JP2010067368A - Catalyst layer for polymer electrolyte fuel cell and method for forming the same - Google Patents

Catalyst layer for polymer electrolyte fuel cell and method for forming the same Download PDF

Info

Publication number
JP2010067368A
JP2010067368A JP2008230073A JP2008230073A JP2010067368A JP 2010067368 A JP2010067368 A JP 2010067368A JP 2008230073 A JP2008230073 A JP 2008230073A JP 2008230073 A JP2008230073 A JP 2008230073A JP 2010067368 A JP2010067368 A JP 2010067368A
Authority
JP
Japan
Prior art keywords
catalyst layer
fuel cell
polymer electrolyte
catalyst
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008230073A
Other languages
Japanese (ja)
Inventor
Yoshitaka Endo
美登 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008230073A priority Critical patent/JP2010067368A/en
Publication of JP2010067368A publication Critical patent/JP2010067368A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst layer increasing mechanical strength such as mar resistance and hardness without damaging physical properties necessary for the catalyst layer for a fuel cell as typified in proton conductivity and gaseous diffusion properties; and to provide a method for forming the same. <P>SOLUTION: The catalyst layer for a polymer electrolyte fuel cell having a crosslinking polymer skeleton formed by polymerizing a cationic polymerizable monomer in the catalyst layer is formed by: forming the catalyst layer with catalyst slurry containing catalyst particles, a polymer electrolyte, and the cationic polymerizable monomer and not containing a polymerization initiator; and polymerizing the cationic polymerizable monomer by applying heat energy to the catalyst layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、機械的強度が向上した固体高分子型燃料電池用触媒層、及びその形成方法に関する。具体的には、プロトン伝導性、ガス拡散性に代表される燃料電池触媒層に必要な物性を損なうことなく、耐擦傷性及び硬度のような機械的強度を向上させた触媒層、及びその形成方法に関する。   The present invention relates to a catalyst layer for a polymer electrolyte fuel cell with improved mechanical strength and a method for forming the catalyst layer. Specifically, a catalyst layer with improved mechanical strength such as scratch resistance and hardness, without loss of physical properties necessary for a fuel cell catalyst layer represented by proton conductivity and gas diffusibility, and formation thereof Regarding the method.

従来、固体高分子型燃料電池を構成する触媒層は、触媒粒子と高分子電解質とを溶媒中で混合した触媒スラリーを用いて触媒層を形成し、これを乾燥させたものであるため、触媒層中にバインダーなどを含まず、脆くて、機械的強度が十分ではないという問題点があった。   Conventionally, a catalyst layer constituting a solid polymer fuel cell is formed by forming a catalyst layer using a catalyst slurry in which catalyst particles and a polymer electrolyte are mixed in a solvent, and then drying the catalyst layer. There is a problem that the layer does not contain a binder and is brittle and has insufficient mechanical strength.

従来の触媒層の機械的強度が不十分である要因として以下のような事項が挙げられる。
1)乾湿サイクルによる変形度合いは高分子電解質膜が触媒層よりもかなり大きいため、燃料電池運転による乾湿サイクルにより、高分子電解質膜の変形につられて触媒層が変形して触媒層がダメージを受ける(亀裂、剥離が生じる)。
2)低温時に触媒層内で水が凍結した場合、水の相変化による体積膨張が触媒層を無理やり変形させ破壊してしまう。その結果として、触媒層が破壊されると、破壊された部分が反応系から孤立してしまうため発電に寄与できる触媒量が減少し、発電機能が大きく低下する。
3)触媒層強度を大きくするためには、触媒層に加えるアイオノマーの量を多くすれば良いが、この結果、排水性とガス拡散性の低下により発電性能が低下する。
The following items can be cited as factors for the insufficient mechanical strength of the conventional catalyst layer.
1) Since the degree of deformation of the polymer electrolyte membrane is considerably larger than that of the catalyst layer due to the wet / dry cycle, the catalyst layer is deformed and damaged by the deformation of the polymer electrolyte membrane due to the dry / wet cycle of the fuel cell operation. (Cracks and peeling occur).
2) When water freezes in the catalyst layer at a low temperature, volume expansion due to the phase change of water forcibly deforms and destroys the catalyst layer. As a result, when the catalyst layer is destroyed, the destroyed portion is isolated from the reaction system, so that the amount of catalyst that can contribute to power generation is reduced and the power generation function is greatly reduced.
3) In order to increase the strength of the catalyst layer, the amount of ionomer added to the catalyst layer may be increased, but as a result, the power generation performance decreases due to a decrease in drainage and gas diffusibility.

なお、触媒層の強化を直接の目的とするものではないが、下記特許文献1には、高分子電解質膜と電極触媒層との接合状態を向上させて内部抵抗を低減させ、かつ三相界面を三次元化し、反応面積を拡大させることにより、高出力な固体高分子型燃料電池を実現することを目的として、高分子電解質膜と電極触媒層を有し、該高分子電解質膜の少なくとも一部が電極触媒層に滲入している膜電極接合体であって、高分子電解質膜が少なくともプロトン導電性を有する化合物と、活性エネルギー線に対し活性を有する化合物を含有する組成物を重合してなる固体高分子型燃料電池用の膜電極接合体が開示されている。ここで、活性エネルギー線としては、電子線、ガンマ線、プラズマ、紫外線、エックス線が具体的に例示されるとともに、重合開始剤として、アゾビスイソブチロニトリル、ベンゾイルパーオキサイド等のラジカル加熱重合開始剤、ベンジルメチルケタール、ベンゾフェノン等のラジカル光重合開始剤、CF3COOH等のプロトン酸、BF3、AlCl3等のルイス酸等のカチオン重合触媒、ブチルリチウム、ナトリウムナフタレン、リチウムアルコキシド等のアニオン重合触媒等を用いることも開示されている。 Although not directly aimed at strengthening the catalyst layer, Patent Document 1 listed below improves the bonding state between the polymer electrolyte membrane and the electrode catalyst layer to reduce internal resistance, and provides a three-phase interface. In order to realize a high-power solid polymer fuel cell by increasing the reaction area, the polymer electrolyte membrane and the electrode catalyst layer are provided, and at least one of the polymer electrolyte membranes is formed. A membrane-electrode assembly in which a part of the electrode catalyst layer is infiltrated, wherein the polymer electrolyte membrane is obtained by polymerizing a composition containing a compound having at least proton conductivity and a compound having activity against active energy rays A membrane electrode assembly for a polymer electrolyte fuel cell is disclosed. Here, specific examples of active energy rays include electron beams, gamma rays, plasma, ultraviolet rays, and X-rays, and radical polymerization polymerization initiators such as azobisisobutyronitrile and benzoyl peroxide as polymerization initiators. Radical photopolymerization initiators such as benzylmethyl ketal and benzophenone, protonic acids such as CF 3 COOH, cationic polymerization catalysts such as Lewis acids such as BF 3 and AlCl 3 , and anionic polymerization catalysts such as butyl lithium, sodium naphthalene and lithium alkoxide Etc. are also disclosed.

特開2005−108604号公報JP 2005-108604 A

従来の固体高分子型燃料電池を構成する触媒層が、脆くて、機械的強度が十分ではないという問題点に鑑み、本発明は、プロトン伝導性、ガス拡散性に代表される燃料電池触媒層に必要な物性を損なうことなく、耐擦傷性及び硬度のような機械的強度を向上させた触媒層、及びその形成方法を提供することを目的とする。   In view of the problem that a catalyst layer constituting a conventional polymer electrolyte fuel cell is brittle and mechanical strength is not sufficient, the present invention provides a fuel cell catalyst layer represented by proton conductivity and gas diffusibility. It is an object of the present invention to provide a catalyst layer having improved mechanical strength such as scratch resistance and hardness, and a method for forming the same without impairing physical properties necessary for the above.

本発明者は、触媒層中に特定の方法により架橋性高分子骨格を形成することで上記課題が解決されることを見出し、本発明に到達した。   The present inventor has found that the above problem can be solved by forming a crosslinkable polymer skeleton in the catalyst layer by a specific method, and has reached the present invention.

即ち、第1に、本発明は、触媒層中にカチオン重合性モノマーを重合してなる架橋性高分子骨格が存在することを特徴とする固体高分子型燃料電池用触媒層である。   That is, first, the present invention is a catalyst layer for a solid polymer fuel cell, characterized in that a crosslinkable polymer skeleton formed by polymerizing a cationic polymerizable monomer is present in the catalyst layer.

第2に、本発明は、固体高分子型燃料電池用触媒層の形成方法の発明であって、触媒粒子と高分子電解質とカチオン重合性モノマーを含み重合開始剤を含まない触媒スラリーを用いて触媒層を形成し、該触媒層に熱エネルギーを付与して該カチオン重合性モノマーを重合することを特徴とする。   Second, the present invention is an invention of a method for forming a catalyst layer for a solid polymer fuel cell, using a catalyst slurry containing catalyst particles, a polymer electrolyte, and a cationic polymerizable monomer, and no polymerization initiator. A catalyst layer is formed, and the cationic polymerizable monomer is polymerized by applying thermal energy to the catalyst layer.

本発明の方法によって形成された固体高分子型燃料電池用触媒層は、プロトン伝導性、ガス拡散性に代表される燃料電池触媒層に必要な物性を損なうことなく、耐擦傷性及び硬度のような機械的強度が向上しており、燃料電池製造時の取り扱いや、燃料電池の長期間の運転に高度に対応できる。   The catalyst layer for a polymer electrolyte fuel cell formed by the method of the present invention does not deteriorate the physical properties required for a fuel cell catalyst layer typified by proton conductivity and gas diffusibility. The mechanical strength is improved, and it is highly capable of handling during fuel cell manufacturing and long-term operation of the fuel cell.

本発明では、先ず、酸により重合が開始するような(カチオン重合性)モノマーを燃料電池用触媒インクにあらかじめ添加し、そのインクを用いて触媒層を形成させる。次に、上記方法にて形成した触媒層に外部から熱エネルギーを加える。この熱がモノマーの重合を促進し、触媒層中にポリマー骨格が形成される。ポリマー化の方式としては高分子化により鎖長が増大するような方式、すなわちオキシラン等をモノマーとして用いるカチオン重合が最適である。カチオン重合を用いることにより、燃料電池においては触媒インクに混入させる高分子電解質樹脂自身のプロトン酸性を利用することが可能となるため重合開始剤を使用する必要がない。   In the present invention, first, a (cation polymerizable) monomer that starts polymerization with an acid is added in advance to the catalyst ink for a fuel cell, and a catalyst layer is formed using the ink. Next, heat energy is applied from the outside to the catalyst layer formed by the above method. This heat accelerates the polymerization of the monomer, and a polymer skeleton is formed in the catalyst layer. As a polymerization method, a method in which the chain length is increased by polymerization, that is, cationic polymerization using oxirane or the like as a monomer is optimal. By using cationic polymerization, in the fuel cell, it is possible to use the proton acidity of the polymer electrolyte resin itself mixed in the catalyst ink, so there is no need to use a polymerization initiator.

本発明により、1)架橋したポリマーが触媒層内で骨格となり、運転状況により乾湿サイクルがMEAへ加わった場合でも、変形(収縮膨張)を抑制することによりMEAの機械的劣化を抑制するとともに、2)低温下のMEA、特に触媒層内部で凍結した水の体積膨張による触媒層のダメージ(特に亀裂発生)を抑制することができる。   According to the present invention, 1) the cross-linked polymer becomes a skeleton in the catalyst layer, and even when a wet and dry cycle is applied to the MEA depending on the operating conditions, the mechanical deterioration of the MEA is suppressed by suppressing deformation (shrinkage expansion), 2) The damage (especially the occurrence of cracks) of the catalyst layer due to the volume expansion of MEA at a low temperature, in particular, the volume of water frozen inside the catalyst layer can be suppressed.

以下、本発明の固体高分子型燃料電池用触媒層の形成方法を工程順に詳述する。
(1)触媒微粒子、水素イオン導電性を有する高分子電解質の溶液に、水、アルコール類などの溶媒からなる触媒分散インクを作成する。
(2)(1)で作成した分散液にカチオン重合性モノマーを加える。カチオン重合の特徴はラジカル重合のように水で失活しない、重合収縮が発生しないことである。又、(1)で加えた高分子電解質溶液のプロトン酸性を利用して重合を進行させることが可能なため、重合開始剤を用いる必要がない。
(3)(2)を攪拌しながらドクターブレード法、スクリーン印刷法やスプレー法を用いてPTFEのような間接基材上に間接的に触媒層を形成後に、高分子電解質膜へ触媒層を転写、またはカーボンペーパー、高分子電解質膜上に触媒層を直接形成する。
(4)(3)で形成した触媒層を100℃以下、最適には表面温度を50〜60℃にすることにより、インクの流動性を低下させる。インク組成との兼ね合いで一概に温度を規定することは困難であるが、60℃以上の熱板を用いて一気に加熱行うと触媒層にクラックが発生する場合が多い。
(5)転写では高分子電解質膜に触媒層を転写、またはその後に行うカーボンペーパーを接合する工程で、電解質膜やカーボンペーパー上に触媒層を形成した場合は、高分子電解質膜を中心にして触媒層、カーボンペーパーを熱圧着する工程でカチオン重合を促進し、触媒層内にポリマー骨格を有する固体高分子型燃料電池を作製する。ホットプレスの温度は硬化を促進するために高温であることが望ましいが触媒材料の活性を損なわないようにするために160℃以下が望ましく、100〜130℃が最適である。プレス圧には規定はないが触媒層と高分子電解質膜、カーボンペーパーが十分接合するような圧力を選択する必要がある。
Hereinafter, the method for forming a catalyst layer for a polymer electrolyte fuel cell of the present invention will be described in detail in the order of steps.
(1) A catalyst-dispersed ink comprising a solvent such as water or alcohol is prepared in a solution of catalyst fine particles and a polymer electrolyte having hydrogen ion conductivity.
(2) A cationically polymerizable monomer is added to the dispersion prepared in (1). The feature of cationic polymerization is that it does not deactivate with water unlike radical polymerization, and polymerization shrinkage does not occur. In addition, since polymerization can proceed by utilizing the proton acidity of the polymer electrolyte solution added in (1), it is not necessary to use a polymerization initiator.
(3) Transferring the catalyst layer to the polymer electrolyte membrane after forming the catalyst layer indirectly on an indirect substrate such as PTFE using the doctor blade method, screen printing method or spray method while stirring (2) Alternatively, the catalyst layer is formed directly on the carbon paper or polymer electrolyte membrane.
(4) The fluidity of the ink is lowered by setting the catalyst layer formed in (3) to 100 ° C. or less, and optimally the surface temperature to 50 to 60 ° C. Although it is difficult to generally define the temperature in consideration of the ink composition, cracks often occur in the catalyst layer when heated at once using a hot plate of 60 ° C. or higher.
(5) In the transfer process, the catalyst layer is transferred to the polymer electrolyte membrane, or when the catalyst paper is formed on the electrolyte membrane or carbon paper in the subsequent step of joining the carbon paper to the polymer electrolyte membrane. Cationic polymerization is promoted in the step of thermocompression bonding the catalyst layer and carbon paper, and a polymer electrolyte fuel cell having a polymer skeleton in the catalyst layer is produced. The temperature of the hot press is desirably a high temperature in order to accelerate curing, but is desirably 160 ° C. or less, and optimally 100 to 130 ° C. so as not to impair the activity of the catalyst material. Although the press pressure is not specified, it is necessary to select a pressure at which the catalyst layer, the polymer electrolyte membrane, and the carbon paper are sufficiently bonded.

なお、上記特許文献1に開示の発明は、本発明の如く触媒層の強化を目的とするものではない点、及び高分子電解質膜の少なくとも一部が電極触媒層に滲入している膜電極接合体であり、触媒層の強化については全く考慮していない点、触媒層に悪影響を与えることが懸念される活性エネルギー線や種々の重合開始剤を用いる点で、本発明とは根本的に相違している。即ち、高周波の電子線などを照射すると電界が集中し、火花放電やアーク放電、コロナ放電、グロー放電などの放電現象が発生しやすく、このような放電を押さえるため、出力や印加時間を短くする必要があり電解質樹脂の硬化が促進しない問題がある。又、重合開始剤を用いるとコンタミとなり得る可能性が高い。   The invention disclosed in Patent Document 1 is not intended to reinforce the catalyst layer as in the present invention, and membrane electrode bonding in which at least a part of the polymer electrolyte membrane penetrates into the electrode catalyst layer It is fundamentally different from the present invention in that it does not consider the reinforcement of the catalyst layer at all, and uses active energy rays and various polymerization initiators that are likely to adversely affect the catalyst layer. is doing. That is, when an electron beam of high frequency is irradiated, the electric field is concentrated, and discharge phenomena such as spark discharge, arc discharge, corona discharge, glow discharge, etc. are likely to occur. To suppress such discharge, output and application time are shortened. There is a problem that the curing of the electrolyte resin is not promoted. In addition, when a polymerization initiator is used, there is a high possibility that contamination may occur.

以下、本発明の実施例を説明する。
(手順1)
貴金属の担持された炭素粒子に水を加えよく混ぜる。さらにアイオノマー溶液(Nafion(商標名)20wt%溶液、Aldrichi社製)とエタノールを加えた後、超音波分散機分散機(UH−300、SMT社製、商品名)を用いて触媒インクを作成した。触媒インク組成は、触媒;10%、水;40%、エタノール;44%、アイオノマー;6%である。
Examples of the present invention will be described below.
(Procedure 1)
Add water to the precious metal supported carbon particles and mix well. Further, an ionomer solution (Nafion (trade name) 20 wt% solution, manufactured by Aldrich) and ethanol were added, and then a catalyst ink was prepared using an ultrasonic disperser (UH-300, manufactured by SMT, product name). . The catalyst ink composition is: catalyst; 10%, water; 40%, ethanol; 44%, ionomer; 6%.

(手順2)
手順1にて作成したインクにジ[1−エチル(3−オキセタニル)]メチルエーテル(東亜合成(株)製、アロンオキセタンOXT−221)20部、エポキシ化ブタンテトラカルボン酸テトラキス−(3−シクロヘキセニルメチル)修飾ε−カプロラクトン(ダイセル化学工業(株)製、エポリードGT401)20部、1,2:8,9ジエポキシリモネン(ダイセル化学工業(株)製、C3000)60部からなるモノマー混合物を加えた。OXT−221とC3000を用いることにより構造に可携性を、GT401を用いることにより強靭性を付与した。目標とする物性によりモノマー混合物の組成を自由に変えることができる。触媒インクヘの添加量は、XT−221;20%、GT401;20%、C3000;60%である。
(Procedure 2)
To the ink prepared in Procedure 1, 20 parts of di [1-ethyl (3-oxetanyl)] methyl ether (Aron Oxetane OXT-221, manufactured by Toagosei Co., Ltd.), epoxidized butanetetracarboxylic acid tetrakis- (3-cyclo A monomer mixture consisting of 20 parts of hexenylmethyl) -modified ε-caprolactone (Daicel Chemical Industries, Ltd., Epollide GT401), 1,2: 8,9 diepoxy limonene (Daicel Chemical Industries, Ltd., C3000) 60 parts. added. Portability was imparted to the structure by using OXT-221 and C3000, and toughness was imparted by using GT401. The composition of the monomer mixture can be freely changed according to the target physical properties. The addition amount to the catalyst ink is XT-221; 20%, GT401; 20%, C3000; 60%.

(手順3)
上記手順(1+2;実施例)及び手順(1;比較例)により作成された硬化性モノマー含有触媒インクをスプレー法により高分子電解膜上へ塗布し触媒層を形成する。このとき、高分子電解質膜は50℃の熱板上に固定した状態で実施した。熱板上の高分子電解質膜上で触媒層形成を行うことにより、乾燥工程を経ることなくインクの流動性を低下させた。同様の作業を高分子電解質膜を中心として両極について行った。
(Procedure 3)
A curable monomer-containing catalyst ink prepared by the above procedure (1 + 2; Examples) and procedure (1; Comparative Example) is applied onto the polymer electrolyte membrane by a spray method to form a catalyst layer. At this time, the polymer electrolyte membrane was fixed on a hot plate at 50 ° C. By forming the catalyst layer on the polymer electrolyte membrane on the hot plate, the fluidity of the ink was lowered without going through the drying step. The same operation was performed for both electrodes with a focus on the polymer electrolyte membrane.

(手順4)
手順3にて作成した電解質膜触媒層接合体の両側からカーボンペーパーを130℃、1MPa、5分ホットプレスを行い、重合を完了させ膜電極接合体を得た。
(Procedure 4)
The carbon paper was hot-pressed from both sides of the electrolyte membrane / catalyst layer assembly produced in Procedure 3 at 130 ° C., 1 MPa, 5 minutes to complete the polymerization to obtain a membrane / electrode assembly.

(手順5)
上記の実施例および比較例で得られた膜電極接合体をセパレーターに挟み、燃料電池評価装置(北斗電工製)を用いて燃料電池特性を評価し0.5A/cmの電圧を比較した。
(Procedure 5)
The membrane electrode assemblies obtained in the above Examples and Comparative Examples were sandwiched between separators, and fuel cell characteristics were evaluated using a fuel cell evaluation apparatus (manufactured by Hokuto Denko), and a voltage of 0.5 A / cm 2 was compared.

(手順6)
手順4で作成した膜電極接合体のカーボンペーパーをはがし、触媒層の硬度試験を行った。硬度試験はJiSK5600−5−4に準拠した。
(Procedure 6)
The carbon paper of the membrane / electrode assembly prepared in Procedure 4 was peeled off, and the hardness test of the catalyst layer was performed. The hardness test was based on JiSK5600-5-4.

(手順7)
氷点下での触媒層内部での水凝固を模擬するため、手順4で作成した膜電極接合体のカーボンペーパーをはがし、十分浸水後それぞれの温度で冷凍庫内に4h放置、その後室温に戻し触媒層の亀裂を顕微鏡にて観察した。
(Procedure 7)
In order to simulate the water coagulation inside the catalyst layer below freezing point, peel off the carbon paper of the membrane electrode assembly prepared in Step 4, and after leaving it sufficiently immersed in the freezer for 4 hours at each temperature, return to room temperature and return to room temperature. The crack was observed with a microscope.

下記表1に、モノマー比率を0〜40%に変化させた、硬化性モノマー含有触媒インク組成を示す。又、下記表2に、電圧と硬度試験結果を示す。さらに、表3に、低温処理における亀裂観察結果を示す。   Table 1 below shows the curable monomer-containing catalyst ink composition in which the monomer ratio was changed to 0 to 40%. Table 2 below shows the voltage and hardness test results. Furthermore, Table 3 shows the crack observation results in the low temperature treatment.

Figure 2010067368
Figure 2010067368

Figure 2010067368
Figure 2010067368

Figure 2010067368
Figure 2010067368

表1〜3の結果より、以下のことが分かった。性能と強度の両立を図る必要から、本発明におけるモノマー配合比では発明例4が最適である。上記のモノマー配合比は重合後の可撓性に注視して配合してあり、モノマーの配合を変えることにより更なる特性の向上が期待される。本発明により、性能を維持したまま触媒層の強度を著しく向上させることが可能となった。実セル条件における低温下での水の凍結による触媒層へのダメージの低減も本発明を応用することで可能となる。   From the results of Tables 1 to 3, the following was found. Since it is necessary to achieve both performance and strength, Invention Example 4 is optimal for the monomer blend ratio in the present invention. The above-mentioned monomer blending ratio is blended by paying attention to the flexibility after polymerization, and further improvement of characteristics is expected by changing the monomer blending. According to the present invention, the strength of the catalyst layer can be remarkably improved while maintaining the performance. By applying the present invention, it is possible to reduce damage to the catalyst layer due to freezing of water at low temperatures under actual cell conditions.

本発明の方法によって形成された固体高分子型燃料電池用触媒層は、プロトン伝導性、ガス拡散性に代表される燃料電池触媒層に必要な物性を損なうことなく、耐擦傷性及び硬度のような機械的強度が向上しており、燃料電池製造時の取り扱いや、燃料電池の長期間の運転に高度に対応できる。   The catalyst layer for a polymer electrolyte fuel cell formed by the method of the present invention does not deteriorate the physical properties required for a fuel cell catalyst layer typified by proton conductivity and gas diffusibility. The mechanical strength is improved, and it is highly capable of handling during fuel cell manufacturing and long-term operation of the fuel cell.

Claims (2)

触媒層中にカチオン重合性モノマーを重合してなる架橋性高分子骨格が存在することを特徴とする固体高分子型燃料電池用触媒層。   A catalyst layer for a polymer electrolyte fuel cell, characterized in that a crosslinkable polymer skeleton obtained by polymerizing a cationic polymerizable monomer is present in the catalyst layer. 触媒粒子と高分子電解質とカチオン重合性モノマーを含み重合開始剤を含まない触媒スラリーを用いて触媒層を形成し、該触媒層に熱エネルギーを付与して該カチオン重合性モノマーを重合することを特徴とする固体高分子型燃料電池用触媒層の形成方法。   Forming a catalyst layer using a catalyst slurry containing catalyst particles, a polymer electrolyte, and a cationic polymerizable monomer and no polymerization initiator, and applying thermal energy to the catalyst layer to polymerize the cationic polymerizable monomer. A method for forming a catalyst layer for a solid polymer fuel cell, which is characterized.
JP2008230073A 2008-09-08 2008-09-08 Catalyst layer for polymer electrolyte fuel cell and method for forming the same Pending JP2010067368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008230073A JP2010067368A (en) 2008-09-08 2008-09-08 Catalyst layer for polymer electrolyte fuel cell and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008230073A JP2010067368A (en) 2008-09-08 2008-09-08 Catalyst layer for polymer electrolyte fuel cell and method for forming the same

Publications (1)

Publication Number Publication Date
JP2010067368A true JP2010067368A (en) 2010-03-25

Family

ID=42192801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008230073A Pending JP2010067368A (en) 2008-09-08 2008-09-08 Catalyst layer for polymer electrolyte fuel cell and method for forming the same

Country Status (1)

Country Link
JP (1) JP2010067368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035918A (en) * 2014-08-04 2016-03-17 本田技研工業株式会社 Fuel cell membrane-electrode assembly and polymer electrolyte fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016035918A (en) * 2014-08-04 2016-03-17 本田技研工業株式会社 Fuel cell membrane-electrode assembly and polymer electrolyte fuel cell

Similar Documents

Publication Publication Date Title
Yuca et al. A systematic investigation of polymer binder flexibility on the electrode performance of lithium-ion batteries
TW541749B (en) Resin composition for polymer solid electrolyte, polymer solid electrolyte, and polymer batteries
EP2131432A1 (en) Electrode binder, electrode, membrane-electrode assembly, and solid polymer fuel cell
WO2007089017A1 (en) Method for producing -so3h group-containing fluoropolymer and -so3h group-containing fluoropolymer
WO2005098875A1 (en) Electrolyte membrane, method for producing membrane electrode assembly, and fuel cell
JP2010146965A (en) Membrane-electrode assembly for solid polymer fuel cell, coating liquid for forming catalyst layer of solid polymer fuel cell, and manufacturing method for membrane-electrode assembly of solid polymer fuel cell
JP2004146279A (en) Electrolyte membrane and fuel cell using the electrolyte membrane
CN103107344B (en) The method of catalyst pulp and Kaolinite Preparation of Catalyst slurry and membrane electrode assembly
JP2004247091A (en) Electrolyte membrane electrode junction body and direct methanol type fuel cell
CN101074290A (en) Polyelectrolyte film and its manufacturing method
WO2017033685A1 (en) Method for producing liquid composition, method for producing coating liquid for forming catalyst layer, and method for producing membrane electrode assembly
JPWO2005076396A1 (en) Electrolyte membrane and fuel cell using the electrolyte membrane
CN1934736A (en) Electrolyte film and fuel cell
JP6241214B2 (en) Composition for forming fuel cell electrode and fuel cell using the same
CN110828869A (en) Fuel cell membrane electrode, preparation method thereof and fuel cell
JP2010067368A (en) Catalyst layer for polymer electrolyte fuel cell and method for forming the same
CN1731618A (en) Polymer electrolyte membrane and polymer electrolyte fuel cell
KR20080074455A (en) Bipolar plate for fuel cell
JP2011065838A (en) Membrane electrode assembly for solid-polymer fuel cell
JP4561214B2 (en) Electrolyte membrane
JP2005248114A (en) Silicon-containing polymer compound, composition for forming solid polymer electrolyte membrane, solid polymer electrolyte membrane and its production method and fuel cell
JP2004253336A (en) Electrolyte film and fuel cell using it
JP2007048543A (en) Electrolyte film and direct liquid fuel type fuel cell
JP2004253183A (en) Manufacturing method of electrolyte membrane, and fuel cell
EP1569294A2 (en) Electrolyte membrane-forming liquid curable resin composition, and preparation of electrolyte membrane and electrolyte membrane/electrode assembly