試験塗料を塗布し、内部に小型スピーカー(直径5cm、出力1.5W)を設置した。開口部を箱と同材で完全に密封し、その状態で75dBのホワイトノイズを常温下で鳴らし、箱から10cm離れた場所の音圧をハンディ型ディジタル騒音計で測定した。測定音圧の値によって遮音性を次の3段階で評価した。
×:66dB以上、△:65〜61dB、○:60dB以下
[Sound insulation]
The test paint was applied to the entire inner surface of a cube-shaped plastic box (thickness 2 mm) of about 30 cm opened on only one side, and a small speaker (diameter 5 cm, output 1.5 W) was installed inside. The opening was completely sealed with the same material as the box, and in that state, 75 dB of white noise was generated at room temperature, and the sound pressure at a location 10 cm away from the box was measured with a handy digital sound level meter. The sound insulation was evaluated in the following three stages according to the value of the measured sound pressure.
×: 66 dB or more, Δ: 65 to 61 dB, ○: 60 dB or less

〔実施例1〕
真珠岩〔化学成分含有率(質量%)SiO2 74%、Al2O3 13%、Fe2O3 1%、CaO1%、MgO 0.1%、Na2O 3.5%、K2O 4.4%、ig.loss 2.2%〕を発泡させてシリカ質中空微粒子を製造し、容重0.15〜0.35g/cm3、平均粒径10〜100μmのものを選択した(本発明品:No.A1〜A6)。なお、何れの試料A1〜A6についても篩目1μmのふるいに残る試料を用い、かつA1の試料については篩目300μmのふるい、A2の試料については篩目45μmのふるい、A3の試料については篩目106μmのふるい、A4の試料については篩目212μmのふるい、A5の試料については篩目45μmのふるい、A6の試料については篩目106μmのふるいを通過した試料を使用した。これらの中空微粒子について、容重、平均粒径、隔壁粒子の割合、静水圧浮揚残存率、浮水率、吸水率を測定し、さらに塗料に混合して、その平滑性、断熱性、遮音性を測定した。これら結果を表1に示した。
[Example 1]
Pearlite [chemical content (mass%) SiO 2 74%, Al 2 O 3 13%, Fe 2 O 3 1%, CaO 1%, MgO 0.1%, Na 2 O 3.5%, K 2 O 4.4%, ig .loss 2.2%] to produce siliceous hollow fine particles, and those having a volume of 0.15 to 0.35 g / cm 3 and an average particle size of 10 to 100 μm were selected (product of the present invention: No. A1 to A6). ). For any of the samples A1 to A6, the sample remaining on the sieve having a sieve size of 1 μm is used, and the A1 sample is a sieve having a sieve size of 300 μm, the A2 sample is having a sieve size of 45 μm, and the A3 sample is sieved. A sieve having a mesh size of 106 μm, a sample of A4 having a sieve size of 212 μm, a sample of A5 having a sieve size of 45 μm, and a sample of A6 having a sieve having a size of 106 μm were used. For these hollow fine particles, the volume, average particle size, ratio of partition wall particles, hydrostatic pressure levitation residual rate, water floating rate, water absorption rate are measured, and further mixed with the paint to measure its smoothness, heat insulation, and sound insulation. did. These results are shown in Table 1.

〔比較例1〕
実施例と同様の方法で隔壁のある中空粒子を製造し、平均粒径が本発明の範囲から外れ、容重、静水圧浮揚残存率が本発明の好ましい範囲を外れる試料(No.B1〜B5)を選択した。B1は平均粒径195μm、B3は平均粒径3μm、B4は平均粒径305μmであり、何れも本発明の範囲から外れる。また、B2は静水圧浮揚残存率31%、B5は容重0.40g/cm3であり、何れも本発明の好ましい範囲から外れる。これらの中空微粒子について、容重、平均粒径、隔壁粒子の割合、静水圧浮揚残存率、浮水率、吸水率を測定し、さらに塗料に混合して、その平滑性、断熱性、遮音性を測定した。これら結果を表2に示した。
[Comparative Example 1]
Samples in which hollow particles having partition walls are produced in the same manner as in Examples, the average particle diameter is out of the range of the present invention, and the weight and the hydrostatic levitation residual ratio are out of the preferable range of the present invention (No. B1 to B5) Selected. B1 has an average particle size of 195 μm, B3 has an average particle size of 3 μm, and B4 has an average particle size of 305 μm, both of which fall outside the scope of the present invention. Further, B2 has a hydrostatic levitation residual ratio of 31% and B5 has a capacity of 0.40 g / cm 3 , both of which are outside the preferred range of the present invention. For these hollow fine particles, the volume, average particle size, ratio of partition wall particles, hydrostatic pressure levitation residual rate, water floating rate, water absorption rate are measured, and further mixed with the paint to measure its smoothness, heat insulation, and sound insulation. did. These results are shown in Table 2.

〔比較例2〕
市販品のパーライト(真珠岩系加熱発泡粒)について、容重0.21g/cm3、平均粒径約96〜210μmのものを試料(No.C1〜C2)とした。また、有機系の中空微粒子として(商品名「マツモトマイクロスフェアー」、松本油脂製薬社製)を使用した(NoC3)。さらに、市販品のパーライト中空微粒子を回転電気炉で1000℃に再加熱し、表面を溶融させて内部気泡が連通しているものを製造した(No.C4)。これらの中空微粒子について、容重、平均粒径、気泡の状態、静水圧浮揚残存率、浮水率、吸水率を測定し、さらに塗料に混合して、その平滑性、断熱性、遮音性を測定した。これら結果を表3に示した。
[Comparative Example 2]
A commercially available pearlite (pearlite-based heated foamed particle) having a weight of 0.21 g / cm 3 and an average particle size of about 96 to 210 μm was used as a sample (No. C1 to C2). In addition, organic hollow fine particles (trade name “Matsumoto Microsphere”, manufactured by Matsumoto Yushi Seiyaku Co., Ltd.) were used (NoC3). Furthermore, commercially available pearlite hollow fine particles were reheated to 1000 ° C. in a rotary electric furnace, and the surface was melted to produce a product in which internal bubbles communicated (No. C4). About these hollow fine particles, the volume, the average particle diameter, the state of bubbles, the hydrostatic levitation residual rate, the water floating rate, the water absorption rate were measured, and further mixed with the paint to measure its smoothness, heat insulating properties, and sound insulation properties. . These results are shown in Table 3.

〔比較基準〕
粒材を混合しない市販水性塗料(品名「水性スーパーコート白」、アサヒペン会社製)について平滑性、断熱性、遮音性を測定した。これを比較基準として表4に示した。
[Comparison criteria]
Smoothness, heat insulation, and sound insulation were measured for a commercially available water-based paint (product name “water-based supercoat white”, manufactured by Asahi Pen Co., Ltd.) that does not mix the particulate material. This is shown in Table 4 as a comparison standard.

表1に示すように、内部空間に隔壁を有し、平均粒径25〜100μm、容重0.16〜0.35g/cm3の中空微粒子(No.A1〜A6)は、何れも静水圧浮揚残存率60%以上であり、加圧下でも高い浮揚率を示す。一方、表3に示すように、従来のパーライト市販品は何れも静水圧浮揚残存率は55%以下であり(No.C1,C2)、本発明の中空微粒子は同程度の粒径でも従来のパーライトに比べて静水圧浮揚率は高い。これは、従来のパーラートは加圧下で粒子内部に水が浸透しやすいことを示している。 As shown in Table 1, all of the hollow fine particles (No. A1 to A6) having a partition wall in the internal space and having an average particle size of 25 to 100 μm and a weight of 0.16 to 0.35 g / cm 3 are hydrostatically levitated. The residual rate is 60% or more, and a high levitation rate is exhibited even under pressure. On the other hand, as shown in Table 3, all of the conventional pearlite commercial products have a hydrostatic levitation residual ratio of 55% or less (No. C1, C2), and the hollow fine particles of the present invention have the same particle size as the conventional ones. The hydrostatic levitation rate is higher than that of pearlite. This indicates that conventional perlate easily permeates water inside the particles under pressure.

また、表1に示すように、平均粒径100μm以下の粒子を用いれば平滑性の良い塗料を得ることができる。一方、表2に示すように、平均粒径が100μmを超える(No.B1、B4)と平滑性が低くなる。また、パーライト市販品では、本発明品に比べて平滑性が劣る(No.C1、C2)。平均粒径が100μmを超えると、塗料表面より粒子が露出するため平滑性が低下する。 Moreover, as shown in Table 1, a coating having good smoothness can be obtained by using particles having an average particle size of 100 μm or less. On the other hand, as shown in Table 2, when the average particle size exceeds 100 μm (No. B1, B4), the smoothness is lowered. Moreover, the smoothness of the pearlite commercial product is inferior to the product of the present invention (No. C1, C2). When the average particle size exceeds 100 μm, the particles are exposed from the surface of the paint, so that the smoothness is lowered.

表1に示すように、平均粒径が5〜100μmの試料は断熱効果が高く(No.A1〜A6)、最大粒子径50μm以下の試料(No.A2)は上昇温度が最も小さく特に断熱効果が高い。平均粒径が5μmより小さいと、断熱効果が低い(No.B3)。これは、断熱に必要な空間が十分ではないことを示している。 As shown in Table 1, samples with an average particle size of 5 to 100 μm have a high heat insulation effect (No. A1 to A6), and samples with a maximum particle size of 50 μm or less (No. A2) have the smallest rising temperature, especially the heat insulation effect. Is expensive. When the average particle size is smaller than 5 μm, the heat insulating effect is low (No. B3). This indicates that there is not enough space for insulation.

また、表2に示すように、同程度の容重、粒径であっても、隔壁を有する粒子の割合が60%以下のものは、静水圧浮揚残存率が小さく、断熱性が低い(No.B2、B3)。これは、中空微粒子の粒材を塗料に混合するときに、粒材が破損しやすく、中空を維持できないために断熱効果が低下することを示している。 Moreover, as shown in Table 2, even when the volume and particle size are similar, those having a partition wall ratio of 60% or less have a low hydrostatic levitation residual rate and low heat insulation (No. B2, B3). This indicates that when mixing the particulate material of the hollow fine particles with the paint, the particulate material is easily damaged, and the heat insulation effect is lowered because the hollow cannot be maintained.

また、表3に示すように、同程度の容重、粒径であっても、吸水率が高い場合には断熱性が低下する(No.C1、C2)。これは、中空微粒子の粒材を塗料に混合するときに、粒材の内部に溶媒や塗料成分が浸透しやすいために、内部空洞を維持できず、断熱効果が低下することを示している。さらに、浮水率および強度が大きく、かつ吸水率が小さくても、容重が高い場合には断熱性が低下する(No.B5)。これは、塗料との混合時には中空粒子の破損は少ないが、粒子内部の空洞容積が少ないため、熱が伝導しやすく、断熱効果が得られ難いからである。 Moreover, as shown in Table 3, even if the weight and particle size are comparable, if the water absorption rate is high, the heat insulating property decreases (No. C1, C2). This indicates that when the hollow fine particles are mixed with the paint, the solvent and the paint components easily permeate into the granules, so that the internal cavities cannot be maintained and the heat insulation effect is reduced. Furthermore, even if the water floating rate and strength are large and the water absorption rate is small, if the weight is high, the heat insulating property is lowered (No. B5). This is because the hollow particles are hardly damaged at the time of mixing with the paint, but since the hollow volume inside the particles is small, heat is easily conducted and it is difficult to obtain a heat insulating effect.

さらに、表3に示すように、粒子表面を再溶融して表面開口を塞いだ試料(No.C4)も、断熱効果が低い。これは、粒子表面が部分的に破損すると連通気泡を通じて粒子内部に塗料成分が侵入するためであり、断熱効果が得られ難い。 Furthermore, as shown in Table 3, the sample (No. C4) in which the particle surface is remelted to close the surface opening also has a low heat insulating effect. This is because if the particle surface is partially damaged, the paint component enters the inside of the particles through the communicating bubbles, and it is difficult to obtain a heat insulating effect.

表1に示すように、平均粒径が5〜100μmでは遮音効果が高く(No.A1〜A6)、最大粒子径が250μm以下の中空微粒を含む試料(No.A4)は特に遮音効果が高い。平均粒径が5μmより小さいと、遮音効果が低い(No.B3)。これは、遮音に必要な空間が十分ではないことを示している。 As shown in Table 1, the sound insulation effect is high when the average particle size is 5 to 100 μm (No. A1 to A6), and the sample (No. A4) containing hollow fine particles having a maximum particle size of 250 μm or less has particularly high sound insulation effect. . When the average particle size is smaller than 5 μm, the sound insulation effect is low (No. B3). This indicates that the space necessary for sound insulation is not sufficient.

また、表2に示すように、同程度の容重、粒径であっても、隔壁を有する粒子の割合が60%以下のものは、静水圧浮揚残存率が小さく、遮音性が低い(No.B2、B3)。これは、中空微粒子の粒材を塗料に混合するときに、粒材が破損しやすく、中空を維持できないために遮音効果が低下することを示している。 Further, as shown in Table 2, even when the weight and particle size are similar, those having a partition wall ratio of 60% or less have a low hydrostatic levitation residual rate and low sound insulation (No. B2, B3). This indicates that when mixing the particles of hollow fine particles with the coating material, the particles are easily damaged, and the sound insulation effect is reduced because the hollow cannot be maintained.

また、表3に示すように、同程度の容重、粒径であっても、吸水率が高い場合には遮音性が低下する(No.C1、C2)。これは、中空微粒子の粒材を塗料に混合するときに、粒材の内部に溶媒や塗料成分が浸透しやすいために、内部空洞を維持できず、遮音効果が低下することを示している。さらに、浮水率および強度が大きく、かつ吸水率が小さくても、容重が高い場合には断熱性が低下する(No.B5)。これは、中空微粒子の粒材を塗料に混合するときに、中空粒子の破損は少ないが、粒子内部の空洞容積が少ないため、音の振動を吸収し難く、遮音性が低下するためである。 Further, as shown in Table 3, even if the volume and particle size are comparable, the sound insulation performance decreases when the water absorption rate is high (No. C1, C2). This indicates that when hollow particulate material is mixed with a coating material, the solvent and the coating component easily penetrate into the interior of the particulate material, so that the internal cavity cannot be maintained and the sound insulation effect is reduced. Furthermore, even if the water floating rate and strength are large and the water absorption rate is small, if the weight is high, the heat insulating property is lowered (No. B5). This is because when hollow particles are mixed with a coating material, the hollow particles are hardly damaged, but the volume of the cavity inside the particles is small, so that it is difficult to absorb the vibration of sound and the sound insulation is reduced.

さらに、表3に示すように粒子表面を再溶融して表面開口を塞いだ試料(No.C4)も、遮音効果が低い。これは、粒子表面が、部分的に破損すると連通気泡を通じて粒子内部に塗料成分が侵入するためであり、遮音効果が得られ難い。 Furthermore, as shown in Table 3, the sample (No. C4) in which the surface of the particle is remelted to close the surface opening also has a low sound insulation effect. This is because if the particle surface is partially damaged, the paint component enters the particle through the communicating bubbles, and it is difficult to obtain a sound insulation effect.

Figure 2010077424
Figure 2010077424

Figure 2010077424
Figure 2010077424

Figure 2010077424
Figure 2010077424

Figure 2010077424
Figure 2010077424

〔実施例2〕
実施例1の中空微粒子(No.A3)を用い、各種市販塗料(「油性トタン用」(D1)、「水性トタン用」(D2)、「高級アクリルトタン用」(D3)、何れも白色、すべてアサヒペン会社製品)100質量部に対して、上記中空微粒子(No.A3)を30質量部を添加し、ハンドミキサーで混合して試験塗料(No.D1〜D4)を作製した。各試験塗料は、ブリキ性のトタン(1m×1m)に塗布し、300μm程度となるように斑無く塗布し、常温、大気中で乾燥させて塗膜を形成した。これを直射日光があたる屋外へ設置し、30日間暴露した後、劣化状況を観察した。また日中のトタン下約1cmの温度を測定した。このときの外気温は29℃であった。これら結果を表5に示した。何れの塗料(No.D1〜D4)でも、粒材を添加していない塗料に比べて、断熱の効果が得られた。
[Example 2]
Using the hollow fine particles (No. A3) of Example 1, various commercially available paints ("for oily tones" (D1), "for aqueous tones" (D2), "for high-grade acrylic tones" (D3), all white, 30 parts by mass of the hollow fine particles (No. A3) were added to 100 parts by mass of all Asahi Pen company products) and mixed with a hand mixer to prepare test paints (No. D1 to D4). Each test paint was applied to tin-colored tin (1 m × 1 m), applied without any spots so as to be about 300 μm, and dried in the air at room temperature to form a coating film. This was installed outdoors exposed to direct sunlight, exposed for 30 days, and then observed for deterioration. In addition, a temperature of about 1 cm was measured under tin during the day. The outside temperature at this time was 29 degreeC. These results are shown in Table 5. In any of the paints (No. D1 to D4), an effect of heat insulation was obtained as compared with the paint without adding the particulate material.

Figure 2010077424
Figure 2010077424

〔実施例3〕
実施例1と同様の方法で、塗料の厚さ、粒剤の添加量を変えて平滑性、断熱性、遮音性を測定した。粒材は実施例1のA3を使用し、粒材の量は、塗料100質量部に対して5〜100質量部添加した(E1〜E3)。また膜厚は、20〜500μmとした(E4〜E6)。これら結果を表6に示した。
Example 3
In the same manner as in Example 1, the smoothness, heat insulating properties, and sound insulating properties were measured by changing the thickness of the coating material and the amount of granules added. A3 of Example 1 was used for the granule, and the amount of the granule was added in an amount of 5 to 100 parts by mass (E1 to E3) with respect to 100 parts by mass of the coating material. The film thickness was 20 to 500 μm (E4 to E6). These results are shown in Table 6.

粒材の添加量が5質量部では断熱性、遮音性が低く、100質量部を超えると表面の平滑性がやや損なわれる。また、塗料厚さは20μmでは断熱性、遮音性が不十分である。一方、膜厚が500μmを超えるものは、平滑性、断熱性、遮音性はともに良好であるが、経済的に劣る。 When the added amount of the granule is 5 parts by mass, the heat insulation and sound insulation are low, and when it exceeds 100 parts by mass, the surface smoothness is somewhat impaired. Further, when the coating thickness is 20 μm, the heat insulating properties and sound insulating properties are insufficient. On the other hand, when the film thickness exceeds 500 μm, smoothness, heat insulation and sound insulation are all good, but economically inferior.

Figure 2010077424
Figure 2010077424

〔実施例4〕
実施例1の中空微粒子(No.A3)、および市販の有機系中空微粒子(No.C3)を用いて耐熱塗料を作製し、耐熱試験を実施した。塗料は、溶媒としてシンナーを使用し、シリコン樹脂と顔料(チタン粉末)と中空微粒子を混合して作製した(中空微粒子の含有量30質量%)。この塗料を30cm四方の鉄板に塗布して十分に乾燥した後、電気炉に入れて表中の温度で24時間加温した後、表面を観察した。この結果を表7に示した。
Example 4
A heat-resistant paint was prepared using the hollow fine particles (No. A3) of Example 1 and commercially available organic hollow fine particles (No. C3), and a heat resistance test was conducted. The paint was prepared by using thinner as a solvent and mixing a silicon resin, a pigment (titanium powder), and hollow fine particles (content of hollow fine particles 30% by mass). This paint was applied to a 30 cm square iron plate and sufficiently dried, then placed in an electric furnace and heated at the temperature shown in the table for 24 hours, and then the surface was observed. The results are shown in Table 7.

表7に示すように、有機系の中空微粒子(No.C3)は熱で変形し、200℃から塗料にひびが入り始めたが、本発明品(No.A3)を用いた耐火塗料は400℃の高温でも変化しなかった。 As shown in Table 7, the organic hollow fine particles (No. C3) were deformed by heat, and the paint began to crack at 200 ° C., but the fire-resistant paint using the product of the present invention (No. A3) was 400. It did not change even at high temperatures of ℃.

Figure 2010077424
Figure 2010077424

Claims (9)

塗料に配合されるシリカ質の中空微粒子であって、平均粒径5〜100μmであり、内部空間が隔壁によって区切られた複数の独立気泡によって形成されていることを特徴とする塗料用粒材。 A granule for paint, which is a siliceous hollow fine particle blended in a paint, has an average particle diameter of 5 to 100 μm, and is formed by a plurality of closed cells in which an internal space is partitioned by a partition wall. 8MPa静水圧浮揚残存率が50%以上であって、吸水率が3%以下である請求項1に記載する塗料用粒材。 The granule for paint according to claim 1, wherein the residual rate of levitation at 8 MPa hydrostatic pressure is 50% or more and the water absorption is 3% or less. 化学成分のSiO2含有量が65〜90質量%である請求項1または請求項2に記載の塗料用粒材。 The granule for paint according to claim 1 or 2, wherein the chemical component has a SiO2 content of 65 to 90 mass%. 容重が0.16〜0.35g/cm3である請求項1〜請求項3に記載する塗料用粒材。 The granule for paint according to claim 1, wherein the weight is 0.16 to 0.35 g / cm 3 . 隔壁によって区切られた複数の独立気泡によって形成されている内部空間を有する粒子100個中60個以上含む請求項1〜請求項4の何れかに記載する塗料用粒材。 The granule for coating materials according to any one of claims 1 to 4, comprising 60 or more of 100 particles having an internal space formed by a plurality of closed cells separated by partition walls. 請求項1〜請求項5の何れか記載する塗料用粒材であって、粒子径1〜50μmの塗料用粒材からなる断熱塗料用粒材。 The granule for paint according to any one of claims 1 to 5, wherein the granule for heat-insulating paint comprises a granule for paint having a particle diameter of 1 to 50 µm. 請求項1〜請求項5の何れか記載する塗料用粒材であって、粒子径1〜250μmの塗料用粒材からなる遮音塗料用粒材。 A granule for sound insulation paint according to any one of claims 1 to 5, wherein the granule for sound insulation paint comprises a granule for paint having a particle diameter of 1 to 250 µm. 請求項6に記載する断熱塗料用粒材を含有してなる断熱用塗料。 A heat insulating paint comprising the granule for heat insulating paint according to claim 6. 請求項7に記載する遮音塗料用粒材を含有してなる遮音用塗料。 A sound insulating paint comprising the particulate material for sound insulating paint according to claim 7.
JP2009198581A 2008-08-29 2009-08-28 Granules for paint and heat insulating paint or sound insulation paint containing the granules Expired - Fee Related JP5643495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009198581A JP5643495B2 (en) 2008-08-29 2009-08-28 Granules for paint and heat insulating paint or sound insulation paint containing the granules

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008221539 2008-08-29
JP2008221539 2008-08-29
JP2009198581A JP5643495B2 (en) 2008-08-29 2009-08-28 Granules for paint and heat insulating paint or sound insulation paint containing the granules

Publications (2)

Publication Number Publication Date
JP2010077424A true JP2010077424A (en) 2010-04-08
JP5643495B2 JP5643495B2 (en) 2014-12-17

Family

ID=42208201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009198581A Expired - Fee Related JP5643495B2 (en) 2008-08-29 2009-08-28 Granules for paint and heat insulating paint or sound insulation paint containing the granules

Country Status (1)

Country Link
JP (1) JP5643495B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070881A (en) * 2008-09-19 2010-04-02 Taiheiyo Materials Corp Heat-insulation material for fiber and the fiber
WO2017037858A1 (en) * 2015-08-31 2017-03-09 太洋塗料株式会社 Enhanced thermal barrier coating
WO2017195237A1 (en) * 2016-05-13 2017-11-16 日本中央研究所株式会社 Water-based coating material
CN115193374A (en) * 2022-07-06 2022-10-18 安徽银客松新材料科技有限公司 Preparation method of easy-drying water-based sound insulation coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853964A (en) * 1981-09-29 1983-03-30 Dainippon Toryo Co Ltd Coating material for electric wire
JPH07315869A (en) * 1994-05-20 1995-12-05 Agency Of Ind Science & Technol Production of hollow glass microsphere
JP2000500113A (en) * 1996-04-22 2000-01-11 ロディア シミ Method for producing hollow silica particles
JP2001020487A (en) * 1999-07-09 2001-01-23 Yamamoto Yogyo Kako Kk Painting material for finishing surface of building or structure
JP2010053029A (en) * 2008-07-30 2010-03-11 Taiheiyo Materials Corp Inorganic hollow fine particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853964A (en) * 1981-09-29 1983-03-30 Dainippon Toryo Co Ltd Coating material for electric wire
JPH07315869A (en) * 1994-05-20 1995-12-05 Agency Of Ind Science & Technol Production of hollow glass microsphere
JP2000500113A (en) * 1996-04-22 2000-01-11 ロディア シミ Method for producing hollow silica particles
JP2001020487A (en) * 1999-07-09 2001-01-23 Yamamoto Yogyo Kako Kk Painting material for finishing surface of building or structure
JP2010053029A (en) * 2008-07-30 2010-03-11 Taiheiyo Materials Corp Inorganic hollow fine particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070881A (en) * 2008-09-19 2010-04-02 Taiheiyo Materials Corp Heat-insulation material for fiber and the fiber
WO2017037858A1 (en) * 2015-08-31 2017-03-09 太洋塗料株式会社 Enhanced thermal barrier coating
WO2017195237A1 (en) * 2016-05-13 2017-11-16 日本中央研究所株式会社 Water-based coating material
CN115193374A (en) * 2022-07-06 2022-10-18 安徽银客松新材料科技有限公司 Preparation method of easy-drying water-based sound insulation coating
CN115193374B (en) * 2022-07-06 2023-07-07 安徽银客松新材料科技有限公司 Preparation method of easy-to-dry water-based sound-insulation coating

Also Published As

Publication number Publication date
JP5643495B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
CN101205436B (en) Novel aqueous insulation paint
KR102206016B1 (en) crack resistance insulating paint
JP5643495B2 (en) Granules for paint and heat insulating paint or sound insulation paint containing the granules
KR102191257B1 (en) Thermal insulation coating composition having good moisture resistance
CN104684857B (en) The glass pellets of structure with subregion
NO315241B1 (en) Aerogel-coated foil, methods of making it, and application of the foil
CN106398432B (en) A kind of energy-saving fire proof coating and preparation method thereof
JP5466801B2 (en) Inorganic hollow fine particles
CN107163711A (en) A kind of aquosity elastic heat preserving insulating paint and preparation method thereof
CN110527380A (en) A kind of flame retardant type insulating mold coating used for building exterior wall and preparation method thereof
CN104744975B (en) A kind of magnesium phosphate inorganic thermal insulation coating and preparation method thereof
JP2019002008A (en) Aqueous heat insulation coating and composition thereof
CN103073257B (en) Thermal insulation composite and preparation method thereof
CN105778607B (en) A kind of environment protection interior wall putty and preparation method thereof
CN111704835B (en) Water-based fireproof coating and preparation method thereof
CN106957544A (en) A kind of reflection-type insulation inorganic coating and preparation method thereof
CN109251619A (en) Water-thinned wall paint and preparation method thereof
KR100816085B1 (en) Anti-stain solar heat-shield insulating paint composition
JP2006150953A (en) Heat storage laminate
CN108410245A (en) A kind of heat insulating inner wall putty and preparation method
KR102314445B1 (en) Health friendly coating composition having excellent performance of preventing condensation and thermal insulation
KR20000017699A (en) A compisite by insulated paint a formation of paint substance for thermal insulation
CN107987597A (en) Heat insulating coatings used for building exterior wall and preparation method thereof
CN106590118A (en) Heat insulation and heat preservation coating for building external wall and preparation method thereof
CN114133770B (en) Heat-preservation and decoration integrated aerogel coating composition and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5643495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees