JP2010077409A - Method for producing resin-coated metal oxide particle dispersion sol, application liquid containing the particle for forming transparent coating film, and base material with transparent coating film - Google Patents

Method for producing resin-coated metal oxide particle dispersion sol, application liquid containing the particle for forming transparent coating film, and base material with transparent coating film Download PDF

Info

Publication number
JP2010077409A
JP2010077409A JP2009193506A JP2009193506A JP2010077409A JP 2010077409 A JP2010077409 A JP 2010077409A JP 2009193506 A JP2009193506 A JP 2009193506A JP 2009193506 A JP2009193506 A JP 2009193506A JP 2010077409 A JP2010077409 A JP 2010077409A
Authority
JP
Japan
Prior art keywords
resin
metal oxide
coating
coated
transparent film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009193506A
Other languages
Japanese (ja)
Other versions
JP5587573B2 (en
Inventor
Masayuki Matsuda
政幸 松田
Makoto Muraguchi
良 村口
Akira Nakajima
昭 中島
Toshiharu Hirai
俊晴 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2009193506A priority Critical patent/JP5587573B2/en
Publication of JP2010077409A publication Critical patent/JP2010077409A/en
Application granted granted Critical
Publication of JP5587573B2 publication Critical patent/JP5587573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a resin-coated metal oxide particle dispersion sol exhibiting excellent dispersibility and stability even at high concentration. <P>SOLUTION: In the method for producing the resin-coated metal oxide particle dispersion sol, a resin coating material consisting of an acrylic resin and/or a methacrylic resin is added to an organic solvent dispersion liquid of metal oxide particles, which are previously subjected to heat treatment at 100-800°C and have average particle diameter of 5-10 μm, and then, mechanochemical treatment is carried out. The application liquid for forming a transparent coating film comprises a matrix forming component, the resin-coated metal oxide particle dispersion sol obtained by the above method, and an organic solvent. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高濃度でも分散性、安定性に優れた樹脂で被覆した金属酸化物粒子分散ゾルの製造方法および該樹脂被覆金属酸化物粒子を含む透明被膜形成用塗布液および透明被膜付基材に関する。   The present invention relates to a method for producing a metal oxide particle-dispersed sol coated with a resin having excellent dispersibility and stability even at a high concentration, a coating liquid for forming a transparent film containing the resin-coated metal oxide particles, and a substrate with a transparent film About.

従来より、ガラス、プラスチックシート、プラスチックレンズ等の基材表面の耐擦傷性を向上させるため、基材表面にハードコート機能を有する透明被膜を形成することが知られており、このような透明被膜として有機樹脂膜あるいは無機膜をガラスやプラスチック等の表面に形成することが行われている。さらに、有機樹脂膜あるいは無機膜中に樹脂粒子あるいはシリカ等の無機粒子を配合してさらに耐擦傷性を向上させることが行われている。   Conventionally, it has been known that a transparent film having a hard coat function is formed on the surface of the base material in order to improve the scratch resistance of the surface of the base material such as glass, plastic sheet, and plastic lens. For example, an organic resin film or an inorganic film is formed on the surface of glass or plastic. Furthermore, it is practiced to further improve the scratch resistance by blending resin particles or inorganic particles such as silica in an organic resin film or an inorganic film.

しかしながら、透明被膜を形成するための透明被膜形成用塗布液に微粒子を分散させると、マトリックス成分または分散媒と粒子の親和性が低い場合は粒子が凝集したり、塗布液の安定性が低下し、得られる透明被膜の透明性、ヘーズ等の他、耐擦傷性、強度、スクラッチ強度等が不充分となることがあった。   However, when fine particles are dispersed in a coating solution for forming a transparent coating to form a transparent coating, if the affinity between the matrix component or the dispersion medium and the particles is low, the particles aggregate or the stability of the coating solution decreases. In addition to the transparency and haze of the transparent film obtained, the scratch resistance, strength, scratch strength, etc. may be insufficient.

このため、粒子の分散性を向上させて凝集を防止したり、塗布液の安定性を向上させるために粒子をシランカップリング剤で表面処理して用いることが公知である。また、粒子にメカノケミカル法、グラフト重合法等で樹脂を被覆してマトリックス成分または分散媒との親和性を高めることが行われている。(特開平3−163172号公報(特許文献1)、特開平6−336558号公報(特許文献2)、特開平6−49251号公報(特許文献3)、特開2000−143230号公報(特許文献4))
さらに、特開平7−118123号公報(特許文献5)および特開2003−63932号公報(特許文献6)には樹脂で被覆した化粧料用粉体が開示されている。
For this reason, it is known that the particles are surface-treated with a silane coupling agent in order to improve the dispersibility of the particles to prevent aggregation or to improve the stability of the coating solution. In addition, a resin is coated on the particles by a mechanochemical method, a graft polymerization method, or the like to increase the affinity with a matrix component or a dispersion medium. (JP-A-3-163172 (Patent Document 1), JP-A-6-336558 (Patent Document 2), JP-A-6-49251 (Patent Document 3), JP-A 2000-143230 (Patent Document) 4))
Furthermore, Japanese Patent Application Laid-Open No. 7-118123 (Patent Document 5) and Japanese Patent Application Laid-Open No. 2003-63932 (Patent Document 6) disclose cosmetic powders coated with a resin.

特開平3−163172号公報Japanese Patent Laid-Open No. 3-163172 特開平6−336558号公報JP-A-6-336558 特開平6−49251号公報JP-A-6-49251 特開2000−143230号公報JP 2000-143230 A 特開平7−118123号公報JP 7-118123 A 特開2003−63932号公報JP 2003-63932 A

しかしながら、シランカップリング剤で表面処理した粒子は、シランカップリング剤処理の際に好適な分散媒(通常水および/またはアルコール)と、透明被膜形成用塗布液に用いる分散媒と異なることが多く、このため塗布液用の分散媒に溶媒置換する必要があった。また、塗布液に用いる分散媒によってはシランカップリング剤が脱離することがあり、このため粒子が凝集したり、塗布液の安定性が不充分となることがあった。   However, the particles surface-treated with the silane coupling agent are often different from the dispersion medium (usually water and / or alcohol) suitable for the silane coupling agent treatment and the dispersion medium used for the coating liquid for forming the transparent film. For this reason, it was necessary to replace the solvent with the dispersion medium for the coating solution. Further, depending on the dispersion medium used in the coating solution, the silane coupling agent may be detached, which may cause the particles to aggregate or the stability of the coating solution to be insufficient.

また、従来のメカノケミカル法、グラフト重合法等では、個々の粒子に均一に樹脂を被覆することが困難で、数個以上の凝集した粒子に樹脂が被覆され、得られた樹脂被覆粒子
では樹脂が塗布液の溶媒に溶解することがあり、このため得られる透明被膜は、透明性の低下、ヘーズの上昇、耐擦傷性の低下等の問題があった。
In addition, in the conventional mechanochemical method, graft polymerization method, etc., it is difficult to uniformly coat the resin on individual particles, and the resin is coated on several or more aggregated particles. May dissolve in the solvent of the coating solution, and the transparent film thus obtained has problems such as a decrease in transparency, an increase in haze, and a decrease in scratch resistance.

本発明者らは、このような問題点に鑑み鋭意検討した結果、加熱処理した金属酸化物粒子のケトン類有機溶媒分散液に、アクリル系樹脂を添加し、ついで、メカノケミカル処理すると個々の粒子に均一に樹脂を被覆することができ、高濃度でも分散性、安定性に優れた樹脂被覆金属酸化物粒子が得られることを見出して本発明を完成するに至った。
[1]予め100〜800℃で加熱処理した平均一次粒子径が5〜300nmの範囲にあり、平均
二次粒子径が5nm〜10μmの範囲にある金属酸化物粒子の有機溶媒分散液に、アクリル系樹脂および/またはメタクリル系樹脂からなる樹脂被覆材を添加し、ついで、メカノケミカル処理する樹脂被覆金属酸化物粒子分散ゾルの製造方法。
[2]前記有機溶媒がエーテル類、エステル類、ケトン類から選ばれる1種以上である[1]の
樹脂被覆金属酸化物粒子分散ゾルの製造方法。
[3]前記樹脂被覆材の固形分としての濃度(CR)と金属酸化物微粒子の固形分としての濃度(CMO)の濃度比(CR)/(CMO)が0.005〜0.5の範囲にある[1]または[2]
の樹脂被覆金属酸化物粒子分散ゾルの製造方法。
[4]前記メカノケミカル処理時の金属酸化物粒子と樹脂被覆材とをあわせた全固形分濃度
が1〜50重量%の範囲にある[1]〜[3]の樹脂被覆金属酸化物粒子分散ゾルの製造方法。[5]前記金属酸化物粒子が、TiO2、SiO2、ZrO2、Al23、Sb25、ZnOおよびこれらの複合酸化物、酸化錫、SbまたはPがドープされた酸化錫、酸化インジウム、Sn
またはFがドーピングされた酸化インジウム、酸化アンチモン、低次酸化チタンから選ばれる1種以上である[1]〜[4]の樹脂被覆金属酸化物粒子分散ゾルの製造方法。
[6]前記樹脂被覆金属酸化物粒子の平均粒子径が5〜300nmの範囲にある[1]〜[5]の
樹脂被覆金属酸化物粒子分散ゾルの製造方法。
[7]マトリックス形成成分と、[1]〜[6]の方法で得られた樹脂被覆金属酸化物粒子分散ゾ
ルと有機溶媒とを含んでなる透明被膜形成用塗布液。
[8]基材と、基材上に、[7]の透明被膜形成用塗布液を塗布・乾燥して形成された透明被膜とを有する透明被膜付基材。
[9]前記透明被膜が他の被膜とともに設けられている[8]の透明被膜付基材。
As a result of intensive studies in view of such problems, the present inventors have added an acrylic resin to a ketone organic solvent dispersion of heat-treated metal oxide particles, and then individual particles when mechanochemical treatment is performed. The present invention was completed by finding that resin-coated metal oxide particles that can be uniformly coated with a resin and that are excellent in dispersibility and stability even at high concentrations can be obtained.
[1] An organic solvent dispersion of metal oxide particles having an average primary particle diameter in the range of 5 to 300 nm and an average secondary particle diameter in the range of 5 nm to 10 μm preliminarily heat-treated at 100 to 800 ° C. A method for producing a resin-coated metal oxide particle-dispersed sol, in which a resin coating material comprising a methacrylic resin and / or a methacrylic resin is added and then mechanochemically treated.
[2] The method for producing a resin-coated metal oxide particle-dispersed sol according to [1], wherein the organic solvent is at least one selected from ethers, esters, and ketones.
[3] The concentration ratio (C R ) / (C MO ) of the concentration (C R ) as the solid content of the resin coating material and the concentration (C MO ) as the solid content of the metal oxide fine particles is 0.005 to 0 [1] or [2] in the range of 5
A method for producing a resin-coated metal oxide particle-dispersed sol.
[4] Resin-coated metal oxide particle dispersion of [1] to [3], wherein the total solid content of the metal oxide particles and the resin coating material in the mechanochemical treatment is in the range of 1 to 50% by weight. Method for producing sol. [5] The metal oxide particles include TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 , Sb 2 O 5 , ZnO and a composite oxide thereof, tin oxide, tin oxide doped with Sb or P, Indium oxide, Sn
Alternatively, a method for producing a resin-coated metal oxide particle-dispersed sol according to [1] to [4], which is at least one selected from indium oxide doped with F, antimony oxide, and low-order titanium oxide.
[6] The method for producing a resin-coated metal oxide particle-dispersed sol according to [1] to [5], wherein the resin-coated metal oxide particles have an average particle diameter in the range of 5 to 300 nm.
[7] A coating solution for forming a transparent film, comprising a matrix-forming component, a resin-coated metal oxide particle-dispersed sol obtained by the methods [1] to [6], and an organic solvent.
[8] A substrate with a transparent coating, comprising: a substrate; and a transparent coating formed by applying and drying the coating solution for forming a transparent coating according to [7] on the substrate.
[9] The substrate with a transparent coating according to [8], wherein the transparent coating is provided together with another coating.

本発明によれば、予め加熱処理した、特定の平均粒子径にある金属酸化物粒子の有機溶媒分散液に、特定の樹脂被覆材を添加してメカノケミカル処理しているので、溶剤を用いた透明被膜形成用塗布液に凝集することなく安定に分散可能であり、高濃度にしても分散性、安定性に優れた樹脂被覆金属酸化物粒子分散ゾルが製造される。この樹脂被覆金属酸化物粒子を含む透明被膜形成用塗布液は、被覆樹脂と塗布液中のマトリックス形成成分とが結合性を有しており、このため透明性、ヘーズ、基材との密着性に優れるとともに膜強度、耐擦傷性等に優れた透明被膜の形成の好適に用いることのできる透明被膜形成用塗布液および透明被膜付基材を提供することができる。なお、本発明のような有機溶媒中でのメカノケミカル処理は従来、全く知られておらず、かかるメカノケミカル処理で達成される上記効果も、当然知られていなかった。   According to the present invention, since a specific resin coating material is added to an organic solvent dispersion of metal oxide particles having a specific average particle diameter that has been heat-treated in advance, the solvent is used. A resin-coated metal oxide particle-dispersed sol that can be stably dispersed without agglomerating in the coating solution for forming a transparent coating film and has excellent dispersibility and stability even when the concentration is high is produced. In the coating liquid for forming a transparent film containing the resin-coated metal oxide particles, the coating resin and the matrix-forming component in the coating liquid have binding properties. Therefore, transparency, haze, and adhesion to the substrate It is possible to provide a coating solution for forming a transparent film and a substrate with a transparent film, which can be suitably used for forming a transparent film having excellent film strength and scratch resistance. The mechanochemical treatment in an organic solvent as in the present invention has not been known at all, and the above-described effect achieved by such mechanochemical treatment has not been known.

以下、先ず、樹脂被覆金属酸化物粒子分散ゾルの製造方法について説明する。
[樹脂被覆金属酸化物粒子分散ゾルの製造方法]
本発明に係る樹脂被覆金属酸化物粒子分散ゾルの製造方法は、平均粒子径が5〜300nmの範囲にある金属酸化物粒子の有機溶媒分散液に特定の樹脂被覆剤を添加し、ついで、メカノケミカル処理する。
金属酸化物粒子
本発明に用いる金属酸化物粒子としては、従来、透明被膜に用いられる公知の金属酸化物粒子を用いることができる。
Hereinafter, first, a method for producing a resin-coated metal oxide particle-dispersed sol will be described.
[Method for producing resin-coated metal oxide particle-dispersed sol]
In the method for producing a resin-coated metal oxide particle-dispersed sol according to the present invention, a specific resin coating agent is added to an organic solvent dispersion of metal oxide particles having an average particle diameter in the range of 5 to 300 nm, and then mechano Chemical treatment.
Metal Oxide Particles As the metal oxide particles used in the present invention, known metal oxide particles conventionally used for transparent coatings can be used.

具体的にはTiO2、SiO2、ZrO2、Al23、Sb25、ZnO、およびこれらの複合酸化物、酸化錫、SbまたはPがドープされた酸化錫、酸化インジウム、SnまたはFがドーピングされた酸化インジウム、酸化アンチモン、低次酸化チタンから選ばれる1
種以上であることが好ましい。
Specifically, TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 , Sb 2 O 5 , ZnO, and composite oxides thereof, tin oxide, tin oxide doped with Sb or P, indium oxide, Sn or 1 selected from indium oxide doped with F, antimony oxide, and low-order titanium oxide
It is preferable that it is a seed or more.

金属酸化物粒子は透明被膜の用途によって適宜選択して用いることができ、例えば、反射防止膜に用いる金属酸化物粒子としては通常屈折率が1.45以下、好ましくは1.40以下の金属酸化物粒子が用いられ、具体的にはSiO2、内部に空洞を有するSiO2、あるいはこれらに導電性を有する金属酸化物を被覆した粒子等が挙げられる。内部に空洞を有するSiO2粒子としては本願出願人の出願による特開2001−233611号公報に開示した内部に空洞を有するシリカ系微粒子は好適に採用することができる。 The metal oxide particles can be appropriately selected and used depending on the use of the transparent film. For example, the metal oxide particles used for the antireflection film are usually metal oxides having a refractive index of 1.45 or less, preferably 1.40 or less. things particles are used, specifically SiO 2, particle or the like coated with a metal oxide having a SiO 2 or conductive thereto, having a cavity inside thereof. As the SiO 2 particles having a cavity inside, silica-based fine particles having a cavity inside disclosed in JP-A-2001-233611 filed by the applicant of the present application can be suitably employed.

透明被膜をハードコート膜に用いる場合、金属酸化物粒子としては、ZrO2、TiO2、Sb25、ZnO、Al23、SnO2、あるいは前記した屈折率が1.45以下のシリカ系
微粒子等が挙げられる。
When a transparent coating is used for the hard coat film, the metal oxide particles include ZrO 2 , TiO 2 , Sb 2 O 5 , ZnO, Al 2 O 3 , SnO 2 , or silica having a refractive index of 1.45 or less. System fine particles and the like.

透明被膜が、高屈折率膜である場合、用いる金属酸化物粒子としては、通常屈折率が1.60以上、さらには1.80以上の微粒子が用いられ、具体的にはZrO2、TiO2、Sb25、ZnO2、Al23、SnO2、アンチモンドープ酸化錫、錫ドープ酸化インジウム、リンドープ酸化錫(PTO)等が挙げられる。例えば、屈折率の高いPET基材の場合は透明被膜と基材との屈折率を近似させるために屈折率の高い酸化チタン粒子等は好適に用いることができる。 When the transparent coating is a high refractive index film, the metal oxide particles used are usually fine particles having a refractive index of 1.60 or more, more preferably 1.80 or more, specifically ZrO 2 , TiO 2. Sb 2 O 5 , ZnO 2 , Al 2 O 3 , SnO 2 , antimony-doped tin oxide, tin-doped indium oxide, phosphorus-doped tin oxide (PTO) and the like. For example, in the case of a PET base material having a high refractive index, titanium oxide particles having a high refractive index can be suitably used in order to approximate the refractive index between the transparent film and the base material.

透明被膜に導電性を付与する場合、金属酸化物粒子としては、通常Sb25、SnO2
アンチモンドープ酸化錫、錫ドープ酸化インジウム、リンドープ酸化錫(PTO)、あるいはこれら導電性材料で表面を被覆したシリカ系微粒子あるいは内部に空洞を有するシリカ系微粒子等が挙げられる。
When imparting conductivity to the transparent coating, the metal oxide particles are usually Sb 2 O 5 , SnO 2 ,
Examples thereof include antimony-doped tin oxide, tin-doped indium oxide, phosphorus-doped tin oxide (PTO), silica-based fine particles whose surfaces are coated with these conductive materials, or silica-based fine particles having a cavity inside.

本発明で用いる金属酸化物粒子は、後述するメカノケミカル処理する前に、予め加熱処理(すなわち乾燥および/または焼成)されている。加熱処理温度は100〜800℃、さらには105〜750℃の範囲にあることが好ましい。   The metal oxide particles used in the present invention are preliminarily heat-treated (that is, dried and / or calcined) before being subjected to a mechanochemical treatment described later. The heat treatment temperature is preferably 100 to 800 ° C, more preferably 105 to 750 ° C.

なお、金属酸化物粒子を調製する際に、すでに、前記温度範囲の加熱履歴のある場合は、別途、加熱処理を行う必要はない。また、前記温度範囲の加熱履歴があってもその後に水分散履歴のある場合は加熱処理することが好ましい。   In preparing the metal oxide particles, if there is already a heating history in the above temperature range, it is not necessary to perform a separate heat treatment. In addition, even if there is a heating history in the temperature range, if there is a water dispersion history after that, it is preferable to perform heat treatment.

本発明では、溶媒除去のための乾燥を行なった後、加熱処理することが好ましい。   In the present invention, it is preferable to perform heat treatment after drying for solvent removal.

かかる加熱処理によって、樹脂被覆量を高く、かつ均一にでき、その結果、得られる樹脂被覆金属酸化物粒子分散ゾルの安定性を高めることが可能となる。   By such heat treatment, the resin coating amount can be made high and uniform, and as a result, the stability of the resulting resin-coated metal oxide particle-dispersed sol can be enhanced.

その理由は明確ではないものの、加熱処理によって、樹脂との反応を阻害する付着水が除去され、樹脂との反応を促進する活性なOHが生じるため、樹脂による粒子の均一な被覆が促進されるもののと考えられる。   Although the reason is not clear, the heat treatment removes the adhering water that hinders the reaction with the resin, and generates active OH that promotes the reaction with the resin, thereby promoting uniform coating of the particles with the resin. It is thought of.

加熱処理温度が低すぎると、付着水が残存する等のために金属酸化物粒子の表面が活性なためか、粒子と樹脂との結合が不充分となり、樹脂被覆量が不充分となる場合があり、
得られる樹脂被覆金属酸化物粒子分散ゾルの安定性が不充分となることがある。
If the heat treatment temperature is too low, the surface of the metal oxide particles may be active due to residual water remaining, etc., or the bond between the particles and the resin may be insufficient, and the resin coating amount may be insufficient. Yes,
The stability of the resulting resin-coated metal oxide particle-dispersed sol may be insufficient.

また加熱処理温度が高すぎても金属酸化物粒子が過度に凝集したり、金属酸化物粒子の種類によっては焼結し、得られる樹脂被覆金属酸化物粒子分散ゾルの安定性が不充分となることがある。   Moreover, even if the heat treatment temperature is too high, the metal oxide particles are excessively aggregated, or depending on the type of the metal oxide particles, sintering is performed, and the stability of the resulting resin-coated metal oxide particle-dispersed sol becomes insufficient. Sometimes.

その結果、いずれも透明被膜形成用塗料の安定性が低下し、最終的に得られる透明被膜の透明性、ヘーズ、膜強度、耐擦傷性、基材との密着性等が不充分となることがある。   As a result, the stability of the paint for forming the transparent film is lowered, and the transparency, haze, film strength, scratch resistance, adhesion to the substrate, etc. of the finally obtained transparent film become insufficient. There is.

金属酸化物粒子の平均粒子径は、得られる樹脂被覆金属酸化物粒子の平均粒子径が概ね5〜300nmとなるような平均粒子径の金属酸化物粒子を用いる。   As the average particle size of the metal oxide particles, metal oxide particles having an average particle size such that the average particle size of the obtained resin-coated metal oxide particles is about 5 to 300 nm are used.

金属酸化物粒子は、一次粒子のみからなるものであっても、複数の一次粒子からなる二次粒子であってもよい。具体的には、平均一次粒子径が5〜300nmの範囲にある金属酸化物粒子であり、二次粒子の場合、平均二次粒子径が5nm〜10μmの範囲にある金属酸化物粒子(但し、平均一次粒子径を超えることはない)を用いる。   The metal oxide particles may be composed only of primary particles or may be secondary particles composed of a plurality of primary particles. Specifically, metal oxide particles having an average primary particle diameter in the range of 5 to 300 nm, and in the case of secondary particles, metal oxide particles having an average secondary particle diameter in the range of 5 nm to 10 μm (however, The average primary particle size is not exceeded).

平均一次粒子径が5〜300nm、好ましくは5〜200nmの範囲にあり、平均二次粒子径が5nm超〜10μm、好ましくは10〜5μmの範囲にある。   The average primary particle diameter is in the range of 5 to 300 nm, preferably 5 to 200 nm, and the average secondary particle diameter is in the range of more than 5 nm to 10 μm, preferably 10 to 5 μm.

なお、二次粒子は一次粒子が凝集した粒子であっても、また一部結合して粒子成長した粒子であっても、平均粒子径が5〜300nmの範囲にある樹脂被覆金属酸化物粒子が最終的に得られれば特に制限なく用いることができる。   Even if the secondary particles are particles in which the primary particles are aggregated or particles that are partially bonded and grown, resin-coated metal oxide particles having an average particle diameter in the range of 5 to 300 nm are used. If finally obtained, it can be used without particular limitation.

本発明では、平均一次粒子径は粒子の透過型電子顕微鏡写真(TEM)を撮影し、100個の粒子について粒子径を測定し、その平均値として求める。また、平均二次粒子径は、動的光散乱法「マイクロトラック粒度分布測定装置」によって求めることができる。   In the present invention, the average primary particle diameter is determined by taking a transmission electron micrograph (TEM) of the particles, measuring the particle diameter of 100 particles, and obtaining the average value. The average secondary particle diameter can be determined by a dynamic light scattering method “Microtrack particle size distribution measuring apparatus”.

金属酸化物粒子の平均一次粒子径が小さすぎると、過度に凝集した樹脂被覆金属酸化物粒子が得られ、透明被膜の透明性、強度、耐擦傷性、基材との密着性等が不充分となる。   If the average primary particle size of the metal oxide particles is too small, excessively agglomerated resin-coated metal oxide particles can be obtained, and the transparency, strength, scratch resistance, adhesion to the substrate, etc. of the transparent film are insufficient. It becomes.

平均一次粒子径が大きすぎると、最終的に得られる樹脂被覆金属酸化物粒子の平均粒子径が300nm以下のものを得ることが困難であり、また強力に粉砕しても結晶性の金属酸化
物粒子の場合結晶性が低下する場合がある。平均二次粒子径が大きすぎると金属酸化物粒子凝集体の塊砕あるいは結晶性金属酸化物粒子の粉砕効率が低下したり、粉砕が困難となる。その結果、得られる樹脂被覆金属酸化物粒子の平均粒子径が大きくなり、樹脂被覆金属酸化物粒子分散ゾルの安定性が不充分となることがある。そして、これらの樹脂被覆金属酸化物粒子分散ゾルを用いた透明被膜形成用塗料の安定性が低下し、最終的に得られる透明被膜の透明性、ヘーズ、膜強度、耐擦傷性、基材との密着性等が不充分となることがある。
If the average primary particle size is too large, it is difficult to obtain a resin-coated metal oxide particle finally having an average particle size of 300 nm or less, and even if it is strongly ground, it is a crystalline metal oxide. In the case of particles, the crystallinity may decrease. If the average secondary particle size is too large, the pulverization efficiency of the metal oxide particle aggregates or the pulverization of the crystalline metal oxide particles is reduced, or the pulverization becomes difficult. As a result, the average particle diameter of the resulting resin-coated metal oxide particles becomes large, and the stability of the resin-coated metal oxide particle-dispersed sol may be insufficient. Then, the stability of the coating for forming a transparent film using these resin-coated metal oxide particle-dispersed sols decreases, and the transparency, haze, film strength, scratch resistance, and substrate of the finally obtained transparent film In some cases, the adhesiveness of the resin becomes insufficient.

なお、本発明では使用する金属酸化物粒子の平均二次粒子径が上記上限を越えて大きい場合は、従来公知の塊砕、粉砕方法で10μm以下にして使用することができる。   In the present invention, when the average secondary particle diameter of the metal oxide particles to be used is larger than the above upper limit, the metal oxide particles can be used with a conventionally known agglomeration and pulverization method to 10 μm or less.

樹脂被覆材
樹脂被覆材としては、アクリル系樹脂および/またはメタクリル系樹脂が使用される。
As the resin coating material , an acrylic resin and / or a methacrylic resin is used.

アクリル系樹脂としては、アクリル酸、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-アクリロイロキシエチルコハク酸、2-アクリロイロキシエチルフタル酸、2-アクリロイロ
キシエチル2-ヒドロキシエチル-フタル酸、モノ2-アクリロイルオキシエチルアシッド
フォスフェート、ジ2-アクリロイルオキシエチルアシッドフォスフェート2-ヒドロキシブチルアクリレート、2-アクリロイロキシエチルヘキサヒドロフタル酸、グリセリンジ
グリシジルエーテル、2-ヒドロキシ-3フェノキシプロピルアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物、O-フェニルフェノールグリシジルエーテ
ルアクリレート、1,4-ブタンジオールジグリシジルエーテルジアクリレート、1,6-ヘキサンジオールジグリシジルエーテルジアクリレート、ジプロピレングリコールジグリシジルエーテルジアクリレート、ペンタエリスリトールポリグリシジルエーテルアクリレート、2-チル2エチル1,3プロパンジオールジグリシジルエーテルアクリレート、シ
クロヘキサンジメタノールジグリシジルエーテルアクリレート、1,6ヘキサンジオールジグリシジルエーテルアクリレート、グリセリンポリグリシジルエーテルアクリレート、エチレングリコールジグリシジルエーテルアクリレート、ポリエチレングリコールジグリシジルエーテルアクリレート、ジプロピレングリコールジグリシジルエーテルアクリレート、ポリプロピレングリコールジグリシジルエーテルアクリレート、2-ヒドロキシ、1-アクリロキシ、3-メタクリロキシプロパン、β-カルボキシエチルアクリレート等のアクリル系モノマー、これらアクリル系モノマーのホモ重合体、アクリル系モノマーとスチレン、シリコン、ポリエステル等との共重合体が挙げられる。
Acrylic resins include acrylic acid, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-acryloyloxyethyl succinic acid, 2-acryloyloxyethyl phthalic acid, 2 -Acryloyloxyethyl 2-hydroxyethyl-phthalic acid, mono-2-acryloyloxyethyl acid phosphate, di-2-acryloyloxyethyl acid phosphate 2-hydroxybutyl acrylate, 2-acryloyloxyethyl hexahydrophthalic acid, glycerin Diglycidyl ether, 2-hydroxy-3-phenoxypropyl acrylate, bisphenol A diglycidyl ether acrylic acid adduct, O-phenylphenol glycidyl ether acrylate, 1,4-butanediol Glycidyl ether diacrylate, 1,6-hexanediol diglycidyl ether diacrylate, dipropylene glycol diglycidyl ether diacrylate, pentaerythritol polyglycidyl ether acrylate, 2-til 2 ethyl 1,3-propanediol diglycidyl ether acrylate, cyclohexanedi Methanol diglycidyl ether acrylate, 1,6 hexanediol diglycidyl ether acrylate, glycerin polyglycidyl ether acrylate, ethylene glycol diglycidyl ether acrylate, polyethylene glycol diglycidyl ether acrylate, dipropylene glycol diglycidyl ether acrylate, polypropylene glycol diglycidyl ether acrylate 2- Examples include acrylic monomers such as droxy, 1-acryloxy, 3-methacryloxypropane, β-carboxyethyl acrylate, homopolymers of these acrylic monomers, and copolymers of acrylic monomers with styrene, silicon, polyester, etc. .

メタクリル系樹脂としては、メタクリル酸、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシブチルメタクリレート、2-メタクリロイロキシエチルコハク酸、2-メタクリロイロキシエチルヘキサヒドロフタル酸、モノ
2-メタクリロイロキシエチルアシッドホスフェート、ジ2-メタクリロイロキシエチルアシッドホスフェート、グリセリンジメタクリレート、2-ヒドロキシ-3-アクリロイロキ
シプロピルメタクリレート、2-ヒドロキシ-3アクリロイロキシプロピルメタクリレート、ビスフェノールAジグリシジルエーテルメタクリル酸付加物、ジグリセリンポリグリシジルエーテルメタクレート、3-クロロ-2-ヒドロキシプロピルメタクレート等のメタク
リル系モノマー、これらメタクリル系モノマーのホモ重合体、メタクリル系モノマーとスチレン、シリコン、ポリエステル等との共重合物が挙げられる。さらに、ジ2-メタクリ
ロイロキシエチルアシッドホスフェート、ジ2-アクリロイロキシエチルアシッドホスフ
ェートなどの(メタ)アクリル基を含むリン酸エステル、(メタ)アクリル酸のアルカリ金属塩、アンモニウム塩、ホスホニウム塩、エステルなどを使用することも可能である。
Methacrylic resins include methacrylic acid, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2-hydroxybutyl methacrylate, 2-methacryloyloxyethyl succinic acid, 2-methacryloyloxyethyl hexahydrophthalic acid, mono-2- Methacryloyloxyethyl acid phosphate, di-2-methacryloyloxyethyl acid phosphate, glycerin dimethacrylate, 2-hydroxy-3-acryloyloxypropyl methacrylate, 2-hydroxy-3 acryloyloxypropyl methacrylate, bisphenol A diglycidyl ether methacryl Methacrylic monomers such as acid adducts, diglycerin polyglycidyl ether methacrylate, 3-chloro-2-hydroxypropyl methacrylate, these methacrylic monomers Homopolymers of mer, methacrylic monomers and styrene, silicone, and a copolymer of polyester. Furthermore, phosphoric acid ester containing (meth) acrylic group such as di-2-methacryloyloxyethyl acid phosphate, di-2-acryloyloxyethyl acid phosphate, alkali metal salt of (meth) acrylic acid, ammonium salt, phosphonium salt, Esters can also be used.

なお、これら樹脂被覆材が好ましい理由は明らかではないが、(メタ)アクリル系樹脂は親水性であるため、金属酸化物粒子表面に結合しやすく、特に、特に水酸基を有する場合、この水酸基が金属酸化物粒子表面への樹脂被覆材の結合を容易にしているものと推測される。   The reason why these resin coating materials are preferable is not clear, but since the (meth) acrylic resin is hydrophilic, it is easy to bond to the surface of the metal oxide particles. It is presumed that the resin coating material is easily bonded to the surface of the oxide particles.

樹脂被覆材は、通常、モノマーであっても、ある程度重合したオリゴマーやダイマーであっても、さらに重合が進んだポリマーであってもよい。重合が進んでいなくとも、メカノケミカル処理や加熱処理によって、重合は進行する。
有機溶媒
有機溶媒としては、従来公知の有機溶媒を用いることができる。
The resin coating material may be a monomer, an oligomer or dimer polymerized to some extent, or a polymer that has been further polymerized. Even if the polymerization has not progressed, the polymerization proceeds by mechanochemical treatment or heat treatment.
As the organic solvent , a conventionally known organic solvent can be used.

例えば、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール等のアルコール類;エチレングリコール、ヘキシレングリコール等のグリコール類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチル
エーテル等のエーテル類;酢酸プルピル、酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、酢酸3−メトキシブチル、酢酸2−エチルブチル、酢酸シクロヘキシル、エチレングリコールモノアセタート等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン、イソホロン、アセチルアセトン、アセト酢酸エステル等のケトン類;トルエン、キシレン等が挙げられる。
For example, alcohols such as methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol; glycols such as ethylene glycol and hexylene glycol; diethyl ether, ethylene glycol Ethers such as monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether; propyl acetate, isobutyl acetate , Butyl acetate, isopentyl acetate, pentyl acetate, 3-methyl acetate Esters such as xylbutyl, 2-ethylbutyl acetate, cyclohexyl acetate, ethylene glycol monoacetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methyl cyclohexanone, dipropyl ketone, methyl pentyl ketone, diisobutyl ketone, isophorone, Ketones such as acetylacetone and acetoacetate; toluene, xylene and the like.

なかでも、前記エーテル類、エステル類、ケトン類は樹脂の被覆効率がよく、得られる樹脂被覆金属酸化物粒子に凝集粒子が少なく、分散性に優れ、沈降も起きず安定であるので好ましい。   Of these, the ethers, esters and ketones are preferred because they have good resin coating efficiency, the resulting resin-coated metal oxide particles have few aggregated particles, are excellent in dispersibility, and are stable without sedimentation.

また、前記エーテル類、エステル類、ケトン類は透明被膜形成用塗布液の溶媒として用いた場合、塗工性が良く、外観異常が起こりにくいことから多用され、このため得られる樹脂被覆金属酸化物粒子分散ゾルを塗布液用の溶媒に置換する必要が無いことから生産効率、経済性の点からも好ましい。   The ethers, esters, and ketones are frequently used because they have good coatability and are less likely to cause abnormal appearance when used as a solvent for a coating solution for forming a transparent film. Since it is not necessary to replace the particle-dispersed sol with a solvent for the coating solution, it is preferable from the viewpoint of production efficiency and economy.

特にエーテル類はメカノケミカル処理において金属酸化物粒子が凝集しにくく、均一に樹脂被覆できるので好適に用いることができる。   In particular, ethers can be preferably used because metal oxide particles hardly aggregate in mechanochemical treatment and can be uniformly coated with a resin.

混合比
メカノケミカル処理する際の樹脂被覆材の固形分としての濃度(CR)と金属酸化物粒
子の固形分としての濃度(CMO)の濃度比(CR)/(CMO)は0.005〜0.5、さ
らには0.01〜0.3の範囲にあることが好ましい。
Mixing ratio The concentration ratio (C R ) / (C MO ) between the concentration (C R ) as the solid content of the resin coating material and the concentration (C MO ) as the solid content of the metal oxide particles in the mechanochemical treatment is 0 0.005 to 0.5, more preferably 0.01 to 0.3.

濃度比(CR)/(CMO)が小さすぎると、得られる樹脂被覆金属酸化物粒子分散ゾル
およびこれを用いた透明被膜形成用塗布液での分散性、安定性が不充分となり、さらに得られる透明被膜も透明性が低く、ヘーズが高くなる場合がある。濃度比(CR)/(CMO
)が大きすぎると、さらに分散性、安定性、透明被膜の透明性、ヘーズが向上することもなく、用いる金属酸化物粒子の屈折率あるいは導電性等の特性が充分発揮できない場合がある。
If the concentration ratio (C R ) / (C MO ) is too small, dispersibility and stability in the resulting resin-coated metal oxide particle-dispersed sol and a coating solution for forming a transparent film using the resin-coated metal oxide will be insufficient. The obtained transparent film may also have low transparency and high haze. Concentration ratio (C R ) / (C MO
) Is too large, dispersibility, stability, transparency of the transparent coating, and haze are not improved, and the characteristics such as the refractive index or conductivity of the metal oxide particles used may not be sufficiently exhibited.

また、メカノケミカル処理時の金属酸化物粒子と樹脂被覆材との全固形分濃度が1〜50重量%、さらには2〜45重量%の範囲にあることが好ましい。全固形分濃度が低すぎると、処理に長時間を要し、また全部の粒子を均一に処理することが困難となり、樹脂被覆が不均一になり、得られる樹脂被覆金属酸化物粒子分散ゾルおよびこれを用いた透明被膜形成用塗布液での分散性、安定性が不充分となり、さらに得られる透明被膜も透明性が低く、ヘーズが高くなる場合がある。全固形分濃度が高すぎると、金属酸化物粒子の種類、溶媒、樹脂の種類によっては処理の進行に伴い急激に粘度が上昇したり、粒子が凝集することがあり、得られる樹脂被覆金属酸化物粒子分散ゾルおよびこれを用いた透明被膜形成用塗布液での分散性、安定性が不充分となり、さらに得られる透明被膜も透明性が低く、ヘーズが高くなる場合がある。
メカノケミカル処理方法
本発明のメカノケミカル処理方法は、前記金属酸化物粒子、樹脂被覆材、比率および濃度を採用する以外は従来公知の方法を採用することができる。
Further, the total solid content concentration of the metal oxide particles and the resin coating material during the mechanochemical treatment is preferably in the range of 1 to 50% by weight, more preferably 2 to 45% by weight. If the total solid concentration is too low, it takes a long time for the treatment, and it becomes difficult to treat all the particles uniformly, the resin coating becomes non-uniform, and the resulting resin-coated metal oxide particle dispersed sol and Dispersibility and stability in a coating solution for forming a transparent film using this become insufficient, and the resulting transparent film may also have low transparency and high haze. If the total solid content is too high, depending on the type of metal oxide particles, solvent, and resin, the viscosity may increase rapidly as the treatment progresses, or the particles may agglomerate. The dispersibility and stability of the product particle-dispersed sol and the coating solution for forming a transparent film using the same become insufficient, and the resulting transparent film may also have low transparency and high haze.
Mechanochemical treatment method The mechanochemical treatment method of the present invention may employ a conventionally known method except that the metal oxide particles, the resin coating material, the ratio and the concentration are employed.

例えば、ヘンシェルミキサー、ホモミキサー、ホモジナイザー、ビーズミル等に有機溶媒、金属酸化物粒子および樹脂被覆材を所定量計量し、高速で撹拌する。メカノケミカル処理では、粒子径が大きい方が効率的に処理できるので、比較的に大きな二次粒子となっている方が望ましいが、この限りではない。   For example, a predetermined amount of organic solvent, metal oxide particles, and resin coating material are weighed in a Henschel mixer, homomixer, homogenizer, bead mill, etc., and stirred at high speed. In the mechanochemical treatment, a larger particle size can be efficiently treated. Therefore, it is desirable that the particles are relatively large secondary particles, but this is not restrictive.

撹拌速度は使用する装置、方式等によって異なるが、あまりに低速であると、金属酸化物粒子が二次粒子の場合には塊砕あるいは粉砕が不充分となり、得られる樹脂被覆金属酸化物粒子の粒子径が大きすぎたり、樹脂被覆量が不足したり、粒子と樹脂との結合が不充分となるためか樹脂被覆金属酸化物粒子分散ゾルの安定性が不充分となることがあり、このような樹脂被覆金属酸化物粒子分散ゾルを用いた透明被膜形成用塗料の安定性が低下し、最終的に得られる透明被膜の透明性、ヘーズ、膜強度、耐擦傷性、基材との密着性等が不充分となることがある。   The stirring speed varies depending on the apparatus and method used, but if it is too low, if the metal oxide particles are secondary particles, crushing or pulverization will be insufficient, and the resulting resin-coated metal oxide particle particles The diameter may be too large, the resin coating amount may be insufficient, or the bond between the particles and the resin may be insufficient, or the stability of the resin-coated metal oxide particle-dispersed sol may be insufficient. The stability of the coating for forming a transparent film using a resin-coated metal oxide particle-dispersed sol decreases, and the transparency, haze, film strength, scratch resistance, adhesion to the substrate, etc. of the finally obtained transparent film May be insufficient.

なお、従来、上記のような方法で樹脂を被覆する際に重合開始剤を添加したり、紫外線照射、プラズマ照射することが行われるが、重合開始剤を添加したり、紫外線照射すると被覆用樹脂が粒子表面に積層して被覆しない場合や、被覆しても樹脂の重合、硬化が進みすぎるためか、後述する透明被膜形成用塗布液に用いた場合、マトリックス成分との結合が起きないために透明被膜の強度、耐擦傷性、耐擦傷性、基材との密着性が低下するため好ましくない。   Conventionally, when a resin is coated by the method described above, a polymerization initiator is added, or ultraviolet irradiation or plasma irradiation is performed. However, when a polymerization initiator is added or ultraviolet irradiation is performed, a coating resin is used. If it is not laminated on the particle surface, or if the resin is polymerized and cured too much even if it is coated, or if it is used in a coating liquid for forming a transparent film described later, the binding with the matrix component does not occur. The strength, scratch resistance, scratch resistance, and adhesion to the substrate of the transparent film are unfavorable.

このようにして得られる樹脂被覆金属酸化物粒子の平均粒子径は5〜300nm、さらには5〜200nmの範囲にあることが好ましい。   The average particle diameter of the resin-coated metal oxide particles thus obtained is preferably in the range of 5 to 300 nm, more preferably 5 to 200 nm.

被覆層は少しで付着していれば良く、実質的に樹脂被覆前と後の金属酸化物粒子の平均粒子径は同じであってもよく、当然被覆後の平均粒子径は大きくなっていても良い。得られた粒子の平均粒子径が、上記範囲であれば、透明性やヘーズ、膜強度、耐擦傷性、基材との密着性が高く、所望の特性および用途の点で好適となる。   The coating layer only needs to be attached in a small amount, and the average particle diameter of the metal oxide particles before and after the resin coating may be substantially the same. Of course, the average particle diameter after coating may be large. good. When the average particle diameter of the obtained particles is in the above range, transparency, haze, film strength, scratch resistance, and adhesion to the substrate are high, which is preferable in terms of desired characteristics and applications.

得られる樹脂被覆金属酸化物粒子分散ゾルの濃度は固形分として概ね1〜50重量%、好ましくは2〜45重量%の範囲にある。   The concentration of the resulting resin-coated metal oxide particle-dispersed sol is generally in the range of 1 to 50% by weight, preferably 2 to 45% by weight as the solid content.

なお濃度が薄いと透明被膜形成用塗布液の濃度が低くなりすぎて厚膜の透明被膜を形成できない場合があり、厚膜にするために塗布、乾燥、硬化を繰り返し行う必要が生じ、濃度が高すぎると、ゾルの安定性が不充分になる傾向がある。本発明では、得られた樹脂被覆金属酸化物粒子分散ゾルは必要に応じて濃縮または希釈して用いることができる。
[透明被膜形成用塗布液]
本発明に係る透明被膜形成用塗布液は、マトリックス形成成分と前記樹脂被覆金属酸化物粒子分散ゾルと有機溶媒とを含んでなることを特徴としている。
樹脂被覆金属酸化物粒子分散ゾル
本発明の透明被膜形成用塗布液には前記した樹脂被覆金属酸化物粒子分散ゾルを用いる。樹脂被覆金属酸化物粒子の透明被膜形成用塗布液中の固形分としての濃度は0.1〜50重量%、さらには0.2〜40重量%の範囲にあることが好ましい。この範囲あればゾルが塗布液中にマトリックス成分とともに均一に分散できるとともに、粒子の特性も充分に発揮でき、目的とする透明被膜を形成できる。
If the concentration is low, the concentration of the coating solution for forming the transparent film may be too low to form a thick transparent film. In order to obtain a thick film, it is necessary to repeat coating, drying, and curing. If it is too high, the sol stability tends to be insufficient. In the present invention, the obtained resin-coated metal oxide particle-dispersed sol can be used after being concentrated or diluted as necessary.
[Transparent coating solution]
The coating liquid for forming a transparent film according to the present invention comprises a matrix-forming component, the resin-coated metal oxide particle-dispersed sol, and an organic solvent.
Resin-coated metal oxide particle-dispersed sol The resin-coated metal oxide particle-dispersed sol described above is used in the coating liquid for forming a transparent film of the present invention. It is preferable that the density | concentration as solid content in the coating liquid for transparent film formation of the resin coating metal oxide particle is 0.1 to 50 weight%, Furthermore, it is preferable to exist in the range of 0.2 to 40 weight%. Within this range, the sol can be uniformly dispersed together with the matrix component in the coating solution, and the characteristics of the particles can be sufficiently exhibited, so that a desired transparent film can be formed.

なお、前記濃度が低すぎると、粒子の量が少ないために粒子の特性(耐擦傷性、低屈折率、高屈折率、導電性等)による耐擦傷性、反射防止性能、帯電防止性能等が不充分となる場合があり、高すぎても、マトリックス成分が少なく、基材との密着性、透明性、ヘーズ、耐擦傷性等が不充分となる場合がある。
マトリックス形成成分
マトリックス形成成分としては、有機樹脂系マトリックス形成成分が好適に用いられる。
If the concentration is too low, the amount of particles is so small that the particle properties (scratch resistance, low refractive index, high refractive index, electrical conductivity, etc.) provide scratch resistance, antireflection performance, antistatic performance, etc. If it is too high, there are few matrix components, and adhesion to the substrate, transparency, haze, scratch resistance, etc. may be insufficient.
Matrix-forming component As the matrix-forming component, an organic resin-based matrix-forming component is preferably used.

有機樹脂系マトリックス形成成分として、具体的には塗料用樹脂として公知の熱硬化性
樹脂、熱可塑性樹脂等のいずれも採用することができる。たとえば、従来から用いられているポリエステル樹脂、ポリカーボネート樹脂、ポリアミド樹脂、ポリフェニレンオキサイド樹脂、熱可塑性アクリル樹脂、塩化ビニル樹脂、フッ素樹脂、酢酸ビニル樹脂、シリコーンゴムなどの熱可塑性樹脂、ウレタン樹脂、メラミン樹脂、ケイ素樹脂、ブチラール樹脂、反応性シリコーン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、熱硬化性アクリル樹脂などの熱硬化性樹脂などが挙げられる。さらにはこれら樹脂の2種以上の共重合体や変性体であってもよい。熱可塑性樹脂の場合、マトリックス形成成分はそのままマトリックス成分となり、硬化性樹脂の場合、一般にマトリックス形成成分は未硬化(重合)のモノマーがマトリックス形成成分となり、硬化(重合)物がマトリックス成分となる。
As the organic resin matrix forming component, specifically, any of thermosetting resins and thermoplastic resins known as coating resins can be employed. For example, conventionally used polyester resins, polycarbonate resins, polyamide resins, polyphenylene oxide resins, thermoplastic acrylic resins, vinyl chloride resins, fluororesins, vinyl acetate resins, silicone rubber and other thermoplastic resins, urethane resins, melamine resins And thermosetting resins such as silicon resin, butyral resin, reactive silicone resin, phenol resin, epoxy resin, unsaturated polyester resin, and thermosetting acrylic resin. Further, it may be a copolymer or modified body of two or more of these resins. In the case of a thermoplastic resin, the matrix-forming component is a matrix component as it is, and in the case of a curable resin, generally, in the matrix-forming component, an uncured (polymerized) monomer is a matrix-forming component, and a cured (polymerized) product is a matrix component.

これらの樹脂は、エマルジョン樹脂、水溶性樹脂、親水性樹脂であってもよい。さらに、熱硬化性樹脂、あるいは紫外線硬化型のものであっても、電子線硬化型のものであってもよく、熱硬化性樹脂の場合、硬化触媒が含まれていてもよい。   These resins may be emulsion resins, water-soluble resins, and hydrophilic resins. Further, it may be a thermosetting resin, an ultraviolet curable type or an electron beam curable type, and in the case of a thermosetting resin, a curing catalyst may be included.

本発明では、樹脂被覆金属酸化物粒子に用いた樹脂とマトリックス形成成分との結合性を有し、膜強度、耐擦傷性が向上することから有機樹脂系マトリックス形成成分として、具体的には水酸基、アミノ基、カルボキシル基、スルホ基等の官能基を有する多官能(メ
タ)アクリル酸エステル樹脂が挙げられ、具体的には2−ヒドロキシ−3−アクリロイロ
キシプロピルアクリレート、2−ヒドロキシ−3−アクリロイロキシプロピルメタクリレート、2−ヒドロキシ−3−フェノキシプロピルアクリレート、ペンタエリスリトールポログリシジルエーテルアクリレート、ジエチルアミノメチルメタクリレート、ジメチルアミノメチルメタクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、トリメチロールプロパントリメタクリレート、メトキシトリエチレングリコールジメタクリレート、ブトキシジエチレングリコールメタクリレート、2アクロイロキシエチルコハク酸、2アクロイロキシエチルフタル酸およびこれらの混合物あるいはこれら樹脂の2種以上の共重合体や変性体であってもよい。
In the present invention, the resin used for the resin-coated metal oxide particles has a binding property with the matrix-forming component, and the film strength and scratch resistance are improved. , Polyfunctional (meth) acrylic acid ester resins having functional groups such as amino group, carboxyl group, sulfo group, etc., specifically, 2-hydroxy-3-acryloyloxypropyl acrylate, 2-hydroxy-3- Acryloyloxypropyl methacrylate, 2-hydroxy-3-phenoxypropyl acrylate, pentaerythritol poroglycidyl ether acrylate, diethylaminomethyl methacrylate, dimethylaminomethyl methacrylate, dipentaerythritol hexaacrylate, pentaerythritol tetraacrylate, Taerythritol triacrylate, trimethylolpropane triacrylate, tetramethylol methane triacrylate, tetramethylol methane tetraacrylate, trimethylol propane trimethacrylate, methoxytriethylene glycol dimethacrylate, butoxydiethylene glycol methacrylate, 2 acryloxyethyl succinic acid, 2 acro Iroxyethyl phthalic acid and a mixture thereof, or two or more copolymers or modified products of these resins may be used.

また、ビニル基、ウレタン基、エポキシ基、(メタ)アクリロイル基、CF2基等の官
能基を有する多官能(メタ)アクリル酸エステル樹脂が挙げられ、具体的にはペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、トリメチロールプロパントリメタクリレート、メトキシトリエチレングリコールジメタクリレート、1,6−ヘキサンジオールジメタクリレート、パーフルオロオクチルエチルメタクリレート、トリフロロエチルメタクリレート、フェニルグリシジルエーテルアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、クレゾールノボラック型エポキシアクリレート、ビスフェノールAジグリシジルエーテルアクリル酸付加物、ペンタエリスリトールポリグリシジルエーテルアクリレート、ネオペンチルグリコールジグリシジルエーテルアクリレート、2ブチル−2エチル−1,3プロパンジオールジグリシジルエーテルアクリレート等およびこれらの混合物が挙げられる。
In addition, polyfunctional (meth) acrylic acid ester resins having a functional group such as vinyl group, urethane group, epoxy group, (meth) acryloyl group, CF 2 group, and the like, specifically, pentaerythritol tetraacrylate, dipenta Erythritol hexaacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, tetramethylolmethane triacrylate, tetramethylolmethane tetraacrylate, trimethylolpropane trimethacrylate, methoxytriethylene glycol dimethacrylate, 1,6- Hexanediol dimethacrylate, perfluorooctylethyl methacrylate, trifluoroethyl methacrylate, phenylglycidyl ether acetate Relate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, cresol novolak type epoxy acrylate, bisphenol A diglycidyl ether acrylic acid adduct, pentaerythritol polyglycidyl ether acrylate, neopentyl glycol diglycidyl ether acrylate, Examples include 2-butyl-2ethyl-1,3-propanediol diglycidyl ether acrylate and mixtures thereof.

透明被膜形成用塗布液中のマトリックス形成成分の濃度は、固形分として1〜60重量%、さらには2〜50重量%の範囲にあることが好ましい。マトリックス形成成分の濃度が少なすぎると一回の塗布では所定の膜厚が得られないことがあり、塗布、乾燥を繰り返すと密着性等が不充分となったり、経済性において不利である。マトリックス形成成分の
濃度が高すぎると、得られる透明被膜の厚さが不均一になる傾向がある。
有機溶媒
本発明に用いる有機溶媒としては前記マトリックス形成成分、必要に応じて用いる重合開始剤を溶解あるいは分散できるとともに前記した樹脂被覆金属酸化物粒子を均一に分散することができれば特に制限はなく、従来公知の溶媒を用いることができる。
The concentration of the matrix-forming component in the coating solution for forming a transparent film is preferably in the range of 1 to 60% by weight, more preferably 2 to 50% by weight as the solid content. If the concentration of the matrix-forming component is too low, a predetermined film thickness may not be obtained by a single application, and if application and drying are repeated, adhesion and the like are insufficient, and this is disadvantageous in terms of economy. If the concentration of the matrix forming component is too high, the thickness of the resulting transparent film tends to be non-uniform.
Organic solvent The organic solvent used in the present invention is not particularly limited as long as it can dissolve or disperse the matrix-forming component and the polymerization initiator used as necessary and uniformly disperse the resin-coated metal oxide particles described above. Conventionally known solvents can be used.

具体的には、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステル、酢酸ブチルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プルピレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン、イソホロン、アセチルアセトン、アセト酢酸エステルなどのケトン類、トルエン、キシレン等が挙げられる。   Specifically, alcohols such as methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, isopropyl glycol; methyl acetate , Esters such as ethyl acetate, butyl acetate; diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl Ethers such as ether and propylene glycol monoethyl ether; Acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methyl cyclohexanone, dipropyl ketone, methyl pentyl ketone, diisobutyl ketone, isophorone, acetylacetone, ketones such as acetoacetate, toluene, xylene and the like.

これらは単独で使用してもよく、また2種以上混合して使用することもできる。本発明では、樹脂被覆金属酸化物粒子分散ゾルの製造に好適に用いることのできる前記したエーテル類、エステル類、ケトン類が好ましい。これらエーテル類、エステル類、ケトン類を有機溶媒として用いると透明被膜形成用塗布液はマトリックス成分との相溶性に優れ、これを用いて得られる透明被膜は表面の均一性が高く、透明性、ヘーズ、耐擦傷性等に優れている。   These may be used alone or in combination of two or more. In the present invention, the aforementioned ethers, esters and ketones that can be suitably used for the production of the resin-coated metal oxide particle-dispersed sol are preferred. When these ethers, esters, and ketones are used as organic solvents, the coating solution for forming a transparent film has excellent compatibility with the matrix component, and the transparent film obtained using this has high surface uniformity, transparency, Excellent haze and scratch resistance.

透明被膜形成用塗布液中のマトリックス形成成分と樹脂被覆金属酸化物粒子、あるいは表面処理樹脂被覆金属酸化物粒子との合計濃度は、固形分として1〜60重量%、さらには2〜50重量%の範囲にあることが好ましい。前記合計濃度が少なすぎると、一回の塗布では所定の膜厚が得られないことがあり、塗布、乾燥を繰り返すと密着性等が不充分となったり、経済性において不利である。前記合計濃度が高すぎると得られる透明被膜の厚さが不均一になる場合がある。
重合開始剤
本発明では、上記樹脂被覆金属酸化物粒子、マトリックス形成成分とともに必要に応じて、重合開始剤が含まれていてもよい。重合開始剤としては、公知のものを特に制限なく使用することが可能であり、例えば、ビス(2、4、6−トリメチルベンゾイル)フェニル
フォスフィンオキサイド、ビス(2、6−ジメトキシベンゾイル)2、4、4−トリメチル-ペンチルフォスフィンオキサイド、2−ヒドロキシ-メチル-2-メチル-フェニル-プロパン-1-ケトン、2、2-ジメトキシ-1、2-ジフェニルエタン-1-オン、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン等が挙げられる。重合開始剤の使用量は特に制限されない。
The total concentration of the matrix-forming component and the resin-coated metal oxide particles or the surface-treated resin-coated metal oxide particles in the coating solution for forming a transparent film is 1 to 60% by weight, more preferably 2 to 50% by weight as a solid content. It is preferable that it exists in the range. If the total concentration is too small, a predetermined film thickness may not be obtained by a single application, and if application and drying are repeated, adhesion and the like are insufficient, and this is disadvantageous in terms of economy. If the total concentration is too high, the thickness of the transparent coating obtained may be uneven.
Polymerization initiator In the present invention, a polymerization initiator may be included as necessary together with the resin-coated metal oxide particles and the matrix-forming component. As the polymerization initiator, known ones can be used without particular limitation. For example, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) 2, 4,4-trimethyl-pentylphosphine oxide, 2-hydroxy-methyl-2-methyl-phenyl-propane-1-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxy- Examples include cyclohexyl-phenyl-ketone and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one. The amount of the polymerization initiator used is not particularly limited.

上記した透明被膜形成用塗布液をディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、グラビア印刷法、マイクログラビア印刷法等の周知の方法で基材に塗布し、乾燥し、硬化性樹脂の場合は、紫外線照射、加熱処理等常法によって硬化させることによって透明被膜を形成することができる。   The above-mentioned coating solution for forming a transparent film is applied to a substrate by a known method such as a dipping method, a spray method, a spinner method, a roll coating method, a bar coating method, a gravure printing method, a micro gravure printing method, dried and cured. In the case of a functional resin, a transparent film can be formed by curing by an ordinary method such as ultraviolet irradiation or heat treatment.

形成される透明被膜の膜厚は、30nm〜20μmの範囲にあることが好ましい。
[透明被膜付基材]
本発明に係る透明被膜付基材は、基材と、基材上に形成された透明被膜とからなり、該
透明被膜が前記塗布液から形成された樹脂被覆金属酸化物粒子とマトリックス成分とからなることを特徴としている。
基材
本発明に用いる基材としては、従来公知のものを特に制限なく使用することが可能であり、ガラス、ポリカーボネート、アクリル系樹脂、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、シクロポリオレフィン、ノルボルネン等のプラスチックシート、プラスチックフィルム等、プラスチックパネル等があげられる。中でも樹脂系基材を好適に用いることができる。また、このような基材上に、他の被膜が形成された被膜付基材を用いこともできる。他の被膜としては従来公知のプライマー膜、ハードコート膜、高屈折率膜、導電性膜等が挙げられる。
樹脂被覆金属酸化物粒子
樹脂被覆金属酸化物粒子としては前記したとおりである。
The film thickness of the formed transparent film is preferably in the range of 30 nm to 20 μm.
[Base material with transparent film]
The substrate with a transparent coating according to the present invention comprises a substrate and a transparent coating formed on the substrate, and the transparent coating comprises resin-coated metal oxide particles formed from the coating solution and a matrix component. It is characterized by becoming.
Substrate As the substrate used in the present invention, conventionally known ones can be used without particular limitation, and glass, polycarbonate, acrylic resin, polyethylene terephthalate (PET), triacetyl cellulose (TAC). ), Plastic sheets such as cyclopolyolefin and norbornene, plastic films, and plastic panels. Among these, a resin base material can be preferably used. Moreover, the base material with a film in which another film was formed on such a base material can also be used. Examples of other coatings include conventionally known primer films, hard coat films, high refractive index films, and conductive films.
Resin-coated metal oxide particles The resin-coated metal oxide particles are as described above.

透明被膜中の樹脂被覆金属酸化物微粒子の含有量は固形分として0.2〜90重量%、さらには0.5〜80重量%の範囲にあることが好ましい。含有量が少なすぎると、粒子の量が少ないために粒子の特性(耐擦傷性向上、低屈折率、高屈折率、導電性等)による耐擦傷性、反射防止性能、帯電防止性能等が不充分となる場合があり、多すぎてもマトリックス成分が少なく、基材との密着性、透明性、ヘーズ、耐擦傷性等が不充分となる場合がある。
マトリックス成分
マトリックス成分は、前記有機樹脂系マトリックス形成成分に由来するものであり、詳細は前記したとおりである。
The content of the resin-coated metal oxide fine particles in the transparent film is preferably in the range of 0.2 to 90% by weight, more preferably 0.5 to 80% by weight as the solid content. If the content is too small, the amount of particles is so small that the particle properties (improved scratch resistance, low refractive index, high refractive index, electrical conductivity, etc.) have poor scratch resistance, antireflection performance, antistatic performance, etc. In some cases, it is sufficient, and if it is too much, there are few matrix components, and adhesion to the substrate, transparency, haze, scratch resistance, etc. may be insufficient.
Matrix component The matrix component is derived from the organic resin matrix forming component, and the details are as described above.

透明被膜中のマトリックス成分の含有量は固形分として10〜99.8重量%、さらには20〜99.5重量%の範囲にあることが好ましい。   The content of the matrix component in the transparent coating is preferably in the range of 10 to 99.8% by weight, more preferably 20 to 99.5% by weight as the solid content.

透明被膜中のマトリックス成分の含有量が少なすぎると、基材との密着性、透明性、ヘーズ、耐擦傷性等が不充分となる場合がある。含有量が多すぎると、粒子の量が少ないために粒子の特性(耐擦傷性、低屈折率、高屈折率、導電性等)による耐擦傷性、反射防止性能、帯電防止性能等が不充分となる場合がある。   If the content of the matrix component in the transparent coating is too small, adhesion to the substrate, transparency, haze, scratch resistance, etc. may be insufficient. If the content is too large, the amount of particles is so small that the particle properties (scratch resistance, low refractive index, high refractive index, conductivity, etc.) are not sufficient for scratch resistance, antireflection performance, antistatic performance, etc. It may become.

本発明に係る透明被膜の膜厚は、用途によっても異なるが概ね30nm〜20μm、さらには、70nm〜15μmの範囲にあることが好ましい。   The film thickness of the transparent coating according to the present invention varies depending on the application, but is generally in the range of 30 nm to 20 μm, and more preferably 70 nm to 15 μm.

透明被膜の膜厚が薄すぎると、用途によっては膜強度、耐擦傷性が不充分となる場合がある。透明被膜の膜厚が厚すぎると、透明被膜にクラックを生じたり、プラスチック等の基材ではカーリング(湾曲あるいは反り)を生じる場合がある。   If the film thickness of the transparent coating is too thin, film strength and scratch resistance may be insufficient depending on the application. If the film thickness of the transparent coating is too thick, cracks may occur in the transparent coating, or curling (curving or warping) may occur in a substrate such as plastic.

本発明に係る透明被膜付基材は、前記した透明被膜形成用塗布液を基材上に塗布し、乾燥し、硬化させることによって製造することができる。   The substrate with a transparent coating according to the present invention can be produced by applying the above-described coating solution for forming a transparent coating on a substrate, drying and curing.

具体的には、透明被膜形成用塗料をディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法等の周知の方法で基材に塗布し、乾燥し、紫外線照射、加熱処理等常法によって硬化させることによって透明被膜を形成することができる。防弦性を有する透明被膜付基材を製造する場合はロールコート法、スリットコーター印刷法、グラビア印刷法、マイクログラビア印刷法が推奨される。   Specifically, the transparent film-forming paint is applied to the substrate by a known method such as dipping, spraying, spinner, roll coating, bar coating, slit coater printing, gravure printing, or micro gravure printing. A transparent film can be formed by applying, drying, and curing by an ordinary method such as ultraviolet irradiation or heat treatment. When manufacturing a substrate with a transparent coating having a string-proof property, a roll coating method, a slit coater printing method, a gravure printing method, and a micro gravure printing method are recommended.

さらに、本発明の透明被膜付基材には、基材と前記透明被膜との間に前記透明被膜と異なる他の被膜を設けることができる。他の被膜としては、従来公知のプライマー膜、ハー
ドコート膜、高屈折率膜、導電性膜、低屈折率膜、アンチグレア膜、赤外線遮蔽膜、紫外線遮蔽膜等が挙げられる。
Furthermore, in the base material with a transparent film of the present invention, another film different from the transparent film can be provided between the base material and the transparent film. Examples of other coatings include conventionally known primer films, hard coat films, high refractive index films, conductive films, low refractive index films, antiglare films, infrared shielding films, and ultraviolet shielding films.

以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
樹脂被覆粒子(1)分散ゾルの調製
Pドープ酸化錫微粒子(1)の調製
純水8060gに硝酸アンモニウム13gと15%アンモニア水20gを入れ攪拌し、50℃に昇温した。この中に純水4290gに錫酸カリウム1519gを溶解した液を10時間かけてローラーポンプで添加した。このときpHコントローラーでpHを8.8に保つよう濃度10重量%の硝酸を添加して調整した。添加終了後1時間50℃をキープした後、濃度10重量%の硝酸を添加しpHを3.0まで下げた。次に限外濾過膜で濾水電導度が10μS/cmになるまで純水で洗浄した後、限外濾過膜で濃縮し取り出した。このとき取り出した液量は6000gで固形分(SnO2)濃度は12重量%であった。こ
のスラリーの中に濃度16重量%のリン酸水溶液264gを添加し、0.5時間攪拌した。これを105℃で2時間乾燥し、ついで700℃で2時間焼成して、Pドープ酸化錫微粒子(1)粉末を調製した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
[Example 1]
Resin coated particles (1) Preparation of dispersion sol
Preparation of P-doped tin oxide fine particles (1) In 8060 g of pure water, 13 g of ammonium nitrate and 20 g of 15% ammonia water were added and stirred, and the temperature was raised to 50 ° C. A solution obtained by dissolving 1519 g of potassium stannate in 4290 g of pure water was added with a roller pump over 10 hours. At this time, nitric acid having a concentration of 10% by weight was added and adjusted so as to maintain the pH at 8.8 with a pH controller. After the addition was completed, the temperature was kept at 50 ° C. for 1 hour, and then 10% by weight nitric acid was added to lower the pH to 3.0. Next, it was washed with pure water until the filtered water conductivity reached 10 μS / cm with an ultrafiltration membrane, and then concentrated with an ultrafiltration membrane. The amount of liquid taken out at this time was 6000 g, and the solid content (SnO 2 ) concentration was 12% by weight. To this slurry, 264 g of a phosphoric acid aqueous solution having a concentration of 16% by weight was added and stirred for 0.5 hour. This was dried at 105 ° C. for 2 hours and then calcined at 700 ° C. for 2 hours to prepare P-doped tin oxide fine particle (1) powder.

得られたPドープ酸化錫微粒子(1)の平均一次粒子径は15nm、平均二次粒子径は0
.45μm、体積抵抗値は5000Ω・cmであった。
樹脂被覆
Pドープ酸化錫微粒子粉末201g、有機溶媒としてプロピレングリコールモノメチルエーテル(PGME)374g、被覆用樹脂としてジ2-メタクリロイロキシエチルアシ
ッドホスフェート(共栄社化学(株)製:ライトエステルP-2M)14.5gを、ガラスビーズ(0.4mm)1135gを入れたビーズミルに充填し、1700rpmの回転数で1時間処理した後、ガラスビーズを分離し、ついでPGMEを加えて固形分濃度30重
量%の樹脂被覆Pドープ酸化錫微粒子(1)分散ゾルを調製した。
The obtained P-doped tin oxide fine particles (1) have an average primary particle size of 15 nm and an average secondary particle size of 0.
. The volume resistance was 45 Ω · cm at 45 μm.
201 g of resin-coated P-doped tin oxide fine particle powder, 374 g of propylene glycol monomethyl ether (PGME) as an organic solvent, and di-2-methacryloyloxyethyl acid phosphate as a coating resin (manufactured by Kyoeisha Chemical Co., Ltd .: Light Ester P-2M) 14 .5 g was filled into a bead mill containing 1135 g of glass beads (0.4 mm), treated at 1700 rpm for 1 hour, separated from glass beads, and then added with PGME to give a resin with a solid content concentration of 30% by weight. A coated P-doped tin oxide fine particle (1) -dispersed sol was prepared.

樹脂被覆Pドープ酸化錫微粒子(1)分散ゾルの安定性、樹脂被覆Pドープ酸化錫微粒子(1)の平均粒子径を測定し、結果を表1に示した。   The stability of the resin-coated P-doped tin oxide fine particles (1) dispersed sol and the average particle size of the resin-coated P-doped tin oxide fine particles (1) were measured, and the results are shown in Table 1.

なお、安定性は下記の方法、評価基準により評価した。また平均粒子径は大塚電子製:レーザー粒径解析システム(PAR-III)で測定した。
安定性評価
固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(1)分散ゾルを透明性容器に充
填して静置し、容器の下部に沈降粒子の状況を観察し、以下の基準で評価し、結果を表1に示した。
The stability was evaluated by the following method and evaluation criteria. The average particle size was measured with a laser particle size analysis system (PAR-III) manufactured by Otsuka Electronics.
Stability evaluation Resin-coated P-doped tin oxide microparticles with a solid content concentration of 30% by weight (1) Disperse sol is filled in a transparent container and allowed to stand, and the state of precipitated particles is observed at the bottom of the container. The results are shown in Table 1.

1週間以上粒子の沈降層が認められなかった。:◎
3〜6日で粒子の沈降層が認められた。 :○
1〜2日で粒子の沈降層が認められた。 :△
1日以内に粒子の沈降層が認められた。 :×
透明被膜形成用塗布液(1)の調製
固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(1)分散ゾル233.3gに、
グリコール系アクリレート樹脂としてポリエチレングリコールジアクリレート(新中村化学(株)製:NKエステルA−400)6gと、非グリコール系2官能アクリレート樹脂として1,6−ヘサンジオールジアクリレート(日本化薬(株)製:カヤラッドKS−HDD
A)3gと、非グリコール系6官能アクリレート樹脂としてジペンタエリスリトールヘキ
サアクリレート(共栄社化学(株)製:ライトアクリレートDPE-6A)24gと、イソ
プロピルアルコール40gとプロピレングリコールモノメチルエーテル30gと光開始剤2.4.6−トリメチルベンゾイルジフェニルフォスフィンオキサイド(ビ−エーエスジャパン(株)製:ルシリンTPO)1.5gとを混合して透明被膜形成用塗布液(1)を調
製した。
透明被膜付基材(F-1)の製造
透明被膜形成用塗布液(1)をPETフィルム(厚さ:188μm、屈折率:1.65全
光線透過率90.0%、ヘーズ0.6%)にバーコーター法(バー#14)で塗布し、80℃で1分間乾燥した後、高圧水銀灯(120W/cm)を搭載した紫外線照射装置(日本電池製UV照射装置CS30L21−3)で600mJ/cm2照射して硬化させ、透明被膜付基材(F-1)を調製した。このときの透明被膜の厚さは4μmであった。得られた透
明被膜の表面抵抗を、表面抵抗計(三菱化学(株)製:ハイレスタ)にて測定し、結果を表1に示す。
No sedimentation layer of particles was observed for more than 1 week. : ◎
A sedimentation layer of particles was observed in 3 to 6 days. : ○
A sedimentation layer of particles was observed in 1 to 2 days. : △
Within 1 day, a sedimentation layer of particles was observed. : ×
Preparation of coating liquid (1) for forming transparent film Resin coated P-doped tin oxide fine particles (1) with a solid content concentration of 30% by weight (1)
6 g of polyethylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Ester A-400) as the glycol acrylate resin and 1,6-hesandiol diacrylate (Nippon Kayaku Co., Ltd.) as the non-glycol bifunctional acrylate resin Made by Kaylad KS-HDD
A) 3 g, 24 g of dipentaerythritol hexaacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Acrylate DPE-6A) as a non-glycol-based hexafunctional acrylate resin, 40 g of isopropyl alcohol, 30 g of propylene glycol monomethyl ether, and a photoinitiator A coating liquid (1) for forming a transparent film was prepared by mixing 1.5 g of 4.6-trimethylbenzoyldiphenylphosphine oxide (manufactured by BIAS Japan KK: Lucillin TPO).
Production of substrate with transparent coating (F-1) Coating solution (1) for forming a transparent coating was prepared by using a PET film (thickness: 188 μm, refractive index: 1.65, total light transmittance 90.0%, haze 0.6%). ) By a bar coater method (bar # 14), dried at 80 ° C. for 1 minute, and then applied with an ultraviolet irradiation device (UV irradiation device CS30L21-3 manufactured by Nippon Batteries) equipped with a high pressure mercury lamp (120 W / cm) to 600 mJ / cm 2 irradiation cured, transparent film-coated substrate of (F-1) was prepared. At this time, the thickness of the transparent film was 4 μm. The surface resistance of the obtained transparent film was measured with a surface resistance meter (manufactured by Mitsubishi Chemical Corporation: Hiresta), and the results are shown in Table 1.

また、全光線透過率およびヘーズをヘーズメーター(スガ試験機(株)製)により測定し、結果を表1に示す。さらに、鉛筆硬度、耐擦傷性および密着性を以下の方法および評価基準で評価し、結果を表1に示す。   Further, the total light transmittance and haze were measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the results are shown in Table 1. Further, pencil hardness, scratch resistance and adhesion were evaluated by the following methods and evaluation criteria, and the results are shown in Table 1.

鉛筆硬度の測定
JIS−K−5400に準じて鉛筆硬度試験器により測定した。
Measurement of pencil hardness It measured with the pencil hardness tester according to JIS-K-5400.

耐擦傷性の測定
#0000スチールウールを用い、荷重500g/cm2で50回摺動し、膜の表面を
目視観察し、以下の基準で評価し、結果を表1に示す。
Measurement of Scratch Resistance Using # 0000 steel wool, sliding 50 times at a load of 500 g / cm 2 , visually observing the surface of the film, and evaluating according to the following criteria, the results are shown in Table 1.

評価基準:
筋条の傷が認められない :◎
筋条に傷が僅かに認められる:○
筋条に傷が多数認められる :△
面が全体的に削られている :×
密着性
透明被膜付基材(F-1)の表面にナイフで縦横1mmの間隔で11本の平行な傷を付け1
00個の升目を作り、これにセロハンテープ(登録商標)を接着し、ついで、セロハンテープ(登録商標)を剥離したときに被膜が剥離せず残存している升目の数を、以下の4段階に分類することによって密着性を評価した。結果を表1に示す。
Evaluation criteria:
No streak injury is found: ◎
Slightly scratched streak: ○
Many scratches are found in the streak: △
The surface has been cut entirely: ×
11 parallel scratches were made on the surface of the substrate with adhesive transparent coating (F-1) with a knife at intervals of 1 mm in length and width 1
00 cells were made, cellophane tape (registered trademark) was adhered to this, and then the cellophane tape (registered trademark) was peeled off, and the number of cells remaining without peeling off was determined by the following four steps. The adhesion was evaluated by classifying into The results are shown in Table 1.

残存升目の数95個以上 :◎
残存升目の数90〜94個:○
残存升目の数85〜89個:△
残存升目の数84個以下 :×
[実施例2]
樹脂被覆粒子(2)分散ゾルの調製
実施例1において、被覆用樹脂としてジ2-メタクリロイロキシエチルアシッドホスフ
ェート(共栄社化学(株)製:ライトエステルP-2M)7.3gを用いた以外は同様にして固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(2)分散ゾルを調製した。固形
分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(2)分散ゾルの安定性、樹脂被覆Pド
ープ酸化錫微粒子(2)の平均粒子径を測定し、結果を表1に示した。
Number of remaining cells: 95 or more: ◎
Number of remaining squares 90-94: ○
Number of remaining squares: 85-89:
Number of remaining squares: 84 or less: ×
[Example 2]
Preparation of resin-coated particles (2) dispersed sol In Example 1, except that 7.3 g of di-2-methacryloyloxyethyl acid phosphate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Ester P-2M) was used as the coating resin Similarly, a resin-coated P-doped tin oxide fine particle (2) dispersion sol having a solid content concentration of 30% by weight was prepared. The stability of the resin-coated P-doped tin oxide fine particles (2) dispersed sol having a solid concentration of 30% by weight and the average particle size of the resin-coated P-doped tin oxide fine particles (2) were measured. The results are shown in Table 1.

透明被膜形成用塗布液(2)の調製
実施例1において、固形分濃度30重量%の樹脂被覆樹脂被覆Pドープ酸化錫微粒子(2
)分散ゾルを用いた以外は同様にして透明被膜形成用塗布液(2)を調製した。
Preparation of coating liquid (2) for forming transparent film In Example 1, resin-coated resin-coated P-doped tin oxide fine particles (2
) A coating liquid for forming a transparent film (2) was prepared in the same manner except that the dispersion sol was used.

透明被膜付基材(F-2)の製造
実施例1において、透明被膜形成用塗布液(2)を用いた以外は同様にして透明被膜付基
材(F-2)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の
全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。
Production of substrate with transparent coating (F-2) A substrate with transparent coating (F-2) was prepared in the same manner as in Example 1 except that the coating solution for forming a transparent coating (2) was used. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1.

[実施例3]
樹脂被覆粒子(3)分散ゾルの調製
実施例1において、被覆用樹脂としてジ2-メタクリロイロキシエチルアシッドホスフ
ェート(共栄社化学(株)製:ライトエステルP-2M)29.0gを用いた以外は同様にして固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(3)分散ゾルを調製した。
[Example 3]
Preparation of resin-coated particle (3) dispersion sol In Example 1, except that 29.0 g of di-2-methacryloyloxyethyl acid phosphate (manufactured by Kyoeisha Chemical Co., Ltd .: Light Ester P-2M) was used as the coating resin Similarly, a resin-coated P-doped tin oxide fine particle (3) dispersion sol having a solid concentration of 30% by weight was prepared.

固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(3)分散ゾルの安定性、樹脂被
覆Pドープ酸化錫微粒子(3)の平均粒子径を測定し、結果を表1に示した。
The stability of the resin-coated P-doped tin oxide fine particles (3) dispersed sol having a solid content concentration of 30% by weight and the average particle diameter of the resin-coated P-doped tin oxide fine particles (3) were measured. The results are shown in Table 1.

透明被膜形成用塗布液(3)の調製
実施例1において、固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(3)分散液
を用いた以外は同様にして透明被膜形成用塗布液(3)を調製した。
Preparation of coating liquid for forming transparent film (3) In Example 1, a coating liquid for forming transparent film (3) was used in the same manner except that the resin-coated P-doped tin oxide fine particle (3) dispersion having a solid content of 30% by weight was used. 3) was prepared.

透明被膜付基材(F-3)の製造
実施例1において、透明被膜形成用塗布液(3)を用いた以外は同様にして透明被膜付基材(F-3)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。
[実施例4]
樹脂被覆粒子(4)分散ゾルの調製
実施例1において、被覆用樹脂としてジ2-メタクリロイロキシエチルアシッドホスフ
ェート14.5gの代わりに、2-ヒドロキシ-3-フェノキシプロピルアクリレート(新
中村化学工業(株)製:NKエステル702A)14.5gを混合した以外は同様にして固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(4)分散ゾルを調製した。
Production of substrate with transparent film (F-3) A substrate with transparent film (F-3) was prepared in the same manner as in Example 1, except that the coating liquid for forming a transparent film (3) was used. did. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1.
[Example 4]
Preparation of Resin Coated Particle (4) Dispersed Sol In Example 1, instead of 14.5 g of di-2-methacryloyloxyethyl acid phosphate as the coating resin, 2-hydroxy-3-phenoxypropyl acrylate (Shin Nakamura Chemical Co., Ltd.) Co., Ltd .: NK ester 702A) A resin-coated P-doped tin oxide fine particle (4) dispersion sol having a solid concentration of 30% by weight was prepared in the same manner except that 14.5 g was mixed.

固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(4)分散ゾルの安定性、樹脂被
覆Pドープ酸化錫微粒子(4)の平均粒子径を測定し、結果を表1に示した。
The stability of the resin-coated P-doped tin oxide fine particles (4) dispersed sol having a solid content concentration of 30% by weight and the average particle size of the resin-coated P-doped tin oxide fine particles (4) were measured. The results are shown in Table 1.

透明被膜形成用塗布液(4)の調製
固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(4)分散ゾル233.3gに、
グリコール系アクリレート樹脂としてポリプロピレングリコールジアクリレート(新中村化学(株)製:NKエステルAPG−700)6gと、非グリコール系2官能アクリレート樹脂としてジメチロールトリシクロデカンジアクリレート(共栄社化学(株)製:ライトアクリレートDCP−A)3gと、非グリコール系4官能アクリレート樹脂としてペンタエリスリトールテトラアクリレート(共栄社化学(株)製:ライトアクリレートDPE-4A
)24gと、イソプロピルアルコール40gとプロピレングリコールモノメチルエーテル30gと光開始剤2.4.6−トリメチルベンゾイルジフェニルフォスフィンオキサイド(ビ−エーエスジャパン(株)製:ルシリンTPO)1.5gとを混合して透明被膜形成用塗布液(4)を調製した。
透明被膜付基材(F-4)の製造
実施例1において、透明被膜形成用塗布液(4)を用いた以外は同様にして透明被膜付基
材(F-4)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の
全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。[実施例5]
樹脂被覆粒子(5)分散ゾルの調製
実施例4において、被覆用樹脂2-ヒドロキシ-3-フェノキシプロピルアクリレート(
新中村化学工業(株)製:NKエステル702A)7.3gを混合した以外は同様にして固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(5)分散ゾルを調製した。
Preparation of coating liquid for forming transparent film (4) To 233.3 g of resin-coated P-doped tin oxide fine particles (4) dispersed sol having a solid content concentration of 30% by weight,
Polypropylene glycol diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Ester APG-700) as a glycol-based acrylate resin and dimethylol tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd.) as a non-glycol-based bifunctional acrylate resin: 3 g of light acrylate DCP-A) and pentaerythritol tetraacrylate (manufactured by Kyoeisha Chemical Co., Ltd .: light acrylate DPE-4A) as a non-glycol-based tetrafunctional acrylate resin
24 g, 40 g of isopropyl alcohol, 30 g of propylene glycol monomethyl ether and 1.5 g of photoinitiator 2.4.6-trimethylbenzoyldiphenylphosphine oxide (manufactured by BIAS JAPAN KK: Lucillin TPO) A coating solution (4) for forming a transparent film was prepared.
Production of substrate with transparent film (F-4) A substrate with transparent film (F-4) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent film (4) was used. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1. [Example 5]
Preparation of Resin Coated Particle (5) Dispersed Sol In Example 4, the coating resin 2-hydroxy-3-phenoxypropyl acrylate (
A resin-coated P-doped tin oxide fine particle (5) dispersion sol having a solid concentration of 30% by weight was prepared in the same manner except that 7.3 g of NK ester 702A) manufactured by Shin-Nakamura Chemical Co., Ltd. was mixed.

固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(5)分散ゾルの安定性、樹脂被
覆Pドープ酸化錫微粒子(5)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(5)の調製
実施例4において、固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(5)分散ゾ
ルを用いた以外は同様にして透明被膜形成用塗布液(5)を調製した。
透明被膜付基材(F-5)の製造
実施例1において、透明被膜形成用塗布液(5)を用いた以外は同様にして透明被膜付基
材(F-5)を調製した。このときの透明被膜の厚さは4μmであった。
得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。
[実施例6]
樹脂被覆粒子(6)分散ゾルの調製
実施例4において、被覆用樹脂2-ヒドロキシ-3-フェノキシプロピルアクリレート(
新中村化学工業(株)製:NKエステル702A)29gを混合した以外は同様にして固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(6)分散ゾルを調製した。
The stability of the resin-coated P-doped tin oxide fine particles (5) dispersed sol having a solid content concentration of 30% by weight and the average particle diameter of the resin-coated P-doped tin oxide fine particles (5) were measured. The results are shown in Table 1.
Preparation of Transparent Film Forming Coating Liquid (5) In Example 4, a transparent film forming coating liquid (5) was used except that a resin-coated P-doped tin oxide fine particle (5) dispersion sol having a solid content concentration of 30% by weight was used. 5) was prepared.
Production of substrate with transparent coating (F-5) A substrate with transparent coating (F-5) was prepared in the same manner as in Example 1 except that the coating solution for forming a transparent coating (5) was used. At this time, the thickness of the transparent film was 4 μm.
The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1.
[Example 6]
Preparation of Resin Coated Particle (6) Dispersed Sol In Example 4, the coating resin 2-hydroxy-3-phenoxypropyl acrylate (
A resin-coated P-doped tin oxide fine particle (6) dispersion sol having a solid content concentration of 30% by weight was prepared in the same manner except that 29 g of NK ester 702A) manufactured by Shin-Nakamura Chemical Co., Ltd. was mixed.

固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(6)分散ゾルの安定性、樹脂被
覆Pドープ酸化錫微粒子(6)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(6)の調製
実施例4において、固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(6)分散ゾ
ルを用いた以外は同様にして透明被膜形成用塗布液(6)を調製した。
透明被膜付基材(F-6)の製造
実施例1において、透明被膜形成用塗布液(6)を用いた以外は同様にして透明被膜付基
材(F-6)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の
全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。[実施例7]
樹脂被覆粒子(7)分散ゾルの調製
実施例1において、有機溶媒としてプロピレングリコールモノメチルエーテル(PGME)374gの代わりにメチルイソブチルケトン(MIBK)374gを用い、被覆用樹脂としてジ2-メタクリロイロキシエチルアシッドホスフェート(共栄社化学(株)製:
ライトエステルP-2M)7.3gと、2-ヒドロキシ-3-フェノキシプロピルアクリレー
ト(新中村化学工業(株)製:NKエステル702A)7.3gとを混合して使用した以外は同様にして固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(7)分散ゾルを調
製した。
The stability of the resin-coated P-doped tin oxide fine particles (6) dispersed sol having a solid content concentration of 30% by weight and the average particle size of the resin-coated P-doped tin oxide fine particles (6) were measured. The results are shown in Table 1.
Preparation of coating liquid for forming transparent film (6) In Example 4, a coating liquid for forming a transparent film was prepared in the same manner as in Example 4 except that a resin-coated P-doped tin oxide fine particle (6) dispersion sol having a solid concentration of 30% by weight was used. 6) was prepared.
Production of substrate with transparent film (F-6) A substrate with transparent film (F-6) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent film (6) was used. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1. [Example 7]
In Preparation Example 1 of the resin coated particles (7) dispersed sol, using methyl isobutyl ketone (MIBK) 374 g instead of propylene glycol monomethyl ether (PGME) 374 g as an organic solvent, di-2-methacryloyloxyethyl as the coating resin Acid phosphate (manufactured by Kyoeisha Chemical Co., Ltd.)
7.3 g of light ester P-2M) and 7.3 g of 2-hydroxy-3-phenoxypropyl acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd .: NK Ester 702A) were used in the same manner except that they were mixed. A resin-coated P-doped tin oxide fine particle (7) dispersion sol having a partial concentration of 30% by weight was prepared.

固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(7)分散ゾルの安定性、樹脂被
覆Pドープ酸化錫微粒子(7)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(7)の調製
実施例1において、固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(7)分散ゾ
ルを用いた以外は同様にして透明被膜形成用塗布液(7)を調製した。
透明被膜付基材(F-7)の製造
実施例1において、透明被膜形成用塗布液(7)を用いた以外は同様にして透明被膜付基
材(F-7)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の
全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。[実施例8]
樹脂被覆粒子(8)分散ゾルの調製
実施例1において、被覆用樹脂としてジ2-メタクリロイロキシエチルアシッドホスフ
ェート14.5gの代わりに2-アクリロイロキシエチルコハク酸(共栄社(株)製:ラ
イトアクリレートHOA−MS)14.5gを混合した以外は同様にして固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(8)分散ゾルを調製した。
The stability of the resin-coated P-doped tin oxide fine particles (7) dispersed sol having a solid content concentration of 30% by weight and the average particle diameter of the resin-coated P-doped tin oxide fine particles (7) were measured. The results are shown in Table 1.
Preparation of coating liquid for forming a transparent film (7) In Example 1, a coating liquid for forming a transparent film (in the same manner as in Example 1 except that a resin-coated P-doped tin oxide fine particle (7) dispersion sol having a solid content concentration of 30% by weight) was used. 7) was prepared.
Production of substrate with transparent film (F-7) A substrate with transparent film (F-7) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent film (7) was used. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1. [Example 8]
Preparation of Resin Coated Particle (8) Dispersed Sol In Example 1, 2-acryloyloxyethyl succinic acid (Kyoeisha Co., Ltd .: Wright) was used instead of 14.5 g of di-2-methacryloyloxyethyl acid phosphate as the coating resin. A resin-coated P-doped tin oxide fine particle (8) dispersion sol having a solid concentration of 30% by weight was prepared in the same manner except that 14.5 g of (acrylate HOA-MS) was mixed.

固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(8)分散ゾルの安定性、樹脂被
覆Pドープ酸化錫微粒子(8)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(8)の調製
実施例1において、固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(8)分散ゾ
ルを用いた以外は同様にして透明被膜形成用塗布液(8)を調製した。
透明被膜付基材(F-8)の製造
実施例1において、透明被膜形成用塗布液(8)を用いた以外は同様にして透明被膜付基
材(F-4)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の
全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。[実施例9]
樹脂被覆粒子(9)分散ゾルの調製
実施例1において、金属酸化物粒子としてアンチモンドープ酸化錫(ATO)微粒子(日
揮触媒化成(株)製:TL−98FDAR、固形分20重量%、平均粒子径8nm)を105℃で2時間乾燥し、ついで、200℃で2時間加熱処理した。この時、平均一次粒子径は8nm、平均二次粒子径は0.25μmであった。
The stability of the resin-coated P-doped tin oxide fine particles (8) dispersed sol having a solid content concentration of 30% by weight and the average particle diameter of the resin-coated P-doped tin oxide fine particles (8) were measured. The results are shown in Table 1.
Preparation of coating liquid for forming transparent film (8) In Example 1, a coating liquid for forming a transparent film was prepared in the same manner as in Example 1 except that a resin-coated P-doped tin oxide fine particle (8) dispersion sol having a solid content concentration of 30% by weight was used. 8) was prepared.
Production of substrate with transparent coating (F-8) A substrate with transparent coating (F-4) was prepared in the same manner as in Example 1 except that the coating solution (8) for forming a transparent coating was used. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1. [Example 9]
Preparation of Resin Coated Particle (9) Dispersed Sol In Example 1, antimony-doped tin oxide (ATO) fine particles (manufactured by JGC Catalysts & Chemicals Co., Ltd .: TL-98FDAR, solid content 20% by weight, average particle size as metal oxide particles) 8 nm) was dried at 105 ° C. for 2 hours, and then heat-treated at 200 ° C. for 2 hours. At this time, the average primary particle diameter was 8 nm, and the average secondary particle diameter was 0.25 μm.

この加熱処理した粒子201gを用いた以外は同様にして固形分濃度30重量%の樹脂被覆アンチモンドープ酸化錫微粒子(9)分散ゾルを調製した。固形分濃度30重量%の樹
脂被覆アンチモンドープ酸化錫微粒子(9)分散ゾルの安定性、樹脂被覆アンチモンドープ
酸化錫微粒子(9)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(9)の調製
実施例1において、固形分濃度30重量%の樹脂被覆アンチモンドープ酸化錫微粒子(9)分散液を用いた以外は同様にして透明被膜形成用塗布液(9)を調製した。
透明被膜付基材(F-9)の製造
実施例1において、透明被膜形成用塗布液(9)を用いた以外は同様にして透明被膜付基
材(F-9)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の
全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。[実施例10]
樹脂被覆粒子(10)分散ゾルの調製
実施例1において、金属酸化物粒子としてスズドープ酸化インジウム(ITO)微粒子
(日揮触媒化成(株)製:ELCOM TL−131、平均粒子径20nm)を200℃で2時間加熱処理した。この時、平均一次粒子径は20nm、平均二次粒子径は0.8μmであった。
A resin-coated antimony-doped tin oxide fine particle (9) dispersion sol having a solid concentration of 30% by weight was prepared in the same manner except that 201 g of the heat-treated particles were used. The stability of the resin-coated antimony-doped tin oxide fine particles (9) dispersed sol having a solid concentration of 30% by weight and the average particle size of the resin-coated antimony-doped tin oxide fine particles (9) were measured. The results are shown in Table 1.
Preparation of coating liquid for forming transparent film (9) In Example 1, a coating liquid for forming a transparent film (in the same manner as in Example 1) except that the dispersion of resin-coated antimony-doped tin oxide fine particles (9) having a solid content of 30% by weight was used. 9) was prepared.
Production of substrate with transparent film (F-9) A substrate with transparent film (F-9) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent film (9) was used. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1. [Example 10]
Preparation of Resin Coated Particle (10) Dispersed Sol In Example 1, tin-doped indium oxide (ITO) fine particles (manufactured by JGC Catalysts & Chemicals Co., Ltd .: ELCOM TL-131, average particle size of 20 nm) as metal oxide particles at 200 ° C. Heat-treated for 2 hours. At this time, the average primary particle size was 20 nm, and the average secondary particle size was 0.8 μm.

この加熱処理した粒子201gを用いた以外は同様にして固形分濃度30重量%の樹脂被覆スズドープ酸化インジウム微粒子(10)分散ゾルを調製した。   A resin-coated tin-doped indium oxide fine particle (10) dispersion sol having a solid content concentration of 30% by weight was prepared in the same manner except that 201 g of the heat-treated particles were used.

固形分濃度30重量%の樹脂被覆スズドープ酸化インジウム微粒子(10)分散ゾルの安定性、樹脂被覆スズドープ酸化インジウム微粒子(10)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(10)の調製
実施例1において、固形分濃度30重量%の樹脂被覆スズドープ酸化インジウム微粒子(10)分散液を用いた以外は同様にして透明被膜形成用塗布液(10)を調製した。
透明被膜付基材(F-10)の製造
実施例1において、透明被膜形成用塗布液(10)を用いた以外は同様にして透明被膜付基材(F-10)を調製した。このときの透明被膜の厚さは4μmであった。
The stability of the resin-coated tin-doped indium oxide fine particles (10) dispersed sol having a solid content concentration of 30% by weight and the average particle diameter of the resin-coated tin-doped indium oxide fine particles (10) were measured. The results are shown in Table 1.
Preparation of coating liquid for forming transparent film (10) In Example 1, a coating liquid for forming a transparent film (10) was used in the same manner as in Example 1, except that a resin-coated tin-doped indium oxide fine particle (10) dispersion having a solid content of 30% by weight was used. ) Was prepared.
Production of substrate with transparent film (F-10) A substrate with transparent film (F-10) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent film (10) was used. At this time, the thickness of the transparent film was 4 μm.

得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。
[実施例11]
樹脂被覆粒子(11)分散ゾルの調製
Pドープ酸化錫微粒子(2)の調製
純水8060gに硝酸アンモニウム13gと15%アンモニア水20gを入れ攪拌し、50℃に昇温した。この中に純水4290gに錫酸カリウム1519gを溶解した液を10時間かけてローラーポンプで添加した。このときpHコントローラーでpHを8.2に保つよう濃度10重量%の硝酸を添加して調整した。添加終了後1時間50℃をキープした後、濃度10重量%の硝酸を添加しpHを3.0まで下げた。次に限外濾過膜で濾水電導度が10μS/cmになるまで純水で洗浄した後、限外濾過膜で濃縮し取り出した。このとき取り出した液量は4800gで固形分(SnO2)濃度は15重量%であった。こ
のスラリーの中に濃度16重量%のリン酸水溶液264gを添加し、0.5時間攪拌した。これを乾燥し、700℃で2時間焼成して、Pドープ酸化錫微粒子(2)粉末を調製した
The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1.
[Example 11]
Preparation of resin-coated particles (11) dispersed sol
Preparation of P-doped tin oxide fine particles (2) 1360 g of ammonium nitrate and 20 g of 15% aqueous ammonia were added to 8060 g of pure water and stirred, and the temperature was raised to 50 ° C. A solution obtained by dissolving 1519 g of potassium stannate in 4290 g of pure water was added with a roller pump over 10 hours. At this time, nitric acid having a concentration of 10% by weight was added to adjust the pH to 8.2 with a pH controller. After the addition was completed, the temperature was kept at 50 ° C. for 1 hour, and then 10% by weight nitric acid was added to lower the pH to 3.0. Next, it was washed with pure water until the filtered water conductivity reached 10 μS / cm with an ultrafiltration membrane, and then concentrated with an ultrafiltration membrane. The amount of liquid taken out at this time was 4800 g, and the solid content (SnO 2 ) concentration was 15% by weight. To this slurry, 264 g of a phosphoric acid aqueous solution having a concentration of 16% by weight was added and stirred for 0.5 hour. This was dried and calcined at 700 ° C. for 2 hours to prepare P-doped tin oxide fine particle (2) powder.

得られたPドープ酸化錫微粒子(2)の平均一次粒子径は25nm、平均二次粒子径は1
.2μm、体積抵抗値は4000Ω・cmであった。
The obtained P-doped tin oxide fine particles (2) have an average primary particle size of 25 nm and an average secondary particle size of 1.
. The volume resistance value was 2 Ωm and 4000 Ω · cm.

Pドープ酸化錫微粒子(2)201gを用いた以外は同様にして固形分濃度30重量%の
樹脂被覆Pドープ酸化錫微粒子(11)分散ゾルを調製した。
A resin-coated P-doped tin oxide fine particle (11) -dispersed sol having a solid concentration of 30% by weight was prepared in the same manner except that 201 g of the P-doped tin oxide fine particle (2) was used.

固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(11)分散ゾルの安定性、樹脂被覆Pドープ酸化錫微粒子(11)の平均粒子径を測定し、結果を表1に示した。

透明被膜形成用塗布液(11)の調製
実施例1において、固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(11)分散ゾルを用いた以外は同様にして透明被膜形成用塗布液(11)を調製した。
透明被膜付基材(F-11)の製造
実施例1において、透明被膜形成用塗布液(11)を用いた以外は同様にして透明被膜付基材(F-11)を調製した。このときの透明被膜の厚さは4μmであった。
The stability of the resin-coated P-doped tin oxide fine particles (11) dispersed sol having a solid content concentration of 30% by weight and the average particle size of the resin-coated P-doped tin oxide fine particles (11) were measured. The results are shown in Table 1.

Preparation of coating solution for forming transparent film (11) In Example 1, a coating solution for forming a transparent coating (in the same manner as in Example 1 except that a resin-coated P-doped tin oxide fine particle (11) dispersion sol having a solid content concentration of 30% by weight was used) 11) was prepared.
Production of substrate with transparent film (F-11) A substrate with transparent film (F-11) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent film (11) was used. At this time, the thickness of the transparent film was 4 μm.

得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。
[実施例12] (原料金属酸化物粒子の種類:酸化チタン)
樹脂被覆粒子(12)分散ゾルの調製
酸化チタン微粒子(1)の調製
732gの4塩化チタンを純水で希釈してTiO2として1.0重量%含有する水溶液
を得た。これを撹拌しながら、濃度15重量%のアンモニア水を添加し、pH9.5の白色スラリーを得た。このスラリーを濾過洗浄し、TiO2として濃度10.2重量%の水
和酸化チタンゲルのケーキを得た。このケーキと濃度5%過酸化水素液16000gを混合し、ついで80℃で2時間加熱して溶解し、TiO2として濃度1.0重量%のペルオ
キソチタン酸水溶液を得た。ついで、オートクレーブにて、150℃で10時間処理して酸化チタンコロイド粒子分散液を調製した。ついで、限外濾過膜にて洗浄し、濃縮した後、これを乾燥し、600℃で2時間焼成して、酸化チタン微粒子(1)粉末を調製した。
The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1.
[Example 12] (Type of raw material metal oxide particles: titanium oxide)
Preparation of resin-coated particles (12) dispersed sol
Preparation of Titanium Oxide Fine Particles (1) 732 g of titanium tetrachloride was diluted with pure water to obtain an aqueous solution containing 1.0% by weight as TiO 2 . While stirring this, ammonia water having a concentration of 15% by weight was added to obtain a white slurry having a pH of 9.5. This slurry was washed by filtration to obtain a hydrated titanium oxide gel cake having a concentration of 10.2% by weight as TiO 2 . This cake was mixed with 16000 g of a 5% hydrogen peroxide solution, and then dissolved by heating at 80 ° C. for 2 hours to obtain a peroxotitanic acid aqueous solution having a concentration of 1.0% by weight as TiO 2 . Subsequently, the titanium oxide colloidal particle dispersion was prepared by processing at 150 ° C. for 10 hours in an autoclave. Next, after washing with an ultrafiltration membrane and concentrating, this was dried and calcined at 600 ° C. for 2 hours to prepare titanium oxide fine particle (1) powder.

酸化チタン微粒子(1)の平均一次粒子径は60nm、平均二次粒子径は3.0μmであ
った。
The titanium oxide fine particles (1) had an average primary particle size of 60 nm and an average secondary particle size of 3.0 μm.

酸化チタン微粒子(1)201gを用いた以外は同様にして固形分濃度30重量%の樹脂
被覆酸化チタン微粒子(12)分散ゾルを調製した。
A resin-coated titanium oxide fine particle (12) -dispersed sol having a solid concentration of 30% by weight was prepared in the same manner except that 201 g of titanium oxide fine particles (1) were used.

固形分濃度30重量%の樹脂被覆酸化チタン微粒子(12)分散ゾルの安定性、樹脂被覆酸化チタン微粒子(12)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(12)の調製
実施例1において、固形分濃度30重量%の樹脂被覆酸化チタン微粒子(12)分散ゾルを用いた以外は同様にして透明被膜形成用塗布液(12)を調製した。
透明被膜付基材(F-12)の製造
実施例1において、透明被膜形成用塗布液(12)を用いた以外は同様にして透明被膜付基材(F-12)を調製した。このときの透明被膜の厚さは4μmであった。
The stability of the resin-coated titanium oxide fine particles (12) dispersed sol having a solid content concentration of 30% by weight and the average particle size of the resin-coated titanium oxide fine particles (12) were measured. The results are shown in Table 1.
Preparation of coating liquid for forming transparent film (12) In the same manner as in Example 1, except that the resin-coated titanium oxide fine particle (12) dispersion sol having a solid concentration of 30% by weight was used, the coating liquid for forming transparent film (12) Was prepared.
Production of substrate with transparent coating (F-12) A substrate with transparent coating (F-12) was prepared in the same manner as in Example 1 except that the coating solution for forming a transparent coating (12) was used. At this time, the thickness of the transparent film was 4 μm.

得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。
[実施例13]
樹脂被覆粒子(13)分散ゾルの調製
酸化ジルコニウム微粒子の調製
純水24320オキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)655gを溶
解し、これにリンゴ酸27gを添加し、ついで、濃度10重量%のKOH水溶液3130gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは10.5、温度は19℃であった。
The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1.
[Example 13]
Preparation of resin-coated particles (13) dispersed sol
Preparation of pure water 24320 zirconium oxychloride octahydrate zirconium oxide fine particles (ZrOCl 2 · 8H 2 O) 655g was dissolved, this was added malic acid 27 g, was then added to a concentration of 10 wt% KOH aqueous solution 3130g A zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1 wt%) was prepared. At this time, the pH of the dispersion was 10.5 and the temperature was 19 ° C.

ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)950gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)500gを加え脱イオンした。 Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 950 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) to deionize. Next, after separating the cation exchange resin, 500 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization.

このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は10μS/cm、pHは6であった。 The washed zirconium hydroxide hydrogel dispersion thus obtained (ZrO 2 concentration 1 wt%) had an electric conductivity of 10 μS / cm and a pH of 6.

ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2 時間熟成した。このとき、電導度は640μS/cm、pHは2.53であった。 Next, the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) was irradiated with ultrasonic waves for 1 hour to disperse the hydrogel, filled in an autoclave, and aged at 200 ° C. for 2 hours. At this time, the conductivity was 640 μS / cm and the pH was 2.53.

ついで、陰イオン交換樹脂( 三菱化学(株)製:SANUPC)1100gを加えて
脱イオンを行い、ついで純水37500gを供給しながら限外濾過膜法で洗浄した。このときの電導度は16μS/cm 、pHは3.9であった。
Subsequently, 1100 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization, and then washed by ultrafiltration membrane method while supplying 37500 g of pure water. The conductivity at this time was 16 μS / cm 2 and pH was 3.9.

ついで、上記熟成し、洗浄した分散液をZrO2濃度1重量%に調整し、これに濃度2重量% のリンゴ酸水溶液1340gを加え、超音波を1 時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。このとき、電導度は640μS/cm、pHは2.53であった。 Next, after the above-mentioned aged and washed dispersion was adjusted to a ZrO 2 concentration of 1% by weight, 1340 g of a malic acid aqueous solution having a concentration of 2% by weight was added thereto, and ultrasonic waves were applied for 1 hour to disperse the hydrogel. The mixture was filled in an autoclave and hydrothermally treated at 200 ° C. for 2 hours. At this time, the conductivity was 640 μS / cm and the pH was 2.53.

水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)1100gを加えて脱イオンを行い、ついで純水37500gを供給しながら限外濾過膜法で洗浄した。このときの電導度は47μS/cm、pHは3.4であった。   Deionization was performed by adding 1100 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) to the hydrothermally treated dispersion, and then washed by ultrafiltration membrane method while supplying 37500 g of pure water. At this time, the conductivity was 47 μS / cm, and the pH was 3.4.

ついで、限外濾過膜にて濃縮した後、これを105℃で乾燥し、さらに200℃で2時間加熱処理して、酸化ジルコニウム微粒子粉末を調製した。   Subsequently, after concentrating with an ultrafiltration membrane, this was dried at 105 ° C. and further heat-treated at 200 ° C. for 2 hours to prepare zirconium oxide fine particle powder.

酸化ジルコニウム微粒子の平均一次粒子径は20nm、平均二次粒子径は1.5μmであった。   The average primary particle diameter of the zirconium oxide fine particles was 20 nm, and the average secondary particle diameter was 1.5 μm.

酸化ジルコニウム微粒子201gを用いた以外は同様にして固形分濃度30重量%の樹脂被覆酸化ジルコニウム微粒子(13)分散ゾルを調製した。   A resin-coated zirconium oxide fine particle (13) dispersion sol having a solid content concentration of 30% by weight was prepared in the same manner except that 201 g of the zirconium oxide fine particles were used.

固形分濃度30重量%の樹脂被覆酸化ジルコニウム微粒子(13)分散ゾルの安定性、樹脂被覆酸化チタン微粒子(13)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(13)の調製
実施例1において、固形分濃度30重量%の樹脂被覆酸化ジルコニウム微粒子(13)分散ゾルを用いた以外は同様にして透明被膜形成用塗布液(13)を調製した。
透明被膜付基材(F-13)の製造
実施例1において、透明被膜形成用塗布液(13)を用いた以外は同様にして透明被膜付基材(F-13)を調製した。このときの透明被膜の厚さは4μmであった。
The stability of the resin-coated zirconium oxide fine particles (13) dispersed sol having a solid content concentration of 30% by weight and the average particle diameter of the resin-coated titanium oxide fine particles (13) were measured. The results are shown in Table 1.
Preparation of Transparent Film Forming Coating Liquid (13) Transparent Coating Film Coating Liquid (13) was prepared in the same manner as in Example 1, except that the resin-coated zirconium oxide fine particles (13) dispersed sol having a solid concentration of 30% by weight was used. Was prepared.
Production of substrate with transparent film (F-13) A substrate with transparent film (F-13) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent film (13) was used. At this time, the thickness of the transparent film was 4 μm.

得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。
[比較例1]
カップリング剤処理粒子(R1)分散ゾルの調製
実施例1と同様にして調製したPドープ酸化錫微粒子粉末217g、イオン交換水335gを2Lガラスビーカーに入れ、濃度20重量%のKOH水溶液50gを加えた後、石英ビーズ(0.15mm)1000gを入れ、ビーズミルで充分に撹拌して粉砕分散させた後、325メッシュ(目開き44ミクロン)のステンレス製金網で石英ビーズと分散液を分離し、さらに、金網上に残った石英ビーズをイオン交換水1560gで洗浄した液を充分に混合し、この液を90℃1時間熱処理した後、室温まで冷却し、陰イオン交換樹脂96gを入れ1時間攪拌した後、陰イオン交換樹脂を分離、次に陽イオン交換樹脂96g
を入れ1時間攪拌した後、陽イオン樹脂を分離してPドープ酸化錫微粒子水分散液(濃度
10重量%)を得た。
The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1.
[Comparative Example 1]
Preparation of Coupling Agent Treated Particle (R1) Dispersed Sol 217 g of P-doped tin oxide fine particle powder prepared in the same manner as in Example 1 and 335 g of ion-exchanged water were placed in a 2 L glass beaker, and 50 g of a 20 wt% KOH aqueous solution was added. After that, 1000 g of quartz beads (0.15 mm) were added, and after sufficiently stirring and pulverizing and dispersing with a bead mill, the quartz beads and the dispersion were separated with a 325 mesh (aperture 44 micron) stainless steel wire mesh. The quartz beads remaining on the wire mesh were washed with 1560 g of ion-exchanged water and mixed well. The solution was heat-treated at 90 ° C. for 1 hour, cooled to room temperature, and 96 g of anion-exchange resin was added and stirred for 1 hour. After that, the anion exchange resin is separated, and then 96 g of the cation exchange resin
After stirring for 1 hour, the cationic resin was separated to obtain a P-doped tin oxide fine particle aqueous dispersion (concentration: 10% by weight).

固形分濃度10重量%のPドープ酸化錫微粒子水分ゾル2000gにカップリング剤として正珪酸エチル(TEOS)(多摩化学製:エチルシリケート28、SiO2成分28.8重量%)20.8g(Pドープ酸化錫微粒子との重量比=3/100)とメタノール2000gを入れ50℃で18時間攪拌した。 20.8 g of P-doped tin oxide fine particle water sol having a solid content concentration of 10% by weight as a coupling agent, ie, ethyl orthosilicate (TEOS) (manufactured by Tama Chemicals: ethyl silicate 28, SiO 2 component 28.8% by weight) The weight ratio of tin oxide fine particles = 3/100) and 2000 g of methanol were added and stirred at 50 ° C. for 18 hours.

ついで、γ-アクリロオキシプロピルトリメトキシシラン(信越化学(株)製:KBM
−5103、SiO2成分81.2重量%)7.4gを入れ、再び50℃で18時間攪拌して表面処理を行った。このあと、エタノールに溶媒置換して固形分濃度30重量%のシランカップリング剤で表面処理したPドープ酸化錫微粒子(R1)分散ゾルを調製した。
Next, γ-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: KBM)
-5103, placed SiO 2 component 81.2 wt%) 7.4 g, was subjected to a surface treatment by stirring for 18 hours again 50 ° C.. Thereafter, a P-doped tin oxide fine particle (R1) dispersion sol was prepared by replacing the solvent with ethanol and surface-treating with a silane coupling agent having a solid concentration of 30% by weight.

固形分濃度30重量%のシランカップリング剤で表面処理したPドープ酸化錫微粒子(R1)分散ゾルの安定性、Pドープ酸化錫微粒子(R1)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(R1)の調製
実施例1において、固形分濃度30重量%のシランカップリング剤で表面処理したPドープ酸化錫微粒子(R1)分散ゾルを用いた以外は同様にして透明被膜形成用塗布液(R1)を調製した。
透明被膜付基材(RF-1)の製造
実施例1において、透明被膜形成用塗布液(R1)を用いた以外は同様にして透明被膜付基材(RF-1)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。[比較例2]
樹脂被覆粒子(R2)分散ゾルの調製
実施例1において、被覆用樹脂としてジ2-メタクリロイロキシエチルアシッドホスフ
ェート(共栄社化学(株)製:ライトエステルP-2M)14.5gの代わりに非アクリル系樹脂ポリビニルピロリドン(関東化学製:K-30、平均分子量10000)14.5gを混合
した以外は同様にして固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(R2)分散ゾルを調製した。
The stability of the P-doped tin oxide fine particle (R1) dispersion sol surface-treated with a silane coupling agent having a solid concentration of 30% by weight and the average particle size of the P-doped tin oxide fine particle (R1) were measured. Indicated.
Preparation of coating liquid for forming transparent film (R1) Transparent in the same manner as in Example 1, except that P-doped tin oxide fine particle (R1) dispersed sol surface-treated with a silane coupling agent having a solid content of 30% by weight was used. A coating solution (R1) for film formation was prepared.
In the production example 1 of the substrate with a transparent film (RF-1), except that the transparent film-forming coating liquid (R1) was prepared substrate with a transparent film (RF-1) in the same manner. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1. [Comparative Example 2]
Preparation of Resin Coated Particle (R2) Dispersed Sol In Example 1, instead of 14.5 g of di-2-methacryloyloxyethyl acid phosphate (Kyoeisha Chemical Co., Ltd .: Light Ester P-2M) as the coating resin, non-acrylic A resin-coated P-doped tin oxide fine particle (R2) -dispersed sol having a solid content concentration of 30% by weight was prepared in the same manner except that 14.5 g of a resin based on polyvinylpyrrolidone (manufactured by Kanto Chemical Co., Inc .: K-30, average molecular weight 10000) was mixed. .

固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(R2)分散ゾルの安定性、Pドープ酸化錫微粒子(R2)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(R2)の調製
実施例1において、固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(R2)分散ゾルを用いた以外は同様にして透明被膜形成用塗布液(R2)を調製した。
透明被膜付基材(RF-2)の製造
実施例1において、透明被膜形成用塗布液(R2)を用いた以外は同様にして透明被膜付基材(RF-2)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。[比較例3]
樹脂被覆粒子(R3)分散ゾルの調製
実施例1において、被覆用樹脂としてジ2-メタクリロイロキシエチルアシッドホスフ
ェート(共栄社化学(株)製:ライトエステルP-2M)14.5gの代わりに非アクリル系樹脂ポリビニルアルコール(関東化学製:平均分子量10000)14.5gを混合した以
外は同様にして固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(R3)分散ゾルを調製した。
The stability of the resin-coated P-doped tin oxide fine particle (R2) dispersion sol having a solid content concentration of 30% by weight and the average particle diameter of the P-doped tin oxide fine particle (R2) were measured. The results are shown in Table 1.
Preparation of coating liquid for forming transparent film (R2) In Example 1, a coating liquid for forming a transparent film (R2) was used in the same manner except that a resin-coated P-doped tin oxide fine particle (R2) dispersion sol having a solid content of 30% by weight was used. R2) was prepared.
Production of substrate with transparent coating (RF-2) A substrate with transparent coating (RF-2) was prepared in the same manner as in Example 1 except that the coating solution for forming a transparent coating (R2) was used. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1. [Comparative Example 3]
Preparation of Resin Coated Particle (R3) Dispersed Sol In Example 1, instead of 14.5 g of di-2-methacryloyloxyethyl acid phosphate (Kyoeisha Chemical Co., Ltd .: Light Ester P-2M) as a coating resin, non-acrylic A resin-coated P-doped tin oxide fine particle (R3) dispersion sol having a solid concentration of 30% by weight was prepared in the same manner except that 14.5 g of a resin based polyvinyl alcohol (manufactured by Kanto Chemical Co., Ltd .: average molecular weight 10000) was mixed.

固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(R3)分散ゾルの安定性、樹脂被覆Pドープ酸化錫微粒子(R3)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(R3)の調製
実施例1において、固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(R3)分散ゾルを用いた以外は同様にして透明被膜形成用塗布液(R3)を調製した。
透明被膜付基材(RF-3)の製造
実施例1において、透明被膜形成用塗布液(R3)を用いた以外は同様にして透明被膜付基材(RF-3)を調製した。このときの透明被膜の厚さは4μmであった。
The stability of the resin-coated P-doped tin oxide fine particle (R3) dispersion sol having a solid content concentration of 30% by weight and the average particle size of the resin-coated P-doped tin oxide fine particle (R3) were measured. The results are shown in Table 1.
Preparation of coating solution for forming transparent film (R3) In Example 1, a coating solution for forming a transparent coating (R3) was used in the same manner except that a resin-coated P-doped tin oxide fine particle (R3) dispersion sol having a solid concentration of 30% by weight was used. R3) was prepared.
Production of substrate with transparent coating (RF-3) A substrate with transparent coating (RF-3) was prepared in the same manner as in Example 1 except that the coating solution for forming a transparent coating (R3) was used. At this time, the thickness of the transparent film was 4 μm.

得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。
[比較例4]
樹脂被覆粒子(R4)分散ゾルの調製
Pドープ酸化錫微粒子(R1)の調製
実施例1において、80℃で2時間乾燥した後、700℃で2時間焼成しなかった以外は同様にしてPドープ酸化錫微粒子(R1)を調製した。
The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1.
[Comparative Example 4]
Preparation of resin-coated particle (R4) dispersion sol
Preparation of P-doped tin oxide fine particles (R1) P-doped tin oxide fine particles (R1) were prepared in the same manner as in Example 1 except that they were dried at 80 ° C. for 2 hours and then not calcined at 700 ° C. for 2 hours.

得られたPドープ酸化錫微粒子(R1)の平均一次粒子径は15nm、平均二次粒子径は0.035μ、体積抵抗値は6000Ω・cmであった。   The obtained P-doped tin oxide fine particles (R1) had an average primary particle diameter of 15 nm, an average secondary particle diameter of 0.035 μ, and a volume resistance of 6000 Ω · cm.

ついで、Pドープ酸化錫微粒子(1)217g、イオン交換水335gを2Lガラスビー
カーに入れ、濃度20重量%のKOH水溶液50gを加えた後、石英ビーズ(0.15m
m)1000gを入れ、ビーズミルで充分に撹拌して粉砕分散させた後、325メッシュ(目開き44ミクロン)のステンレス製金網で石英ビーズと分散液を分離し、さらに、金網上に残った石英ビーズをイオン交換水1560gで洗浄した液を充分に混合し、この液を90℃1時間熱処理した後、室温まで冷却し、陰イオン交換樹脂96gを入れ1時間攪
拌した後、陰イオン交換樹脂を分離、次に陽イオン交換樹脂96gを入れ1時間攪拌した
後、陽イオン樹脂を分離してPドープ酸化錫微粒子水分散液(濃度10重量%)を得た。
Next, 217 g of P-doped tin oxide fine particles (1) and 335 g of ion-exchanged water were placed in a 2 L glass beaker, and after adding 50 g of 20 wt% KOH aqueous solution, quartz beads (0.15 m
m) Add 1000 g, thoroughly agitate and disperse in a bead mill, separate the quartz beads from the dispersion with a 325 mesh (44 micron mesh) stainless steel wire mesh, and then leave the quartz beads remaining on the wire mesh The solution washed with 1560 g of ion-exchanged water was thoroughly mixed, and this solution was heat-treated at 90 ° C. for 1 hour, cooled to room temperature, and then 96 g of anion-exchange resin was added and stirred for 1 hour, followed by separation of the anion-exchange resin. Next, 96 g of a cation exchange resin was added and stirred for 1 hour, and then the cation resin was separated to obtain a P-doped tin oxide fine particle aqueous dispersion (concentration: 10% by weight).

つぎに、Pドープ酸化錫微粒子水分散液をプロピレングリコールモノメチルエーテル(PGME)に溶媒置換した。この時固形分濃度は35重量%であった。ついで、固形分濃度は35重量%のPドープ酸化錫微粒子PGME分散液575gと、被覆用樹脂としてジ2-メタクリロイロキシエチルアシッドホスフェート(共栄社化学(株)製:ライトエス
テルP-2M)14.5gを、ガラスビーズ(0.4mm)1135gを入れたビーズミルに充填し、1700rpmの回転数で1時間処理した後、ガラスビーズを分離し、ついで
PGMEを加えて固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(R4)分散ゾルを調製した。
Next, P-doped tin oxide fine particle aqueous dispersion was solvent-substituted with propylene glycol monomethyl ether (PGME). At this time, the solid content concentration was 35% by weight. Next, 575 g of a P-doped tin oxide fine particle PGME dispersion having a solid content concentration of 35% by weight and di-2-methacryloyloxyethyl acid phosphate (Kyoeisha Chemical Co., Ltd .: Light Ester P-2M) as a coating resin. 5g is filled in a bead mill containing 1135g of glass beads (0.4mm), treated at 1700rpm for 1 hour, glass beads are separated, and then PGME is added to coat resin with a solid content concentration of 30% by weight P-doped tin oxide fine particle (R4) dispersion sol was prepared.

固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(R4)分散ゾルの安定性、樹脂被覆Pドープ酸化錫微粒子(R4)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(R4)の調製
実施例1において、固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(R4)分散ゾルを用いた以外は同様にして透明被膜形成用塗布液(R4)を調製した。
透明被膜付基材(RF-4)の製造
実施例1において、透明被膜形成用塗布液(R4)を用いた以外は同様にして透明被膜付基材(RF-4)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。[参考例1]
樹脂被覆粒子(S1)分散ゾルの調製
実施例1において、Pドープ酸化錫微粒子粉末、有機溶媒、被覆用樹脂に加えて開始剤として2.4.6−トリメチルベンゾイルジフェニルフォスフィンオキサイド(ビ−エーエスジャパン(株)製:ルシリンTPO)1.4gとを混合した以外は同様にして固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(S1)分散ゾルを調製した。
The stability of the resin-coated P-doped tin oxide fine particle (R4) dispersion sol having a solid content concentration of 30% by weight and the average particle diameter of the resin-coated P-doped tin oxide fine particle (R4) were measured. The results are shown in Table 1.
Preparation of coating solution for forming transparent film (R4) In Example 1, a coating solution for forming a transparent coating (R4) was used in the same manner except that a resin-coated P-doped tin oxide fine particle (R4) dispersion sol having a solid content of 30% by weight was used. R4) was prepared.
Production of substrate with transparent coating (RF-4) A substrate with transparent coating (RF-4) was prepared in the same manner as in Example 1 except that the coating solution for forming a transparent coating (R4) was used. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1. [Reference Example 1]
Preparation of Resin Coated Particle (S1) Dispersed Sol In Example 1, in addition to P-doped tin oxide fine particle powder, organic solvent, and coating resin, 2.4.6-trimethylbenzoyldiphenylphosphine oxide (BIAS) was used as an initiator. A resin-coated P-doped tin oxide fine particle (S1) dispersion sol having a solid concentration of 30% by weight was prepared in the same manner except that 1.4 g of Japan Co., Ltd. (Lucirin TPO) was mixed.

固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(S1)分散ゾルの安定性、樹脂被覆Pドープ酸化錫微粒子(S1)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(S1)の調製
実施例1において、固形分濃度30重量%重量%の樹脂被覆Pドープ酸化錫微粒子(S1)分散ゾルを用いた以外は同様にして透明被膜形成用塗布液(S1)を調製した。
透明被膜付基材(SF-1)の製造
実施例1において、透明被膜形成用塗布液(S1)を用いた以外は同様にして透明被膜付基材(SF-1)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。
The stability of the resin-coated P-doped tin oxide fine particles (S1) dispersion sol having a solid content concentration of 30% by weight and the average particle diameter of the resin-coated P-doped tin oxide fine particles (S1) were measured. The results are shown in Table 1.
Preparation of coating liquid for forming transparent film (S1) Coating for forming transparent film in the same manner as in Example 1, except that the resin-coated P-doped tin oxide fine particle (S1) dispersion sol having a solid concentration of 30% by weight is used. A liquid (S1) was prepared.
Production of substrate with transparent film (SF-1) A substrate with transparent film (SF-1) was prepared in the same manner as in Example 1 except that the coating liquid for forming a transparent film (S1) was used. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1.

[比較例5]
樹脂被覆粒子(R5)分散ゾルの調製
Pドープ酸化錫微粒子(R2)の調製
実施例11と同様にして、純水8060gに硝酸アンモニウム13gと15%アンモニア水20gを入れ攪拌し、50℃に昇温した。この中に純水4290gに錫酸カリウム1519gを溶解した液を10時間かけてローラーポンプで添加した。このときpHコントローラーでpHを8.2に保つよう濃度10重量%の硝酸を添加して調整した。添加終了後1時間50℃をキープした後、濃度10重量%の硝酸を添加しpHを3.0まで下げた。
次に限外濾過膜で濾水電導度が10μS/cmになるまで純水で洗浄した後、限外濾過膜で濃縮し取り出した。このとき取り出した液量は6000gで固形分(SnO2)濃度は
12重量%であった。このスラリーの中に濃度16重量%のリン酸水溶液264gを添加し、0.5時間攪拌した。ついで、これを80℃で2時間乾燥して、Pドープ酸化錫微粒子(R2)粉末を調製した。
[Comparative Example 5]
Preparation of resin-coated particle (R5) dispersion sol
Preparation of P-doped tin oxide fine particles (R2) In the same manner as in Example 11, 13 g of ammonium nitrate and 20 g of 15% ammonia water were added to 8060 g of pure water and stirred, and the temperature was raised to 50C. A solution obtained by dissolving 1519 g of potassium stannate in 4290 g of pure water was added with a roller pump over 10 hours. At this time, nitric acid having a concentration of 10% by weight was added to adjust the pH to 8.2 with a pH controller. After the addition was completed, the temperature was kept at 50 ° C. for 1 hour, and then 10% by weight nitric acid was added to lower the pH to 3.0.
Next, it was washed with pure water until the filtered water conductivity reached 10 μS / cm with an ultrafiltration membrane, and then concentrated with an ultrafiltration membrane. The amount of liquid taken out at this time was 6000 g, and the solid content (SnO 2 ) concentration was 12% by weight. To this slurry, 264 g of a phosphoric acid aqueous solution having a concentration of 16% by weight was added and stirred for 0.5 hour. Subsequently, this was dried at 80 ° C. for 2 hours to prepare P-doped tin oxide fine particles (R2) powder.

得られたPドープ酸化錫微粒子(R2)の平均一次粒子径は25nm、平均二次粒子径は0.1μm、体積抵抗値は5500Ω・cmであった。   The obtained P-doped tin oxide fine particles (R2) had an average primary particle size of 25 nm, an average secondary particle size of 0.1 μm, and a volume resistance of 5500 Ω · cm.

ついで、Pドープ酸化錫微粒子(R2)217g、イオン交換水335gを2Lガラスビーカーに入れ、濃度20重量%のKOH水溶液50gを加えた後、石英ビーズ(0.15mm)1000gを入れ、ビーズミルで充分に撹拌して粉砕分散させた後、325メッシュ(目開き44ミクロン)のステンレス製金網で石英ビーズと分散液を分離し、さらに、金網上に残った石英ビーズをイオン交換水1560gで洗浄した液を充分に混合し、この液を90℃1時間熱処理した後、室温まで冷却し、陰イオン交換樹脂96gを入れ1時間攪
拌した後、陰イオン交換樹脂を分離、次に陽イオン交換樹脂96gを入れ1時間攪拌した
後、陽イオン樹脂を分離してPドープ酸化錫微粒子(R2)水分散液(濃度10重量%)を得た。
Next, 217 g of P-doped tin oxide fine particles (R2) and 335 g of ion-exchanged water were placed in a 2 L glass beaker, 50 g of 20 wt% KOH aqueous solution was added, and then 1000 g of quartz beads (0.15 mm) were added. After stirring and dispersing, the quartz beads and the dispersion are separated with a 325 mesh (mesh opening 44 microns) stainless steel wire mesh, and the quartz beads remaining on the wire mesh are washed with 1560 g of ion-exchanged water. The mixture was heat treated at 90 ° C. for 1 hour, cooled to room temperature, 96 g of anion exchange resin was added and stirred for 1 hour, the anion exchange resin was separated, and then 96 g of cation exchange resin was added. After stirring for 1 hour, the cation resin was separated to obtain a P-doped tin oxide fine particle (R2) aqueous dispersion (concentration: 10% by weight).

つぎに、Pドープ酸化錫微粒子(R2)水分散液をプロピレングリコールモノメチルエーテル(PGME)に溶媒置換した。この時固形分濃度は35重量%であった。ついで、固形分濃度は35重量%のPドープ酸化錫微粒子PGME分散液575gと、被覆用樹脂としてジ2-メタクリロイロキシエチルアシッドホスフェート(共栄社化学(株)製:ライト
エステルP-2M)14.5gを、ガラスビーズ(0.4mm)1135gを入れたビーズミルに充填し、1700rpmの回転数で1時間処理した後、ガラスビーズを分離し、つ
いでPGMEを加えて固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(R5)分散ゾルを調製した。
Next, the solvent dispersion of the P-doped tin oxide fine particle (R2) aqueous dispersion was replaced with propylene glycol monomethyl ether (PGME). At this time, the solid content concentration was 35% by weight. Next, 575 g of a P-doped tin oxide fine particle PGME dispersion having a solid content concentration of 35% by weight and di-2-methacryloyloxyethyl acid phosphate (Kyoeisha Chemical Co., Ltd .: Light Ester P-2M) as a coating resin. 5g is filled in a bead mill containing 1135g of glass beads (0.4mm), treated at 1700rpm for 1 hour, glass beads are separated, and then PGME is added to coat resin with a solid content concentration of 30% by weight P-doped tin oxide fine particle (R5) dispersion sol was prepared.

固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(R5)分散ゾルの安定性、樹脂被覆Pドープ酸化錫微粒子(R5)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(R5)の調製
実施例1において、固形分濃度30重量%の樹脂被覆Pドープ酸化錫微粒子(R5)分散ゾルを用いた以外は同様にして透明被膜形成用塗布液(R5)を調製した。
透明被膜付基材(RF-5)の製造
実施例1において、透明被膜形成用塗布液(R5)を用いた以外は同様にして透明被膜付基材(RF-5)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。[比較例6]
樹脂被覆粒子(R6)分散ゾルの調製
酸化チタン微粒子(R1)の調製
732gの4塩化チタンを純水で希釈してTiO2として1.0重量%含有する水溶液
を得た。これを撹拌しながら、濃度15重量%のアンモニア水を添加し、pH9.5の白色スラリーを得た。このスラリーを濾過洗浄し、TiO2として濃度10.2重量%の水
和酸化チタンゲルのケーキを得た。このケーキと濃度5%過酸化水素液16000gを混合し、ついで80℃で2時間加熱して溶解し、TiO2として濃度1.0重量%のペルオ
キソチタン酸水溶液を得た。ついで、オートクレーブにて、150℃で10時間処理して酸化チタンコロイト゛粒子分散液を調製した。ついで、限外濾過膜にて洗浄し、濃縮した後、これを80℃で2時間乾燥して、酸化チタン微粒子(R1)粉末を調製した。
The stability of the resin-coated P-doped tin oxide fine particle (R5) dispersion sol having a solid content concentration of 30% by weight and the average particle size of the resin-coated P-doped tin oxide fine particle (R5) were measured. The results are shown in Table 1.
Preparation of coating solution for forming transparent film (R5) In Example 1, a coating solution for forming a transparent coating (R5) was used in the same manner except that a resin-coated P-doped tin oxide fine particle (R5) dispersion sol having a solid content of 30% by weight was used. R5) was prepared.
Production of substrate with transparent coating (RF-5) A substrate with transparent coating (RF-5) was prepared in the same manner as in Example 1 except that the coating solution for forming a transparent coating (R5) was used. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1. [Comparative Example 6]
Preparation of resin-coated particle (R6) dispersion sol
Preparation of Titanium Oxide Fine Particles (R1) 732 g of titanium tetrachloride was diluted with pure water to obtain an aqueous solution containing 1.0% by weight as TiO 2 . While stirring this, ammonia water having a concentration of 15% by weight was added to obtain a white slurry having a pH of 9.5. This slurry was washed by filtration to obtain a hydrated titanium oxide gel cake having a concentration of 10.2% by weight as TiO 2 . This cake was mixed with 16000 g of a 5% hydrogen peroxide solution, and then dissolved by heating at 80 ° C. for 2 hours to obtain a peroxotitanic acid aqueous solution having a concentration of 1.0% by weight as TiO 2 . Subsequently, it was treated in an autoclave at 150 ° C. for 10 hours to prepare a titanium oxide colloid particle dispersion. Subsequently, after washing with an ultrafiltration membrane and concentrating, this was dried at 80 ° C. for 2 hours to prepare titanium oxide fine particles (R1) powder.

酸化チタン微粒子(R1)の平均一次粒子径は60nm、平均二次粒子径は0.2μmであ
った。
The average primary particle diameter of the titanium oxide fine particles (R1) was 60 nm, and the average secondary particle diameter was 0.2 μm.

酸化チタン微粒子(R1)201gを用いた以外は同様にして固形分濃度30重量%の樹脂被覆酸化チタン微粒子(R6)分散ゾルを調製した。   A resin-coated titanium oxide fine particle (R6) -dispersed sol having a solid concentration of 30% by weight was prepared in the same manner except that 201 g of titanium oxide fine particles (R1) were used.

固形分濃度30重量%の樹脂被覆酸化チタン微粒子(R6)分散ゾルの安定性、樹脂被覆酸化チタン微粒子(R6)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(R6)の調製
実施例1において、固形分濃度30重量%の樹脂被覆酸化チタン微粒子(R6)分散ゾルを用いた以外は同様にして透明被膜形成用塗布液(R6)を調製した。
透明被膜付基材(RF-6)の製造
実施例1において、透明被膜形成用塗布液(R6)を用いた以外は同様にして透明被膜付基材(RF-6)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。[比較例7]
樹脂被覆粒子(R7)分散ゾルの調製
酸化ジルコニウム微粒子(R1)の調製
純水24320オキシ塩化ジルコニウム8水塩(ZrOCl2・8H2O)655gを溶
解し、これにリンゴ酸27gを添加し、ついで、濃度10重量%のKOH水溶液3130gを添加してジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)を調製した。このときの分散液のpHは10.5、温度は19℃であった。
The stability of the resin-coated titanium oxide fine particle (R6) dispersion sol having a solid content concentration of 30% by weight and the average particle size of the resin-coated titanium oxide fine particles (R6) were measured. The results are shown in Table 1.
Preparation of coating liquid for forming transparent film (R6) In Example 1, the coating liquid for forming transparent film (R6) was prepared in the same manner as in Example 1, except that the resin-coated titanium oxide fine particle (R6) dispersion sol having a solid content of 30% by weight was used. Was prepared.
Production of substrate with transparent coating (RF-6) A substrate with transparent coating (RF-6) was prepared in the same manner as in Example 1 except that the coating solution for forming a transparent coating (R6) was used. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1. [Comparative Example 7]
Preparation of resin-coated particle (R7) dispersion sol
Preparation of pure water 24320 zirconium oxychloride octahydrate zirconium oxide particles (R1) a (ZrOCl 2 · 8H 2 O) 655g was dissolved, this was added malic acid 27 g, then the concentration of 10 wt% KOH aqueous solution 3130g A zirconium hydroxide hydrogel dispersion (ZrO 2 concentration 1% by weight) was prepared by addition. At this time, the pH of the dispersion was 10.5 and the temperature was 19 ° C.

ついで、限外濾過膜法で電導度が280μS/cmになるまで洗浄した。つぎに、このジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に陽イオン交換樹脂(三菱化学(株)製:SK1−BH)950gを加え脱イオンした。ついで陽イオン交換樹脂を分離した後、陰イオン交換樹脂(三菱化学(株)製:SANUPC)500gを加え脱イオンした。 Subsequently, it was washed by an ultrafiltration membrane method until the electric conductivity reached 280 μS / cm. Next, 950 g of a cation exchange resin (manufactured by Mitsubishi Chemical Corporation: SK1-BH) was added to the zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) to deionize. Next, after separating the cation exchange resin, 500 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization.

このようにして得られた洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)の電導度は10μS/cm、pHは6であった。 The washed zirconium hydroxide hydrogel dispersion thus obtained (ZrO 2 concentration 1 wt%) had an electric conductivity of 10 μS / cm and a pH of 6.

ついで、洗浄ジルコニウム水酸化物ヒドロゲル分散液(ZrO2濃度1重量%)に、超音波を1時間照射してヒドロゲルの分散処理をした後、オートクレーブに充填し、200℃で2 時間熟成した。このとき、電導度は640μS/cm、pHは2.53であった。 Next, the washed zirconium hydroxide hydrogel dispersion (ZrO 2 concentration: 1% by weight) was irradiated with ultrasonic waves for 1 hour to disperse the hydrogel, filled in an autoclave, and aged at 200 ° C. for 2 hours. At this time, the conductivity was 640 μS / cm and the pH was 2.53.

ついで、陰イオン交換樹脂( 三菱化学(株)製:SANUPC)1100gを加えて
脱イオンを行い、ついで純水37500gを供給しながら限外濾過膜法で洗浄した。このときの電導度は16μS/cm 、pHは3.9であった。
Subsequently, 1100 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) was added for deionization, and then washed by ultrafiltration membrane method while supplying 37500 g of pure water. The conductivity at this time was 16 μS / cm 2 and pH was 3.9.

ついで、上記熟成し、洗浄した分散液をZrO2濃度1重量%に調整し、これに濃度2重量%のリンゴ酸水溶液1340gを加え、超音波を1 時間照射してヒドロゲルの分散処
理をした後、オートクレーブに充填し、200℃で2時間水熱処理をした。このとき、電導度は640μS/cm、pHは2.53であった。
Next, after the above-mentioned ripened and washed dispersion was adjusted to a ZrO 2 concentration of 1% by weight, 1340 g of a malic acid aqueous solution having a concentration of 2% by weight was added thereto, and ultrasonic waves were applied for 1 hour to disperse the hydrogel. The mixture was filled in an autoclave and hydrothermally treated at 200 ° C. for 2 hours. At this time, the conductivity was 640 μS / cm and the pH was 2.53.

水熱処理した分散液に陰イオン交換樹脂(三菱化学(株)製:SANUPC)1100gを加えて脱イオンを行い、ついで純水37500gを供給しながら限外濾過膜法で洗浄した。このときの電導度は47μS/cm、pHは3.4であった。   Deionization was performed by adding 1100 g of an anion exchange resin (manufactured by Mitsubishi Chemical Corporation: SANUPC) to the hydrothermally treated dispersion, and then washed by ultrafiltration membrane method while supplying 37500 g of pure water. At this time, the conductivity was 47 μS / cm, and the pH was 3.4.

ついで、限外濾過膜にて濃縮した後、これを80℃で2時間乾燥して、酸化ジルコニウム微粒子粉末(R1)を調製した。   Subsequently, after concentrating with an ultrafiltration membrane, this was dried at 80 ° C. for 2 hours to prepare zirconium oxide fine particle powder (R1).

酸化ジルコニウム微粒子(R1)の平均一次粒子径は20nm、平均二次粒子径は0.5μmであった。   The average primary particle diameter of the zirconium oxide fine particles (R1) was 20 nm, and the average secondary particle diameter was 0.5 μm.

酸化ジルコニウム微粒子201gを用いた以外は同様にして固形分濃度30重量%の樹脂被覆酸化ジルコニウム微粒子(R7)分散ゾルを調製した。   A resin-coated zirconium oxide fine particle (R7) dispersion sol having a solid content concentration of 30% by weight was prepared in the same manner except that 201 g of the zirconium oxide fine particles were used.

固形分濃度30重量%の樹脂被覆酸化ジルコニウム微粒子(R7)分散ゾルの安定性、樹脂被覆酸化ジルコニウム微粒子(R7)の平均粒子径を測定し、結果を表1に示した。
透明被膜形成用塗布液(R7)の調製
実施例1において、固形分濃度30重量%の樹脂被覆酸化ジルコニウム微粒子(R7)分散ゾルを用いた以外は同様にして透明被膜形成用塗布液(R7)を調製した。
透明被膜付基材(RF-7)の製造
実施例1において、透明被膜形成用塗布液(R7)を用いた以外は同様にして透明被膜付基材(RF-7)を調製した。このときの透明被膜の厚さは4μmであった。得られた透明被膜の全光線透過率、ヘーズ、鉛筆硬度、耐擦傷性および密着性を測定し、結果を表1に示す。
The stability of the resin-coated zirconium oxide fine particles (R7) dispersed sol having a solid content concentration of 30% by weight and the average particle size of the resin-coated zirconium oxide fine particles (R7) were measured. The results are shown in Table 1.
Preparation of coating liquid for forming transparent film (R7) In Example 1, the coating liquid for forming transparent film (R7) was prepared in the same manner as in Example 1, except that the resin-coated zirconium oxide fine particle (R7) dispersion sol having a solid concentration of 30% by weight was used. Was prepared.
Production of substrate with transparent film (RF-7) A substrate with transparent film (RF-7) was prepared in the same manner as in Example 1 except that the coating liquid for transparent film formation (R7) was used. At this time, the thickness of the transparent film was 4 μm. The total light transmittance, haze, pencil hardness, scratch resistance and adhesion of the obtained transparent film were measured, and the results are shown in Table 1.

Figure 2010077409
Figure 2010077409

Claims (9)

予め100〜800℃で加熱処理した平均一次粒子径が5〜300nmの範囲にあり、平均二次粒子径が5nm〜10μmの範囲にある金属酸化物粒子の有機溶媒分散液に、アクリル系樹脂および/またはメタクリル系樹脂からなる樹脂被覆材を添加し、ついで、メカノケミカル処理することを特徴とする樹脂被覆金属酸化物粒子分散ゾルの製造方法。   An organic resin dispersion of metal oxide particles having an average primary particle diameter in the range of 5 to 300 nm and an average secondary particle diameter in the range of 5 nm to 10 μm preliminarily heat-treated at 100 to 800 ° C., an acrylic resin and A method for producing a resin-coated metal oxide particle-dispersed sol, comprising: adding a resin coating material comprising a methacrylic resin and then performing a mechanochemical treatment. 前記有機溶媒がエーテル類、エステル類、ケトン類から選ばれる1種以上であることを
特徴とする請求項1に記載の樹脂被覆金属酸化物粒子分散ゾルの製造方法。
The method for producing a resin-coated metal oxide particle-dispersed sol according to claim 1, wherein the organic solvent is at least one selected from ethers, esters, and ketones.
前記樹脂被覆材の固形分としての濃度(CR)と金属酸化物微粒子の固形分としての濃
度(CMO)の濃度比(CR)/(CMO)が0.005〜0.5の範囲にあることを特徴と
する請求項1または2に記載の樹脂被覆金属酸化物粒子分散ゾルの製造方法。
The concentration ratio (C R ) / (C MO ) of the concentration (C R ) as the solid content of the resin coating material and the concentration (C MO ) as the solid content of the metal oxide fine particles is 0.005 to 0.5. The method for producing a resin-coated metal oxide particle-dispersed sol according to claim 1 or 2, wherein the sol is in a range.
前記メカノケミカル処理時の金属酸化物粒子と樹脂被覆材とをあわせた全固形分濃度が1〜50重量%の範囲にあることを特徴とする請求項1〜3のいずれかに記載の樹脂被覆金属酸化物粒子分散ゾルの製造方法。   The resin coating according to any one of claims 1 to 3, wherein the total solid content concentration of the metal oxide particles and the resin coating material during the mechanochemical treatment is in the range of 1 to 50 wt%. A method for producing a metal oxide particle-dispersed sol. 前記金属酸化物粒子が、TiO2、SiO2、ZrO2、Al23、Sb25、ZnOおよびこ
れらの複合酸化物、酸化錫、SbまたはPがドープされた酸化錫、酸化インジウム、Sn
またはFがドーピングされた酸化インジウム、酸化アンチモン、低次酸化チタンから選ばれる1種以上であることを特徴とする請求項1〜4のいずれかに記載の樹脂被覆金属酸化
物粒子分散ゾルの製造方法。
The metal oxide particles include TiO 2 , SiO 2 , ZrO 2 , Al 2 O 3 , Sb 2 O 5 , ZnO and composite oxides thereof, tin oxide, tin oxide doped with Sb or P, indium oxide, Sn
The production of a resin-coated metal oxide particle-dispersed sol according to any one of claims 1 to 4, which is at least one selected from indium oxide doped with F, antimony oxide, and low-order titanium oxide. Method.
前記樹脂被覆金属酸化物粒子の平均粒子径が5〜300nmの範囲にあることを特徴とする請求項1〜5のいずれかに記載の樹脂被覆金属酸化物粒子分散ゾルの製造方法。   6. The method for producing a resin-coated metal oxide particle-dispersed sol according to claim 1, wherein the average particle diameter of the resin-coated metal oxide particles is in the range of 5 to 300 nm. マトリックス形成成分と請求項1〜6のいずれかに記載の方法で得られた樹脂被覆金属酸化物粒子分散ゾルと有機溶媒とを含んでなることを特徴とする透明被膜形成用塗布液。   A coating liquid for forming a transparent film, comprising a matrix-forming component, a resin-coated metal oxide particle-dispersed sol obtained by the method according to claim 1, and an organic solvent. 基材と、基材上に該請求項7に記載の透明被膜形成用塗布液を塗布・乾燥して形成された透明被膜とを有することを特徴とする透明被膜付基材。   A substrate with a transparent coating, comprising: a substrate; and a transparent coating formed by applying and drying the coating solution for forming a transparent coating according to claim 7 on the substrate. 前記透明被膜が他の被膜とともに設けられていることを特徴とする請求項8に記載の透明被膜付基材。   The substrate with a transparent coating according to claim 8, wherein the transparent coating is provided together with another coating.
JP2009193506A 2008-08-26 2009-08-24 Process for producing resin-coated metal oxide particle-dispersed sol, coating liquid for forming transparent film containing resin-coated metal oxide particles, and substrate with transparent film Active JP5587573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193506A JP5587573B2 (en) 2008-08-26 2009-08-24 Process for producing resin-coated metal oxide particle-dispersed sol, coating liquid for forming transparent film containing resin-coated metal oxide particles, and substrate with transparent film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008216761 2008-08-26
JP2008216761 2008-08-26
JP2009193506A JP5587573B2 (en) 2008-08-26 2009-08-24 Process for producing resin-coated metal oxide particle-dispersed sol, coating liquid for forming transparent film containing resin-coated metal oxide particles, and substrate with transparent film

Publications (2)

Publication Number Publication Date
JP2010077409A true JP2010077409A (en) 2010-04-08
JP5587573B2 JP5587573B2 (en) 2014-09-10

Family

ID=42208193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193506A Active JP5587573B2 (en) 2008-08-26 2009-08-24 Process for producing resin-coated metal oxide particle-dispersed sol, coating liquid for forming transparent film containing resin-coated metal oxide particles, and substrate with transparent film

Country Status (1)

Country Link
JP (1) JP5587573B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072288A (en) * 2010-09-29 2012-04-12 Jgc Catalysts & Chemicals Ltd Resin coated metal oxide particle resin dispersion composition, method of manufacturing the same, and base material with transparent coating film
JP2012140534A (en) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd Coating liquid for forming transparent coat and substrate with transparent coat
JP2012236921A (en) * 2011-05-12 2012-12-06 Dic Corp Antistatic hard coat coating material and optical member
JP2013010864A (en) * 2011-06-29 2013-01-17 Jgc Catalysts & Chemicals Ltd Coating for forming optical thin film, and optical thin film
JP2015105328A (en) * 2013-11-29 2015-06-08 住友大阪セメント株式会社 Transparent resin composition, coating film, and heat ray shielding film
JP2015110709A (en) * 2013-12-06 2015-06-18 ナガセケムテックス株式会社 Thermosetting resin composition and thermally conductive sheet
CN105143355A (en) * 2013-02-20 2015-12-09 萨索尔化学品性能有限公司 Free-flowing dispersion containing particulate metal oxides, metal oxide hydrates and/or metal hydroxides, a dispersant and an organic dispersion medium
WO2023181664A1 (en) * 2022-03-23 2023-09-28 三井金属鉱業株式会社 Tin oxide particles and method for producing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874324A (en) * 1971-12-30 1973-10-06
JPS59224102A (en) * 1983-06-03 1984-12-17 Ricoh Co Ltd Surface treating method of magnetic powder
JP2000281934A (en) * 1999-03-31 2000-10-10 Nippon Shokubai Co Ltd Inorganic-microparticle-containing composition, its use, and dispersant
JP2006257308A (en) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd Hollow silica particle dispersion
JP2007217272A (en) * 2006-01-23 2007-08-30 Hitachi Chem Co Ltd Multiple oxide fine particle, and transparent composition and transparent resin composition using the same
WO2008035669A1 (en) * 2006-09-19 2008-03-27 Jsr Corporation Oxide fine particle-containing organic-inorganic hybrid polymer composition and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4874324A (en) * 1971-12-30 1973-10-06
JPS59224102A (en) * 1983-06-03 1984-12-17 Ricoh Co Ltd Surface treating method of magnetic powder
JP2000281934A (en) * 1999-03-31 2000-10-10 Nippon Shokubai Co Ltd Inorganic-microparticle-containing composition, its use, and dispersant
JP2006257308A (en) * 2005-03-17 2006-09-28 Fuji Photo Film Co Ltd Hollow silica particle dispersion
JP2007217272A (en) * 2006-01-23 2007-08-30 Hitachi Chem Co Ltd Multiple oxide fine particle, and transparent composition and transparent resin composition using the same
WO2008035669A1 (en) * 2006-09-19 2008-03-27 Jsr Corporation Oxide fine particle-containing organic-inorganic hybrid polymer composition and method for producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072288A (en) * 2010-09-29 2012-04-12 Jgc Catalysts & Chemicals Ltd Resin coated metal oxide particle resin dispersion composition, method of manufacturing the same, and base material with transparent coating film
JP2012140534A (en) * 2010-12-28 2012-07-26 Jgc Catalysts & Chemicals Ltd Coating liquid for forming transparent coat and substrate with transparent coat
JP2012236921A (en) * 2011-05-12 2012-12-06 Dic Corp Antistatic hard coat coating material and optical member
JP2013010864A (en) * 2011-06-29 2013-01-17 Jgc Catalysts & Chemicals Ltd Coating for forming optical thin film, and optical thin film
CN105143355A (en) * 2013-02-20 2015-12-09 萨索尔化学品性能有限公司 Free-flowing dispersion containing particulate metal oxides, metal oxide hydrates and/or metal hydroxides, a dispersant and an organic dispersion medium
JP2015105328A (en) * 2013-11-29 2015-06-08 住友大阪セメント株式会社 Transparent resin composition, coating film, and heat ray shielding film
JP2015110709A (en) * 2013-12-06 2015-06-18 ナガセケムテックス株式会社 Thermosetting resin composition and thermally conductive sheet
WO2023181664A1 (en) * 2022-03-23 2023-09-28 三井金属鉱業株式会社 Tin oxide particles and method for producing same

Also Published As

Publication number Publication date
JP5587573B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5587573B2 (en) Process for producing resin-coated metal oxide particle-dispersed sol, coating liquid for forming transparent film containing resin-coated metal oxide particles, and substrate with transparent film
TWI241326B (en) Hard coating material and film comprising the same
JP5209855B2 (en) Paint for forming transparent film and substrate with transparent film
JP5345891B2 (en) Anti-glare film and method for producing the same
JP6016548B2 (en) Coating liquid for forming transparent film and substrate with transparent film
JP5221084B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP2008291174A (en) Coating material for forming transparent coating film and substrate with transparent film
KR20080071608A (en) Hollow silica microparticle, composition for transparent coating formation containing the same, and substrate with transparent coating
KR101877810B1 (en) Coating solution for forming transparent film and substrate coated by transparent film
JP2012106240A (en) Coating composition, coating of the composition, reflection preventing film, and image display device
JP2008163205A (en) Coating for forming transparent coating film and substrate with transparent coating film
JP5700903B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5148846B2 (en) Paint for forming transparent film and substrate with transparent film
JP5815304B2 (en) Optical thin film forming paint and optical thin film
JP6480657B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP2011136490A (en) Base with hard coated film and coating liquid for forming hard coated film
JP5754884B2 (en) Phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles and production method thereof, coating solution for forming a transparent film containing the phosphoric acid (excluding phosphoric acid salt) -treated metal oxide fine particles, and transparent Substrate with coating
JP5877708B2 (en) Base material with hard coat film and coating liquid for forming hard coat film
JP5554904B2 (en) Paint for forming transparent film and substrate with transparent film
JP2009275135A (en) Resin-coated metal oxide particle, method for producing it, application liquid for forming transparent coating film, and base material with transparent coating film
JP5466612B2 (en) Method for producing resin-coated metal oxide particle resin dispersion composition and substrate with transparent coating
JP2008291175A (en) Coating material for forming transparent coating film and substrate with transparent film
KR20040099228A (en) Chain inorganic oxide fine particle groups, process for preparing dispersion of the fine particle groups, and uses of the fine particle groups
JP2009119780A (en) Base material with transparent coating film and coating liquid for forming transparent coating film
JP2011110787A (en) Base material with transparent film, and coating liquid for forming transparent film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120206

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140724

R150 Certificate of patent or registration of utility model

Ref document number: 5587573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250