JP2010070661A - Carbonizing apparatus - Google Patents

Carbonizing apparatus Download PDF

Info

Publication number
JP2010070661A
JP2010070661A JP2008240203A JP2008240203A JP2010070661A JP 2010070661 A JP2010070661 A JP 2010070661A JP 2008240203 A JP2008240203 A JP 2008240203A JP 2008240203 A JP2008240203 A JP 2008240203A JP 2010070661 A JP2010070661 A JP 2010070661A
Authority
JP
Japan
Prior art keywords
furnace
furnace body
carbonization
peripheral
carbonizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008240203A
Other languages
Japanese (ja)
Inventor
Tetsuji Moriguchi
哲次 森口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIRUMEN KAGOSHIMA KK
Birumen Kagoshima Co Ltd
Original Assignee
BIRUMEN KAGOSHIMA KK
Birumen Kagoshima Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIRUMEN KAGOSHIMA KK, Birumen Kagoshima Co Ltd filed Critical BIRUMEN KAGOSHIMA KK
Priority to JP2008240203A priority Critical patent/JP2010070661A/en
Publication of JP2010070661A publication Critical patent/JP2010070661A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonizing apparatus having a simple structure and high thermal efficiency, completing carbonization of a carbonizing material having small size or poor thermal conductivity in a short time by high combustion efficiency and giving a high-quality carbonized product free from uneven carbonization by uniform progress of the carbonization in a whole furnace. <P>SOLUTION: The carbonizing apparatus is provided with a carbonizing furnace F comprising a furnace body 1 having an ignition port 11 and an air introducing port 12 having adjustable aeration rate at a bottom side of the body, a lid plate 2 and an exhaust pipe 3 placed in the furnace body 1. The exhaust pipe 3 in the furnace comprises a central heat-releasing cylinder 31 erected at the center of the furnace body, a plurality of circumferential heat-releasing cylinders 32 and branched pipes 33 connecting the upper end of the central heat-releasing cylinder 31 to the upper ends of individual circumferential heat-releasing cylinders 32. In the case of carbonizing the carbonizing material M charged into the furnace body 1 by spontaneous combustion of the material in an oxygen deficient state, generated combustion gas G flows into the central heat-releasing cylinder 31 through an exhaust gas G introducing hole 31a, ascends in the central heat-releasing cylinder 31 and descends in the circumferential heat-releasing cylinders 32. The carbonizing material M in the furnace body 1 is heated by the heat released in the above procedures. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば木材や竹材の粉砕物、ペレット、チップ、削り屑等を始めとする種々の有機質原料を酸素不足状態で自発燃焼させて炭化するための炭化装置に関する。   The present invention relates to a carbonization apparatus for carbonizing a variety of organic raw materials such as pulverized products of wood and bamboo, pellets, chips, shavings, and the like by spontaneous combustion in an oxygen-deficient state.

近年、木炭を始めとする炭は、その調湿作用、脱臭作用、マイナスイオン放出作用、有害物質吸着作用、防黴性、防ダニ性等の優れた性質が注目され、一般家庭では室内各所や床下に配置したり、炊飯器内に入れたり、飲料水や風呂水等に浸漬して用いている。また、細片化ないし粉末化したものを各種の建築資材や建具、畳等にサンドイッチ状態にしたものや、布団等の寝具類の内部に納めたものも商品化され、更に土壌改質に用いたり、樹脂やセラミック材料等に混入する等、様々な方面に用途が拡がりつつあり、その需要はますます増大する傾向にある。   In recent years, charcoal, including charcoal, has attracted attention for its excellent properties such as humidity control, deodorization, negative ion release, harmful substance adsorption, antifungal properties, and mite resistance. It is placed under the floor, placed in a rice cooker, or immersed in drinking water or bath water. In addition, products that have been crushed or pulverized into various building materials, joinery, tatami mats, etc., and those that are placed inside bedding, such as futons, are also commercialized and used for soil modification. Applications are expanding in various fields, such as mixing with resin and ceramic materials, and the demand is increasing.

しかるに、古典的な炭焼き釜によって製造される炭は、備長炭に代表されるように緻密で固いため、例えば脱臭剤や吸着剤あるいは土壌改質剤等の用途には不向きであり、しかも製造に時間と手間がかかって量産性に乏しい上、原料的にも限定されて高コストに付き、また釜の設置場所にも大きく制約を受けるという難点があった。   However, charcoal produced by a classic charcoal kettle is dense and hard as represented by Bincho charcoal, so it is unsuitable for applications such as deodorizers, adsorbents, or soil conditioners, and is also suitable for production. It took time and effort, and it was difficult to mass-produce. In addition, it was limited in terms of raw materials and was expensive, and there was a problem that the location of the kettle was greatly restricted.

そこで、本発明者は先に、炭化装置として、上部側を開閉蓋付きの材料出入口とする炉本体の内部に、下部に熱気導入孔を備えた炭化用加熱筒が炉本体の中心部に立設されると共に、その上端側が横切り筒を介して外部の排気筒が接続配管され、炉本体の底部に空気取入れ口を有するものを提案している(特許文献1)。そして更に改良型の炭化装置として、前記の炭化用加熱筒に代えて、下部に炉内空間に連通する排気導入孔を備えて上部が閉塞した外筒と、この外筒内に同心状に配置して下端が炉外への排気路に繋がる内筒とからなる二重筒状の排気加熱筒を設けたものも提案している(特許文献2)。   Therefore, the present inventor firstly established a carbonization heating cylinder with a hot air introduction hole in the lower part at the center of the furnace main body, with the upper side as a material inlet / outlet with an open / close lid as a carbonization device. In addition, an external exhaust pipe is connected to the upper end side of the furnace body through a crossing cylinder, and an air intake is provided at the bottom of the furnace body (Patent Document 1). As a further improved carbonization apparatus, instead of the carbonization heating cylinder, an outer cylinder having an exhaust introduction hole communicating with the furnace space in the lower part and closed at the upper part, and concentrically disposed in the outer cylinder And what provided the double cylinder-shaped exhaust heating cylinder which consists of an inner cylinder connected to the exhaust path to the exterior of a furnace is also proposed (patent document 2).

上記前者の炭化装置では、炉本体内に装填された炭化用材料に底部側から着火して酸素不足状態で自発燃焼させるが、その燃焼ガスの吸入によって炭化用加熱筒が赤熱状態になり、上位の炭化用材料は下方から上昇してくる熱気と赤熱した炭化用加熱筒から周囲への放熱とで加熱されて熱分解し、更に自燃温度に達して自発燃焼し、この自発燃焼・熱分解の領域の拡大に伴う燃焼ガスの増加が炭化用加熱筒を更に高温化して熱放射を増大させる相乗効果を生み、もって炭化用材料の炭化が著しく促進される。また、上記後者の改良型の炭化装置では、炭化用材料の自発燃焼にて発生する高温の燃焼排ガスが二重筒状の排気加熱筒内を上下往復して炉外へ出ることになり、燃焼排ガスから加熱排気筒への熱伝播量の増大によって高い熱効率が得られる上、加熱排気筒全体の蓄熱による赤熱化が急速に進行し、その熱放射によって炉内温度がより早く上昇し、もって炭化用材料の熱分解及び自発燃焼がより促進され、完全炭化に要する時間がより短縮される。   In the former carbonization apparatus, the carbonization material loaded in the furnace body is ignited from the bottom side and spontaneously combusts in an oxygen-deficient state. The material for carbonization is heated and decomposed by the hot air rising from below and the heat dissipated from the red-hot carbonization heating cylinder to the surroundings, and further reaches the self-combustion temperature and spontaneously combusts. The increase in the combustion gas accompanying the expansion of the region brings about a synergistic effect of increasing the temperature of the heating cylinder for carbonization and increasing the heat radiation, and thus the carbonization of the carbonization material is remarkably promoted. In the latter improved type carbonization apparatus, the high-temperature combustion exhaust gas generated by the spontaneous combustion of the carbonizing material goes up and down in the double cylinder exhaust heating cylinder and goes out of the furnace. High heat efficiency can be obtained by increasing the amount of heat transfer from the exhaust gas to the heated exhaust stack, and red heat generation due to heat accumulation in the entire heated exhaust stack proceeds rapidly. The thermal decomposition and spontaneous combustion of the construction material are further promoted, and the time required for complete carbonization is further shortened.

しかして、これらの炭化装置は、脱臭性能や吸着性能に優れて粉砕容易な柔らかな消し炭状態の炭化物を短時間で量産でき、しかも構造的に簡単で設置場所に制約を受けないという多くの利点を有することから、既に実用に供されて好評を博している。
特開2003−119468号公報 特許第4017556号公報
Therefore, these carbonization devices have many advantages that they can mass-produce soft, extinguished charcoal that is excellent in deodorizing performance and adsorption performance in a short time, and that are structurally simple and not restricted by installation location. Therefore, it has already been put to practical use and has been well received.
JP 2003-119468 A Japanese Patent No. 4017556

前記炭化装置に供される炭化用材料は、従来では木材や竹材のチップとして数cmから十数cm程度のサイズが主流であったが、最近では間伐材や伐採竹材を粉砕処理したものや、おが屑からのプレス処理でペレット化したもの等、概して10mm以下の細かいものが多くなっている。これは、炭化物を燃料化したり、他の材料に混合したり、土壌改質材として土に混ぜたりする上で、粒度が小さい方が使い易いことによる。   The carbonization material used in the carbonization apparatus has been mainly the size of several centimeters to several tens of centimeters of wood or bamboo chips in the past, but recently, thinned and thinned bamboo materials have been crushed, In general, there are many fine items of 10 mm or less, such as pellets formed by pressing from sawdust. This is because a smaller particle size is easier to use when turning carbide into fuel, mixing it with other materials, or mixing it with soil as a soil modifier.

しかしながら、炭化用材料のサイズが小さくなると、炭化炉に装填した際に材料密度が高くなることから、隙間に存在する空気量が減って燃焼しにくくなると共に、通気性の低下で燃焼に伴う熱気が浸透しにくい上、中央の排気加熱筒からの放熱も伝播しにくくなる。また、炭化用材料として処理形態や材質によって熱伝導性の低いものもあり、このような材料は当然に燃焼性が悪くなる。従って、前記従来の炭化装置では、炭化用材料としてサイズの小さいものや熱伝導性に劣るものを用いた場合、炭化に要する時間が長くなることに加え、炉内の中央側と周辺側とで炭化の進行度合の差が大きいため、むら焼けによる炭化物の品質低下を生じ易いという難点があった。   However, if the size of the carbonizing material is reduced, the material density increases when it is loaded into the carbonization furnace, so that the amount of air present in the gap is reduced and combustion is difficult, and the hot air that accompanies combustion is reduced due to a decrease in air permeability. Is less likely to penetrate, and heat from the central exhaust heating cylinder is less likely to propagate. Some carbonization materials have low thermal conductivity depending on the processing form and material, and such materials naturally have poor flammability. Therefore, in the conventional carbonization apparatus, when a carbonization material having a small size or inferior thermal conductivity is used, in addition to the time required for carbonization becomes longer, the center side and the peripheral side in the furnace Since the difference in the degree of progress of carbonization is large, there is a problem that the quality of the carbide is easily deteriorated due to uneven burning.

本発明は、上述の情況に鑑み、炭化用材料としてサイズの小さいものや熱伝導性に劣るものを用いても、高い燃焼効率によって短時間で炭化が完了する上、炉内全体の均等な炭化進行によってむら焼けのない高品質の炭化物を製出でき、また構造的に簡素で高い熱効率が得られる炭化装置を提供することを目的としている。   In view of the above situation, the present invention completes carbonization in a short time with high combustion efficiency even when a small carbonization material or a material with poor thermal conductivity is used, and uniform carbonization throughout the furnace. It is an object of the present invention to provide a carbonization apparatus that can produce high-quality carbides that do not cause uneven burning, and that is structurally simple and that has high thermal efficiency.

上記目的を達成するために、本発明の請求項1に係る炭化装置は、図面の参照符号を付して示せば、底部側に着火口11及び給気量調整可能な空気導入口12を設けた炉本体1と、該炉本体1の上部側の材料出入口1aを開閉する蓋板2と、該炉本体1内に配設された炉内排気管路3とを有する炭化炉Fを備え、炉内排気管路3は、炉本体の中央部に立設された中央放熱筒31と、該中央放熱筒から離間して炉本体1内に立設された複数本の周辺放熱筒32と、中央放熱筒31の上端部から分岐して各周辺放熱筒32の上端部に連通接続する分岐管33とで構成され、中央放熱筒31の下部に炉内空間10に連通する複数の排気導入孔31aを備えると共に、周辺放熱筒32の下端側が炉外排気管路4に接続され、炉本体1内に装填された炭化用材料Mを着火口11からの着火によって酸素不足状態で自発燃焼させて炭化する際に、発生する燃焼ガスGが排気導入孔31aから中央放熱筒31内に流入し、この燃焼ガスが中央放熱筒31内を上昇して周辺放熱筒32内を下降する過程での放熱によって炉本体1内の炭化用材料Mを加熱するように構成されてなる。   In order to achieve the above object, a carbonization apparatus according to claim 1 of the present invention is provided with an ignition port 11 and an air introduction port 12 capable of adjusting an air supply amount on the bottom side, if indicated with reference numerals in the drawings. A carbonizing furnace F having a furnace body 1, a lid plate 2 for opening and closing a material inlet / outlet port 1 a on the upper side of the furnace body 1, and an in-furnace exhaust pipe line 3 disposed in the furnace body 1, The in-furnace exhaust line 3 includes a central radiator tube 31 standing at the center of the furnace body, a plurality of peripheral radiator tubes 32 standing in the furnace body 1 apart from the central radiator tube, A branch pipe 33 that branches off from the upper end of the central radiating cylinder 31 and communicates with the upper end of each peripheral radiating cylinder 32, and has a plurality of exhaust introduction holes that communicate with the furnace space 10 below the central radiating cylinder 31. 31a, the lower end side of the peripheral radiating cylinder 32 is connected to the out-of-furnace exhaust pipe 4, and the charcoal loaded in the furnace body 1 When the material M is spontaneously combusted in an oxygen-deficient state by ignition from the ignition port 11 and carbonized, the generated combustion gas G flows into the central radiating cylinder 31 from the exhaust introduction hole 31a, and this combustion gas is centrally radiated. The carbonization material M in the furnace body 1 is heated by heat radiation in the process of rising in the cylinder 31 and descending in the peripheral radiation cylinder 32.

請求項2の発明は、上記請求項1の炭化装置において、空気導入口12が炉本体1の底部側の周辺部に沿う複数箇所に設けられてなる構成としている。   According to a second aspect of the present invention, in the carbonization apparatus of the first aspect, the air introduction ports 12 are provided at a plurality of locations along the peripheral portion on the bottom side of the furnace body 1.

請求項3の発明は、上記請求項1又は2の炭化装置において、周辺放熱筒32が炉本体1の周方向に幅広の中空帯板状をなす構成としている。   According to a third aspect of the present invention, in the carbonization apparatus according to the first or second aspect, the peripheral heat radiating cylinder 32 is formed in a shape of a wide hollow strip in the circumferential direction of the furnace body 1.

請求項4の発明は、上記請求項1〜3のいずれかの炭化装置において、3本以上の周辺放熱筒32が炉本体1の中心から略1/2半径の周方向に沿って等配してなる構成としている。   According to a fourth aspect of the present invention, in the carbonization apparatus according to any one of the first to third aspects, the three or more peripheral heat radiating cylinders 32 are equally arranged from the center of the furnace body 1 along a circumferential direction of about a half radius. The structure is

次に、本発明の効果について、図面を参照して具体的に説明する。まず、請求項1の炭化装置では、炉本体1内に装填された炭化用材料Mを着火口11からの着火によって酸素不足状態で自発燃焼させて炭化する際、この自発燃焼によって発生する燃焼ガスGが排気導入孔31aから炉内排気管路3の中央放熱筒31内に流入し、この燃焼ガスGが中央放熱筒31内を上昇して周辺放熱筒32内を下降して炉外排気管4より排気されるが、燃焼ガスGは高温であるため、その熱によって炉内排気管路3の管壁が加熱されて赤熱し、この赤熱した管壁から炉内空間10へ熱気が放射される。しかして、炉内排気管路3の中央放熱筒31は炉内空間10の中央に位置する一方、これから分岐した複数本の周辺放熱筒32が該中央放熱筒31から離間して配置しているから、排気上昇筒31からの放熱によって炉内の中央側にある炭化用材料Mが加熱されると共に、複数本の周辺放熱筒32からの放熱によって炉内の周辺側にある炭化用材料Mが加熱され、もって炉内排気管路3からの熱放射が炉本体1内に装填された炭化用材料Mの全体に行き渡ることになる。   Next, the effects of the present invention will be specifically described with reference to the drawings. First, in the carbonization apparatus according to claim 1, when the carbonizing material M loaded in the furnace body 1 is spontaneously combusted in an oxygen-deficient state by ignition from the ignition port 11, the combustion gas generated by the spontaneous combustion is generated. G flows from the exhaust introduction hole 31a into the central radiating cylinder 31 of the in-furnace exhaust pipe 3, and the combustion gas G rises in the central radiating cylinder 31 and descends in the peripheral radiating cylinder 32 to exhaust the exhaust pipe outside the furnace. 4, the combustion gas G is hot, so that the heat causes the tube wall of the furnace exhaust pipe 3 to be heated and red hot, and hot air is radiated from the red hot tube wall into the furnace space 10. The Thus, the central radiator tube 31 of the in-furnace exhaust pipe 3 is located in the center of the furnace space 10, while a plurality of peripheral radiator tubes 32 branched therefrom are arranged away from the central radiator tube 31. Thus, the carbonization material M on the center side in the furnace is heated by heat radiation from the exhaust raising cylinder 31, and the carbonization material M on the peripheral side in the furnace is heated by heat radiation from the plurality of peripheral heat radiation cylinders 32. The heat radiation from the in-furnace exhaust pipe 3 is heated and spreads throughout the carbonizing material M loaded in the furnace body 1.

従って、この炭化装置によれば、炭化用材料Mとしてサイズの小さいものや熱伝導性に劣るものを用いても、炉内排気管路3からの熱放射によって炉本体1内の全体が加熱されるため、装填時の空気量の少なさや熱気の浸透性の低さ、更には熱伝導性の悪さを補って高い燃焼効率が得られ、これによって短時間で炭化が完了して高い炭化処理能率を達成できる上、その炭化が炉内全体に均等に進行するから、むら焼けのない高品質の炭化物を製出できる。また、この炭化装置は、炉内排気管路3全体の放熱面積が広いため、該炉内排気管路3に流入した燃焼ガスGによって炉外へ持ち出される熱量が少なくなり、それだけ高い熱効率が得られることに加え、構造的に簡素であるために安価に製作できるという利点もある。   Therefore, according to this carbonization apparatus, even if a carbonization material M having a small size or inferior thermal conductivity is used, the entire inside of the furnace body 1 is heated by the heat radiation from the furnace exhaust pipe 3. Therefore, high combustion efficiency can be obtained by compensating for low air volume during loading, low permeability of hot air, and poor thermal conductivity. In addition, since the carbonization proceeds uniformly throughout the furnace, it is possible to produce a high-quality carbide without uneven burning. Further, since this carbonization apparatus has a large heat radiation area in the entire furnace exhaust pipe 3, the amount of heat taken out of the furnace by the combustion gas G flowing into the furnace exhaust pipe 3 is reduced, and thus high thermal efficiency is obtained. In addition, it is advantageous in that it can be manufactured inexpensively because of its structural simplicity.

請求項2の発明によれば、空気導入口12が炉本体1の底部側の周辺部に沿う複数箇所に設けられているから、炉内へ取り入れられる空気が炉本体1の周辺側から中央側へ向かう形になって全体に行き渡り、もって全体に均等な燃焼状態で炭化が進行するから、むら焼けが確実に防止され、より高品質な炭化物が得られる。   According to the invention of claim 2, since the air introduction ports 12 are provided at a plurality of locations along the peripheral portion on the bottom side of the furnace body 1, the air taken into the furnace is centrally located from the peripheral side of the furnace body 1. Since the carbonization progresses in a uniform combustion state throughout the entire surface, uneven burning is reliably prevented and a higher quality carbide is obtained.

請求項3の発明によれば、周辺放熱筒32が炉本体1の周方向に幅広の中空帯板状をなすため、該周辺放熱筒32の放熱面積が広くなり、それだけ炉本体1内の周辺側にあって量的に多い炭化用材料Mに対する放熱量が増大すると共に、該周辺側での加熱作用が均等化し、もって炉本体1内の炭化用材料Mの全体にわたって均等な熱放射で効率よく炭化が進行する結果、より短い炭化時間でより高品位の炭化物が得られる。   According to the invention of claim 3, since the peripheral heat radiating cylinder 32 forms a wide hollow strip in the circumferential direction of the furnace body 1, the heat radiating area of the peripheral heat radiating cylinder 32 is widened, and the peripheral area in the furnace main body 1 is increased accordingly. The amount of heat radiation to the carbonizing material M which is large in quantity on the side increases, and the heating action on the peripheral side is equalized, so that the entire carbonizing material M in the furnace body 1 is efficiently radiated with heat. As a result of the frequent carbonization, a higher quality carbide can be obtained in a shorter carbonization time.

請求項4の発明によれば、3本以上の周辺放熱筒32が炉本体1の中心から略1/2半径の周方向に沿って等配しているから、炉本体1内の周辺側にあって量的に多い炭化用材料Mが3本以上の周辺放熱筒32からの放熱によって効率よく且つ均等に加熱され、もって炉本体1内の炭化用材料Mの全体にわたる加熱作用も均等化して効率よく炭化が進行し、より短い炭化時間でより高品位の炭化物が得られる。   According to the invention of claim 4, since the three or more peripheral heat radiating cylinders 32 are equally arranged along the circumferential direction of about ½ radius from the center of the furnace body 1, A large amount of the carbonizing material M is efficiently and evenly heated by the heat radiation from the three or more peripheral heat radiating cylinders 32, and the heating action of the entire carbonizing material M in the furnace body 1 is also equalized. Carbonization proceeds efficiently, and a higher quality carbide can be obtained in a shorter carbonization time.

以下に、本発明に係る炭化装置の一実施形態について、図面を参照して具体的に説明する。図1は炭化炉全体の縦断側面図、図2は蓋板を開放した状態での平面図を示す。   Hereinafter, an embodiment of a carbonization apparatus according to the present invention will be specifically described with reference to the drawings. FIG. 1 is a longitudinal side view of the entire carbonization furnace, and FIG. 2 is a plan view in a state where a cover plate is opened.

図1及び図2に示すように、炭化炉Fは、有底縦円筒状に形成されて上端開口部を材料出入口1aとする金属製の炉本体1と、この炉本体1の材料出入口1aを開閉する金属製の蓋板2と、該炉本体1内に配設された炉内排気管路3と、炉本体1の下面側に設けた配管室5内に配置する炉外排気管路4とを有している。   As shown in FIGS. 1 and 2, the carbonization furnace F includes a metal furnace main body 1 that is formed in a bottomed vertical cylindrical shape and has an upper end opening as a material inlet / outlet 1 a, and a material inlet / outlet 1 a of the furnace main body 1. A metal lid plate 2 that opens and closes, an in-furnace exhaust line 3 disposed in the furnace body 1, and an out-of-furnace exhaust line 4 disposed in a piping chamber 5 provided on the lower surface side of the furnace body 1. And have.

炉本体1は、内周面及び内底面にロックウールからなる断熱材13が金属製押さえネット14を介して張設されており、底部側の周辺部の一カ所に着火口11が設けられると共に、同じく底部側の周辺部における中心角120度の位相差の3カ所に、それぞれ炉外側に給気調整バルブ15を介在させた空気導入口12が設けられている。また、蓋板2は、その上面側に固着されて側方へ張出するくの字形の支持アーム21を介して、炉本体1の上部外周面に固設されたブラケット16に保持された水平枢軸17に、上下回動自在に枢着されている。   In the furnace body 1, a heat insulating material 13 made of rock wool is stretched on the inner peripheral surface and the inner bottom surface via a metal presser net 14, and an ignition port 11 is provided at one location on the bottom side. Similarly, air inlets 12 are provided at three locations with a phase difference of a central angle of 120 degrees in the peripheral portion on the bottom side, with air supply adjusting valves 15 interposed on the outside of the furnace. Further, the lid plate 2 is secured to a bracket 16 fixed to the upper outer peripheral surface of the furnace main body 1 via a U-shaped support arm 21 that is fixed to the upper surface side thereof and projects laterally. It is pivotally attached to the pivot 17 so as to be rotatable up and down.

炉内排気管路3は、全体が鉄鋼の如き金属製であり、炉本体1の中心に立設された円筒状の中央放熱筒31と、この中央放熱筒31を取り巻くように炉本体1の略1/2内半径の周方向に沿って等配して立設された3本の周辺放熱筒32と、中央放熱筒31の上端部から各周辺放熱筒32の上端部に連通接続する水平な3本の分岐管33とで構成されている。そして、中央放熱筒31及び周辺放熱筒32は上端が炉本体1の天井部近傍に達する高さに設定され、中央放熱筒31の下部周囲には筒内外に透通する多数の排気導入孔31aが穿設されている。また、各周辺放熱筒32は、炉本体1の略1/2内半径の周方向に沿って幅広で、且つ該周方向に沿って湾曲した中空帯板状をなし、その下端部が炉本体1の底部を貫通する接続管6を介して炉外排気管路6に連通接続している。   The furnace exhaust pipe 3 is entirely made of metal such as steel, and has a cylindrical central radiator 31 standing at the center of the furnace body 1 and the furnace body 1 so as to surround the central radiator 31. Three peripheral heat radiating cylinders 32 that are arranged upright along the circumferential direction of approximately ½ inner radius, and a horizontal connection from the upper end of the central heat radiating cylinder 31 to the upper end of each peripheral heat radiating cylinder 32 And three branch pipes 33. The central radiating cylinder 31 and the peripheral radiating cylinder 32 are set to a height at which the upper ends reach the vicinity of the ceiling portion of the furnace main body 1, and a large number of exhaust introduction holes 31 a are formed around the lower portion of the central radiating cylinder 31 to penetrate inside and outside the cylinder. Is drilled. Further, each peripheral heat radiating cylinder 32 is formed in a hollow strip shape that is wide and curved along the circumferential direction of a substantially ½ inner radius of the furnace body 1, and its lower end portion is the furnace body. 1 is connected to the out-of-furnace exhaust pipe 6 through a connecting pipe 6 penetrating through the bottom of 1.

なお、炉外排気管路4は、各周辺放熱筒32に繋がる円環状の合流管4aと、この合流管6aから配管室5外へ延出する排出管4bとで構成され、この排出管4bの外端を後処理工程の排気ファンが介在する外部配管(図示省略)に接続するようになっている。   The out-of-furnace exhaust pipe 4 is composed of an annular joining pipe 4a connected to each peripheral heat radiating cylinder 32 and a discharge pipe 4b extending from the joining pipe 6a to the outside of the piping chamber 5, and this discharge pipe 4b. Is connected to an external pipe (not shown) through which an exhaust fan in a post-processing step is interposed.

上記構成の炭化炉Fを備えた炭化装置によって炭化処理を行うには、所要の炭化用材料Mを炉本体1内に投入し、蓋板2で材料出入口1aを閉鎖した状態で、外部配管の排気ファン(図示省略)を駆動して炉外排気管路4及び炉内排気管路3を通して吸引排気することにより、炉本体1内を減圧状態に維持しつつ、3カ所の空気導入口12より外気を給気調整バルブ15による設定流量で流入させ、着火口11よりガスバーナー(図示省略)の火炎等の着火熱源を導入し、炎を吹き込んで着火させる。そして、炉本体1内の最下部の炭化用材料Mが自発燃焼し始めるのを確認した上で、着火口11を閉鎖する。   In order to perform carbonization by the carbonization apparatus provided with the carbonization furnace F having the above-described configuration, the required carbonization material M is charged into the furnace body 1 and the material inlet / outlet port 1a is closed by the cover plate 2, and the external piping is By driving an exhaust fan (not shown) and suctioning and exhausting through the out-furnace exhaust line 4 and the in-furnace exhaust line 3, the inside of the furnace main body 1 is maintained at a reduced pressure state, and the three air inlets 12 are used. Outside air is introduced at a flow rate set by the air supply adjustment valve 15, an ignition heat source such as a flame of a gas burner (not shown) is introduced from the ignition port 11, and a flame is blown to ignite. Then, after confirming that the lowermost carbonizing material M in the furnace body 1 starts to spontaneously burn, the ignition port 11 is closed.

上記自発燃焼の開始に伴い、発生する高温の燃焼ガスが炭化用材料M間の隙間を通って上昇して熱気を下から上へ伝播させると共に、該燃焼ガスGの一部は排気導入口31aより炉内排気管路3の中央放熱筒31内に吸い込まれる。そして、吸い込まれた燃焼ガスGは、該中央放熱筒31内を頂部まで上昇して3本の分岐管33に分流し、それぞれ周辺放熱筒32内に流入して下降し、接続管6を経て炉外排気管路4の合流管4aに入って合流し、排出管4bより外部配管へ排出される。このように高温の燃焼ガスGが継続して炉内排気管路3を通って排出されることにより、まず中央放熱筒31の下部が、内部を通過する燃焼ガスGの熱気と、周囲の炭化用材料Mの自発燃焼による熱気とで内外両側から熱せられて赤熱する。そして更に炉内空間10での自発燃焼が拡がるにしたがい、増加する燃焼ガスの熱気と蓄熱によって中央放熱筒31の赤熱部分が次第に上方へ拡大してゆくと共に、周辺放熱筒32も内外両側から熱せられて下部から赤熱し始め、遂には炉内排気管路3の全体が赤熱状態になる。   Along with the start of the spontaneous combustion, the generated high-temperature combustion gas rises through the gaps between the carbonizing materials M and propagates hot air from the bottom to the top, and a part of the combustion gas G is part of the exhaust inlet 31a. The air is sucked into the central radiator tube 31 of the in-furnace exhaust pipe 3. Then, the sucked combustion gas G rises up to the top in the central radiating cylinder 31 and is divided into three branch pipes 33, flows into the peripheral radiating cylinder 32 and descends, and passes through the connecting pipe 6. The refrigerant enters the merging pipe 4a of the out-of-furnace exhaust pipe 4 and joins, and is discharged from the discharge pipe 4b to the external pipe. As the high-temperature combustion gas G is continuously exhausted through the in-furnace exhaust pipe 3 in this way, first, the lower part of the central radiating cylinder 31 is heated with the hot air of the combustion gas G passing through the interior and the surrounding carbonization. The material M is heated from both the inside and outside by hot air due to spontaneous combustion, and becomes red hot. As the spontaneous combustion in the furnace space 10 further expands, the red heat portion of the central radiating cylinder 31 gradually expands upward due to the increasing amount of hot gas and heat stored in the combustion gas, and the peripheral radiating cylinder 32 also heats from both the inside and outside. As a result, red heat starts from the bottom, and finally the entire furnace exhaust pipe 3 becomes red hot.

これにより、炉内空間10に堆積している炭化用材料Mは、下方から上昇してくる熱気と、炉内排気管路3の赤熱した中央放熱筒31及び周辺放熱筒32から周囲へ放射される熱気とで加熱され、該炉内空間10の中央側から周辺側までの全体にわたって均等に、下部側から次第に上方へ移行する形で熱分解が進行し、更に自燃温度に達して自発燃焼する。そして、この自発燃焼・熱分解の領域が上方へ拡がるに伴い、炉内排気管路3は流入する燃焼ガスGの増加によって更に高温化して周囲への熱放射を増し、その相乗効果で炭化用材料Mの熱分解反応の進行と自発燃焼領域の拡大が速められ、やがて炉内空間10全体が均一な高温状態になり、装填した炭化用材料Mの全てが熱分解して炭化する。   As a result, the carbonizing material M deposited in the furnace space 10 is radiated to the surroundings from the hot air rising from below and from the red-heated central heat radiating tube 31 and the peripheral heat radiating tube 32 of the furnace exhaust pipe 3. Pyrolysis progresses in such a way that it gradually moves from the lower side to the upper side evenly from the central side to the peripheral side of the furnace space 10 and further spontaneously burns when reaching the self-combustion temperature. . As the spontaneous combustion / pyrolysis region expands upward, the furnace exhaust pipe 3 is heated to a higher temperature due to the increase of the inflowing combustion gas G, and the heat radiation to the surroundings is increased. The progress of the thermal decomposition reaction of the material M and the expansion of the spontaneous combustion region are accelerated, and the entire furnace space 10 eventually becomes a uniform high temperature state, and all of the loaded carbonizing material M is pyrolyzed and carbonized.

この炭化処理においては、炉内排気管路3からの燃焼ガスGの排出に伴い、底部周辺3カ所の空気導入口12より炉本体1内へ外気が吸入されるが、この空気吸入量は給気調整バルブ15によって炉内空間10が酸素不足状態を維持するように制限される。これにより、炭化用材料Mは、不完全燃焼によって炭素成分が殆ど燃焼しない状態で熱分解を継続し、もって最終的に内部まで完全に炭化することになる。   In this carbonization treatment, along with the discharge of the combustion gas G from the in-furnace exhaust pipe 3, outside air is sucked into the furnace body 1 from the three air inlets 12 around the bottom portion. The air regulating valve 15 restricts the furnace space 10 to maintain an oxygen-deficient state. Thereby, the carbonization material M continues thermal decomposition in a state in which the carbon component hardly burns due to incomplete combustion, and finally carbonizes completely to the inside.

また、炭化炉Fの炉内温度は、空気導入口12より供給される空気量の増減によって変化するため、給気調整バルブ15の開閉及び開度変更によって調整できる。しかして、この給気調整バルブ15の開閉及び開度調整は、予め得た試験データに基づいて使用する炭化用材料Mの種類と大きさ、含水率、装填量等に応じた処理温度条件を求めておき、炉外排気管路4を経て外部配管へ排出される排ガスの計測温度と炉内温度に関連付けた制御データとして制御装置(図示省略)に入力し、該制御装置からの指令信号によって自動的に行うように設定すればよい。なお、炉内温度は、通常350℃〜500℃程度で継続するように設定すればよいが、特に初期段階で自発燃焼を活発化させるために例えば処理開始から1時間内に一時的に1000℃近くに達するように条件設定してもよい。   Further, the temperature in the furnace of the carbonization furnace F changes depending on the increase or decrease in the amount of air supplied from the air inlet 12, so that it can be adjusted by opening and closing the air supply adjustment valve 15 and changing the opening. Thus, the opening / closing and opening adjustment of the air supply adjustment valve 15 is performed under the processing temperature conditions according to the type and size of the carbonizing material M to be used based on the test data obtained in advance, the moisture content, the loading amount, and the like. Obtained and input to the control device (not shown) as control data associated with the measured temperature of the exhaust gas discharged to the external pipe through the out-of-furnace exhaust pipe 4 and the in-furnace temperature, and by a command signal from the control device What is necessary is just to set so that it may carry out automatically. The in-furnace temperature may be normally set to continue at about 350 ° C. to 500 ° C., but in order to activate spontaneous combustion particularly in the initial stage, for example, temporarily 1000 ° C. within one hour from the start of the treatment. You may set conditions so that it may come near.

炭化用材料Mの熱分解が終息すれば、炉外へ排出されるガス温度が急速に低下するから、これを温度センサー等で検出することによって炭化の完了が判明する。この炭化完了後、生成した炭化物の温度がある程度低下するのを待って、炭化炉Fの全体を水平よりも若干下向きになるまで前方へ傾倒させ、生成した炭化物を流出させ、また要すれば適当な道具で掻き出せばよい。   When the thermal decomposition of the carbonization material M is finished, the temperature of the gas discharged to the outside of the furnace is rapidly lowered. Therefore, the completion of the carbonization is found by detecting this with a temperature sensor or the like. After the completion of the carbonization, the temperature of the generated carbide is waited for a certain degree of decrease, and the entire carbonization furnace F is tilted forward until it is slightly lower than the horizontal, so that the generated carbide flows out and is appropriate if necessary. Just scrape with a simple tool.

この炭化装置においては、炭化用材料Mの自発燃焼にて発生する高温の燃焼ガスGが炉内排気管路3を通って排出されることにより、その管壁が赤熱して周囲へ熱気を放射するが、その中央放熱筒31が炉内空間10の中央に位置し、これから分岐した3本の周辺放熱筒32が該中央放熱筒31を取り巻くように配置しているから、排気上昇筒31からの放熱によって炉内の中央側にある炭化用材料Mが加熱されると共に、複数本の周辺放熱筒32からの放熱によって炉内の周辺側にある炭化用材料Mが加熱され、もって炉内排気管路3からの熱放射が炉本体1内に装填された炭化用材料Mの全体に行き渡る。   In this carbonization apparatus, when the high-temperature combustion gas G generated by the spontaneous combustion of the carbonizing material M is discharged through the in-furnace exhaust pipe 3, the pipe wall becomes red hot and radiates hot air to the surroundings. However, since the central radiating cylinder 31 is located in the center of the furnace space 10 and the three peripheral radiating cylinders 32 branched from the central radiating cylinder 31 are arranged so as to surround the central radiating cylinder 31, The carbonization material M on the center side in the furnace is heated by the heat radiation of the furnace, and the carbonization material M on the peripheral side in the furnace is heated by the heat radiation from the plurality of peripheral heat radiating cylinders 32. The heat radiation from the pipe 3 spreads over the entire carbonizing material M loaded in the furnace body 1.

従って、炭化用材料Mとしてサイズの小さいものや熱伝導性に劣るものを用いても、炉内排気管路3からの熱放射によって炉本体1内の全体が偏りなく均等に加熱される結果、装填時の空気量の少なさや熱気の浸透性の低さ、更には熱伝導性の悪さを補って高い燃焼効率が得られ、短時間で炭化が完了して高い炭化処理能率を達成できる上、炭化が炉内全体に均等に進行するから、むら焼けが防止されて高品位で均質な炭化物を製出できる。また、この炭化装置では、炉内排気管路3全体の放熱面積が広いため、これを通過する燃焼ガスGによって炉外へ持ち出される熱量が少なくなり、それだけ高い熱効率が得られることになる。   Therefore, even if a material having a small size or inferior thermal conductivity is used as the carbonizing material M, the entire inside of the furnace main body 1 is heated evenly by the heat radiation from the exhaust pipe 3 in the furnace, High combustion efficiency can be achieved by compensating for the small amount of air during loading, low permeability of hot air, and poor thermal conductivity, and carbonization can be completed in a short time to achieve high carbonization efficiency. Since carbonization proceeds evenly throughout the furnace, uneven burning is prevented and high-quality and uniform carbide can be produced. Moreover, in this carbonization apparatus, since the heat radiation area of the whole in-furnace exhaust pipe 3 is wide, the amount of heat taken out of the furnace by the combustion gas G passing therethrough is reduced, so that high thermal efficiency is obtained.

一方、この実施形態では、空気導入口12が炉本体1の底部側の周辺部に沿う複数箇所に設けられ、炉内へ取り入れられる空気が炉本体1の周辺側から中央側へ向かう形になって全体に行き渡るから、炉本体1の横断面で見た全体に均等な燃焼状態で炭化が進行し、製出する炭化物がより高品位で均質なものとなる。これに対し、炉本体1の底面部の全体から空気を取り入れる構成では、炉内に入った空気が中央に集まって周辺側には行き渡らず、中央側と周辺側との燃焼度合の差によってむら焼けを生じ易くなる。   On the other hand, in this embodiment, the air inlets 12 are provided at a plurality of locations along the periphery on the bottom side of the furnace body 1, and the air taken into the furnace is directed from the periphery of the furnace body 1 toward the center. Therefore, the carbonization proceeds in a uniform combustion state as seen in the cross section of the furnace body 1, and the produced carbide becomes more high-quality and homogeneous. On the other hand, in the configuration in which air is taken in from the entire bottom surface of the furnace body 1, the air that has entered the furnace does not gather in the center and spread to the peripheral side, and is uneven due to the difference in the degree of combustion between the central side and the peripheral side. It tends to cause burning.

なお、炉内排気管路3の周辺放熱筒32は、本発明では複数本であればよいが、周辺側の炭化用材料Mへの放熱を均等にする上で、3本以上を周方向に等配して配置することが推奨される。また、各周辺放熱筒32の形状についても、中央側よりも量的に多くなる周辺側の炭化用材料Mに対して充分な放熱量を確保するために、単なる円筒状よりも、炉本体1の周方向に幅広の中空帯板状とすることが、大きな放熱面積で且つ均等な熱放射を行える点から好ましく、この中空帯板状においても実施形態のように周方向に沿って湾曲した形が最適である。また、これら複数本の周辺放熱筒32の配設位置は、熱効率より、炉本体1の中心から略1/2半径の周方向に沿う位置がよい。更に、上記の湾曲した中空帯板状をなす周辺放熱筒32の3本以上を周方向に等配する場合、その周方向に沿う総延長が周全長の半分以上、特に60〜75%を占めるように設定するのがよい。   In the present invention, there may be a plurality of peripheral radiating cylinders 32 in the furnace exhaust pipe 3, but in order to equalize the heat radiation to the carbonization material M on the peripheral side, three or more peripheral radiating cylinders 32 are circumferentially arranged. It is recommended to arrange them evenly. Further, the shape of each peripheral heat radiating cylinder 32 is also more preferable than a simple cylindrical shape in order to ensure a sufficient heat radiation amount for the carbonizing material M on the peripheral side which is quantitatively larger than the central side. It is preferable to form a wide hollow strip in the circumferential direction from the point of being able to perform uniform heat radiation with a large heat radiation area, and this hollow strip also has a curved shape along the circumferential direction as in the embodiment. Is the best. In addition, the arrangement position of the plurality of peripheral heat radiating cylinders 32 is preferably a position along the circumferential direction of approximately ½ radius from the center of the furnace body 1 in terms of thermal efficiency. Further, when three or more of the peripheral heat radiating cylinders 32 having the curved hollow belt plate shape are equally arranged in the circumferential direction, the total extension along the circumferential direction occupies more than half of the total circumferential length, particularly 60 to 75%. It is better to set as follows.

本発明の炭化装置は、炭化炉Fの炉内排気管路3として上述のような形態を採用するだけで、他に格別な機構や特殊な構造部分を必要とせず、全体的に構造が簡素であるために安価に製作できるという利点もある。ただし、炉内排気管路3を経て排出される燃焼ガスは、炭化用材料Mの熱分解による揮発成分を含む乾留ガスであるから、この炭化処理の後工程として再燃焼を行ったり、ガス中の有用成分を回収する設備を付設してもよい。例えば、古くには木材乾留として工業的に行われていたように、木材や竹材の加熱に伴って気化する揮発成分中には酢酸を主として種々の有用な有機成分が含まれており、その凝縮によって木材からは木酢液、竹材からは竹酢液が得られるから、炉外排気管路4に繋がる外部配管を抽出器内を経由させ、木酢液や竹酢液を抽出して回収することができる。なお、このように炭化炉Fから排出される燃焼ガスを再燃焼させたり、木・竹酢液を抽出して回収するための好適な設備構成については、本出願人による先願特許公報(前記特許文献2)に具体的に開示しているため、ここでは説明を省略する。   The carbonization apparatus of the present invention simply adopts the above-described form as the in-furnace exhaust pipe 3 of the carbonization furnace F, and does not require any special mechanism or special structural part, and the structure is simple overall. Therefore, there is an advantage that it can be manufactured at a low cost. However, since the combustion gas discharged through the in-furnace exhaust pipe 3 is a dry distillation gas containing a volatile component resulting from thermal decomposition of the carbonizing material M, recombustion is performed as a post-process of this carbonization treatment, A facility for collecting the useful components may be attached. For example, volatile components that vaporize when wood and bamboo are heated, as in the past, industrially used as wood carbonization, contain mainly various useful organic components such as acetic acid. Since wood vinegar is obtained from wood and bamboo vinegar is obtained from bamboo, the external piping connected to the exhaust pipe 4 outside the furnace is routed through the extractor to extract and collect the wood vinegar and bamboo vinegar. it can. As for a suitable equipment configuration for recombusting the combustion gas discharged from the carbonization furnace F or extracting and recovering the wood / bamboo vinegar as described above, the prior patent application (see above) Since it is specifically disclosed in Patent Document 2), the description is omitted here.

なお、炭化炉Fの空気導入口12の給気量調整については、例示した給気調整バルブ15を用いた自動調整に限らず、手動バルブやダンパー等による手動調整を行うようにしてもよい。その他、本発明の炭化装置では、炭化炉Fの設置構造、炉外排出管路4の管路構成、蓋板2の取付構造等、細部構成や付属設備について種々設定可能である。   The air supply amount adjustment of the air inlet 12 of the carbonization furnace F is not limited to the automatic adjustment using the illustrated air supply adjustment valve 15, and manual adjustment using a manual valve, a damper, or the like may be performed. In addition, in the carbonization apparatus of the present invention, various configurations and accessory equipment such as an installation structure of the carbonization furnace F, a pipe structure of the out-furnace discharge pipe 4, and a mounting structure of the cover plate 2 can be set.

本発明の一実施形態に係る炭化装置全体の縦断側面図である。It is a vertical side view of the whole carbonization apparatus concerning one embodiment of the present invention. 同炭化装置の蓋板を開放した状態での平面図である。It is a top view in the state where the lid plate of the carbonization device was opened.

符号の説明Explanation of symbols

F 炭化炉
M 炭化用材料
1 炉本体
1a 材料出入口
10 炉内空間
2 蓋板
3 炉内排気管路
31 中央放熱筒
31a 排気導入孔
32 周辺放熱筒
33 分岐管
4 炉外排気管路
11 着火口
12 空気導入口
15 給気調整バルブ
F Carbonization furnace M Carbonization material 1 Furnace main body 1a Material inlet / outlet 10 Furnace space 2 Lid plate 3 Furnace exhaust pipe 31 Central radiator tube 31a Exhaust introduction hole 32 Peripheral radiator cylinder 33 Branch pipe 4 Outer furnace exhaust pipe 11 Ignition port 12 Air inlet 15 Air supply adjustment valve

Claims (4)

底部側に着火口及び給気量調整可能な空気導入口を有する炉本体と、該炉本体の上部側の材料出入口を開閉する蓋板と、該炉本体内に配設された炉内排気管路とからなる炭化炉を備え、
前記炉内排気管路は、炉本体の中央部に立設された中央放熱筒と、該中央放熱筒から離間して炉本体内に立設された複数本の周辺放熱筒と、中央放熱筒の上端部から分岐して各周辺放熱筒の上端部に連通接続する分岐管とで構成され、
前記中央放熱筒の下部に炉内空間に連通する複数の排気導入孔を備えると共に、前記周辺放熱筒の下端側が炉外排気管路に接続され、
前記炉本体内に装填された炭化用材料を前記着火口からの着火によって酸素不足状態で自発燃焼させて炭化する際に、発生する燃焼ガスが前記排気導入孔から前記中央放熱筒内に流入し、この燃焼ガスが中央放熱筒内を上昇して周辺放熱筒内を下降する過程での放熱によって炉本体内の炭化用材料を加熱するように構成されてなる炭化装置。
A furnace body having an ignition port and an air inlet capable of adjusting the amount of air supply on the bottom side, a lid plate for opening and closing a material inlet / outlet on the upper side of the furnace body, and an exhaust pipe in the furnace disposed in the furnace body A carbonization furnace comprising a road,
The exhaust pipe in the furnace includes a central radiant cylinder standing at the center of the furnace main body, a plurality of peripheral radiant cylinders standing in the furnace body apart from the central radiant cylinder, and a central radiant cylinder A branch pipe that branches from the upper end of each of the peripheral pipes and communicates with the upper end of each peripheral radiator tube.
With a plurality of exhaust introduction holes communicating with the space in the furnace at the lower part of the central radiator tube, the lower end side of the peripheral radiator tube is connected to the exhaust pipe outside the furnace,
When the carbonizing material loaded in the furnace body is spontaneously burned and carbonized in an oxygen-deficient state by ignition from the ignition port, the generated combustion gas flows into the central radiator tube from the exhaust introduction hole. A carbonization apparatus configured to heat the carbonizing material in the furnace body by heat radiation in the process in which the combustion gas rises in the central heat radiation cylinder and descends in the peripheral heat radiation cylinder.
前記空気導入口が炉本体の底部側の周辺部に沿う複数箇所に設けられてなる請求項1に記載の炭化装置。   The carbonization apparatus according to claim 1, wherein the air introduction ports are provided at a plurality of locations along a peripheral portion on a bottom side of the furnace body. 前記周辺放熱筒が炉本体の周方向に幅広の中空帯板状をなす請求項1又は2に記載の炭化装置。   The carbonization apparatus according to claim 1 or 2, wherein the peripheral radiator tube forms a hollow strip shape that is wide in a circumferential direction of the furnace body. 3本以上の前記周辺放熱筒が炉本体の略1/2内半径の周方向に沿って等配してなる請求項1〜3のいずれかに記載の炭化装置。   The carbonization apparatus according to any one of claims 1 to 3, wherein three or more peripheral radiator tubes are equally arranged along a circumferential direction of an approximately ½ inner radius of the furnace body.
JP2008240203A 2008-09-19 2008-09-19 Carbonizing apparatus Withdrawn JP2010070661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008240203A JP2010070661A (en) 2008-09-19 2008-09-19 Carbonizing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008240203A JP2010070661A (en) 2008-09-19 2008-09-19 Carbonizing apparatus

Publications (1)

Publication Number Publication Date
JP2010070661A true JP2010070661A (en) 2010-04-02

Family

ID=42202757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008240203A Withdrawn JP2010070661A (en) 2008-09-19 2008-09-19 Carbonizing apparatus

Country Status (1)

Country Link
JP (1) JP2010070661A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353913A (en) * 2021-06-29 2021-09-07 连云港临海新材料有限公司 Method for converting carbon by calcining graphite with petroleum coke
JP7399376B2 (en) 2021-09-01 2023-12-18 株式会社Impact Heat treatment equipment and heat treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353913A (en) * 2021-06-29 2021-09-07 连云港临海新材料有限公司 Method for converting carbon by calcining graphite with petroleum coke
CN113353913B (en) * 2021-06-29 2023-10-27 连云港临海新材料有限公司 Method for converting carbon by calcining graphite with petroleum coke
JP7399376B2 (en) 2021-09-01 2023-12-18 株式会社Impact Heat treatment equipment and heat treatment method

Similar Documents

Publication Publication Date Title
KR101849395B1 (en) Pellet stove
JP2010248362A (en) Carbonization furnace
JP4017556B2 (en) Carbonization equipment
JP2010070661A (en) Carbonizing apparatus
JP6285588B1 (en) Self-burning carbonization heat treatment apparatus and self-burning carbonization heat treatment method using the same
WO2014063200A2 (en) Wood fuelled heating stove
JP2008088310A (en) High temperature carbonization method and high temperature carbonization apparatus
JP2010241973A (en) Carbonization furnace
JP7231528B2 (en) Batch type carbonization equipment
CN105668542B (en) A kind of energy saving kiln of high efficiency production bamboo charcoal
JP3899219B2 (en) Carbonization furnace
JP2009002594A (en) Small combustion furnace for manufacturing rice husk ash
CN203487081U (en) Novel vertical coal carbonizing furnace
CN205347319U (en) Split type carbomorphism bank of ovens
RU46557U1 (en) FIRE OF A BOILING LAYER WITH A FIRE MASS
JP3477572B2 (en) Stoves and boilers that also serve as carbonization furnaces
TW593660B (en) Apparatus for manufacturing conductive coal
CN105016323B (en) Kiln for high efficiency production of bamboo charcoal and production method thereof
JPH1194256A (en) Charcoal stove
RU76912U1 (en) CHARCOAL INSTALLATION
JP7190726B2 (en) Self-burning carbonization heat treatment apparatus, carbonization heat treatment system, and carbide production method using the same
CN108332191A (en) A kind of Biomatter gasifying direct combustion heat supply process of agricultural product drying hot-blast stove
JP2002146361A (en) Carbonizing equipment
CN209341584U (en) Air-heating furnace
CN201652449U (en) Stove internal air heat exchanger of dual-purpose stove

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111206