JP2010074046A - Charged particle beam-drawing method and charged particle beam-drawing device - Google Patents

Charged particle beam-drawing method and charged particle beam-drawing device Download PDF

Info

Publication number
JP2010074046A
JP2010074046A JP2008242442A JP2008242442A JP2010074046A JP 2010074046 A JP2010074046 A JP 2010074046A JP 2008242442 A JP2008242442 A JP 2008242442A JP 2008242442 A JP2008242442 A JP 2008242442A JP 2010074046 A JP2010074046 A JP 2010074046A
Authority
JP
Japan
Prior art keywords
grounding terminal
charged particle
particle beam
voltage
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008242442A
Other languages
Japanese (ja)
Inventor
Shun Kanazawa
駿 金澤
Michihiro Kawaguchi
通広 川口
Hirohiko Honda
博彦 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2008242442A priority Critical patent/JP2010074046A/en
Publication of JP2010074046A publication Critical patent/JP2010074046A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charged particle beam-drawing method and an charged particle beam-drawing device that securely obtain electric conduction by dielectric breakdown, and suppress damage to a mask and a terminal and the generation of particles when a grounding terminal is made electrically conductive by dielectric breakdown to achieve high drawing precision. <P>SOLUTION: In the charged particle beam-drawing method, a first grounding terminal and a second grounding terminal are arranged on a sample having a conductive film and a resist film formed in this order on a substrate, a voltage is applied between the first grounding terminal and second grounding terminal and gradually increased to break the resist film, and the first grounding terminal and second grounding terminal are electrically connected to each other to ground the sample through the first grounding terminal and second grounding terminal, thereby performing drawing by irradiation with an electrically charged particle beam. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、例えば半導体製造工程におけるリソグラフィ用マスクの形成に用いられる荷電粒子ビーム描画方法および荷電粒子ビーム描画装置に関するものである。   The present invention relates to a charged particle beam drawing method and a charged particle beam drawing apparatus used for forming a lithography mask in a semiconductor manufacturing process, for example.

近年、半導体デバイスの高集積化に伴い、回路パターンを形成するためのマスクパターンの微細化が要求されている。そして、微細なマスクパターンの形成に、優れた解像度を有する荷電粒子ビーム描画装置が用いられている。   In recent years, with higher integration of semiconductor devices, there is a demand for miniaturization of mask patterns for forming circuit patterns. A charged particle beam drawing apparatus having excellent resolution is used to form a fine mask pattern.

このような荷電粒子ビーム描画装置により、電子ビームなどの荷電粒子ビームを、例えば石英ガラス基板上に順次Cr膜(遮光・導電膜)、レジスト膜が形成された試料に照射してパターン描画を行い、レジスト膜を所定パターンとなるように露光する。そして、現像、エッチングにより、Crの遮光パターン(マスクパターン)が形成される。   With such a charged particle beam drawing apparatus, a pattern drawing is performed by irradiating a charged particle beam such as an electron beam onto a sample in which, for example, a Cr film (light-shielding / conductive film) and a resist film are sequentially formed on a quartz glass substrate. Then, the resist film is exposed to a predetermined pattern. Then, a light shielding pattern (mask pattern) of Cr is formed by development and etching.

このようにしてマスクパターンが形成される際、パターン描画時に、レジスト膜のチャージアップにより、照射される荷電粒子ビームの軌道が曲げられてしまったり、ビームぼけが生じ、マスクパターンの描画精度が劣化するという問題が発生する。そのため、導電性部材をCr膜に接触させ、接地させる必要がある。そこで、針状あるいはブレード状に加工された端子を用いて、レジスト膜を貫通させることにより、接地が行われている。   When the mask pattern is formed in this way, the charged particle beam trajectory is bent or the beam blur occurs due to the charge-up of the resist film during pattern drawing, and the mask pattern drawing accuracy deteriorates. Problem occurs. Therefore, it is necessary to bring the conductive member into contact with the Cr film and ground it. Therefore, grounding is performed by penetrating the resist film using a terminal processed into a needle shape or a blade shape.

しかしながら、鋭利な端子を直接Cr膜に接触させることにより、ガラス基板が損傷するとともに、接触部分の磨耗、欠けにより、接触不良やパーティクルの発生などを引き起こし、描画精度が低下するという問題がある。そこで、レジスト膜上に端子を配置し、電圧を印加してレジスト膜を絶縁破壊することにより、端子の導通を取ることが提案されている(例えば特許文献1など参照)。
特開平9−205050号公報(請求項1など)
However, when the sharp terminal is brought into direct contact with the Cr film, the glass substrate is damaged, and there is a problem that the drawing accuracy is deteriorated due to contact failure or generation of particles due to wear or chipping of the contact portion. In view of this, it has been proposed that terminals are placed on a resist film, and a terminal is made conductive by applying a voltage to cause dielectric breakdown of the resist film (see, for example, Patent Document 1).
JP-A-9-205050 (Claim 1 etc.)

上述したように、レジスト膜を絶縁破壊することにより、試料と接地用の端子の導通が得られる。しかしながら、絶縁破壊するためにレジスト膜の耐圧以上の電圧を急に印加すると、大電流が急に流れることにより、試料と端子間でバースト現象が起こる。バースト現象により、レジスト膜のみならず、Cr膜やガラス基板まで破壊され、さらには端子自体も破損してしまう。そして、接触不良、パーティクルの発生により、描画精度が低下するといった問題が生じている。   As described above, electrical continuity between the sample and the grounding terminal can be obtained by dielectric breakdown of the resist film. However, if a voltage higher than the withstand voltage of the resist film is suddenly applied for dielectric breakdown, a large current flows suddenly, and a burst phenomenon occurs between the sample and the terminal. Due to the burst phenomenon, not only the resist film but also the Cr film and the glass substrate are destroyed, and further, the terminal itself is also damaged. And the problem that drawing precision falls by contact failure and generation | occurrence | production of a particle has arisen.

また、一定の電圧を印加しても、絶縁破壊に至らず、試料と接地用端子との導通が得られない場合がある。   Further, even when a constant voltage is applied, dielectric breakdown does not occur and conduction between the sample and the grounding terminal may not be obtained.

そこで、本発明は、荷電粒子ビーム描画において、確実に絶縁破壊により導通を得ることができるとともに、絶縁破壊により接地用端子を導通させる際のマスクや端子のダメージ、パーティクルの発生を抑え、高い描画精度を得ることが可能な荷電粒子描画方法および荷電粒子描画装置を提供することを目的とする。   Therefore, the present invention can reliably obtain conduction by dielectric breakdown in charged particle beam drawing, and suppresses mask and terminal damage and particle generation when conducting a grounding terminal by dielectric breakdown, and high drawing. An object of the present invention is to provide a charged particle drawing method and a charged particle drawing apparatus capable of obtaining accuracy.

本発明による荷電粒子ビーム描画方法は、基板上に導電膜、レジスト膜が順次形成された試料上に、第1の接地用端子と第2の接地用端子を配置し、第1の接地用端子と第2の接地用端子間に、電圧を印加し、電圧を段階的に増大させ、レジスト膜を絶縁破壊することにより、第1の接地用端子と第2の接地用端子間を導通させ、試料を第1の接地用端子および第2の接地用端子により接地し、荷電粒子ビームを照射することにより描画を行うことを特徴とする。   In the charged particle beam writing method according to the present invention, a first grounding terminal and a second grounding terminal are arranged on a sample in which a conductive film and a resist film are sequentially formed on a substrate. Between the first grounding terminal and the second grounding terminal, by applying a voltage between the first grounding terminal and the second grounding terminal by applying a voltage between the first grounding terminal and the second grounding terminal. Drawing is performed by grounding a sample with a first grounding terminal and a second grounding terminal and irradiating a charged particle beam.

本発明の荷電粒子ビーム描画方法は、第1の接地用端子と第2の接地用端子間を導通させた後、第1の接地用端子と第2の接地用端子間の電流値を測定して導通を確認することが好ましい。   In the charged particle beam drawing method of the present invention, after the first grounding terminal and the second grounding terminal are conducted, the current value between the first grounding terminal and the second grounding terminal is measured. It is preferable to confirm the continuity.

また、本発明の荷電粒子ビーム描画方法は、段階的に増大させた前記電圧が、予め設定された所定の電圧を超えないことが好ましい。   In the charged particle beam writing method of the present invention, it is preferable that the voltage increased stepwise does not exceed a predetermined voltage set in advance.

本発明による荷電粒子ビーム描画装置は、基板上に導電膜、レジスト膜が順次形成された試料上に、第1の接地用端子と第2の接地用端子が配置される第1のチャンバと、第1のチャンバにおいて、配置された第1の接地用端子と第2の接地用端子間に、段階的に電圧を印加する可変電圧印加機構と、接地端子を備え、試料上に荷電粒子ビームを照射する第2のチャンバと、を備えることを特徴とする。   A charged particle beam drawing apparatus according to the present invention includes a first chamber in which a first ground terminal and a second ground terminal are disposed on a sample in which a conductive film and a resist film are sequentially formed on a substrate; The first chamber includes a variable voltage application mechanism for applying a voltage stepwise between the first grounding terminal and the second grounding terminal arranged, and a grounding terminal, and a charged particle beam is placed on the sample. And a second chamber for irradiation.

本発明の荷電粒子ビーム描画装置は、第1のチャンバにおいて、配置された第1の接地用端子と第2の接地用端子間の電流を検出する電流検出機構を備えることが好ましい。   The charged particle beam drawing apparatus of the present invention preferably includes a current detection mechanism for detecting a current between the first grounding terminal and the second grounding terminal arranged in the first chamber.

本発明によれば、確実に絶縁破壊により導通を得ることができるとともに、絶縁破壊により接地用端子を導通させる際のマスクや端子のダメージを抑え、高い描画精度を得ることが可能な荷電粒子描画方法および荷電粒子ビーム描画装置を提供することができる。   According to the present invention, charged particle drawing capable of reliably obtaining conduction by dielectric breakdown, and suppressing damage to a mask and a terminal when conducting a grounding terminal by dielectric breakdown and obtaining high drawing accuracy. A method and a charged particle beam drawing apparatus can be provided.

以下、本発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1に本実施形態に係る電子ビーム描画装置の概略構成を示す。図1に示す本実施形態の電子ビーム描画装置11は、試料10などを搬入し、真空状態に切り替えるためのロードロックチャンバ12と、搬入された試料10などを搬送するためのロボットアーム13が配置された搬送チャンバ14と、試料10のアライメントを行うためのアライメントチャンバ15と、後述する外部電源、回路とステージ16aが設置され、試料10上の所定の位置にマスクカバー17を取り付けるためのマスクカバー収納チャンバ16と、接地端子18aを備えた試料載置用のステージ18bが設置され、試料10に描画を行うための描画チャンバ18などから構成されている。   FIG. 1 shows a schematic configuration of an electron beam drawing apparatus according to the present embodiment. The electron beam drawing apparatus 11 of the present embodiment shown in FIG. 1 includes a load lock chamber 12 for carrying a sample 10 and the like and switching to a vacuum state, and a robot arm 13 for carrying the carried sample 10 and the like. A mask cover for attaching the mask cover 17 to a predetermined position on the sample 10 is provided with an alignment chamber 15 for aligning the sample 10 and an external power source, circuit and stage 16a, which will be described later. A storage chamber 16 and a stage 18b for placing a sample provided with a ground terminal 18a are installed, and are composed of a drawing chamber 18 for drawing on the sample 10 and the like.

図2にマスクカバー収納チャンバ16の概念構成図を示す。図に示すように、マスクカバー収納チャンバ16外部には、DC電源21およびこれに接続されたコントローラ22が配置されている。コントローラ22には、電圧の変動が可能な可変電圧制御回路22aと電流制御回路22bが設置されている。そして、これら可変電圧制御回路22a、電流制御回路22bは、端子23a、23bにより、後述するアースプレートと接続可能となっている。   FIG. 2 shows a conceptual configuration diagram of the mask cover storage chamber 16. As shown in the figure, a DC power source 21 and a controller 22 connected to the DC power source 21 are disposed outside the mask cover storage chamber 16. The controller 22 is provided with a variable voltage control circuit 22a and a current control circuit 22b that can change the voltage. The variable voltage control circuit 22a and the current control circuit 22b can be connected to a ground plate to be described later through terminals 23a and 23b.

このような電子ビーム描画装置を用いて、以下のようにして試料に描画が行われる。   Using such an electron beam drawing apparatus, drawing is performed on the sample as follows.

先ず、予め図3に示すように、接地用端子31a、31bが取り付けられたアースプレート32a、32bを、中央部に開口を有する額縁状で導電性を有するフレームにねじ止めなどにより固定し、マスクカバー17を構成する。このとき、接地用端子31a、31bは、マスクカバー17の開口内に突出するように取り付けられる。   First, as shown in FIG. 3, the ground plates 32a and 32b, to which the ground terminals 31a and 31b are attached, are fixed to the frame-like frame having an opening at the center by a screw or the like. A cover 17 is configured. At this time, the grounding terminals 31 a and 31 b are attached so as to protrude into the opening of the mask cover 17.

そして、ガラス基板にCr膜とレジスト膜が順次積層された試料10は、ロードロックチャンバ12より搬入され、ロボットアーム13により搬送チャンバ14を介して、アライメントチャンバ15に搬送される。アライメントチャンバ15において、CCDカメラ(図示せず)などを用いてエッジスキャンすることにより、試料10の位置ずれや回転ずれが検知され、補正される。   Then, the sample 10 in which the Cr film and the resist film are sequentially laminated on the glass substrate is carried from the load lock chamber 12 and is carried by the robot arm 13 to the alignment chamber 15 through the carrying chamber 14. In the alignment chamber 15, edge scan using a CCD camera (not shown) or the like is used to detect and correct the positional deviation or rotational deviation of the sample 10.

位置ずれ、回転ずれが補正された試料10は、ロボットアーム13により搬送チャンバ14を介して、マスクカバー収納チャンバ16に搬送される。搬送された試料10はステージ16a上に載置された後、試料10上にマスクカバー17が取り付けられる。このとき、接地用端子31a、31bの先端は、レジスト膜と接触している。そして、接地用端子31a、31bを、コントローラ22を介してDC電源21と接続する。   The sample 10 in which the positional deviation and the rotational deviation are corrected is transferred to the mask cover storage chamber 16 by the robot arm 13 via the transfer chamber 14. After the transported sample 10 is placed on the stage 16 a, a mask cover 17 is attached on the sample 10. At this time, the tips of the ground terminals 31a and 31b are in contact with the resist film. Then, the ground terminals 31 a and 31 b are connected to the DC power source 21 via the controller 22.

図4にフローチャートを示すように、コントローラ22において可変電圧制御回路22aにより制御して、端子23a、23bとそれぞれ接続された接地用端子31a、31b間に電圧を例えば1V印加する(S11)。このとき、同時に電流値、抵抗値を測定する。そして、電流が検知され、閾値に達しているかどうかを判断し(S12)、達していない場合、設定電圧を例えば1V上昇させる(S13)。そして、設定電圧が規定電圧(例えば50V)以下であるかどうかを判断し(S14)、規定電圧以下であれば、設定電圧をそのまま印加する(S11)。設定電圧が規定電圧を超える場合は、エラーとなり、一旦マスクカバー17をリリースする(S15)。そして、例えば、改めて試料10に取り付け、再度電圧を印加する。   As shown in the flowchart in FIG. 4, the controller 22 controls the variable voltage control circuit 22a to apply a voltage of 1 V, for example, between the ground terminals 31a and 31b connected to the terminals 23a and 23b, respectively (S11). At this time, the current value and the resistance value are measured simultaneously. Then, it is determined whether or not the current is detected and the threshold value has been reached (S12). If not, the set voltage is increased by, for example, 1V (S13). Then, it is determined whether or not the set voltage is not more than a specified voltage (for example, 50V) (S14). If the set voltage is not more than the specified voltage, the set voltage is applied as it is (S11). If the set voltage exceeds the specified voltage, an error occurs and the mask cover 17 is temporarily released (S15). Then, for example, it is newly attached to the sample 10 and a voltage is applied again.

このようにして、電圧を段階的に上昇させて、電圧印加と電流測定を繰り返す。そして、電圧がレジスト膜の耐圧以上になったとき、絶縁破壊により導通が得られ、電圧が検知され、電流値が閾値に達する。   In this way, the voltage is increased stepwise, and voltage application and current measurement are repeated. When the voltage exceeds the withstand voltage of the resist film, conduction is obtained by dielectric breakdown, the voltage is detected, and the current value reaches a threshold value.

電圧が検知され、電流値が閾値に達した場合、次に導通確認を行う。今度は電流制御回路22bを用い、接地用端子31a、31b間に、一定の電圧(例えば10V)を印加し(S21)、電流値、抵抗値を測定する(S22)。電流値または抵抗値が規定の範囲内であるかどうか判断し(S23)、規定の範囲内の場合、導通確認を終了する。規定の範囲外の場合、エラーとなり、マスクカバー17をリリースする(S15)。そして、例えば、試料10を搬出し、新たな試料を搬入して、同様にマスクカバー17を取り付け、絶縁破壊、導通確認のために電圧を印加する。   When the voltage is detected and the current value reaches the threshold value, continuity is confirmed next. Next, using the current control circuit 22b, a constant voltage (for example, 10V) is applied between the ground terminals 31a and 31b (S21), and the current value and the resistance value are measured (S22). It is determined whether or not the current value or the resistance value is within a specified range (S23). If it is within the specified range, the conduction check is terminated. If it is outside the specified range, an error occurs and the mask cover 17 is released (S15). Then, for example, the sample 10 is carried out, a new sample is carried in, the mask cover 17 is similarly attached, and a voltage is applied for confirming dielectric breakdown and conduction.

このようにして、絶縁破壊および導通確認をおこなったときの電圧、電流値、抵抗値と時間の関係の一例を、それぞれ図5A、図5B、図5Cに示す。図に示すように、絶縁破壊の際、時間tより電圧を段階的に上昇させると、電圧がレジスト膜の耐圧以上となった時間tのとき、絶縁破壊により電流値が閾値を超え、抵抗値が急激に低下している。また、導通確認の際、時間t’からt’まで一定の電圧を印加し、一定の値となった電流値、抵抗値が測定される。 Examples of the relationship between voltage, current value, resistance value, and time when dielectric breakdown and conduction confirmation are performed in this manner are shown in FIGS. 5A, 5B, and 5C, respectively. As shown in the figure, when the voltage is increased step by step from the time t 0 at the time of the dielectric breakdown, the current value exceeds the threshold due to the dielectric breakdown at the time t 1 when the voltage becomes equal to or higher than the withstand voltage of the resist film. The resistance value has dropped rapidly. Further, when confirming the continuity, a constant voltage is applied from time t 0 ′ to t 1 ′, and the current value and resistance value that are constant are measured.

そして、導通が確認された試料10/マスクカバー17は、ロボットアーム13により搬送チャンバ14を介して描画チャンバ18に搬送される。   The sample 10 / mask cover 17 that has been confirmed to be conductive is transferred to the drawing chamber 18 by the robot arm 13 via the transfer chamber 14.

描画チャンバ18に搬送された試料10/マスクカバー17は、ステージ18b上に載置され、接地端子18aを介して接地される。そして、電子銃(図示せず)より出射され、所望の形状に成形された電子ビームを、試料10の所望の位置に照射することにより、所望のパターンが描画される。   The sample 10 / mask cover 17 conveyed to the drawing chamber 18 is placed on the stage 18b and grounded via the ground terminal 18a. A desired pattern is drawn by irradiating a desired position of the sample 10 with an electron beam emitted from an electron gun (not shown) and shaped into a desired shape.

パターンが描画された試料10は、マスクカバー17に取り付けられたまま、描画チャンバ18より搬出され、ロボットアーム13により搬送チャンバ14を介して、マスクカバー収納チャンバ16に搬入される。そして、マスクカバー17を取り外した後、マスクカバー収納チャンバ16より搬出され、搬送チャンバ14、ロードロックチャンバ12を経て電子ビーム描画装置11より搬出される。   The sample 10 on which the pattern has been drawn is unloaded from the drawing chamber 18 while being attached to the mask cover 17, and is loaded into the mask cover storage chamber 16 via the transfer chamber 14 by the robot arm 13. Then, after removing the mask cover 17, the mask cover 17 is unloaded from the mask cover storage chamber 16, and is unloaded from the electron beam drawing apparatus 11 through the transfer chamber 14 and the load lock chamber 12.

本実施形態によれば、このようにして、レジスト膜の絶縁破壊を行うことにより、急激な電圧印加によるマスクと端子間のバースト現象を抑えることができる。バースト現象の発生により、レジスト膜が例えばφ120μm程度と大きく破壊されるとともに、開口の周辺にレジストの変性が生じる。さらに、レジスト膜のみならず、Cr膜やガラス基板まで破壊され、さらには端子自体も破損してしまう。しかしながら、本実施形態によれば、正常な絶縁破壊により、導通を得るために適正な、例えばφ30μm程度のレジスト膜の開口が得られる。そして、接触不良、パーティクルの発生による、描画精度の低下を抑えることが可能となる。   According to the present embodiment, the burst phenomenon between the mask and the terminal due to a rapid voltage application can be suppressed by performing the dielectric breakdown of the resist film in this way. Due to the occurrence of the burst phenomenon, the resist film is largely broken to about 120 μm, for example, and the resist is denatured around the opening. Furthermore, not only the resist film but also the Cr film and the glass substrate are destroyed, and further, the terminal itself is also damaged. However, according to the present embodiment, due to normal dielectric breakdown, an appropriate opening of the resist film having a diameter of, for example, about 30 μm can be obtained to obtain conduction. And it becomes possible to suppress the fall of drawing precision by contact failure and generation | occurrence | production of a particle.

また、確実に絶縁破壊により導通を得ることができる。例えば、従来のように定電圧(例えば10V)を印加したときには、例えば50%程度の確率でしか導通を得ることができなかったのに対し、本実施形態によれば、ほぼ100%の確率で導通を得ることができる。   In addition, conduction can be reliably obtained by dielectric breakdown. For example, when a constant voltage (for example, 10V) is applied as in the prior art, continuity can be obtained only with a probability of, for example, about 50%, whereas according to the present embodiment, a probability of almost 100% is obtained. Conductivity can be obtained.

本実施形態において、絶縁破壊時の最大電圧を例えば50Vと規定したが、最大電圧は適宜設定される。通常、各端子の接触状態が良好な場合は、レジスト膜の膜厚、種類にもよるが、比較的低電圧(例えば1〜5V程度)で導通が確認できる。しかしながら、接触状態が悪いと、比較的高電圧(例えば80V)を印加しても、導通が確認できない場合がある。このような場合、段階的に電圧を上昇させていても、ある値を超えるとバースト現象が発生することがある。そこで、本実施形態のように、最大電圧に制限を設けることにより、接触状態の不良に起因するバースト現象の発生を抑えることができる。   In the present embodiment, the maximum voltage at the time of dielectric breakdown is defined as 50 V, for example, but the maximum voltage is set as appropriate. Usually, when the contact state of each terminal is good, conduction can be confirmed at a relatively low voltage (for example, about 1 to 5 V), although it depends on the thickness and type of the resist film. However, when the contact state is poor, conduction may not be confirmed even when a relatively high voltage (for example, 80 V) is applied. In such a case, even if the voltage is increased step by step, a burst phenomenon may occur if a certain value is exceeded. Therefore, as in the present embodiment, by setting a limit on the maximum voltage, it is possible to suppress the occurrence of a burst phenomenon due to a poor contact state.

また、接地用の端子の破損も抑制されるため、接触不良が抑えられ、高い描画精度を得ることができるとともに、交換頻度の低減により、メンテナンス時間を短縮することが可能となる。   Further, since damage to the grounding terminal is suppressed, contact failure is suppressed, high drawing accuracy can be obtained, and maintenance time can be shortened by reducing the replacement frequency.

なお、本実施形態において、接地用端子を2か所に設けたが、3か所あるいはそれ以上でもよい。   In the present embodiment, the grounding terminals are provided in two places, but may be provided in three places or more.

本実施形態において、電子ビーム描画装置を挙げて説明したが、イオンビームなどを含む荷電粒子ビームによる描画装置において適用することができる。   In this embodiment, the electron beam drawing apparatus has been described, but the present invention can be applied to a drawing apparatus using a charged particle beam including an ion beam.

尚、本発明は、上述した実施形態に限定されるものではない。その他要旨を逸脱しない範囲で種々変形して実施することができる。   In addition, this invention is not limited to embodiment mentioned above. Various other modifications can be made without departing from the scope of the invention.

本発明の実施形態に係る電子ビーム描画装置の概略構成図。1 is a schematic configuration diagram of an electron beam drawing apparatus according to an embodiment of the present invention. 本発明の実施形態に係るアライメントチャンバの概念構成図。The conceptual block diagram of the alignment chamber which concerns on embodiment of this invention. 本発明の実施形態に係るマスクカバーを示す上面図。The top view which shows the mask cover which concerns on embodiment of this invention. 本発明の実施形態に係る電子ビーム描画工程のフローチャート。The flowchart of the electron beam drawing process which concerns on embodiment of this invention. 本発明の実施形態に係る絶縁破壊および導通確認をおこなったときの電圧と時間の関係を示す図。The figure which shows the relationship between the voltage and time when performing the dielectric breakdown and conduction | electrical_connection confirmation which concern on embodiment of this invention. 本発明の実施形態に係る絶縁破壊および導通確認をおこなったときの電流値と時間の関係を示す図。The figure which shows the relationship between the electric current value and time when performing the dielectric breakdown and conduction | electrical_connection confirmation which concern on embodiment of this invention. 本発明の実施形態に係る絶縁破壊および導通確認をおこなったときの抵抗値と時間の関係を示す図。The figure which shows the relationship between resistance value when performing dielectric breakdown and conduction | electrical_connection confirmation which concern on embodiment of this invention, and time.

符号の説明Explanation of symbols

10…試料
11…電子ビーム描画装置
12…ロードロックチャンバ
13…ロボットアーム
14…搬送チャンバ
15…アライメントチャンバ
16…マスクカバー収納チャンバ
17…マスクカバー
16a、18b…ステージ
18…描画チャンバ
18a…接地端子
21…DC電源
22…コントローラ
22a…可変電圧制御回路
22b…電流制御回路
23a、23b…端子
31a、31b…接地用端子
32a、32b…アースプレート
DESCRIPTION OF SYMBOLS 10 ... Sample 11 ... Electron beam drawing apparatus 12 ... Load lock chamber 13 ... Robot arm 14 ... Transfer chamber 15 ... Alignment chamber 16 ... Mask cover storage chamber 17 ... Mask cover 16a, 18b ... Stage 18 ... Drawing chamber 18a ... Grounding terminal 21 ... DC power supply 22 ... Controller 22a ... Variable voltage control circuit 22b ... Current control circuits 23a and 23b ... Terminals 31a and 31b ... Grounding terminals 32a and 32b ... Earth plate

Claims (5)

基板上に導電膜、レジスト膜が順次形成された試料上に、第1の接地用端子と第2の接地用端子を配置し、
前記第1の接地用端子と前記第2の接地用端子間に、電圧を印加し、
前記電圧を段階的に増大させ、
前記レジスト膜を絶縁破壊することにより、前記第1の接地用端子と前記第2の接地用端子間を導通させ、
前記試料を前記第1の接地用端子および前記第2の接地用端子により接地し、荷電粒子ビームを照射することにより描画を行うことを特徴とする荷電粒子ビーム描画方法。
A first grounding terminal and a second grounding terminal are disposed on a sample in which a conductive film and a resist film are sequentially formed on a substrate,
A voltage is applied between the first grounding terminal and the second grounding terminal;
Increasing the voltage stepwise,
By conducting a breakdown of the resist film, the first grounding terminal and the second grounding terminal are electrically connected,
A charged particle beam drawing method, wherein drawing is performed by grounding the sample by the first grounding terminal and the second grounding terminal and irradiating a charged particle beam.
前記第1の接地用端子と前記第2の接地用端子間を導通させた後、前記第1の接地用端子と前記第2の接地用端子間の電流値を測定して導通を確認することを特徴とする請求項1に記載の荷電粒子ビーム描画方法。   After conducting between the first grounding terminal and the second grounding terminal, measuring the current value between the first grounding terminal and the second grounding terminal to confirm conduction. The charged particle beam drawing method according to claim 1. 段階的に増大させた前記電圧が、予め設定された所定の電圧を超えないことを特徴とする請求項1または請求項2に記載の荷電粒子ビーム描画方法。   The charged particle beam drawing method according to claim 1, wherein the voltage increased stepwise does not exceed a predetermined voltage set in advance. 基板上に導電膜、レジスト膜が順次形成された試料上に、第1の接地用端子と第2の接地用端子が配置される第1のチャンバと、
前記第1のチャンバにおいて、配置された前記第1の接地用端子と前記第2の接地用端子間に、段階的に電圧を印加する可変電圧印加機構と、
接地端子を備え、前記試料上に荷電粒子ビームを照射する第2のチャンバと、を備えることを特徴とする荷電粒子ビーム描画装置。
A first chamber in which a first grounding terminal and a second grounding terminal are disposed on a sample in which a conductive film and a resist film are sequentially formed on a substrate;
A variable voltage applying mechanism for applying a voltage stepwise between the first grounding terminal and the second grounding terminal arranged in the first chamber;
A charged particle beam drawing apparatus comprising: a second chamber that includes a ground terminal and irradiates the sample with a charged particle beam.
前記第1のチャンバにおいて、配置された前記第1の接地用端子と前記第2の接地用端子間の電流を検出する電流検出機構を備えることを特徴とする請求項4に記載の荷電粒子ビーム描画装置。   5. The charged particle beam according to claim 4, further comprising a current detection mechanism configured to detect a current between the first grounding terminal and the second grounding terminal arranged in the first chamber. Drawing device.
JP2008242442A 2008-09-22 2008-09-22 Charged particle beam-drawing method and charged particle beam-drawing device Pending JP2010074046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008242442A JP2010074046A (en) 2008-09-22 2008-09-22 Charged particle beam-drawing method and charged particle beam-drawing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008242442A JP2010074046A (en) 2008-09-22 2008-09-22 Charged particle beam-drawing method and charged particle beam-drawing device

Publications (1)

Publication Number Publication Date
JP2010074046A true JP2010074046A (en) 2010-04-02

Family

ID=42205537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008242442A Pending JP2010074046A (en) 2008-09-22 2008-09-22 Charged particle beam-drawing method and charged particle beam-drawing device

Country Status (1)

Country Link
JP (1) JP2010074046A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742376B2 (en) 2012-07-02 2014-06-03 Nuflare Technology, Inc. Method and apparatus of mask drawing using a grounding body at lowest resistance value position of the mask
JP2020035984A (en) * 2018-08-31 2020-03-05 株式会社ニューフレアテクノロジー Abnormality determination method and drawing apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125416A (en) * 1988-11-02 1990-05-14 Nec Corp Electron beam exposure system
JPH03194915A (en) * 1989-12-22 1991-08-26 Hitachi Ltd Method for preventing electrostatic charge in electron beam lithography
JPH1167647A (en) * 1997-08-22 1999-03-09 Nec Corp Method and apparatus for preventing charging of photomask

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02125416A (en) * 1988-11-02 1990-05-14 Nec Corp Electron beam exposure system
JPH03194915A (en) * 1989-12-22 1991-08-26 Hitachi Ltd Method for preventing electrostatic charge in electron beam lithography
JPH1167647A (en) * 1997-08-22 1999-03-09 Nec Corp Method and apparatus for preventing charging of photomask

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8742376B2 (en) 2012-07-02 2014-06-03 Nuflare Technology, Inc. Method and apparatus of mask drawing using a grounding body at lowest resistance value position of the mask
JP2020035984A (en) * 2018-08-31 2020-03-05 株式会社ニューフレアテクノロジー Abnormality determination method and drawing apparatus
KR20200026069A (en) * 2018-08-31 2020-03-10 가부시키가이샤 뉴플레어 테크놀로지 Abnormality determination method and writing apparatus
KR102295314B1 (en) 2018-08-31 2021-08-31 가부시키가이샤 뉴플레어 테크놀로지 Abnormality determination method and writing apparatus
JP7034867B2 (en) 2018-08-31 2022-03-14 株式会社ニューフレアテクノロジー Abnormality judgment method and drawing device

Similar Documents

Publication Publication Date Title
KR101415551B1 (en) Electrostatic chuck, method of manufacturing the same and apparatus for processing a substrate including the same
JP5728566B2 (en) Method and system for altering patterned features of a substrate using ion implantation
US8232522B2 (en) Semiconductor inspecting apparatus
US20100019462A1 (en) Apparatus for increasing electric conductivity to a semiconductor wafer substrate when exposure to electron beam
JP2010074046A (en) Charged particle beam-drawing method and charged particle beam-drawing device
TWI776216B (en) Wafer grounding system and non-transitory computer-readablbe medium
US11275044B2 (en) Anomaly determination method and writing apparatus
KR20130033984A (en) Conductive element for electrically coupling an euvl mask to a supporting chuck
US20060292727A1 (en) Photomask plasma etching apparatus, etching method, and photomask forming method
JP2010199244A (en) Aligner and method of manufacturing device
KR20070042635A (en) Zig for static electricity meter&#39;s sensor and static electricity calibrator using the same and calibrate method
US20240012341A1 (en) Electrostatic clamp
JP5089721B2 (en) Wafer chucking apparatus and chucking method
KR101087141B1 (en) Method for dechucking a substrate in plasma processing apparatus
US11581161B2 (en) Systems and methods for etching a substrate
KR100943494B1 (en) Apparatus of etching a semiconductor device
JP2004022235A (en) Electron gun and method for manufacturing semiconductor device using electron beam apparatus having electron gun
KR100499172B1 (en) Method for measuring a tilted angle of a semiconductor substrate in an ion implantation process
JP2006080375A (en) Plasma processing method for manufacture of semiconductor integrated device
KR20090103202A (en) Methode for repairing photomask using defect repairing device
KR20050116758A (en) Mask and grounding method thereof
KR20240058804A (en) Method of Manufacturing Bipolar Electrostatic Chuck Carrier with Structured Conductors
KR19980014133A (en) Unipoiler electrostatic chuck
TW202036644A (en) Plasma etching method and device
KR20070051643A (en) Method for correcting defect of pattern in organic luminescent emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110325

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A02 Decision of refusal

Effective date: 20130702

Free format text: JAPANESE INTERMEDIATE CODE: A02