JP2010069676A - Method of manufacturing optical film - Google Patents

Method of manufacturing optical film Download PDF

Info

Publication number
JP2010069676A
JP2010069676A JP2008238127A JP2008238127A JP2010069676A JP 2010069676 A JP2010069676 A JP 2010069676A JP 2008238127 A JP2008238127 A JP 2008238127A JP 2008238127 A JP2008238127 A JP 2008238127A JP 2010069676 A JP2010069676 A JP 2010069676A
Authority
JP
Japan
Prior art keywords
resin
screw
temperature
carbon atoms
glass transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008238127A
Other languages
Japanese (ja)
Inventor
Mitsuyuki Takeda
満之 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2008238127A priority Critical patent/JP2010069676A/en
Publication of JP2010069676A publication Critical patent/JP2010069676A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/918Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling
    • B29C48/9185Thermal treatment of the stream of extruded material, e.g. cooling characterized by differential heating or cooling in the direction of the stream of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an optical film excelling in optical characteristics with few spot-like defects. <P>SOLUTION: The method of manufacturing the optical film for forming a film of amorphous thermoplastic resin by a melt-extrusion method using a single screw extruder having a mechanism controlling temperature respectively at a resin supply part screw and a resin measuring part screw, satisfies (1) the temperature of the resin supply part screw A in the single screw extruder is a glass transition temperature -70°C or higher and the glass transition temperature +10°C or lower, and (2) the temperature of the resin measuring part screw C is the glass transition temperature -30°C or higher and the glass transition temperature +50°C or lower. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、透明性等の光学特性に優れ、且つ、外観欠陥の少ない光学用フィルムの製造方法に関する。   The present invention relates to a method for producing an optical film which is excellent in optical properties such as transparency and has few appearance defects.

近年、電子機器はますます小型化し、ノートパソコン、携帯電話、携帯情報端末に代表されるように、軽量・コンパクトという特徴を生かした液晶表示装置が多く用いられるようになってきている。これら液晶表示装置は、偏光フィルムに始まり、その表示品位を保つ為に各種フィルムが用いられている。又、携帯情報端末や携帯電話向けに液晶表示装置を更に軽量化する目的で、ガラス基板の代わりに樹脂フィルムを用いたプラスチック液晶表示装置も実用化されている。   2. Description of the Related Art In recent years, electronic devices have become increasingly smaller, and liquid crystal display devices that take advantage of the features of light weight and compactness, such as notebook personal computers, mobile phones, and portable information terminals, have been increasingly used. These liquid crystal display devices start with a polarizing film, and various films are used to maintain the display quality. Also, a plastic liquid crystal display device using a resin film instead of a glass substrate has been put into practical use for the purpose of further reducing the weight of the liquid crystal display device for portable information terminals and mobile phones.

液晶表示装置のように、偏光を取り扱う場合、用いる樹脂フィルムは光学的に透明である事の他に、光学的に均質である事、着色や変色が少ない事、点状或いはスジ状等の外観欠陥が少ない事が求められる。   In the case of handling polarized light as in a liquid crystal display device, the resin film used is optically transparent, optically homogeneous, less colored or discolored, and has a dotted or streaky appearance. It is required that there are few defects.

フィルムの製膜方法としては、溶液流延製膜法、溶融押出法が挙げられるが、設備費、生産性、溶剤を用いる事による環境上の問題等から、近年、溶融押出法が注目されている。   Examples of the film forming method include a solution casting film forming method and a melt extrusion method. However, in recent years, the melt extrusion method has attracted attention due to environmental problems caused by equipment costs, productivity, and solvent. Yes.

しかし、溶融押出法でフィルムを製膜する場合、押出機内に投入された樹脂が、押出機内のせん断応力によって、樹脂が発熱して劣化し、フィルムが着色や変色する、或いは、樹脂が架橋し、点状欠陥が発生するといった問題がある。   However, when a film is formed by the melt extrusion method, the resin charged in the extruder is deteriorated due to heat generation of the resin due to shear stress in the extruder, and the film is colored or discolored, or the resin is crosslinked. There is a problem that a point defect occurs.

更に、押出量が不安定であると押出機内で樹脂が劣化し、フィルムが着色や変色する、或いは、押出機内の混錬不良に起因する未溶融物や、焼け樹脂に起因する褐色或いは黒い点状の欠陥が発生するといった問題がある。   Furthermore, if the extrusion amount is unstable, the resin deteriorates in the extruder, and the film is colored or discolored, or unmelted due to kneading failure in the extruder, or brown or black spots due to burnt resin There is a problem that defects in the shape occur.

一般的には異物除去の目的で各種フィルターが使用されるが、上記未溶融物及び褐色の焼け樹脂等点状欠陥の原因、或いは非常に小さな異物はフィルターで完全に除去する事は難しいという問題がある。   Generally, various types of filters are used for the purpose of removing foreign substances. However, it is difficult to completely remove very small foreign substances with the cause of point defects such as the above unmelted material and brown burnt resin. There is.

これに対して、特許文献1には、押出機内での樹脂の架橋抑制の為に、全長に於けるスクリュー温度を一度に制御する光学フィルムの製造方法が開示されている。このような方法では、スクリュー各部に於ける温度制御が困難であり、上記押出機内のせん断応力による樹脂発熱抑制と、押出安定性を両立する事が出来なかった。
特開2006−327110
On the other hand, Patent Document 1 discloses a method for producing an optical film in which the screw temperature in the entire length is controlled at a time in order to suppress cross-linking of the resin in the extruder. In such a method, it is difficult to control the temperature in each part of the screw, and it has been impossible to achieve both suppression of resin heat generation due to shear stress in the extruder and extrusion stability.
JP 2006-327110 A

本発明は、以上のような課題を解決する為になされたものであり、点状欠陥が少なく、光学特性に優れた光学用フィルムの製造方法を提供する事にある。   The present invention has been made to solve the above-described problems, and provides a method for producing an optical film having few point defects and excellent optical characteristics.

上記課題を解決する為、本発明者等は鋭意検討を行った。その結果、非晶性の熱可塑性樹脂を、単軸押出機を用いた溶融押出法により製膜する光学フィルムの製造方法に於いて、該単軸押出機内の樹脂供給部スクリュー温度、及び樹脂計量部スクリュー温度をある範囲内に制御する事によって、上記課題を解決する事を見出し、本発明を完成した。   In order to solve the above problems, the present inventors have conducted intensive studies. As a result, in the method for producing an optical film for forming an amorphous thermoplastic resin by a melt extrusion method using a single screw extruder, the screw temperature of the resin supply section in the single screw extruder, and the resin metering The inventors have found that the above-mentioned problems can be solved by controlling the internal screw temperature within a certain range, and have completed the present invention.

即ち、本発明によれば、以下の光学フィルムの製造方法が提供される。   That is, according to the present invention, the following method for producing an optical film is provided.

(i)非晶性の熱可塑性樹脂を、樹脂供給部スクリューと、樹脂計量部スクリューでそれぞれ温度制御可能な機構を有する単軸押出機を用いた溶融押出法により製膜する光学フィルムの製造方法に於いて、下記(1)及び(2)を満たすことを特徴とする光学フィルムの製造方法。
(1)該単軸押出機内の樹脂供給部スクリュー温度がガラス転移温度−70℃以上、ガラス転移温度+10℃以下
(2)樹脂計量部スクリュー温度がガラス転移温度−30℃以上、ガラス転移温度+50℃以下。
(I) A method for producing an optical film in which an amorphous thermoplastic resin is formed by a melt extrusion method using a single-screw extruder having a temperature controllable mechanism with a resin supply unit screw and a resin metering unit screw. And (2) satisfying the following (1) and (2).
(1) Resin supply section screw temperature in the single screw extruder is glass transition temperature −70 ° C. or higher and glass transition temperature + 10 ° C. or lower (2) Resin metering section screw temperature is glass transition temperature −30 ° C. or higher and glass transition temperature +50 Below ℃.

(ii)非晶性の熱可塑性樹脂がアクリル系樹脂である事を特徴とする(i)記載の光学フィルムの製造方法。   (Ii) The method for producing an optical film as described in (i), wherein the amorphous thermoplastic resin is an acrylic resin.

(iii)アクリル系樹脂が下記一般式(1)で表される単位と、下記一般式(2)で表される単位及び/又は下記一般式(3)で表される単位とを有するイミド樹脂である事を特徴とする(i)または(ii)に記載の光学フィルムの製造方法。   (Iii) An imide resin in which the acrylic resin has a unit represented by the following general formula (1), a unit represented by the following general formula (2) and / or a unit represented by the following general formula (3) (I) or the manufacturing method of the optical film as described in (ii) characterized by the above-mentioned.

Figure 2010069676
(但し、R1及びR2は、それぞれ独立に、水素又は炭素数1〜8のアルキル基を示し、R3は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、又は炭素数5〜15の芳香環を含む置換基を示す。)
Figure 2010069676
(However, R1 and R2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R3 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or the number of carbon atoms. The substituent containing a 5-15 aromatic ring is shown.)

Figure 2010069676
(但し、R4及びR5は、それぞれ独立に、水素又は炭素数1〜8のアルキル基を示し、R6は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、又は炭素数5〜15の芳香環を含む置換基を示す。)
Figure 2010069676
(However, R4 and R5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R6 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or a carbon number. The substituent containing a 5-15 aromatic ring is shown.)

Figure 2010069676
(但し、R7は、水素又は炭素数1〜8のアルキル基を示し、R8は、炭素数6〜10のアリール基を示す。)
Figure 2010069676
(However, R7 represents hydrogen or an alkyl group having 1 to 8 carbon atoms, and R8 represents an aryl group having 6 to 10 carbon atoms.)

本発明によれば、非晶性の熱可塑性樹脂を、単軸押出機を用いた溶融押出法により製膜する光学フィルムの製造方法に於いて、該単軸押出機内の樹脂供給部スクリュー温度、及び樹脂計量部スクリュー温度をある範囲内に制御する事により、点状欠陥が少なく、光学特性に優れた光学用フィルムの製造方法を提供出来る。又、この方法により形成した光学フィルムは、液晶表示装置等に用いられる光学用フィルムに要求される点状欠陥の少なさを満足出来る。   According to the present invention, in the method for producing an optical film for forming an amorphous thermoplastic resin by a melt extrusion method using a single screw extruder, the resin supply part screw temperature in the single screw extruder, Further, by controlling the resin measuring section screw temperature within a certain range, it is possible to provide a method for producing an optical film having few point defects and excellent optical characteristics. Moreover, the optical film formed by this method can satisfy the small number of point-like defects required for an optical film used in a liquid crystal display device or the like.

本発明に係る光学フィルムの製造方法は、非晶性の熱可塑性樹脂を、樹脂供給部スクリューと、樹脂計量部スクリューでそれぞれ温度制御可能な機構を有する単軸押出機を用いた溶融押出法により製膜する光学フィルムの製造方法に於いて、下記(1)及び(2)を満たすことを特徴とする。
(1)該単軸押出機内の樹脂供給部スクリュー温度がガラス転移温度−70℃以上、ガラス転移温度+10℃以下
(2)樹脂計量部スクリュー温度がガラス転移温度−30℃以上、ガラス転移温度+50℃以下
The method for producing an optical film according to the present invention is based on a melt extrusion method using a single-screw extruder having a mechanism capable of controlling the temperature of an amorphous thermoplastic resin with a resin supply screw and a resin metering screw. In the method for producing an optical film to be formed, the following (1) and (2) are satisfied.
(1) Resin supply section screw temperature in the single screw extruder is glass transition temperature −70 ° C. or higher and glass transition temperature + 10 ° C. or lower (2) Resin metering section screw temperature is glass transition temperature −30 ° C. or higher and glass transition temperature +50 ℃ or less

本発明に係る光学フィルムの製造方法に於いて用いられる単軸押出機のスクリューの一例を図1に示す。ここで、本発明で用いられるスクリューは、このような具体例に限定されるものではない。図1に示すスクリュー1は、供給部A、圧縮部B、及び計量部Cから構成される。詳しくは、供給部Aによって安定的に原料樹脂を圧縮部Bに供給し、圧縮部B、及び計量部Cによって均一溶融混練される。   An example of a screw of a single screw extruder used in the method for producing an optical film according to the present invention is shown in FIG. Here, the screw used in the present invention is not limited to such a specific example. A screw 1 shown in FIG. 1 includes a supply unit A, a compression unit B, and a measuring unit C. Specifically, the raw material resin is stably supplied to the compression unit B by the supply unit A, and is uniformly melt-kneaded by the compression unit B and the measurement unit C.

更に詳しくは、原料樹脂は、押出機シリンダー2a表面とスクリュー供給部A表面に於ける樹脂の摩擦差によって推進し、圧縮部Bに供給される。これにより、スクリュー供給部に於ける押出機シリンダー温度、及びスクリュー供給部温度は、押出量安定性に大きな影響を及ぼし、上記押出機シリンダー温度、及びスクリュー供給部温度条件によっては押出量変動が大きくなり、未溶融物が生成されて、結果、点状欠陥が発生し、好ましくない場合がある。   More specifically, the raw material resin is propelled by the frictional difference between the resin on the surface of the extruder cylinder 2a and the surface of the screw supply part A, and is supplied to the compression part B. As a result, the extruder cylinder temperature in the screw supply section and the screw supply section temperature have a great influence on the extrusion amount stability, and the extrusion amount fluctuation is large depending on the above-mentioned extruder cylinder temperature and screw supply section temperature conditions. As a result, an unmelted product is generated, and as a result, point-like defects are generated, which may be undesirable.

又、安定供給された原料樹脂は、圧縮部B、及び計量部Cによって均一混練が施される。ここで、特に、スクリュー計量部Cの過剰なせん断応力によって樹脂が架橋して点状欠陥が発生し、好ましくない場合がある。   In addition, the stably supplied raw material resin is uniformly kneaded by the compression unit B and the metering unit C. Here, in particular, the resin is cross-linked by an excessive shear stress of the screw metering section C and a point defect is generated, which is not preferable.

これに対して、本発明は、スクリュー各部に於ける温度をそれぞれ制御する事を特徴とする。   In contrast, the present invention is characterized in that the temperature in each part of the screw is controlled.

詳しくは、樹脂供給部スクリュー温度がガラス転移温度−70℃未満の場合、押出機シリンダー温度制御に大きな影響を及ぼし、押出機内温度にバラツキが生じて押出量変動が大きくなる為、好ましくない。従って、単軸押出機を用いた溶融押出法により製膜する際の該単軸押出機内の樹脂供給部スクリュー温度は、ガラス転移温度−70℃以上である事が好ましく、更に好ましくはガラス転移温度−60℃以上、特に好ましくはガラス転移温度−50℃以上である。   Specifically, if the resin supply screw temperature is less than the glass transition temperature of −70 ° C., it greatly affects the extruder cylinder temperature control, causing variations in the extruder internal temperature and increasing the amount of extrusion, which is not preferable. Accordingly, the resin supply part screw temperature in the single screw extruder when forming a film by the melt extrusion method using a single screw extruder is preferably a glass transition temperature of −70 ° C. or more, more preferably a glass transition temperature. It is −60 ° C. or higher, particularly preferably the glass transition temperature is −50 ° C. or higher.

又、樹脂供給部スクリュー温度がガラス転移温度+10℃より高い場合、スクリュー樹脂供給部に溶融した樹脂が巻き付き、押出量変動が大きくなる為、好ましくない。従って、単軸押出機を用いた溶融押出法により製膜する際の該単軸押出機内の樹脂供給部スクリュー温度は、ガラス転移温度+10℃以下である事が好ましく、更に好ましくはガラス転移温度以下、特に好ましくはガラス転移温度−10℃以下である。   Moreover, when the resin supply part screw temperature is higher than the glass transition temperature + 10 ° C., the molten resin is wound around the screw resin supply part, and the amount of extrusion increases, which is not preferable. Therefore, the resin supply part screw temperature in the single screw extruder when forming a film by a melt extrusion method using a single screw extruder is preferably a glass transition temperature + 10 ° C. or less, more preferably a glass transition temperature or less. Particularly preferred is a glass transition temperature of −10 ° C. or lower.

樹脂計量部スクリュー温度がガラス転移温度−30℃未満の場合、過剰な樹脂冷却により、樹脂の均一混練性を阻害して押出機内で樹脂の粘度バラツキが生じ、押出量変動が大きくなる為、好ましくない。従って、単軸押出機を用いた溶融押出法により製膜する際の該単軸押出機内の樹脂計量部スクリュー温度は、ガラス転移温度−30℃以上が好ましく、更に好ましくはガラス転移温度−20℃以上、特に好ましくはガラス転移温度−10℃以上である。   If the resin metering part screw temperature is less than the glass transition temperature of −30 ° C., it is preferable because excessive resin cooling hinders uniform kneading of the resin, resulting in variation in the viscosity of the resin in the extruder, and fluctuation in the amount of extrusion increases. Absent. Accordingly, the resin measuring section screw temperature in the single screw extruder when forming a film by melt extrusion using a single screw extruder is preferably a glass transition temperature of −30 ° C. or more, more preferably a glass transition temperature of −20 ° C. As described above, the glass transition temperature is preferably −10 ° C. or higher.

又、樹脂計量部スクリュー温度がガラス転移温度+50℃より高い場合、押出機内でのせん断応力による樹脂発熱に対する除熱効果が小さく、樹脂が架橋して、点状欠陥が発生する為、好ましくない。従って、単軸押出機を用いた溶融押出法により製膜する際の該単軸押出機内の樹脂計量部スクリュー温度は、ガラス転移温度+50℃以下が好ましく、更に好ましくはガラス転移温度+40℃以下、特に好ましくはガラス転移温度+30℃以下である。   Further, when the resin measuring section screw temperature is higher than the glass transition temperature + 50 ° C., the heat removal effect on the resin heat generation due to the shear stress in the extruder is small, and the resin crosslinks to generate point defects. Therefore, the resin metering section screw temperature in the single screw extruder when forming a film by the melt extrusion method using a single screw extruder is preferably a glass transition temperature + 50 ° C. or less, more preferably a glass transition temperature + 40 ° C. or less. Especially preferably, it is glass transition temperature +30 degrees C or less.

本発明に係る光学フィルムの製造方法に於いて、押出機各部に於けるシリンダー温度は、上記押出量安定性を確保し、且つ、樹脂の架橋が生じない範囲内で適宜調整される。詳しくは、スクリュー供給部に相当するシリンダーの好ましい温度はガラス転移温度+70℃で、更に好ましくはガラス転移温度+60℃である。又、スクリュー計量部に相当するシリンダーの好ましい温度はガラス転移温度+150℃で、更に好ましくはガラス転移温度+140℃である。   In the method for producing an optical film according to the present invention, the cylinder temperature in each part of the extruder is appropriately adjusted within a range in which the above-described extrusion amount stability is ensured and resin crosslinking does not occur. Specifically, the preferable temperature of the cylinder corresponding to the screw supply unit is the glass transition temperature + 70 ° C., more preferably the glass transition temperature + 60 ° C. Moreover, the preferable temperature of the cylinder corresponding to a screw metering part is glass transition temperature +150 degreeC, More preferably, it is glass transition temperature +140 degreeC.

本発明に係る光学フィルムの製造方法に於けるスクリュー温度を調整する方法としては特に限定されず、前記のようにシリンダー温度を調整する方法と、例えば、加熱油、又は水をスクリュー内部で循環させて温度制御する方法や、スクリュー内部に電気ヒーターを設置して温度制御する方法等を組み合わせる方法が挙げられるが、シリンダー温度を調整する方法と加熱油、又は水をスクリュー内部で循環させて温度制御する方法を組み合わせることが好ましい。   The method for adjusting the screw temperature in the method for producing an optical film according to the present invention is not particularly limited, and the method for adjusting the cylinder temperature as described above, for example, heating oil or water is circulated inside the screw. The method of controlling the temperature and the method of controlling the temperature by installing an electric heater inside the screw are included, but the method of adjusting the cylinder temperature and heating oil or water are circulated inside the screw to control the temperature. It is preferable to combine these methods.

本発明に係わる光学フィルムの製造方法に於けるスクリューは、樹脂供給部スクリューと、樹脂計量部スクリューでそれぞれ異なる温度制御可能な機構を有する。スクリューに於いて、樹脂供給部、樹脂圧縮部、樹脂計量部を同時に温度制御すると、押出量変動が生じる為、好ましくない。   The screw in the method for producing an optical film according to the present invention has a mechanism capable of controlling the temperature different between the resin supply unit screw and the resin metering unit screw. In the screw, it is not preferable to control the temperature of the resin supply unit, the resin compression unit, and the resin metering unit at the same time, because the amount of extrusion is changed.

本発明の光学フィルムの製造方法に於けるスクリューは、図1に示すフルフライトスクリューの他に、ベント付き押出機用スクリュー、ミキシング機構付きスクリュー、及びダムフライトスクリュー等にも適用出来る。この中でも、樹脂の均一混練性の観点から、上記スクリューとしては、ミキシング機構付きスクリューが好ましい。   In addition to the full flight screw shown in FIG. 1, the screw in the method for producing an optical film of the present invention can be applied to a screw for an extruder with a vent, a screw with a mixing mechanism, a dam flight screw, and the like. Among these, from the viewpoint of uniform kneading properties of the resin, a screw with a mixing mechanism is preferable as the screw.

又、スクリュー表面に於ける材質としては、特に限定されないが、スクリュー表面に対する樹脂の固着滞留に起因した樹脂の架橋の観点から、メッキ、又はセラミックコーティング処理等が施されている事が好ましい。この中でも、上記スクリューとしては、メッキ処理が施されている事が好ましく、クロムメッキ処理が施されている事が好ましい。   Further, the material on the screw surface is not particularly limited, but from the viewpoint of cross-linking of the resin due to the resin staying on the screw surface, plating or ceramic coating treatment is preferably performed. Among these, the screw is preferably subjected to a plating treatment, and is preferably subjected to a chromium plating treatment.

本発明に係る光学フィルムの製造方法に於ける成形方法としては、溶融押出法による成形が可能であれば特に限定されないが、Tダイ押出法、及びインフレーション押出法等が挙げられる。   The molding method in the method for producing an optical film according to the present invention is not particularly limited as long as it can be molded by a melt extrusion method, and examples thereof include a T-die extrusion method and an inflation extrusion method.

本発明に係る光学フィルムに用いられる非晶性の熱可塑性樹脂とは、結晶構造をとりえない無定形状態を保つ高分子であり、そのガラス転移温度は、樹脂によって異なる為、特に限定されるものではないが、総じて100℃以上のものである。上記非晶性熱可塑性樹脂としては、ポリメタクリル酸メチル系樹脂やポリカーボネート系樹脂、ポリスチレン系樹脂、シクロオレフィン系樹脂、セルロース系樹脂、塩化ビニル系樹脂、ポリサルフォン系樹脂、ポリエーテルサルフォン系樹脂、マレイミド・オレフィン系樹脂、ラクトン系樹脂、グルタルイミド系樹脂等の単独樹脂又はこれらを混合してなる樹脂組成物が挙げられる。この中でも、本発明に於いては、ポリメタクリル酸メチル系樹脂、ラクトン系樹脂、及びイミド系樹脂等のアクリル系樹脂が好ましく、イミド系樹脂が特に好ましい。以下イミド系樹脂について説明する。(本発明においてアクリル系樹脂とは、アクリル系モノマーを主原料とする重合体、及び、それらを変性及び/又は反応させて得られる樹脂をいう。)   The amorphous thermoplastic resin used in the optical film according to the present invention is a polymer that maintains an amorphous state that cannot take on a crystal structure, and its glass transition temperature varies depending on the resin, and thus is particularly limited. Although it is not a thing, it is a thing 100 degreeC or more generally. Examples of the amorphous thermoplastic resin include polymethyl methacrylate resin, polycarbonate resin, polystyrene resin, cycloolefin resin, cellulose resin, vinyl chloride resin, polysulfone resin, polyethersulfone resin, Examples thereof include a single resin such as a maleimide / olefin resin, a lactone resin, and a glutarimide resin, or a resin composition obtained by mixing these resins. Among these, in the present invention, acrylic resins such as polymethyl methacrylate resins, lactone resins, and imide resins are preferable, and imide resins are particularly preferable. Hereinafter, the imide resin will be described. (In the present invention, the acrylic resin refers to a polymer mainly composed of an acrylic monomer and a resin obtained by modifying and / or reacting them.)

イミド系樹脂としては、下記一般式(1)で表される単位と、下記一般式(2)で表される単位及び/又は下記一般式(3)で表される単位とを有するイミド樹脂が好ましい。   As the imide resin, an imide resin having a unit represented by the following general formula (1), a unit represented by the following general formula (2) and / or a unit represented by the following general formula (3) preferable.

Figure 2010069676
(但し、R1及びR2は、それぞれ独立に、水素又は炭素数1〜8のアルキル基を示し、R3は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、又は炭素数5〜15の芳香環を含む置換基を示す。)
Figure 2010069676
(However, R1 and R2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R3 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or the number of carbon atoms. The substituent containing a 5-15 aromatic ring is shown.)

Figure 2010069676
(但し、R4及びR5は、それぞれ独立に、水素又は炭素数1〜8のアルキル基を示し、R6は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、又は炭素数5〜15の芳香環を含む置換基を示す。)
Figure 2010069676
(However, R4 and R5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R6 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or a carbon number. The substituent containing a 5-15 aromatic ring is shown.)

Figure 2010069676
(但し、R7は、水素又は炭素数1〜8のアルキル基を示し、R8は、炭素数6〜10のアリール基を示す。)
Figure 2010069676
(However, R7 represents hydrogen or an alkyl group having 1 to 8 carbon atoms, and R8 represents an aryl group having 6 to 10 carbon atoms.)

前記イミド樹脂を構成する、第一の構成単位は、一般式(1)で表されるものであり、一般的にグルタルイミド単位と呼ばれる事が多い(以下、一般式(1)をグルタルイミド単位と省略して示す事がある。)。   The first structural unit constituting the imide resin is represented by the general formula (1) and is generally called a glutarimide unit (hereinafter, the general formula (1) is often referred to as a glutarimide unit. And may be abbreviated.)

好ましいグルタルイミド単位としては、R1、R2が水素又はメチル基であり、R3が水素、メチル基、ブチル基、またはシクロヘキシル基である。R1がメチル基であり、R2が水素であり、R3がメチル基である場合が、特に好ましい。   As a preferred glutarimide unit, R1 and R2 are hydrogen or a methyl group, and R3 is hydrogen, a methyl group, a butyl group, or a cyclohexyl group. The case where R1 is a methyl group, R2 is hydrogen, and R3 is a methyl group is particularly preferable.

該グルタルイミド単位は、単一の種類でもよく、R1、R2、R3が異なる複数の種類を含んでいても構わない。   The glutarimide unit may be a single type, or may include a plurality of types in which R1, R2, and R3 are different.

尚、グルタルイミド単位は、以下に説明する第二の構成単位をイミド化する事により形成することが可能である。また、無水マレイン酸等の酸無水物、又はそれらと炭素数1〜20の直鎖または分岐のアルコールとのハーフエステル;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、クロトン酸、フマル酸、シトラコン酸等のα,β−エチレン性不飽和カルボン酸等もイミド化可能であり、グルタルイミド単位の形成に用いる事が出来る。   The glutarimide unit can be formed by imidizing the second structural unit described below. In addition, acid anhydrides such as maleic anhydride, or half esters thereof with linear or branched alcohols having 1 to 20 carbon atoms; acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride Further, α, β-ethylenically unsaturated carboxylic acids such as crotonic acid, fumaric acid and citraconic acid can be imidized and can be used to form glutarimide units.

前記イミド樹脂を構成する、第二の構成単位は、一般式(2)で表されるものであり、一般的には(メタ)アクリル酸エステル単位と呼ばれる事が多い(ここで、(メタ)アクリル酸エステルとは、アクリル酸エステル、メタクリル酸エステルを示す。以下、一般式(2)を(メタ)アクリル酸エステル単位と省略して示す事がある。)。   The second structural unit constituting the imide resin is represented by the general formula (2), and is generally called a (meth) acrylic acid ester unit (here, (meth) Acrylic acid ester refers to acrylic acid ester and methacrylic acid ester.Hereinafter, general formula (2) may be abbreviated as (meth) acrylic acid ester unit).

前記イミド樹脂を製造する際に、先ず(メタ)アクリル酸エステル−芳香族ビニル共重合体、または(メタ)アクリル酸エステル重合体を重合し、これを後イミド化して形成する場合、具体的に(メタ)アクリル酸エステル単位を残基として与える原料としては、特に限定するものではないが、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等が挙げられる。これらの中で、メタクリル酸メチルが特に好ましい。   When the imide resin is produced, first, a (meth) acrylic acid ester-aromatic vinyl copolymer or a (meth) acrylic acid ester polymer is polymerized and post-imidized to form, specifically, The raw material that gives the (meth) acrylic acid ester unit as a residue is not particularly limited. For example, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, Examples thereof include t-butyl (meth) acrylate, benzyl (meth) acrylate, cyclohexyl (meth) acrylate and the like. Of these, methyl methacrylate is particularly preferred.

これら第二の構成単位は、単一の種類でもよく、R4、R5、R6が異なる複数の種類を含んでいても構わない。同様に、前記(メタ)アクリル酸エステル単位を残基として与える原料も複数の種類を混合して用いても構わない。   These second structural units may be of a single type or may include a plurality of types in which R4, R5, and R6 are different. Similarly, a plurality of types of raw materials that give the (meth) acrylic acid ester unit as a residue may be used.

本発明のイミド樹脂に必要に応じて含有させる第三の構成単位は、一般式(3)で表されるものであり、一般的には芳香族ビニル単位と呼ばれる事が多い(以下、一般式(3)を芳香族ビニル単位と省略して示す事がある。)   The third structural unit contained in the imide resin of the present invention as needed is represented by the general formula (3), and is generally called an aromatic vinyl unit (hereinafter referred to as the general formula). (3) may be abbreviated as an aromatic vinyl unit.

好ましい芳香族ビニル構成単位としては、スチレン、α−メチルスチレン等が挙げられる。これらの中でスチレンが特に好ましい。   Preferred aromatic vinyl structural units include styrene, α-methylstyrene, and the like. Of these, styrene is particularly preferred.

これら第三の構成単位は、単一の種類でもよく、R7、R8が異なる複数の種類を含んでいても構わない。   These third structural units may be of a single type or may include a plurality of types in which R7 and R8 are different.

前記イミド樹脂中の、一般式(1)で表されるグルタルイミド単位の含有量は、例えばR3の構造にも依存するが、イミド樹脂の20重量%以上が好ましい。グルタルイミド単位の、好ましい含有量は、20重量%から95重量%であり、より好ましくは40〜90重量%、更に好ましくは、50〜80重量%である。グルタルイミド単位の割合がこの範囲より小さい場合、得られるイミド樹脂の耐熱性が不足し、又、透明性が損なわれる事がある。又、この範囲を超えると不必要に耐熱性、溶融粘度が上がり、成形加工性が悪くなる他、得られるフィルムの機械的強度は極端に脆くなり、又、透明性が損なわれる事がある。   The content of the glutarimide unit represented by the general formula (1) in the imide resin depends on, for example, the structure of R3, but is preferably 20% by weight or more of the imide resin. The preferable content of the glutarimide unit is 20% to 95% by weight, more preferably 40 to 90% by weight, and still more preferably 50 to 80% by weight. When the ratio of the glutarimide unit is smaller than this range, the resulting imide resin has insufficient heat resistance and transparency may be impaired. On the other hand, if it exceeds this range, the heat resistance and melt viscosity are unnecessarily increased, the molding processability is deteriorated, the mechanical strength of the resulting film becomes extremely brittle, and the transparency may be impaired.

前記イミド樹脂中の、一般式(3)で表される芳香族ビニル単位の含有量は、イミド樹脂の総繰り返し単位を基準として、1重量%以上が好ましい。芳香族ビニル単位の、好ましい含有量は、1重量%から40重量%であり、より好ましくは1〜30重量%、更に好ましくは、1〜25重量%である。芳香族ビニル単位がこの範囲より大きい場合、得られるイミド樹脂の耐熱性が不足する。この範囲より小さい場合、得られるフィルムの機械的強度が低下することがある。   The content of the aromatic vinyl unit represented by the general formula (3) in the imide resin is preferably 1% by weight or more based on the total repeating unit of the imide resin. The content of the aromatic vinyl unit is preferably 1 to 40% by weight, more preferably 1 to 30% by weight, and still more preferably 1 to 25% by weight. When the aromatic vinyl unit is larger than this range, the resulting imide resin has insufficient heat resistance. If it is smaller than this range, the mechanical strength of the resulting film may be lowered.

一般式(1)、(2)、(3)の割合を調整することで、各種要求される物性に調整する事が可能である。例えば、前記イミド樹脂を、先ずメチルメタクリレート−スチレン共重合体等の(メタ)アクリル酸エステル−芳香族ビニル共重合体を重合した後に後イミド化して形成する場合、例えば(メタ)アクリル酸エステルと芳香族ビニルの重合割合を調整することで一般式(3)の割合を決め(一般式(3)の割合を0とする事も可)、更に後イミド化時の一級アミンの添加割合を調整する事で、更に一般式(1)、(2)の割合を調整する事ができる。   By adjusting the ratios of the general formulas (1), (2), and (3), it is possible to adjust various required physical properties. For example, when the imide resin is first formed by polymerizing a (meth) acrylic acid ester-aromatic vinyl copolymer such as methyl methacrylate-styrene copolymer and then imidizing, for example, (meth) acrylic acid ester and The ratio of the general formula (3) is determined by adjusting the polymerization ratio of the aromatic vinyl (the ratio of the general formula (3) can be set to 0), and further, the addition ratio of the primary amine during post-imidation is adjusted. By doing so, the ratio of the general formulas (1) and (2) can be further adjusted.

本発明のイミド樹脂には、必要に応じ、更に、第四の構成単位が共重合されていてもかまわない。第四の構成単位として、アクリロニトリルやメタクリロニトリル等のニトリル系単量体、マレイミド、N−メチルマレイミド、N−フェニルマレイミド、N−シクロヘキシルマレイミド等のマレイミド系単量体を共重合してなる構成単位を用いる事ができる。これらは熱可塑性樹脂中に、直接共重合してあっても良く、グラフト共重合してあっても構わない。   If necessary, the imide resin of the present invention may further be copolymerized with a fourth structural unit. A constitution obtained by copolymerizing nitrile monomers such as acrylonitrile and methacrylonitrile, and maleimide monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide as the fourth structural unit Units can be used. These may be directly copolymerized in a thermoplastic resin or may be graft copolymerized.

本発明のイミド樹脂を製造する際に、先ずメチルメタクリレート−スチレン共重合体等の(メタ)アクリル酸エステル−芳香族ビニル共重合体、又はメタクリル酸メチル重合体等の(メタ)アクリル酸エステル重合体を重合し、これをイミド樹脂化する場合、本発明で用いる事ができる(メタ)アクリル酸エステル−芳香族ビニル共重合体、(メタ)アクリル酸エステル重合体は、イミド化反応が可能であれば、リニアー(線状)ポリマーであっても、またブロックポリマー、コアシェルポリマー、分岐ポリマー、ラダーポリマー、架橋ポリマーであっても構わない。ブロックポリマーはA−B型、A−B−C型、A−B−A型、又はこれら以外のいずれのタイプのブロックポリマーであっても構わない。コアシェルポリマーはただ一層のコア及びただ一層のシェルのみからなるものであっても、それぞれが多層になっていても構わない。   When producing the imide resin of the present invention, first, a (meth) acrylic acid ester-aromatic vinyl copolymer such as methyl methacrylate-styrene copolymer or a (meth) acrylic acid ester weight such as methyl methacrylate polymer is used. When a polymer is polymerized and converted into an imide resin, the (meth) acrylate-aromatic vinyl copolymer and (meth) acrylate polymer that can be used in the present invention can undergo an imidization reaction. As long as it is a linear polymer, it may be a block polymer, a core-shell polymer, a branched polymer, a ladder polymer, or a crosslinked polymer. The block polymer may be an A-B type, an A-B-C type, an A-B-A type, or any other type of block polymer. The core-shell polymer may be composed of only one core and only one shell, or each may be a multilayer.

又、イミド樹脂は、1×104ないし5×105の重量平均分子量を有する事が好ましい。重量平均分子量が1×104を下回る場合には、フィルムにした場合の機械的強度が不足し、5×105を上回る場合には、溶融押出時の粘度が高く、成形加工性が低下し、成形品の生産性が低下する事がある。 The imide resin preferably has a weight average molecular weight of 1 × 10 4 to 5 × 10 5 . When the weight average molecular weight is less than 1 × 10 4 , the mechanical strength in the case of a film is insufficient, and when it exceeds 5 × 10 5 , the viscosity at the time of melt extrusion is high and the molding processability is lowered. , Productivity of molded products may decrease.

前記イミド樹脂は、メチルメタクリレート−スチレン共重合体等の(メタ)アクリル酸エステル−芳香族ビニル共重合体、又はメタクリル酸メチル重合体等の(メタ)アクリル酸エステル重合体にイミド化剤を処理する方法であれば各種方法で製造する事ができ、押出機等を用いてもよく、バッチ式反応槽(圧力容器)等を用いてもよい。   The imide resin is a (meth) acrylic acid ester-aromatic vinyl copolymer such as methyl methacrylate-styrene copolymer or a (meth) acrylic acid ester polymer such as methyl methacrylate polymer treated with an imidizing agent. If it is a method to do, it can manufacture with various methods, An extruder etc. may be used and a batch type reaction tank (pressure vessel) etc. may be used.

前記イミド樹脂の製造方法を押出機にて行う場合には、各種押出機が使用可能であるが、例えば単軸押出機、二軸押出機或いは多軸押出機等が使用可能である。特に、原料ポリマーに対するイミド化剤或いは閉環促進剤の混合を促進できる押出機として二軸押出機が好ましい。二軸押出機には非噛合い型同方向回転式、噛合い型同方向回転式、非噛合い型異方向回転式、噛合い型異方向回転式等があるが、二軸押出機の中では噛合い型同方向回転式が高速回転可能であり、原料ポリマーに対するイミド化剤或いは必要によって使用する閉環促進剤の混合を促進できるので好ましい。これらの押出機は単独で用いても、直列につないでも構わない。     When the method for producing the imide resin is performed with an extruder, various extruders can be used. For example, a single screw extruder, a twin screw extruder, a multi-screw extruder, or the like can be used. In particular, a twin-screw extruder is preferable as an extruder that can promote mixing of an imidizing agent or a ring closure accelerator with respect to the raw polymer. There are non-mesh type co-rotating type, meshing type co-rotating type, non-meshing type bi-directional rotating type, meshing type bi-directional rotating type, etc. The meshing type co-rotating type is preferable because it can rotate at a high speed and can promote mixing of an imidizing agent or a ring-closing accelerator to be used if necessary. These extruders may be used alone or connected in series.

又、押出機には未反応のイミド化剤或いはメタノール等の副生物やモノマー類を除去する為に、大気圧以下に減圧可能なベント口を装着する事が好ましい。   The extruder is preferably equipped with a vent port that can be depressurized below atmospheric pressure in order to remove unreacted imidizing agent or by-products such as methanol and monomers.

イミド樹脂の製造を押出機の代わりに、例えば住友重機械(株)製のバイボラックのような横型二軸反応装置やスーパーブレンドのような竪型二軸攪拌槽などの高粘度対応の反応装置も好適に使用できる。   For example, instead of an extruder, imide resin can be produced by using a high-viscosity reactor such as a horizontal biaxial reactor such as Violac manufactured by Sumitomo Heavy Industries, Ltd. or a vertical biaxial agitation tank such as Super Blend. It can be used suitably.

前記イミド樹脂の製造方法をバッチ式反応槽(圧力容器)で行う際には、原料ポリマーを加熱により溶融させ、攪拌でき、イミド化剤或いは閉環促進剤を添加できる構造であれば特に制限ないが、反応の進行によりポリマー粘度が上昇する事もあり、攪拌効率が良好なものがよい。例えば、住友重機械(株)製の攪拌槽マックスブレンド等を例示する事ができる。   When the production method of the imide resin is performed in a batch-type reaction vessel (pressure vessel), there is no particular limitation as long as the raw material polymer can be melted by heating and stirred, and an imidizing agent or a ring closure accelerator can be added. The polymer viscosity may increase with the progress of the reaction, and those with good stirring efficiency are preferred. For example, Sumitomo Heavy Industries, Ltd. agitation tank Max blend etc. can be illustrated.

非晶性の熱可塑性樹脂のガラス転移温度は110℃以上である事が好ましく、120℃以上である事がより好ましい。ガラス転移温度が上記の値を下回ると、耐熱性が要求される用途においては適用範囲が制限される。   The glass transition temperature of the amorphous thermoplastic resin is preferably 110 ° C. or higher, and more preferably 120 ° C. or higher. When the glass transition temperature is lower than the above value, the application range is limited in applications where heat resistance is required.

本発明に係る非晶性の熱可塑性樹脂は、本発明の効果を阻害しない範囲内に於いて、酸化防止剤、熱安定剤、紫外線吸収剤、可塑剤等の添加剤を含有してもよい。尚、上記添加剤は、単独でもよく、2種以上を併用しても構わない。   The amorphous thermoplastic resin according to the present invention may contain additives such as an antioxidant, a heat stabilizer, an ultraviolet absorber, and a plasticizer within the range not impairing the effects of the present invention. . In addition, the said additive may be individual and may use 2 or more types together.

本発明に係る光学フィルムの製造方法に於ける原料樹脂の形状としては、粉状、フレーク形状、ペレット形状等が挙げられる。好ましくは、ペレット形状である。   Examples of the shape of the raw material resin in the method for producing an optical film according to the present invention include powder, flakes, and pellets. A pellet shape is preferable.

本発明の光学フィルムの製造方法を用いて製造される光学フィルム表面の点状欠陥は50個/m2以下である。点状欠陥が50個/m2を超えると、光学フィルムとして液晶表示装置等に用いられる際に、表示品質を低下させる。 The number of point defects on the surface of the optical film manufactured using the method for manufacturing an optical film of the present invention is 50 / m 2 or less. When the number of point defects exceeds 50 / m 2 , the display quality is deteriorated when used as a liquid crystal display device or the like as an optical film.

ここで、本明細書に於ける点状欠陥とは、樹脂の架橋、及び未溶融物等樹脂由来欠陥の事を言う。詳しくは、マイクロスコープに於いて観察された最大長さ20μm以上の大きさで、且つ、フィルム正常部分と同じ屈折率を有する欠陥である。   Here, the point defect in the present specification means a resin-derived defect such as cross-linking of resin and unmelted material. Specifically, it is a defect having a maximum length of 20 μm or more observed in a microscope and having the same refractive index as that of a normal film portion.

本発明の光学フィルムの製造方法を用いて製造される光学フィルムの好ましい厚みは20μm以上、350μm以下である。更に好ましくは50μm以上、300μm以下で、特に好ましくは80μm以上、200μm以下である。   The preferable thickness of the optical film manufactured using the method for manufacturing an optical film of the present invention is 20 μm or more and 350 μm or less. More preferably, they are 50 micrometers or more and 300 micrometers or less, Most preferably, they are 80 micrometers or more and 200 micrometers or less.

以下に実施例及び比較例を挙げて、本発明を具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。実施例の具体的な内容を説明する前に、まず、各実験結果として示される物性及び評価値の測定方法を以下に示す。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited only to these examples. Before describing the specific contents of the examples, first, methods for measuring physical properties and evaluation values shown as results of each experiment will be described below.

(1)ガラス転移温度
樹脂10mgを用いて、示差走査熱量計(DSC、(株)島津製作所製DSC−50型)を用いて、窒素雰囲気下、昇温速度20℃/minで測定し、中点法により決定した。
(2)押出量変動
樹脂吐出口に於いて、1分毎に30分間、押出量を測定して平均押出量に対するバラツキを算出した。
(3)樹脂温度
樹脂吐出口に於いて、接触型樹脂温度計を用いて測定した。
(4)点状欠陥数
暗室で1m2のフィルムを目視で観察し、株式会社キーエンス製のデジタルマイクロスコープ(VH−Z75)で、最大長さ20μm以上で、且つ、フィルム正常部分と同じ屈折率を有する欠陥の数をカウントした。
(1) Glass transition temperature Using a differential scanning calorimeter (DSC, model DSC-50 manufactured by Shimadzu Corporation) using 10 mg of resin, the glass transition temperature was measured at a heating rate of 20 ° C./min in a nitrogen atmosphere. Determined by point method.
(2) Extrusion amount fluctuation At the resin discharge port, the extrusion amount was measured for 30 minutes every minute, and the variation with respect to the average extrusion amount was calculated.
(3) Resin temperature It measured using the contact-type resin thermometer in the resin discharge port.
(4) Number of point-like defects A 1 m 2 film was visually observed in a dark room, and the maximum refractive index was 20 μm or more and the same refractive index as that of a normal film portion with a digital microscope (VH-Z75) manufactured by Keyence Corporation. The number of defects having

(実施例1)
樹脂は、市販のメタクリル酸メチル−スチレン共重合体(新日鐵化学(株)製MS−800)を、イミド化剤としてモノメチルアミンを用いてイミド化したイミド樹脂を使用した。具体的には、直径40mm、L/D(押出機の長さLと直径Dの比)が60の同方向噛合型二軸押出機を用いて、押出機各バレル温度を250℃、スクリュー回転数は150rpm、原料樹脂供給量は20kg/時間、モノメチルアミンの添加量は原料樹脂100部に対して20部の条件で作製された樹脂である。このイミド樹脂のガラス転移温度は130℃である。
Example 1
As the resin, an imide resin obtained by imidizing a commercially available methyl methacrylate-styrene copolymer (MS-800 manufactured by Nippon Steel Chemical Co., Ltd.) using monomethylamine as an imidizing agent was used. Specifically, using a co-meshing twin screw extruder having a diameter of 40 mm and L / D (ratio of the length L to the diameter D of the extruder) of 60, each barrel temperature of the extruder is 250 ° C., screw rotation The number is 150 rpm, the raw material resin supply amount is 20 kg / hour, and the addition amount of monomethylamine is a resin prepared under the conditions of 20 parts with respect to 100 parts of the raw material resin. The glass transition temperature of this imide resin is 130 ° C.

次いで、上記イミド樹脂を100℃で5時間乾燥後、40mm単軸押出機と400mm幅のTダイを用いてシート状に押出し、金属製の冷却ロールで該シートを冷却して、幅350mm、厚み150μmのフィルムを得た。ここで、上記単軸押出機に用いたスクリューは、供給部、圧縮部、計量部、及び計量部後にミキシング機構(ダルメージ)から構成されるダルメージスクリューを用いた。更に、上記スクリューは、スクリュー供給部、及び計量部以降がそれぞれ温度制御可能な構造となっており、加熱油をスクリュー内部で循環させて、スクリュー温度制御を行った。詳しくは、スクリュー供給部温度を90℃、計量部以降温度を150℃とした。又、上記単軸押出機のヒーターは、スクリュー供給部に相当するC1、圧縮部に相当するC2、計量部に相当するC3、及びミキシング機構に相当するC4の4ゾーンから構成されており、C1を200℃、C2を240℃、C3を270℃、C4を270℃とした。   Next, the imide resin is dried at 100 ° C. for 5 hours, and then extruded into a sheet using a 40 mm single-screw extruder and a 400 mm wide T-die, and the sheet is cooled with a metal cooling roll to have a width of 350 mm and a thickness of A 150 μm film was obtained. Here, as the screw used in the single screw extruder, a dull image screw constituted by a supply unit, a compression unit, a metering unit, and a mixing mechanism (dalmage) after the metering unit was used. Furthermore, the screw has a structure in which the temperature of the screw supply unit and the metering unit and thereafter can be controlled, and the screw temperature is controlled by circulating heating oil inside the screw. Specifically, the screw supply part temperature was 90 ° C., and the temperature after the metering part was 150 ° C. The heater of the single screw extruder is composed of four zones, C1 corresponding to the screw supply section, C2 corresponding to the compression section, C3 corresponding to the measuring section, and C4 corresponding to the mixing mechanism. Was 200 ° C, C2 was 240 ° C, C3 was 270 ° C, and C4 was 270 ° C.

この際の押出量変動は15.0±0.1kg/時間、樹脂温度は270℃であり、フィルム表面の点状欠陥は5個/m2であった。 In this case, the variation in the amount of extrusion was 15.0 ± 0.1 kg / hour, the resin temperature was 270 ° C., and the number of point defects on the film surface was 5 / m 2 .

(実施例2)
スクリュー供給部温度が60℃である事以外は、実施例1と同様の方法でフィルムを得た。
(Example 2)
A film was obtained in the same manner as in Example 1 except that the screw supply temperature was 60 ° C.

この際の押出量変動は16.0±0.1kg/時間、樹脂温度は270℃であり、フィルム表面の点状欠陥は5個/m2であった。 At this time, the amount of extrusion was 16.0 ± 0.1 kg / hour, the resin temperature was 270 ° C., and the number of point-like defects on the film surface was 5 / m 2 .

(実施例3)
スクリュー供給部温度が140℃である事以外は、実施例1と同様の方法でフィルムを得た。
Example 3
A film was obtained in the same manner as in Example 1 except that the screw supply temperature was 140 ° C.

この際の押出量変動は14.0±0.1kg/時間、樹脂温度は271℃であり、フィルム表面の点状欠陥は5個/m2であった。 The amount of extrusion at this time was 14.0 ± 0.1 kg / hour, the resin temperature was 271 ° C., and the number of point defects on the film surface was 5 / m 2 .

(実施例4)
スクリュー計量部以降温度が100℃である事以外は、実施例1と同様の方法でフィルムを得た。
Example 4
A film was obtained in the same manner as in Example 1 except that the temperature after the screw metering section was 100 ° C.

この際の押出量変動は15.0±0.1kg/時間、樹脂温度は265℃であり、フィルム表面の点状欠陥は3個/m2であった。 The amount of extrusion at this time was 15.0 ± 0.1 kg / hour, the resin temperature was 265 ° C., and the number of point defects on the film surface was 3 / m 2 .

(実施例5)
スクリュー計量部以降温度が180℃である事以外は、実施例1と同様の方法でフィルムを得た。
(Example 5)
A film was obtained in the same manner as in Example 1 except that the temperature after the screw metering section was 180 ° C.

この際の押出量変動は15.0±0.1kg/時間、樹脂温度は280℃であり、フィルム表面の点状欠陥は10個/m2であった。 The amount of extrusion at this time was 15.0 ± 0.1 kg / hour, the resin temperature was 280 ° C., and the number of point defects on the film surface was 10 / m 2 .

(比較例1)
スクリュー供給部温度が50℃である事以外は、実施例1と同様の方法でフィルムを得た。
(Comparative Example 1)
A film was obtained in the same manner as in Example 1 except that the screw supply temperature was 50 ° C.

この際の押出量変動は20.0±2.0kg/時間、樹脂温度は265℃であり、フィルム表面の点状欠陥は60個/m2であった。 At this time, the amount of extrusion was 20.0 ± 2.0 kg / hour, the resin temperature was 265 ° C., and the number of point defects on the film surface was 60 / m 2 .

(比較例2)
スクリュー供給部温度が150℃である事以外は、実施例1と同様の方法でフィルムを得た。
(Comparative Example 2)
A film was obtained in the same manner as in Example 1 except that the screw supply temperature was 150 ° C.

この際の押出量変動は10.0±5.0kg/時間、樹脂温度は270℃であり、フィルム表面の点状欠陥は70個/m2であった。 At this time, the amount of extrusion was 10.0 ± 5.0 kg / hour, the resin temperature was 270 ° C., and the number of point defects on the film surface was 70 / m 2 .

(比較例3)
スクリュー計量部以降温度が90℃である事以外は、実施例1と同様の方法でフィルムを得た。
(Comparative Example 3)
A film was obtained in the same manner as in Example 1 except that the temperature after the screw metering section was 90 ° C.

この際の押出量変動は15.0±3.0kg/時間、樹脂温度は260℃であり、フィルム表面の点状欠陥は65個/m2であった。 The amount of extrusion at this time was 15.0 ± 3.0 kg / hour, the resin temperature was 260 ° C., and the number of point defects on the film surface was 65 / m 2 .

(比較例4)
スクリュー計量部以降温度が190℃である事以外は、実施例1と同様の方法でフィルムを得た。
(Comparative Example 4)
A film was obtained in the same manner as in Example 1 except that the temperature after the screw metering section was 190 ° C.

この際の押出量変動は15.0±0.1kg/時間、樹脂温度は290℃であり、フィルム表面の点状欠陥は100個/m2であった。 The amount of extrusion at this time was 15.0 ± 0.1 kg / hour, the resin temperature was 290 ° C., and the number of point defects on the film surface was 100 / m 2 .

(比較例5)
スクリュー供給部、及び計量部以降の温度制御を行わなかった事以外は、実施例1と同様の方法でフィルムを得た。
(Comparative Example 5)
A film was obtained in the same manner as in Example 1 except that the temperature control after the screw supply unit and the metering unit was not performed.

この際の押出量変動は15.0±5.0kg/時間、樹脂温度は285℃であり、フィルム表面の点状欠陥は100個/m2であった。 The amount of extrusion at this time was 15.0 ± 5.0 kg / hour, the resin temperature was 285 ° C., and the number of point defects on the film surface was 100 / m 2 .

以下の表に、上記各実験結果を整理して示す。   The following table summarizes the results of the above experiments.

Figure 2010069676
Figure 2010069676

本発明で用いられるスクリューの一例を示す模式図である。It is a schematic diagram which shows an example of the screw used by this invention.

符号の説明Explanation of symbols

1 スクリュー
2 押出機シリンダー
A スクリュー供給部
B スクリュー圧縮部
C スクリュー計量部
2a スクリュー供給部に相当する押出機シリンダー
2b スクリュー圧縮部に相当する押出機シリンダー
2c スクリュー計量部に相当する押出機シリンダー
DESCRIPTION OF SYMBOLS 1 Screw 2 Extruder cylinder A Screw supply part B Screw compression part C Screw measurement part 2a Extruder cylinder equivalent to a screw supply part 2b Extruder cylinder equivalent to a screw compression part 2c Extruder cylinder equivalent to a screw measurement part

Claims (3)

非晶性の熱可塑性樹脂を、樹脂供給部スクリューと、樹脂計量部スクリューでそれぞれ温度制御可能な機構を有する単軸押出機を用いた溶融押出法により製膜する光学フィルムの製造方法に於いて、下記(1)及び(2)を満たすことを特徴とする光学フィルムの製造方法。
(1)該単軸押出機内の樹脂供給部スクリュー温度がガラス転移温度−70℃以上、ガラス転移温度+10℃以下
(2)樹脂計量部スクリュー温度がガラス転移温度−30℃以上、ガラス転移温度+50℃以下
In an optical film manufacturing method, an amorphous thermoplastic resin is formed by a melt extrusion method using a single-screw extruder having a temperature controllable mechanism with a resin supply screw and a resin metering screw. The manufacturing method of the optical film characterized by satisfy | filling following (1) and (2).
(1) Resin supply section screw temperature in the single screw extruder is glass transition temperature −70 ° C. or higher and glass transition temperature + 10 ° C. or lower (2) Resin metering section screw temperature is glass transition temperature −30 ° C. or higher and glass transition temperature +50 ℃ or less
非晶性の熱可塑性樹脂がアクリル系樹脂である事を特徴とする請求項1記載の光学フィルムの製造方法。   2. The method for producing an optical film according to claim 1, wherein the amorphous thermoplastic resin is an acrylic resin. アクリル系樹脂が下記一般式(1)で表される単位と、下記一般式(2)で表される単位及び/又は下記一般式(3)で表される単位とを有するイミド樹脂である事を特徴とする請求項1または2に記載の光学フィルムの製造方法。
Figure 2010069676
(但し、R1及びR2は、それぞれ独立に、水素又は炭素数1〜8のアルキル基を示し、R3は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、又は炭素数5〜15の芳香環を含む置換基を示す。)
Figure 2010069676
(但し、R4及びR5は、それぞれ独立に、水素又は炭素数1〜8のアルキル基を示し、R6は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、又は炭素数5〜15の芳香環を含む置換基を示す。)
Figure 2010069676
(但し、R7は、水素又は炭素数1〜8のアルキル基を示し、R8は、炭素数6〜10のアリール基を示す。)
The acrylic resin is an imide resin having a unit represented by the following general formula (1), a unit represented by the following general formula (2) and / or a unit represented by the following general formula (3). The method for producing an optical film according to claim 1 or 2.
Figure 2010069676
(However, R1 and R2 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R3 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or the number of carbon atoms. The substituent containing a 5-15 aromatic ring is shown.)
Figure 2010069676
(However, R4 and R5 each independently represent hydrogen or an alkyl group having 1 to 8 carbon atoms, and R6 represents an alkyl group having 1 to 18 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, or a carbon number. The substituent containing a 5-15 aromatic ring is shown.)
Figure 2010069676
(However, R7 represents hydrogen or an alkyl group having 1 to 8 carbon atoms, and R8 represents an aryl group having 6 to 10 carbon atoms.)
JP2008238127A 2008-09-17 2008-09-17 Method of manufacturing optical film Pending JP2010069676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008238127A JP2010069676A (en) 2008-09-17 2008-09-17 Method of manufacturing optical film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008238127A JP2010069676A (en) 2008-09-17 2008-09-17 Method of manufacturing optical film

Publications (1)

Publication Number Publication Date
JP2010069676A true JP2010069676A (en) 2010-04-02

Family

ID=42201922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008238127A Pending JP2010069676A (en) 2008-09-17 2008-09-17 Method of manufacturing optical film

Country Status (1)

Country Link
JP (1) JP2010069676A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082990A (en) * 2008-09-30 2010-04-15 Nippon Shokubai Co Ltd Method for manufacturing optical film
JP2015120295A (en) * 2013-12-24 2015-07-02 株式会社カネカ Method for manufacturing optical film
JP2015123610A (en) * 2013-12-25 2015-07-06 株式会社カネカ Production method of optical film, and optical film
JP2020163627A (en) * 2019-03-28 2020-10-08 日本ゼオン株式会社 Producing method of optical film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010082990A (en) * 2008-09-30 2010-04-15 Nippon Shokubai Co Ltd Method for manufacturing optical film
JP2015120295A (en) * 2013-12-24 2015-07-02 株式会社カネカ Method for manufacturing optical film
JP2015123610A (en) * 2013-12-25 2015-07-06 株式会社カネカ Production method of optical film, and optical film
JP2020163627A (en) * 2019-03-28 2020-10-08 日本ゼオン株式会社 Producing method of optical film
JP7163846B2 (en) 2019-03-28 2022-11-01 日本ゼオン株式会社 Method for manufacturing optical film

Similar Documents

Publication Publication Date Title
JP5408885B2 (en) Resin composition, film and polarizing plate
JP2009161744A (en) Thermoplastic resin composition, optical film and polarizer protection film
JP5636165B2 (en) Optical film
JP5746387B2 (en) Optical film
JP2007009182A (en) Resin composition, formed body, film and method for producing the same
WO2016185722A1 (en) Resin composition and film
JP2008239739A (en) Thermoplastic resin film and production method thereof
JP2023009094A (en) Stretched film and manufacturing method for stretched film
JP4961164B2 (en) Imide resin and method for producing the same, optical resin composition using the same, and molded article
JP2010069676A (en) Method of manufacturing optical film
JP5586165B2 (en) Acrylic protective film
JP2006328331A (en) Resin composition, molded article, and film and its preparation method
JP2010095567A (en) Resin composition, film, and polarizing plate
JP5425672B2 (en) Manufacturing method of light diffusion film
JP2010261025A (en) Resin composition and production method thereof, molding, film, optical film, polarizer protection film and polarizing plate
JP2011138119A (en) Optical film
JP2006249202A (en) Imide resin and resin composition for optical use using the same
JP2018009144A (en) Methacrylic resin composition, manufacturing method of the methacrylic resin composition, pellet and molded body
JP5400296B2 (en) Resin composition
JP2008285615A (en) Imide resin with excellent molding stability and method for producing imide resin
JP2011027777A (en) Polarizer protective film provided with light-diffusing function
JP2006328330A (en) Imide resin, resin composition for optical use, using the same, and molded article
JP5553580B2 (en) Resin composition, molded body, optical film, polarizer protective film, polarizing plate
JP2006273883A (en) Imide resin, optical resin composition by using the same and molded article
JP2006335804A (en) Imide resin, and optical film using the same