JP2010067365A - Method for manufacturing composition for positive electrode of nonaqueous electrolyte secondary battery - Google Patents

Method for manufacturing composition for positive electrode of nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2010067365A
JP2010067365A JP2008229984A JP2008229984A JP2010067365A JP 2010067365 A JP2010067365 A JP 2010067365A JP 2008229984 A JP2008229984 A JP 2008229984A JP 2008229984 A JP2008229984 A JP 2008229984A JP 2010067365 A JP2010067365 A JP 2010067365A
Authority
JP
Japan
Prior art keywords
positive electrode
slurry
active material
conductive material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008229984A
Other languages
Japanese (ja)
Other versions
JP5334506B2 (en
Inventor
Minoru Sawai
実 澤井
Ryuichi Akagi
赤木  隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Nissan Motor Co Ltd
Original Assignee
Kao Corp
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Nissan Motor Co Ltd filed Critical Kao Corp
Priority to JP2008229984A priority Critical patent/JP5334506B2/en
Publication of JP2010067365A publication Critical patent/JP2010067365A/en
Application granted granted Critical
Publication of JP5334506B2 publication Critical patent/JP5334506B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a composition for a positive electrode of a nonaqueous electrolyte secondary battery capable of decreasing diffusion resistance of active material ions, to provide slurry for the positive electrode, to provide the positive electrode manufactured by employing this, and to provide the nonaqueous electrolyte secondary battery using the positive electrode. <P>SOLUTION: The method for manufacturing the composition for the positive electrode of the nonaqueous electrolyte secondary battery includes: a process 1 obtaining slurry 1 by mixing positive electrode active material particles having specific physical properties and a conductive material 1 having specific physical properties in a solvent 1; and a process 2 obtaining slurry 2 by kneading the positive electrode active material particles, the conductive material 1, a binder and a solvent 2 after the process 1. The kneading in the process 2 is conducted so that the shearing stress to a shear rate in a range of 0.001-0.1 s<SP>-1</SP>of the shear rate is 1,000-40,000 mPa and the gradient ▵ of the shearing stress in the range of the shear rate is -0.30 to 0.30 in rheology characteristics of the slurry 2 measured with a rheology measuring device. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池等の非水電解質二次電池の正極用組成物の製造方法、非水電解質二次電池の正極用スラリー及びこれを用いて作製された正極、並びに当該正極を用いた非水電解質二次電池に関する。   The present invention relates to a method for producing a composition for a positive electrode of a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, a slurry for a positive electrode of a non-aqueous electrolyte secondary battery, a positive electrode produced using the slurry, and the positive electrode. The present invention relates to the used nonaqueous electrolyte secondary battery.

非水電解質二次電池は、従来のニッケルカドミウム二次電池などに比べて作動電圧が高く、かつエネルギー密度が高いという特徴を有し、モバイル電子機器や電気自動車用バッテリー等の電源として広く利用されている。   Non-aqueous electrolyte secondary batteries are characterized by a higher operating voltage and higher energy density than conventional nickel cadmium secondary batteries, and are widely used as power sources for mobile electronic devices and batteries for electric vehicles. ing.

非水電解質二次電池の一般的な構造と作用機構について、リチウムイオン二次電池を例に説明する。リチウムイオン二次電池では、リチウム塩を非水溶媒中に含有する電解液が用いられ、セパレータを介して正極活物質を備える正極と負極活物質を備える負極とが隔てられた構造となっている。また、正極では、正極活物質自体の導電性が低いことから、導電性を向上させるために、カーボンブラック等の導電性物質が添加されている。   The general structure and working mechanism of a non-aqueous electrolyte secondary battery will be described taking a lithium ion secondary battery as an example. In a lithium ion secondary battery, an electrolytic solution containing a lithium salt in a non-aqueous solvent is used, and a positive electrode including a positive electrode active material and a negative electrode including a negative electrode active material are separated via a separator. . In the positive electrode, since the conductivity of the positive electrode active material itself is low, a conductive material such as carbon black is added to improve the conductivity.

一般に、上記のような正極は、LiMn24等の正極活物質、カーボンブラック等の導電性物質、バインダー、及び溶媒を混合したスラリーを集電体となる金属箔に塗布・乾燥することにより製造される。その結果、正極の微細構造は、導電性の低い正極活物質の粒子と、これより粒径の小さい導電性物質の粒子とが分散・結合した構造となる。 In general, the positive electrode as described above is obtained by applying and drying a slurry obtained by mixing a positive electrode active material such as LiMn 2 O 4 , a conductive material such as carbon black, a binder, and a solvent onto a metal foil as a current collector. Manufactured. As a result, the fine structure of the positive electrode has a structure in which particles of a positive electrode active material having low conductivity and particles of a conductive material having a smaller particle diameter are dispersed and bonded.

リチウムイオン二次電池の正極では、放電時にリチウムイオンが正極活物質内に吸蔵されるが、その際、正極側へ拡散するリチウムイオンと正極集電体から導電した電子との作用によって放電が進行する。また、充電時には、正極活物質から、電子とリチウムイオンとが放出される。   In the positive electrode of a lithium ion secondary battery, lithium ions are occluded in the positive electrode active material at the time of discharge. At that time, discharge proceeds by the action of lithium ions diffusing to the positive electrode side and electrons conducted from the positive electrode current collector. To do. Further, at the time of charging, electrons and lithium ions are released from the positive electrode active material.

正極を形成するためのスラリーの調製方法として、下記の特許文献1には、正極活物質、導電剤およびバインダーを五酸化バナジウムのアルコール溶液に分散させる方法が開示されており、分散させる具体的な手段として、超音波洗浄器、ミキサー、ボールミル等が例示されている。   As a method for preparing a slurry for forming a positive electrode, the following Patent Document 1 discloses a method of dispersing a positive electrode active material, a conductive agent, and a binder in an alcohol solution of vanadium pentoxide. Examples of means include an ultrasonic cleaner, a mixer, and a ball mill.

また、下記の特許文献2には、活物質粒子が導電剤を含む結着剤被膜で被覆されるように、導電剤と活物質粒子とを超音波処理により結着剤中に分散させて合剤(スラリー)を調製する方法が開示されている。   Further, in Patent Document 2 below, a conductive agent and active material particles are dispersed in a binder by ultrasonic treatment so that the active material particles are covered with a binder film containing a conductive agent. A method for preparing an agent (slurry) is disclosed.

特開平5−29022号公報JP-A-5-29022 特開2003−331823号公報JP 2003-331823 A

上記特許文献1及び2には、スラリーを調製する際に、超音波処理などの分散手段を使用することは記載されているが、スラリーをどのような状態まで混練するかについては記載されておらず、スラリーのレオロジー特性とリチウムイオンの拡散抵抗との関係についても記載されていない。   In the above Patent Documents 1 and 2, it is described that a dispersion means such as ultrasonic treatment is used when preparing a slurry, but it does not describe to what state the slurry is kneaded. Furthermore, there is no description about the relationship between the rheological properties of the slurry and the diffusion resistance of lithium ions.

本発明は、正極活物質粒子と導電性物質を含有するスラリーに適切なレオロジー特性を付与し、前記スラリー内の正極活物質粒子と導電性物質によって形成された適切な三次元網目構造に基づくと考えられる活物質イオンの拡散抵抗の大幅な低減により、電池の内部抵抗を低減できる非水電解質二次電池の正極用組成物の製造方法、非水電解質二次電池の正極用スラリー及びこれを用いて作製された正極、並びに当該正極を用いた非水電解質二次電池を提供する。   The present invention provides appropriate rheological properties to a slurry containing positive electrode active material particles and a conductive material, and is based on an appropriate three-dimensional network structure formed by the positive electrode active material particles and the conductive material in the slurry. A method for producing a composition for a positive electrode of a nonaqueous electrolyte secondary battery capable of reducing the internal resistance of the battery by drastically reducing the diffusion resistance of active material ions, a slurry for a positive electrode of a nonaqueous electrolyte secondary battery, and the same And a non-aqueous electrolyte secondary battery using the positive electrode.

本発明者らは、電池の特性、特に高速放電性能を向上させるためには、正極活物質の微細構造を適正化し、正極内における活物質イオンの拡散抵抗を低減することが重要であると考え、特定組成のスラリーを特定のレオロジー特性が得られるまで混練することにより、安定した微細構造を形成できることを見出し、本発明を完成するに至った。   The present inventors consider that it is important to optimize the microstructure of the positive electrode active material and reduce the diffusion resistance of the active material ions in the positive electrode in order to improve battery characteristics, particularly high-speed discharge performance. The inventors have found that a stable fine structure can be formed by kneading a slurry having a specific composition until a specific rheological property is obtained, and have completed the present invention.

即ち、本発明の非水電解質二次電池の正極用組成物の製造方法は、正極活物質粒子及び導電性物質1を溶媒1中で混合し、前記正極活物質粒子、前記導電性物質1及び前記溶媒1を含むスラリー1を得る工程1と、この工程1の後に、前記正極活物質粒子、前記導電性物質1、バインダー及び溶媒2を混練して前記正極活物質粒子、前記導電性物質1、前記バインダー及び前記溶媒2を含有するスラリー2を得る工程2とを有する非水電解質二次電池の正極用組成物の製造方法であって、
前記正極活物質粒子は、BET比表面積が1〜6m/gであり、水銀ポロシメーターで測定した全細孔容積が0.1〜1cc/gであり、水銀ポロシメーターで測定した細孔分布において、最大の微分細孔容積値を与えるピーク細孔径1が細孔径0.01〜8μmの範囲に存在し、かつ前記最大の微分細孔容積値の5%以上の微分細孔容積値を与えるピーク細孔径2が細孔径0.01μm以上で前記ピーク細孔径1未満の範囲に存在し、レーザー回折/散乱式粒度分布測定による平均粒径が前記ピーク細孔径1以上で20μm以下であり、
前記導電性物質1は、前記正極活物質粒子と混合する際の平均粒径が1〜50μmであり、自己凝集性を有し、前記スラリー1中の含有量が前記正極活物質粒子100重量部に対して3〜20重量部であり、
レオロジー測定装置で測定した前記スラリー2のレオロジー特性において、剪断速度0.001〜0.1s−1の範囲における剪断速度に対する剪断応力が1000〜40000mPa、かつ前記剪断速度範囲における剪断応力の勾配Δが−0.30〜0.30となるように、前記工程2の混練を行うことを特徴とする。
That is, in the method for producing a positive electrode composition for a non-aqueous electrolyte secondary battery according to the present invention, positive electrode active material particles and conductive material 1 are mixed in solvent 1, and the positive electrode active material particles, conductive material 1 and Step 1 for obtaining a slurry 1 containing the solvent 1, and after the step 1, the positive electrode active material particles, the conductive material 1, a binder and a solvent 2 are kneaded to form the positive electrode active material particles and the conductive material 1. And a step 2 for obtaining a slurry 2 containing the binder and the solvent 2, and a method for producing a composition for a positive electrode of a non-aqueous electrolyte secondary battery,
The positive electrode active material particles have a BET specific surface area of 1 to 6 m 2 / g, a total pore volume measured with a mercury porosimeter of 0.1 to 1 cc / g, and a pore distribution measured with a mercury porosimeter. The peak fine diameter 1 that gives the maximum differential pore volume value is in the range of 0.01 to 8 μm, and the peak fine diameter gives a differential pore volume value that is 5% or more of the maximum differential pore volume value. The pore diameter 2 is present in the range of the pore diameter of 0.01 μm or more and less than the peak pore diameter of 1, and the average particle diameter by laser diffraction / scattering particle size distribution measurement is from the peak pore diameter of 1 to 20 μm,
The conductive material 1 has an average particle size of 1 to 50 μm when mixed with the positive electrode active material particles, has self-aggregation, and the content in the slurry 1 is 100 parts by weight of the positive electrode active material particles. 3 to 20 parts by weight with respect to
In the rheological properties of the slurry 2 measured by the rheology measuring device, the shear stress with respect to the shear rate in the range of the shear rate of 0.001 to 0.1 s −1 is 1000 to 40000 mPa, and the shear stress gradient Δ in the shear rate range is The kneading in the step 2 is performed so as to be −0.30 to 0.30.

また、本発明の非水電解質二次電池の正極用スラリーは、正極活物質粒子、導電性物質1、バインダー及び溶媒を含有する非水電解質二次電池の正極用スラリーであって、
前記正極活物質粒子は、BET比表面積が1〜6m/gであり、水銀ポロシメーターで測定した全細孔容積が0.1〜1cc/gであり、水銀ポロシメーターで測定した細孔分布において、最大の微分細孔容積値を与えるピーク細孔径1が細孔径0.01〜8μmの範囲に存在し、かつ前記最大の微分細孔容積値の5%以上の微分細孔容積値を与えるピーク細孔径2が細孔径0.01μm以上で前記ピーク細孔径1未満の範囲に存在し、レーザー回折/散乱式粒度分布測定による平均粒径が前記ピーク細孔径1以上で20μm以下であり、
前記導電性物質1は、前記正極活物質粒子と混合する際の平均粒径が1〜50μmであり、自己凝集性を有し、前記正極用スラリー中の含有量が前記正極活物質粒子100重量部に対して3〜20重量部であり、
レオロジー測定装置で測定した前記正極用スラリーのレオロジー特性において、剪断速度0.001〜0.1s−1の範囲における剪断速度に対する剪断応力が1000〜40000mPa、かつ前記剪断速度範囲における剪断応力の勾配Δが−0.30〜0.30であることを特徴とする。
The positive electrode slurry of the nonaqueous electrolyte secondary battery of the present invention is a positive electrode slurry of a nonaqueous electrolyte secondary battery containing positive electrode active material particles, conductive material 1, binder and solvent,
The positive electrode active material particles have a BET specific surface area of 1 to 6 m 2 / g, a total pore volume measured with a mercury porosimeter of 0.1 to 1 cc / g, and a pore distribution measured with a mercury porosimeter. The peak fine diameter 1 that gives the maximum differential pore volume value is in the range of 0.01 to 8 μm, and the peak fine diameter gives a differential pore volume value that is 5% or more of the maximum differential pore volume value. The pore diameter 2 is present in the range of the pore diameter of 0.01 μm or more and less than the peak pore diameter of 1, and the average particle diameter by laser diffraction / scattering particle size distribution measurement is from the peak pore diameter of 1 to 20 μm,
The conductive material 1 has an average particle size of 1 to 50 μm when mixed with the positive electrode active material particles, has a self-aggregation property, and the content in the positive electrode slurry is 100 weights of the positive electrode active material particles. 3 to 20 parts by weight with respect to parts,
In the rheological properties of the positive electrode slurry measured with a rheology measuring apparatus, the shear stress with respect to the shear rate in the range of the shear rate of 0.001 to 0.1 s −1 is 1000 to 40000 mPa and the shear stress gradient Δ in the shear rate range. Is −0.30 to 0.30.

また、本発明の非水電解質二次電池の正極は、上記本発明の正極用スラリーの乾燥体を含有してなる非水電解質二次電池の正極である。   Moreover, the positive electrode of the non-aqueous electrolyte secondary battery of the present invention is a positive electrode of a non-aqueous electrolyte secondary battery comprising the above-described dried slurry for positive electrode of the present invention.

また、本発明の非水電解質二次電池は、上記本発明の正極を備える非水電解質二次電池である。   Moreover, the nonaqueous electrolyte secondary battery of this invention is a nonaqueous electrolyte secondary battery provided with the positive electrode of the said invention.

なお、本発明における各種の物性値は、特に断りがない限り、実施例に記載の測定方法で測定される値である。   In addition, unless otherwise indicated, the various physical-property values in this invention are values measured by the measuring method as described in an Example.

本発明の製造方法によれば、正極活物質粒子と導電性物質を含有するスラリーに適切なレオロジー特性を付与し、前記スラリー内の正極活物質粒子と導電性物質によって形成された適切な三次元網目構造に基づくと考えられる活物質イオンの拡散抵抗の大幅な低減により、電池の内部抵抗を低減できる非水電解質二次電池の正極用組成物の製造方法を提供できる。また、本発明の正極用スラリー、正極及び非水電解質二次電池によれば、上記と同様の理由により、電池の内部抵抗を低減できる非水電解質二次電池を提供できる。   According to the production method of the present invention, appropriate rheological properties are imparted to the slurry containing the positive electrode active material particles and the conductive material, and the appropriate three-dimensional formed by the positive electrode active material particles and the conductive material in the slurry. It is possible to provide a method for producing a composition for a positive electrode of a non-aqueous electrolyte secondary battery that can reduce the internal resistance of the battery by greatly reducing the diffusion resistance of the active material ions considered to be based on the network structure. Moreover, according to the slurry for positive electrodes, the positive electrode, and the nonaqueous electrolyte secondary battery of the present invention, it is possible to provide a nonaqueous electrolyte secondary battery that can reduce the internal resistance of the battery for the same reason as described above.

本発明の正極用組成物の製造方法は、正極活物質粒子及び導電性物質1を溶媒1中で混合し、前記正極活物質粒子、前記導電性物質1及び前記溶媒1を含むスラリー1を得る工程1と、この工程1の後に、前記正極活物質粒子、前記導電性物質1、バインダー及び溶媒2を混練して前記正極活物質粒子、前記導電性物質1、前記バインダー及び前記溶媒2を含有するスラリー2を得る工程2とを有する。前記正極活物質粒子は、後述する特定の物性を有する多孔性正極活物質粒子である。また、前記導電性物質1は、後述する特定の物性を有する自己凝集性導電性物質である。本発明の製造方法は、後述するように、これらを所定の比率で混合し(工程1)、バインダーと共に溶媒中で特定のレオロジー特性が得られるまで混練する(工程2)ことにより、多孔性正極活物質粒子の多孔構造と、自己凝集性導電性物質の適切な凝集形態による三次元網目構造とにより安定した微細構造が得られると考えられる。よって、本発明によれば、活物質イオンの移動が円滑となり、正極内における活物質イオンの拡散抵抗を大幅に低減できる正極用組成物が得られると考えられる。なお、上記工程1及び2のいずれにおいても、各成分を混合する順序については特に限定されない。   In the method for producing a positive electrode composition of the present invention, positive electrode active material particles and a conductive material 1 are mixed in a solvent 1 to obtain a slurry 1 containing the positive electrode active material particles, the conductive material 1 and the solvent 1. Step 1 and after Step 1, the positive electrode active material particles, the conductive material 1, the binder and the solvent 2 are kneaded to contain the positive electrode active material particles, the conductive material 1, the binder and the solvent 2 And obtaining a slurry 2 to be processed 2. The positive electrode active material particles are porous positive electrode active material particles having specific physical properties to be described later. The conductive substance 1 is a self-aggregating conductive substance having specific physical properties to be described later. In the production method of the present invention, as described later, these are mixed at a predetermined ratio (step 1), and kneaded with a binder in a solvent until a specific rheological property is obtained (step 2). It is considered that a stable fine structure can be obtained by the porous structure of the active material particles and the three-dimensional network structure by an appropriate aggregation form of the self-aggregating conductive material. Therefore, according to the present invention, it is considered that the positive electrode composition can be obtained in which the movement of the active material ions becomes smooth and the diffusion resistance of the active material ions in the positive electrode can be greatly reduced. In either of the steps 1 and 2, the order of mixing the components is not particularly limited.

前記正極活物質粒子を構成する材料としては、リチウム複合酸化物が好適に用いられる。リチウム複合酸化物としては、高電位を有し出力特性を確保する観点から、好ましくは、リチウムイオンを放出できるマンガン酸リチウム(LiMn24等)などのLi・Mn系複合酸化物、コバルト酸リチウム(LiCoO2等)などのLi・Co系複合酸化物、ニッケル酸リチウム(LiNiO2等)などのLi・Ni系複合酸化物、鉄酸リチウム(LiFeO2等)などのLi・Fe系複合酸化物などが挙げられる。なかでも、熱的安定性、及び容量、出力特性に優れるという観点から、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウムが好ましく、マンガン酸リチウムがより好ましい。 As a material constituting the positive electrode active material particles, lithium composite oxide is preferably used. The lithium composite oxide is preferably a Li · Mn composite oxide such as lithium manganate (such as LiMn 2 O 4 ) that can release lithium ions, and cobalt acid from the viewpoint of securing high output and output characteristics. Li / Co composite oxides such as lithium (LiCoO 2 etc.), Li / Ni composite oxides such as lithium nickelate (LiNiO 2 etc.), Li / Fe composite oxides such as lithium ferrate (LiFeO 2 etc.) Such as things. Of these, lithium cobaltate, lithium nickelate, and lithium manganate are preferable, and lithium manganate is more preferable from the viewpoint of excellent thermal stability, capacity, and output characteristics.

マンガン酸リチウムとしては、その結晶相が、スピネル型であることが好ましく、具体的には、X線回折測定により得られる主たるピークがJCPDS(Joint committee on powder diffraction standards):No.35−782に示されるLiMnと一致するか又は同等であればよい。 As the lithium manganate, the crystal phase is preferably a spinel type. Specifically, the main peak obtained by X-ray diffraction measurement is JCPDS (Joint Committee on Powder Diffraction Standards): No. It may be the same as or equivalent to LiMn 2 O 4 shown in 35-782.

前記正極活物質粒子の製造方法は、後述する特定の物性が得られる製法であれば、特に限定されないが、物性の制御が容易な噴霧造粒法、転動造粒法、圧縮造粒法、攪拌造粒法などが好ましく、粒径及び形状制御の観点から、噴霧造粒法がより好ましい。   The method for producing the positive electrode active material particles is not particularly limited as long as the specific physical properties described below can be obtained, but the spray granulation method, the rolling granulation method, the compression granulation method, in which the physical properties are easily controlled, An agitation granulation method is preferred, and a spray granulation method is more preferred from the viewpoint of particle size and shape control.

前記正極活物質粒子は、バインダーによる接着性を向上させる観点から、BET比表面積が1〜6m/gのものを用いる。同様の観点から、前記正極活物質粒子のBET比表面積は、1〜4m/gが好ましく、1〜2.5m/gがより好ましい。BET比表面積とは、活物質の反応界面の面積に相当し、また接着性に関与する有効面積にも相当する。BET比表面積が上記範囲内であれば、バインダーによる接着性が向上し、導電構造が保持されて電極の反応性が向上し、電池の内部抵抗を低減できると考えられる。 As the positive electrode active material particles, those having a BET specific surface area of 1 to 6 m 2 / g are used from the viewpoint of improving the adhesion by the binder. From the same viewpoint, BET specific surface area of the positive active material particles is preferably 1~4m 2 / g, 1~2.5m 2 / g is more preferable. The BET specific surface area corresponds to the area of the reaction interface of the active material and also corresponds to the effective area involved in the adhesion. If the BET specific surface area is within the above range, it is considered that the adhesion by the binder is improved, the conductive structure is maintained, the reactivity of the electrode is improved, and the internal resistance of the battery can be reduced.

前記正極活物質粒子のBET比表面積の調整は、正極活物質粒子を製造するための正極活物質原料粒子の平均一次粒子径及び平均凝集粒子径の調整、焼成温度の調整、焼成時間の調整などにより行うことができる。   Adjustment of the BET specific surface area of the positive electrode active material particles includes adjustment of the average primary particle diameter and average aggregate particle diameter of the positive electrode active material raw material particles for producing the positive electrode active material particles, adjustment of the firing temperature, adjustment of the firing time, etc. Can be performed.

正極活物質粒子間の空隙は、電解液の浸透性と活物質イオンの拡散を促進する観点から連続的であることが望ましい。そのためには、正極活物質原料粒子の平均一次粒子径が0.1〜5μmであることが好ましく、0.5〜3μmであることがより好ましく、0.5〜2μmであることが更に好ましい。同様の観点から、正極活物質原料粒子の平均凝集粒子径は、1〜20μmであることが好ましく、1〜15μmであることがより好ましく、1〜10μmであることが更に好ましい。   The gap between the positive electrode active material particles is preferably continuous from the viewpoint of promoting the permeability of the electrolytic solution and the diffusion of the active material ions. For this purpose, the average primary particle diameter of the positive electrode active material raw material particles is preferably 0.1 to 5 μm, more preferably 0.5 to 3 μm, and still more preferably 0.5 to 2 μm. From the same viewpoint, the average aggregate particle diameter of the positive electrode active material raw material particles is preferably 1 to 20 μm, more preferably 1 to 15 μm, and still more preferably 1 to 10 μm.

また、正極活物質粒子の形状安定性を確保し、接着性を低下させないためには、正極活物質粒子の内部が適度に多孔質であることが望ましい。正極活物質粒子が適度に多孔質となるには、正極活物質粒子が焼成によって焼結されて多孔粒子となることが好ましく、そのためには、焼成温度は、650〜950℃が好ましく、700〜900℃がより好ましく、750〜850℃が更に好ましく、焼成時間は、前記焼成温度で、5〜40時間が好ましく、5〜30時間がより好ましく、10〜30時間が更に好ましい。   Moreover, in order to ensure the shape stability of the positive electrode active material particles and not lower the adhesiveness, it is desirable that the inside of the positive electrode active material particles be moderately porous. In order for the positive electrode active material particles to be appropriately porous, the positive electrode active material particles are preferably sintered to become porous particles by firing. For this purpose, the firing temperature is preferably 650 to 950 ° C., and 700 to 900 ° C. Is more preferable, 750-850 degreeC is still more preferable, and the baking time is the said baking temperature, 5 to 40 hours are preferable, 5 to 30 hours are more preferable, and 10 to 30 hours are still more preferable.

さらに、前記多孔粒子は、正極活物質原料粒子と空孔形成用樹脂粒子とを水系溶媒中に混合したスラリーを、加温下で噴霧乾燥し、得られた前記正極活物質原料粒子と前記空孔形成用樹脂粒子とを含有する粉末を、空孔形成用樹脂粒子の分解温度以上で焼成して得たものであることが好ましい。前記正極活物質原料粒子は、上述した好適な一次粒子径及び好適な凝集粒子径を有する粒子であることが好ましい。前記空孔形成用樹脂粒子の平均粒径は、0.5〜10μmが好ましく、1〜9μmがより好ましく、2〜6μmが更に好ましい。   Furthermore, the porous particles are obtained by spray-drying a slurry prepared by mixing positive electrode active material raw material particles and pore forming resin particles in an aqueous solvent under heating, and obtaining the positive electrode active material raw material particles and the empty particles. It is preferable that the powder containing the pore-forming resin particles is obtained by firing at a temperature higher than the decomposition temperature of the pore-forming resin particles. The positive electrode active material raw material particles are preferably particles having the preferred primary particle size and the preferred aggregated particle size described above. The average particle diameter of the pore-forming resin particles is preferably 0.5 to 10 μm, more preferably 1 to 9 μm, and still more preferably 2 to 6 μm.

前記水系溶媒は、水、水と有機溶媒との混合溶媒等が好ましく、水がより好ましい。前記有機溶媒としては、メチルアルコール、エチルアルコール、プロピルアルコール等のアルキルアルコール類、アセトン、メチルエチルケトン等のアルキルケトン類が挙げられる。中でもアルコール類が好ましい。   The aqueous solvent is preferably water, a mixed solvent of water and an organic solvent, or the like, and more preferably water. Examples of the organic solvent include alkyl alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol, and alkyl ketones such as acetone and methyl ethyl ketone. Of these, alcohols are preferred.

前記空孔形成用樹脂粒子の分解温度は、250〜450℃が好ましく、280〜430℃がより好ましく、300〜400℃が更に好ましい。前記加温条件に関しては、熱風供給温度が、前記水系溶媒の沸点より10℃以上高いことが好ましく、20℃以上高いことがより好ましく、25℃以上高いことが更に好ましい。また、前記熱風供給温度が、空孔形成用樹脂粒子の分解温度より70℃以上低いことが好ましく、80℃以上低いことがより好ましく、100℃以上低いことが更に好ましい。前記粉末の焼成温度は、多くの空孔形成用樹脂粒子の場合、上述した好適な焼成温度であればよい。   The decomposition temperature of the resin particles for pore formation is preferably 250 to 450 ° C, more preferably 280 to 430 ° C, and still more preferably 300 to 400 ° C. Regarding the heating condition, the hot air supply temperature is preferably 10 ° C. or more higher than the boiling point of the aqueous solvent, more preferably 20 ° C. or more, and further preferably 25 ° C. or more. The hot air supply temperature is preferably 70 ° C. or more lower than the decomposition temperature of the pore forming resin particles, more preferably 80 ° C. or more, and further preferably 100 ° C. or more. The firing temperature of the powder may be the above-described suitable firing temperature in the case of many pore-forming resin particles.

前記空孔形成用樹脂粒子としては、室温で固体であり、リチウム複合酸化物が焼結する温度で酸化分解するものが好適に使用できる。例えば、ポリスチレン類(ポリスチレン、ポリα−メチルスチレン等)、ポリオレフィン類(ポリエチレン、ポリプロピレン等)、含フッ素樹脂類(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、ポリ(メタ)アクリル酸エステル類、ポリ(メタ)アクリロニトリル類、ポリ(メタ)アクリルアミド類やこれらの共重合体、あるいは、フッ化ビニリデン、フッ化エチレン、アクリロニトリル、エチレンオキサイド、プロピレンオキサイド、メタクリル酸メチル、メタクリル酸ブチル等の単独重合体又は共重合体や、ポリビニルアルコール、ポリビニルブチラール等の有機高分子(好ましくは熱可塑性樹脂)が挙げられる。さらに、ウレタン樹脂、フェノール樹脂、エポキシ樹脂等の熱硬化性樹脂、ポリオレフィン系エラストマー等を用いることもできる。また、ポリアミド、アクリル、アセテート、ポリエステルなどの有機短繊維(直径0.1〜100μm)、又は直径0.1〜100μmのポリメチルメタクリレート(PMMA)等の有機ポリマー粒子を用いることもできる。これらのなかで、特に水との親和性が優れる点や、0.1〜10μmの範囲で粒径調整が比較的容易に行える点から、メタクリル酸メチルの重合粒子や、t-ブチルメタクリレート等のメタクリル酸ブチルの重合粒子、あるいは市販のポリメチルメタクリレート粒子が好ましい。   As the pore-forming resin particles, those that are solid at room temperature and oxidatively decompose at a temperature at which the lithium composite oxide is sintered can be suitably used. For example, polystyrenes (polystyrene, poly α-methylstyrene, etc.), polyolefins (polyethylene, polypropylene, etc.), fluorine-containing resins (polyvinylidene fluoride, polytetrafluoroethylene, etc.), poly (meth) acrylic acid esters, poly (Meth) acrylonitriles, poly (meth) acrylamides and copolymers thereof, or homopolymers such as vinylidene fluoride, ethylene fluoride, acrylonitrile, ethylene oxide, propylene oxide, methyl methacrylate, butyl methacrylate, or Examples thereof include copolymers and organic polymers (preferably thermoplastic resins) such as polyvinyl alcohol and polyvinyl butyral. Furthermore, thermosetting resins such as urethane resins, phenol resins, and epoxy resins, polyolefin elastomers, and the like can also be used. Further, organic short fibers (diameter: 0.1 to 100 μm) such as polyamide, acrylic, acetate, and polyester, or organic polymer particles such as polymethyl methacrylate (PMMA) having a diameter of 0.1 to 100 μm can also be used. Among these, from the point that the affinity with water is particularly excellent and the particle size can be adjusted relatively easily in the range of 0.1 to 10 μm, polymerized particles of methyl methacrylate, t-butyl methacrylate, etc. Polymerized particles of butyl methacrylate or commercially available polymethyl methacrylate particles are preferred.

前記正極活物質粒子は、電池の内部抵抗を低減する観点から、水銀ポロシメーターで測定した8μm以下の全細孔容積が0.1〜1cc/gのものを用いる。同様の観点から、前記正極活物質粒子の全細孔容積は、0.3〜1cc/gが好ましく、0.5〜0.8cc/gがより好ましい。全細孔容積が上記範囲内であれば、活物質イオンの拡散パスが維持されて、正極内における活物質イオンの拡散速度が向上し、かつ正極内の電解液浸透性が良好となり、電池の内部抵抗を低減できると考えられる。   From the viewpoint of reducing the internal resistance of the battery, the positive electrode active material particles have a total pore volume of 8 μm or less measured by a mercury porosimeter of 0.1 to 1 cc / g. From the same viewpoint, the total pore volume of the positive electrode active material particles is preferably 0.3 to 1 cc / g, and more preferably 0.5 to 0.8 cc / g. If the total pore volume is within the above range, the diffusion path of the active material ions is maintained, the diffusion rate of the active material ions in the positive electrode is improved, and the electrolyte permeability in the positive electrode is improved. It is thought that the internal resistance can be reduced.

前記正極活物質粒子は、活物質イオンの拡散抵抗低減の観点から、水銀ポロシメーターで測定した細孔分布において、最大の微分細孔容積値を与える細孔径(以下、ピーク細孔径1という。)が細孔径0.01〜8μmの範囲に存在し、かつ前記最大の微分細孔容積値の5%以上の微分細孔容積値を与える細孔径(以下、ピーク細孔径2という。抽出方法は後述する。)が細孔径0.01μm以上でピーク細孔径1未満の範囲に存在するものを用いる。同様の観点から、ピーク細孔径1が細孔径1〜6μmの範囲に存在し、かつピーク細孔径2が細孔径0.01μm以上でピーク細孔径1未満の範囲に存在するものが好ましく、ピーク細孔径1が細孔径2〜6μmの範囲に存在し、かつピーク細孔径2が細孔径0.1μm以上でピーク細孔径1未満の範囲に存在するものがより好ましい。また、活物質イオンの拡散抵抗低減の観点から、ピーク細孔径2は、前記ピーク細孔径1に対応する最大の微分細孔容積値の5〜70%の微分細孔容積値を与えるピークであることが好ましく、10〜30%の微分細孔容積値を与えるピークであることがより好ましい。ここで、「微分細孔容積値」とは、細孔径をRとし、当該細孔径以上の細孔の合計体積をVとしたときの、合計体積Vを細孔径Rの常用対数logRで微分した値(dV/dlogRの値)をさす。なお、通常の場合、上記「ピーク細孔径1」は正極活物質粒子間の空隙径のピークに相当し、上記「ピーク細孔径2」は正極活物質粒子内の空孔径のピークに相当すると考えられる。   From the viewpoint of reducing the diffusion resistance of active material ions, the positive electrode active material particles have a pore diameter (hereinafter referred to as peak pore diameter 1) that gives the maximum differential pore volume value in the pore distribution measured with a mercury porosimeter. A pore size (hereinafter referred to as peak pore size 2) that exists in a pore size range of 0.01 to 8 μm and gives a differential pore volume value of 5% or more of the maximum differential pore volume value. The extraction method will be described later. )) Having a pore diameter of 0.01 μm or more and less than the peak pore diameter of 1 is used. From the same viewpoint, those having a peak pore diameter 1 in the range of 1 to 6 μm and a peak pore diameter 2 in the range of 0.01 μm or more and less than the peak pore diameter 1 are preferable. More preferably, the pore diameter 1 is in the range of 2 to 6 μm and the peak pore diameter 2 is in the range of 0.1 μm or more and less than the peak pore diameter 1. From the viewpoint of reducing the diffusion resistance of active material ions, the peak pore diameter 2 is a peak that gives a differential pore volume value that is 5 to 70% of the maximum differential pore volume value corresponding to the peak pore diameter 1. The peak giving a differential pore volume value of 10 to 30% is more preferable. Here, the “differential pore volume value” means that the total volume V is differentiated by the common logarithm logR of the pore diameter R, where R is the pore diameter and V is the total volume of pores larger than the pore diameter. Value (value of dV / dlogR). In the normal case, the “peak pore diameter 1” corresponds to the peak of the void diameter between the positive electrode active material particles, and the “peak pore diameter 2” corresponds to the peak of the pore diameter in the positive electrode active material particles. It is done.

前記ピーク細孔径2の抽出方法について、図1A〜Cを参照しながら説明する。図1A〜Cは、前記正極活物質粒子の一例におけるピーク細孔径2を抽出する際に使用する細孔分布データである。まず、解析ソフトであるOriginPro 7.5J SR6(OriginLab Corporation製)を用いて、水銀ポロシメーターで測定した正極活物質粒子の細孔径をX軸とし、各細孔径に対する微分細孔容積値をY軸とするグラフ(図1Aの実線)を作成する。このグラフに、単ピークのローレンツフィット処理を行い、得られたデータをフィッティングデータ(図1Bの破線)とする。そして、算術演算の減算処理により図1Aのデータと図1Bのフィッティングデータの差分処理を行い、差分データ(図1Cの一点鎖線)を得る。この時、フィッティングデータの最大ピークを与える細孔径より低い細孔径範囲で確認される差分データの最大ピークをピーク細孔径2とする。   The method for extracting the peak pore diameter 2 will be described with reference to FIGS. 1A to 1C are pore distribution data used when extracting the peak pore diameter 2 in an example of the positive electrode active material particles. First, using the analysis software OriginPro 7.5J SR6 (manufactured by OriginLab Corporation), the pore diameter of the positive electrode active material particles measured with a mercury porosimeter is taken as the X axis, and the differential pore volume value for each pore diameter is taken as the Y axis. A graph (solid line in FIG. 1A) is created. A single peak Lorentz fitting process is performed on this graph, and the obtained data is taken as fitting data (broken line in FIG. 1B). Then, a difference process between the data in FIG. 1A and the fitting data in FIG. 1B is performed by a subtraction process of arithmetic operation to obtain difference data (a chain line in FIG. 1C). At this time, the maximum peak of the difference data confirmed in the pore diameter range lower than the pore diameter giving the maximum peak of the fitting data is set as the peak pore diameter 2.

上述した正極活物質粒子の多孔構造は、電解液の浸透性と活物質イオンの拡散性、及び正極活物質粒子の形状安定性の観点から重要である。その調整方法は、上述した正極活物質粒子のBET比表面積の調整方法と同様の方法により行うことができる。   The porous structure of the positive electrode active material particles described above is important from the viewpoints of electrolyte permeability, active material ion diffusivity, and positive electrode active material particle shape stability. The adjustment method can be performed by the same method as the adjustment method of the BET specific surface area of the positive electrode active material particles described above.

前記正極活物質粒子は、電池の内部抵抗を低減する観点から、レーザー回折/散乱式粒度分布測定による平均粒径が前記ピーク細孔径1以上で20μm以下であるものを用いる。同様の観点から、前記正極活物質粒子の平均粒径は、1〜15μmが好ましく、3〜10μmがより好ましい。正極活物質粒子の平均粒径が上記範囲内であれば、正極内における正極活物質粒子の分散性が向上し、活物質イオンの拡散パスが連続的に構築され、電池の内部抵抗を低減できると考えられる。また、正極活物質粒子の平均粒径が上記範囲内であれば、正極を作製する際のプレス時において、正極活物質粒子の形状を保持するのに十分な強度が得られる。   From the viewpoint of reducing the internal resistance of the battery, the positive electrode active material particles are those having an average particle diameter measured by laser diffraction / scattering particle size distribution of 1 to 20 μm. From the same viewpoint, the average particle diameter of the positive electrode active material particles is preferably 1 to 15 μm, and more preferably 3 to 10 μm. If the average particle diameter of the positive electrode active material particles is within the above range, the dispersibility of the positive electrode active material particles in the positive electrode is improved, the diffusion path of the active material ions is continuously constructed, and the internal resistance of the battery can be reduced. it is conceivable that. In addition, when the average particle diameter of the positive electrode active material particles is within the above range, sufficient strength can be obtained to maintain the shape of the positive electrode active material particles during pressing when producing the positive electrode.

正極活物質粒子の平均粒径は、正極活物質粒子の形状安定性、及び多孔構造と空隙の確保の観点から重要である。その調整方法は、上述した正極活物質粒子のBET比表面積の調整方法と同様の方法により行うことができる。   The average particle diameter of the positive electrode active material particles is important from the viewpoint of shape stability of the positive electrode active material particles and securing a porous structure and voids. The adjustment method can be performed by the same method as the adjustment method of the BET specific surface area of the positive electrode active material particles described above.

前記導電性物質1は、電池の内部抵抗を低減する観点から、正極活物質粒子と混合する際の平均粒径(測定方法は後述する)が1〜50μmである。同様の観点から、上記平均粒径は、1〜10μmが好ましく、1〜8μmがより好ましい。導電性物質1の平均粒径が上記範囲内であれば、正極内における導電性物質1の分散性が向上し、活物質イオンの拡散パスが連続的に構築され、電池の内部抵抗を低減できると考えられる。   From the viewpoint of reducing the internal resistance of the battery, the conductive material 1 has an average particle size (measurement method will be described later) of 1 to 50 μm when mixed with the positive electrode active material particles. From the same viewpoint, the average particle diameter is preferably 1 to 10 μm, and more preferably 1 to 8 μm. If the average particle diameter of the conductive material 1 is within the above range, the dispersibility of the conductive material 1 in the positive electrode is improved, the diffusion path of the active material ions is continuously constructed, and the internal resistance of the battery can be reduced. it is conceivable that.

正極活物質粒子と混合する際の導電性物質1の平均粒径の測定方法について、1)溶媒1に導電性物質1を混合した後で正極活物質粒子を混合する場合と、2)溶媒1に正極活物質粒子を混合した後で導電性物質1を混合する場合、又は溶媒1に正極活物質粒子及び導電性物質1を同時に混合する場合の2通りに分けて以下に説明する。   About the measuring method of the average particle diameter of the electroconductive substance 1 at the time of mixing with a positive electrode active material particle, 1) When mixing a positive electrode active material particle after mixing the electroconductive substance 1 with the solvent 1, 2) The solvent 1 In the following description, the conductive material 1 is mixed after the positive electrode active material particles are mixed with each other, or the positive electrode active material particles and the conductive material 1 are mixed with the solvent 1 at the same time.

1)溶媒1に導電性物質1を混合した後で正極活物質粒子を混合する場合
正極活物質粒子と混合する直前に、導電性物質1を溶媒1に混合したスラリーを約1ccサンプリングし、遅滞無くレーザー回折/散乱式粒度分布測定装置(堀場製作所社製、LA−920)で、分散媒をエタノール、相対屈折率を1.5、循環速度をレベル4に設定し、超音波照射強度レベル7で1分間超音波処理した後のサンプリング液中の導電性物質1の体積中位粒径(D50)を測定して得られる。
1) When mixing positive electrode active material particles after mixing conductive material 1 with solvent 1 Immediately before mixing with positive electrode active material particles, about 1 cc of the slurry in which conductive material 1 is mixed with solvent 1 is sampled and delayed. Without using a laser diffraction / scattering particle size distribution analyzer (LA-920, manufactured by Horiba Ltd.), the dispersion medium is set to ethanol, the relative refractive index is set to 1.5, the circulation speed is set to level 4, and the ultrasonic irradiation intensity level 7 Obtained by measuring the volume median particle size (D50) of the conductive material 1 in the sampling solution after sonication for 1 minute.

2)溶媒1に正極活物質粒子を混合した後で導電性物質1を混合する場合、又は溶媒1に正極活物質粒子及び導電性物質1を同時に混合する場合
エタノール(100g)に導電性物質1(0.5g)を混合して得たスラリーを約1ccサンプリングし、上記1)と同様の条件で測定して得られる。
2) When mixing the positive electrode active material particles with the solvent 1 and then mixing the conductive material 1 or when simultaneously mixing the positive electrode active material particles and the conductive material 1 with the solvent 1, the conductive material 1 with ethanol (100 g) About 1 cc of the slurry obtained by mixing (0.5 g) is sampled and measured under the same conditions as in 1) above.

前記導電性物質1は、後述するレオロジー特性を確保する観点から、自己凝集性を有するものを用いる。導電性物質1が自己凝集性を有すると、正極活物質粒子と導電性物質1との適切な凝集形態による三次元網目構造が形成され、これらが複合体となって正極用スラリー(スラリー2)の適切なレオロジー特性が確保され、電池の内部抵抗を低減できると考えられる。ここで、「自己凝集性を有する」とは、エタノール(100g)に、平均粒径xμmの導電性物質1(0.5g)を混合して得たスラリーに、超音波ホモジナイザー(日本精機製作所社製、US−300T)を用いて、周波数19kHz、出力300Wで超音波照射し、超音波照射開始からt(=60)秒毎に、it秒後(iは自然数)の導電性物質1の平均粒径xを測定した際、xn−1<x<xかつn≧2となるnが存在することをいう。三次元網目構造をより容易に形成する観点から、xとxn−1との比(x/xn−1)は、好ましくは1.1〜4、より好ましくは1.1〜3、更に好ましくは1.1〜2である。 As the conductive material 1, a material having self-aggregation property is used from the viewpoint of securing rheological characteristics described later. When the conductive material 1 has self-aggregation properties, a three-dimensional network structure is formed by an appropriate aggregation form of the positive electrode active material particles and the conductive material 1, and these become a composite to form a positive electrode slurry (slurry 2). It is considered that the appropriate rheological characteristics of the battery can be secured and the internal resistance of the battery can be reduced. Here, “having self-aggregation” means that an ultrasonic homogenizer (Nippon Seiki Co., Ltd.) was added to a slurry obtained by mixing ethanol (100 g) with conductive material 1 (0.5 g) having an average particle size of x 0 μm. US-300T, manufactured by Seisakusho Co., Ltd., was irradiated with ultrasonic waves at a frequency of 19 kHz and an output of 300 W, and conductive material 1 after it seconds (i is a natural number) every t (= 60) seconds from the start of ultrasonic irradiation. When the average particle size x i of the above is measured, it means that n satisfying x n−1 <x n <x 0 and n ≧ 2 exists. From the viewpoint of more easily forming a three-dimensional network structure, the ratio of xn to xn-1 ( xn / xn-1 ) is preferably 1.1 to 4, more preferably 1.1 to 3. More preferably, it is 1.1-2.

なお、上記「it秒後の平均粒径x」については、it秒後に超音波照射を停止した直後に、上記スラリー(約1cc)をサンプリングし、遅滞無くレーザー回折/散乱式粒度分布測定装置(堀場製作所社製、LA−920)で、分散媒をエタノール、相対屈折率を1.5、循環速度をレベル4に設定し、超音波照射強度レベル7で1分間超音波処理した後のサンプリング液中の導電性物質1の体積中位粒径(D50)を測定して得られる。また、上記「平均粒径x」については、超音波照射前の上記スラリー(約1cc)をサンプリングし、上記「it秒後の平均粒径x」と同様の条件で測定して得られる。 As for the above “average particle size x i after it seconds”, the slurry (about 1 cc) is sampled immediately after the ultrasonic irradiation is stopped after it seconds, and the laser diffraction / scattering particle size distribution measuring apparatus without delay. (Horiba Seisakusho, LA-920) Sampling after ultrasonic dispersion for 1 minute at ultrasonic irradiation intensity level 7 with ethanol as dispersion medium, relative refractive index 1.5, circulation rate set to level 4 It is obtained by measuring the volume median particle size (D50) of the conductive substance 1 in the liquid. The “average particle size x 0 ” is obtained by sampling the slurry (about 1 cc) before ultrasonic irradiation and measuring under the same conditions as the “average particle size x i after it seconds”. .

上述した自己凝集性を有する導電性物質1は、通常の場合、高ストラクチャー構造を有するため、通常の正極活物質粒子と溶媒中で混合しても、均一に分散させることは困難であるが、上述した多孔性正極活物質粒子とは均一な分散が可能となる。その理由は定かではないが、上述した多孔性正極活物質粒子が導電性物質1の初期の凝集状態を適度な状態まで解す機能を有しているためであると考えられる。   Since the conductive material 1 having self-aggregating property described above usually has a high structure structure, it is difficult to uniformly disperse even if it is mixed with normal positive electrode active material particles in a solvent. Uniform dispersion is possible with the porous positive electrode active material particles described above. Although the reason is not certain, it is considered that the porous positive electrode active material particles described above have a function of solving the initial aggregation state of the conductive material 1 to an appropriate state.

前記導電性物質1としては、上述した特定の物性を有するものであれば特に限定されないが、例えば、自己凝集性を有するカーボンブラックや、自己凝集性を有する繊維状カーボンなどが挙げられる。   The conductive substance 1 is not particularly limited as long as it has the specific physical properties described above, and examples thereof include self-aggregating carbon black and self-aggregating fibrous carbon.

上記カーボンブラックとしては、サーマルブラック法、アセチレンブラック法等の分解法、チャンネルブラック法、ガスファーネスブラック法、オイルファーネスブラック法、松煙法、ランプブラック法等の不完全燃焼法のいずれの製法で製造されたものも使用できるが、自己凝集性の観点からファーネスブラック、アセチレンブラック、ケッチェンブラック(登録商標)が好ましく用いられ、このうちケッチェンブラックがより好ましい。これらは単独で用いても良いし、2種以上を混合しても良い。   The above carbon black can be produced by any decomposition method such as thermal black method, acetylene black method, channel black method, gas furnace black method, oil furnace black method, pine smoke method, and lamp black method. Although manufactured ones can also be used, furnace black, acetylene black, and ketjen black (registered trademark) are preferably used from the viewpoint of self-aggregation, and ketjen black is more preferable. These may be used alone or in combination of two or more.

上記繊維状カーボンとしては、ポリアクリロニトリル(PAN)に代表される高分子を原料としたカーボンファイバー、ピッチを原料としたピッチ系カーボンファイバー、カーボンナノチューブ(グラファイトの1枚面つまりグラフェンシートを巻いて筒状にした形状物(微粒子工学大系第I巻P651、株式会社フジ・テクノシステム))であって、炭化水素ガスを原料とする気相成長系のカーボンファイバー(例えば、VGCF:登録商標)、アーク放電法、レーザー蒸発法、化学気相成長法などで得られる、いわゆる狭義のカーボンナノチューブ(以下、狭義のカーボンナノチューブを単にカーボンナノチューブという)などが好適に用いられる。カーボンナノチューブは、例えば、HeやAr、CH、Hなどの雰囲気ガスのもとで、黒鉛電極をアーク放電で蒸発させるアーク放電法、NiやCo、Y、Feなどの金属触媒を含む黒鉛電極をアーク放電で蒸発させるアーク放電法、Ni−Co、Pd−Rdなどの金属触媒を混ぜた黒鉛にYAGレーザーを当て蒸発させ、Arの気流で1200℃程度に加熱された電気炉に送り出すレーザー蒸発法、触媒にペンタカルボニル鉄(Fe(CO))を用い、一酸化炭素を高圧で熱分解するHiPCO法等で得ることができる。 Examples of the fibrous carbon include carbon fibers made from a polymer typified by polyacrylonitrile (PAN), pitch-based carbon fibers made from pitch, carbon nanotubes (one surface of graphite, that is, a graphene sheet wrapped around a tube) Vapor growth type carbon fiber (for example, VGCF: registered trademark) using a hydrocarbon gas as a raw material (fine particle engineering large volume I volume P651, Fuji Techno System Co., Ltd.), So-called carbon nanotubes in a narrow sense (hereinafter simply referred to as carbon nanotubes in a narrow sense) obtained by an arc discharge method, a laser evaporation method, a chemical vapor deposition method, or the like are preferably used. The carbon nanotube is, for example, an arc discharge method in which a graphite electrode is evaporated by arc discharge under an atmospheric gas such as He, Ar, CH 4 , or H 2 , and graphite containing a metal catalyst such as Ni, Co, Y, or Fe. An arc discharge method in which electrodes are evaporated by arc discharge, a YAG laser is applied to graphite mixed with a metal catalyst such as Ni-Co, Pd-Rd, and the laser is sent to an electric furnace heated to about 1200 ° C. with an Ar air stream. It can be obtained by an evaporation method, a HiPCO method in which pentacarbonyl iron (Fe (CO) 5 ) is used as a catalyst, and carbon monoxide is thermally decomposed at high pressure.

前記導電性物質1のDBP吸油量は、自己凝集性を確保する観点から、好ましくは300cm/100g以上、より好ましくは350cm/100g以上、更に好ましくは400cm/100g以上、更により好ましくは450cm/100g以上である。また、後述する特定のレオロジー特性を有するスラリー2を得るためには、DBP吸油量は600cm/100g以下が好ましく、575cm/100g以下がより好ましく、550cm/100g以下が更に好ましい。前述の観点を総合した観点から、前記導電性物質1のDBP吸油量は、300〜600cm/100gが好ましく、350〜575cm/100gがより好ましく、400〜550が更に好ましく、450〜550が更により好ましい。 DBP oil absorption of the conductive material 1, in order to ensure the self-cohesiveness, preferably 300 cm 3/100 g or more, more preferably 350 cm 3/100 g or more, more preferably 400 cm 3/100 g or more, even more preferably it is 450cm 3 / 100g or more. Further, in order to obtain a slurry 2 having a specific rheological properties described below are, DBP oil absorption amount is preferably from 600 cm 3/100 g, more preferably 575cm 3 / 100g or less, more preferably less 550 cm 3/100 g. In view of the overall aspects of the foregoing, DBP oil absorption amount of the conductive material 1 is preferably 300~600cm 3 / 100g, more preferably 350~575cm 3 / 100g, more preferably 400 to 550, is 450 to 550 Even more preferred.

本発明の工程1でスラリー1を調製する際、活物質イオンの拡散抵抗を低減する観点、及び良好な塗工性を確保する観点から、前記スラリー1中の導電性物質1の含有量が正極活物質粒子100重量部に対して3〜20重量部となるように調製する。同様の観点から、導電性物質1の正極活物質粒子100重量部に対する含有量は、5〜10重量部が好ましく、6〜8重量部がより好ましい。   When preparing the slurry 1 in step 1 of the present invention, the content of the conductive material 1 in the slurry 1 is positive from the viewpoint of reducing the diffusion resistance of active material ions and ensuring good coating properties. It is prepared so as to be 3 to 20 parts by weight with respect to 100 parts by weight of the active material particles. From the same viewpoint, the content of the conductive material 1 with respect to 100 parts by weight of the positive electrode active material particles is preferably 5 to 10 parts by weight, and more preferably 6 to 8 parts by weight.

本発明では、工程1の後で、工程2の前に、スラリー1中の導電性物質1を正極活物質粒子と共に凝集させて、正極活物質粒子と導電性物質1とを含有する凝集粒子を得る凝集工程を更に有していてもよい。導電性物質1と正極活物質粒子とを凝集させることにより、導電性物質1の三次元網目構造内に正極活物質粒子を適切な状態で取り込ませることができると考えられ、これにより活物質イオンの拡散経路を容易に確保することができると考えられるからである。凝集粒子を得る方法としては、溶媒中に正極活物質粒子と導電性物質1とを分散させた状態で放置し、導電性物質1の自己凝集性によって前記凝集粒子を得る方法や、溶媒1を除去しながら導電性物質1を正極活物質粒子と共に凝集させて前記凝集粒子を得る方法が例示できる。凝集粒子を容易に得るためには、後者の方法が好ましい。   In the present invention, after the step 1 and before the step 2, the conductive material 1 in the slurry 1 is aggregated together with the positive electrode active material particles, and aggregated particles containing the positive electrode active material particles and the conductive material 1 are obtained. You may further have the aggregation process to obtain. By aggregating the conductive material 1 and the positive electrode active material particles, it is considered that the positive electrode active material particles can be incorporated into the three-dimensional network structure of the conductive material 1 in an appropriate state. This is because the diffusion path can be easily secured. As a method for obtaining the aggregated particles, the positive electrode active material particles and the conductive material 1 are left dispersed in a solvent, and the aggregated particles are obtained by the self-aggregation property of the conductive material 1. A method of obtaining the agglomerated particles by aggregating the conductive material 1 together with the positive electrode active material particles while removing is exemplified. The latter method is preferred in order to easily obtain aggregated particles.

溶媒1を除去しながら凝集粒子を得る場合、溶媒1として、沸点が100℃以下の溶媒を使用することが好ましい。溶媒1を溜去することによって、溶媒1を容易に除去することができるからである。上記沸点が100℃以下の溶媒としては、メチルエチルケトン(沸点79.5℃)、テトラヒドロフラン(沸点66℃)、アセトン(沸点56.3℃)、エタノール(沸点78.3℃)、酢酸エチル(沸点76.8℃)などが好適に用いられる。なお、溶媒1を除去する方法として、溜去以外の方法を用いてもよい。例えばスラリー1を噴霧乾燥することによって、溶媒1を除去してもよい。   When obtaining aggregated particles while removing the solvent 1, it is preferable to use a solvent having a boiling point of 100 ° C. or lower as the solvent 1. This is because the solvent 1 can be easily removed by distilling off the solvent 1. Examples of the solvent having a boiling point of 100 ° C. or lower include methyl ethyl ketone (boiling point 79.5 ° C.), tetrahydrofuran (boiling point 66 ° C.), acetone (boiling point 56.3 ° C.), ethanol (boiling point 78.3 ° C.), ethyl acetate (boiling point 76 .8 ° C.) is preferably used. As a method for removing the solvent 1, a method other than distillation may be used. For example, the solvent 1 may be removed by spray drying the slurry 1.

前記工程1では、スラリー1中での導電性物質1の平均粒径が10μm以下となるように、スラリー1に超音波を照射することが好ましい。超音波照射後の導電性物質1の自己凝集性を利用して、導電性物質1と正極活物質粒子とを均一に凝集させることができると考えられ、これにより活物質イオンの拡散経路を容易に確保することができると考えられるからである。上記と同様の観点から、導電性物質1の平均粒径が7μm以下となるように超音波を照射することがより好ましく、5μm以下となるように超音波を照射することが更に好ましい。なお、スラリー1中での導電性物質1の平均粒径は、超音波照射を停止した直後に、スラリー1を約1ccサンプリングし、遅滞無くレーザー回折/散乱式粒度分布測定装置(堀場製作所社製、LA−920)で、分散媒をエタノール、相対屈折率を1.5、循環速度をレベル4に設定し、超音波照射強度レベル7で1分間超音波処理した後のサンプリング液中の導電性物質1の体積中位粒径(D50)を測定して得られる。   In the step 1, it is preferable to irradiate the slurry 1 with ultrasonic waves so that the average particle size of the conductive material 1 in the slurry 1 is 10 μm or less. It is considered that the conductive material 1 and the positive electrode active material particles can be uniformly aggregated by utilizing the self-aggregation property of the conductive material 1 after the ultrasonic irradiation, thereby facilitating the diffusion path of the active material ions. This is because it is considered that it can be secured. From the same viewpoint as described above, it is more preferable to irradiate the ultrasonic wave so that the average particle diameter of the conductive material 1 is 7 μm or less, and it is even more preferable to irradiate the ultrasonic wave so as to be 5 μm or less. The average particle size of the conductive material 1 in the slurry 1 is obtained by sampling about 1 cc of the slurry 1 immediately after the ultrasonic irradiation is stopped, and a laser diffraction / scattering type particle size distribution measuring apparatus (manufactured by Horiba, Ltd.) without delay. LA-920), the dispersion medium is ethanol, the relative refractive index is set to 1.5, the circulation speed is set to level 4, and the ultrasonic conductivity of the sample solution after ultrasonic treatment at ultrasonic irradiation intensity level 7 for 1 minute. It is obtained by measuring the volume median particle size (D50) of substance 1.

スラリー1に超音波を照射する場合、用いる溶媒1としては、超音波照射が上記効果を奏する程度に低粘度の溶媒を使用することが好ましい。溶媒としては、エタノール、メチルエチルケトン、酢酸エチルなどが例示でき、なかでもエタノールが好ましい。なお、超音波照射条件については、上記効果を奏する条件である限り特に限定されないが、例えば周波数15〜25kHz、出力100〜500Wの条件で超音波照射すればよい。   When irradiating the slurry 1 with ultrasonic waves, the solvent 1 to be used is preferably a solvent having a low viscosity to such an extent that ultrasonic irradiation has the above effects. Examples of the solvent include ethanol, methyl ethyl ketone, and ethyl acetate. Of these, ethanol is preferable. The ultrasonic irradiation conditions are not particularly limited as long as the above effects are achieved. For example, ultrasonic irradiation may be performed under conditions of a frequency of 15 to 25 kHz and an output of 100 to 500 W.

スラリー1中の溶媒1の含有量は、超音波照射の上記効果を有効に発揮させる観点から、正極活物質粒子100重量部に対して2000〜20000重量部が好ましく、1000〜10000重量部がより好ましい。   The content of the solvent 1 in the slurry 1 is preferably 2000 to 20000 parts by weight and more preferably 1000 to 10,000 parts by weight with respect to 100 parts by weight of the positive electrode active material particles, from the viewpoint of effectively exhibiting the above-described effect of ultrasonic irradiation. preferable.

なお、本発明では、上述したようにスラリー1から溶媒1を除去して、正極活物質粒子及び導電性物質1を取り出し、工程2としてそれらにバインダー及び溶媒2を加えて混練してもよいし、工程1でスラリー1を得た後、工程2としてこのスラリー1にバインダーを加えて混練してもよい。なお、後者の場合、溶媒2は溶媒1と同一のものとなる。   In the present invention, as described above, the solvent 1 may be removed from the slurry 1, the positive electrode active material particles and the conductive material 1 may be taken out, and the binder and the solvent 2 may be added and kneaded as step 2. After the slurry 1 is obtained in the step 1, a binder may be added to the slurry 1 as the step 2 and kneaded. In the latter case, the solvent 2 is the same as the solvent 1.

前記工程2のスラリー2で使用できるバインダーとしては、後述する特定のレオロジー特性が得られる限り、特に限定されないが、接着性及び溶媒への溶解性の観点から、例えば、ポリフッ化ビニリデン(PVDF)、ポリアミドイミド、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリメタクリル酸メチル、ポリアクリル酸、ポリウレタン、ポリエステル、エポキシ樹脂、スチレン−ブタジエンゴム、及びこれらの変性体などが好ましく、より好ましくはPVDF、ポリアクリル酸、及びこれらの変性体である。なお、上記変性体としては、上記列挙したポリマーにカルボキシル基やアミノ基等の置換基が導入されたものなどが例示できる。また、これらの高分子材料は、単独で使用されてもよく、2種類以上が混合されて使用されてもよい。   The binder that can be used in the slurry 2 in the step 2 is not particularly limited as long as the specific rheological characteristics described below are obtained. From the viewpoint of adhesion and solubility in a solvent, for example, polyvinylidene fluoride (PVDF), Polyamideimide, polytetrafluoroethylene, polyethylene, polypropylene, polymethyl methacrylate, polyacrylic acid, polyurethane, polyester, epoxy resin, styrene-butadiene rubber, and modified products thereof are preferable, more preferably PVDF, polyacrylic acid , And modified products thereof. Examples of the modified product include those in which a substituent such as a carboxyl group or an amino group is introduced into the above listed polymers. Moreover, these polymeric materials may be used independently and 2 or more types may be mixed and used.

スラリー2中のバインダーの含有量は、正極活物質粒子や導電性物質1などの結着性能と、正極としての導電性とのバランスを良くする観点、及び後述する特定のレオロジー特性が容易に得られる観点から、正極活物質粒子100重量部に対して2〜15重量部が好ましく、3〜10重量部がより好ましい。   The content of the binder in the slurry 2 is easily obtained from the viewpoint of improving the balance between the binding performance of the positive electrode active material particles, the conductive material 1 and the like and the conductivity as the positive electrode, and the specific rheological characteristics described later. In view of the above, 2 to 15 parts by weight is preferable with respect to 100 parts by weight of the positive electrode active material particles, and 3 to 10 parts by weight is more preferable.

前記工程2のスラリー2で使用できる溶媒2としては、後述する特定のレオロジー特性が得られる限り、特に限定されないが、例えばN−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、メチルエチルケトン、テトラヒドロフラン、アセトン、エタノール、酢酸エチル、水、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)などが好適に用いられる。   The solvent 2 that can be used in the slurry 2 in the step 2 is not particularly limited as long as the specific rheological characteristics described below are obtained. For example, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide , Methyl ethyl ketone, tetrahydrofuran, acetone, ethanol, ethyl acetate, water, diethyl carbonate (DEC), dimethyl carbonate (DMC) and the like are preferably used.

スラリー2中の溶媒2の含有量は、後述する特定のレオロジー特性が容易に得られる観点から、正極活物質粒子100重量部に対して250〜700重量部が好ましく、300〜600重量部がより好ましい。   The content of the solvent 2 in the slurry 2 is preferably 250 to 700 parts by weight, more preferably 300 to 600 parts by weight with respect to 100 parts by weight of the positive electrode active material particles, from the viewpoint of easily obtaining the specific rheological characteristics described below. preferable.

なお、本発明では、上述した本発明の効果が得られる限り、その他の成分として正極の形成に使用される従来公知の添加剤等をスラリー2に添加することができる。   In the present invention, as long as the above-described effects of the present invention can be obtained, conventionally known additives used for forming the positive electrode can be added to the slurry 2 as other components.

本発明の工程2では、レオロジー測定装置で測定したスラリー2のレオロジー特性において、剪断速度0.001〜0.1s−1の範囲における剪断速度に対する剪断応力(測定方法は後述する)が1000〜40000mPa、かつ前記剪断速度範囲における剪断応力の勾配Δ(算出方法は後述する)が−0.30〜0.30となるように混練を行う。上記レオロジー特性を有するスラリー2を集電体上に塗工して正極を形成すると、適切な凝集形態を有する導電性物質1の三次元網目構造内に正極活物質粒子が均一に配置されると考えられる。その結果、多孔性の正極活物質粒子の多孔構造と、自己凝集性を有する導電性物質1の適切な凝集形態による三次元網目構造とにより、活物質イオンの移動が円滑となり、正極内における活物質イオンの拡散抵抗を大幅に低減できる正極用組成物が得られると考えられる。 In step 2 of the present invention, in the rheological properties of slurry 2 measured with a rheology measuring device, the shear stress (measurement method will be described later) with respect to the shear rate in the range of the shear rate of 0.001 to 0.1 s −1 is 1000 to 40000 mPa. The kneading is performed so that the shear stress gradient Δ (calculation method will be described later) in the shear rate range is −0.30 to 0.30. When the positive electrode is formed by applying the slurry 2 having the rheological characteristics on the current collector, the positive electrode active material particles are uniformly arranged in the three-dimensional network structure of the conductive material 1 having an appropriate aggregation form. Conceivable. As a result, the movement of active material ions is facilitated by the porous structure of the porous positive electrode active material particles and the three-dimensional network structure of the conductive material 1 having a self-aggregating property, which is appropriately aggregated. It is considered that a positive electrode composition capable of greatly reducing the diffusion resistance of substance ions can be obtained.

前記剪断応力の測定方法及び前記勾配Δの算出方法について説明する。まず、レオロジー測定装置(Physica社製、MCR300)を用いて、剪断速度0.001〜1000s−1の範囲における2サイクル目の戻りの(高速剪断から減速する際の)剪断応力を測定する。この際、剪断速度0.001〜0.1s−1における測定点は、剪断速度の常用対数値で等間隔となるように7点(6間隔)に設定する。この7点の測定点の剪断応力の平均値を上記「剪断速度0.001〜0.1s−1の範囲における剪断速度に対する剪断応力」とする。そして、上記各測定点の剪断速度及び剪断応力について常用対数値を計算する。次いで、各常用対数値を剪断速度が大きい方から順に並べる。そして、剪断速度が大きい方からn番目の剪断速度rn(s−1)の常用対数値をlog(rn)とし、このときの剪断応力sn(mPa)の常用対数値をlog(sn)として、各測定間について下記式により得られた値を「勾配Δ」とする。なお、本発明では、全ての測定間(6間隔)の勾配Δが−0.30〜0.30となるように混練する。
勾配Δ=(log(sn)-log(sn+1))/(log(rn)-log(rn+1))
A method for measuring the shear stress and a method for calculating the gradient Δ will be described. First, using a rheology measurement device (manufactured by Physica, MCR300), the shear stress at the return of the second cycle (when decelerating from high-speed shear) in the range of the shear rate of 0.001 to 1000 s −1 is measured. At this time, the measurement points at the shear rate of 0.001 to 0.1 s −1 are set to 7 points (6 intervals) so as to be equidistant from the common logarithm of the shear rate. The average value of the shear stress at the seven measurement points is referred to as “the shear stress with respect to the shear rate in the range of the shear rate of 0.001 to 0.1 s −1 ”. Then, common logarithm values are calculated for the shear rate and shear stress at each measurement point. Next, the common logarithmic values are arranged in descending order of shear rate. The common logarithm of the n-th shear rate r n (s −1 ) from the higher shear rate is log (r n ), and the common logarithm of the shear stress s n (mPa) at this time is log (s As n ), the value obtained by the following equation between each measurement is defined as “gradient Δ”. In the present invention, kneading is performed so that the gradient Δ between all the measurements (six intervals) is −0.30 to 0.30.
Gradient Δ = (log (s n ) -log (s n + 1 )) / (log (r n ) -log (r n + 1 ))

活物質イオンの拡散抵抗低減の観点、及びスラリー2の塗工性の観点から、前記剪断応力が5000〜35000mPaであることが好ましく、5000〜30000mPaであることがより好ましい。   From the viewpoint of reducing the diffusion resistance of active material ions and from the viewpoint of coating properties of the slurry 2, the shear stress is preferably 5000 to 35000 mPa, and more preferably 5000 to 30000 mPa.

また、活物質イオンの拡散抵抗低減の観点から、前記勾配Δが−0.25〜0.25であることが好ましく、−0.20〜0.20であることがより好ましい。   Further, from the viewpoint of reducing the diffusion resistance of the active material ions, the gradient Δ is preferably −0.25 to 0.25, and more preferably −0.20 to 0.20.

工程2におけるスラリー2の混練方法は、上記レオロジー特性を有するように混練できる方法であれば特に限定されないが、例えば自転/公転方式ミキサーやニーダー等の混練手段を用いて混練する方法が例示できる。例えば、回転機構を有する混練機を用いる場合は、上記レオロジー特性を有するように回転条件や回転時間を調整して混練すればよい。   The method for kneading the slurry 2 in step 2 is not particularly limited as long as it can be kneaded so as to have the above rheological characteristics, and examples thereof include a kneading method using a kneading means such as a rotation / revolution mixer or a kneader. For example, when a kneader having a rotation mechanism is used, kneading may be performed by adjusting the rotation conditions and the rotation time so as to have the above rheological characteristics.

工程2におけるスラリー2を混練する際、20〜25℃の雰囲気温度で混練することが好ましいが、混練時の発熱量を調整するために混練機を冷却したり、スラリーの混練効率を向上させるために混練機を加温してもよい。   When kneading the slurry 2 in step 2, it is preferable to knead at an atmospheric temperature of 20 to 25 ° C., but in order to cool the kneader or adjust the kneading efficiency of the slurry in order to adjust the amount of heat generated during kneading. The kneader may be heated.

本発明の工程2では、スラリー2に、更に、自己凝集性を有さない導電性物質2を混合してもよい。自己凝集性を有さない導電性物質2は、比較的容易に溶媒2中に分散させることができるため、正極活物質粒子と自己凝集性を有する導電性物質1との間に介在して、導電性をより向上させることができると考えられる。   In step 2 of the present invention, the conductive material 2 having no self-aggregation property may be further mixed with the slurry 2. Since the conductive material 2 having no self-aggregating property can be relatively easily dispersed in the solvent 2, it is interposed between the positive electrode active material particles and the self-aggregating conductive material 1, It is considered that the conductivity can be further improved.

前記導電性物質2のDBP吸油量は、50〜250cm/100gであることが好ましく、100〜250cm/100gであることがより好ましく、150〜230cm/100gであることが更に好ましい。DBP吸油量が上記範囲内の導電性物質2は、ストラクチャーがあまり発達していないため、より容易に溶媒2中に分散させることができるからである。 DBP oil absorption of the conductive material 2 is preferably 50~250cm 3 / 100g, more preferably 100~250cm 3 / 100g, further preferably 150~230cm 3 / 100g. This is because the conductive material 2 having the DBP oil absorption amount within the above range can be more easily dispersed in the solvent 2 because the structure is not so developed.

スラリー2に自己凝集性を有さない導電性物質2を混合する場合、導電性物質1と導電性物質2との重量比(導電性物質1/導電性物質2)は、25/75〜95/5であることが好ましく、30/70〜70/30であることがより好ましく、40/60〜60/40であることが更に好ましい。重量比が上記範囲内であれば、活物質イオンの拡散経路を容易に確保することができる上、導電性をより向上させることができるからである。   When the conductive material 2 having no self-aggregation property is mixed in the slurry 2, the weight ratio of the conductive material 1 to the conductive material 2 (conductive material 1 / conductive material 2) is 25/75 to 95. / 5 is preferable, 30/70 to 70/30 is more preferable, and 40/60 to 60/40 is still more preferable. This is because if the weight ratio is within the above range, the diffusion path of the active material ions can be easily secured and the conductivity can be further improved.

前記導電性物質2としては、DBP吸油量が50〜250cm/100gのカーボンブラックなどが例示できる。なかでも、導電性向上の観点からアセチレンブラックが好ましい。 Examples of the conductive material 2, DBP oil absorption amount and carbon black 50~250cm 3 / 100g can be exemplified. Among these, acetylene black is preferable from the viewpoint of improving conductivity.

前記導電性物質2の平均粒径は、導電性及び分散性向上の観点から0.01〜1μmが好ましく、0.03〜1μmがより好ましく、0.05〜1μmが更に好ましい。   The average particle diameter of the conductive material 2 is preferably 0.01 to 1 μm, more preferably 0.03 to 1 μm, and still more preferably 0.05 to 1 μm from the viewpoint of improving conductivity and dispersibility.

導電性物質2の平均粒径については、エタノール(100g)に導電性物質2(0.5g)を混合して得たスラリーを約1ccサンプリングし、遅滞無くレーザー回折/散乱式粒度分布測定装置(堀場製作所社製、LA−920)で、分散媒をエタノール、相対屈折率を1.5、循環速度をレベル4に設定し、超音波照射強度レベル7で1分間超音波処理した後のサンプリング液中の導電性物質2の体積中位粒径(D50)を測定して得られる。   About the average particle diameter of the conductive material 2, about 1 cc of the slurry obtained by mixing the conductive material 2 (0.5 g) with ethanol (100 g) is sampled, and the laser diffraction / scattering type particle size distribution measuring device (with no delay) Sampling solution after ultrasonic treatment for 1 minute at ultrasonic irradiation intensity level 7 with a dispersion medium of ethanol, LA-920) manufactured by HORIBA, Ltd. It is obtained by measuring the volume median particle size (D50) of the conductive material 2 therein.

上記スラリー2は、リチウムイオン二次電池等の非水電解質二次電池の正極用組成物を形成するために使用される。上記スラリー2によれば、これを集電体となる金属箔に塗布・乾燥することにより正極を作製することができ、さらにこれを負極、セパレータと共に積層して、電解液を注入することによって、非水電解質二次電池を作製することができる。即ち、本発明の非水電解質二次電池の正極用スラリーは、上記スラリー2である。また、本発明の非水電解質二次電池の正極は、上記スラリー2の乾燥体を含有してなる正極であり、本発明の非水電解質二次電池は、上記本発明の正極を備える非水電解質二次電池である。なお、本発明の対象となる非水電解質二次電池は、上述した本発明の正極用スラリーを用いて作製された正極を含む電池であればよく、他の構成要件に関しては、何ら制限されるべきものではない。   The slurry 2 is used to form a positive electrode composition for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery. According to the slurry 2, it is possible to produce a positive electrode by applying and drying this to a metal foil as a current collector, and further laminating this together with a negative electrode and a separator, and injecting an electrolyte solution, A nonaqueous electrolyte secondary battery can be produced. That is, the slurry for positive electrode of the nonaqueous electrolyte secondary battery of the present invention is the slurry 2 described above. Moreover, the positive electrode of the nonaqueous electrolyte secondary battery of the present invention is a positive electrode comprising the dried product of the slurry 2, and the nonaqueous electrolyte secondary battery of the present invention is a nonaqueous solution comprising the positive electrode of the present invention. It is an electrolyte secondary battery. In addition, the nonaqueous electrolyte secondary battery which is the subject of the present invention may be a battery including a positive electrode produced using the above-described positive electrode slurry of the present invention, and other constituent requirements are not limited at all. It shouldn't be.

本発明の非水電解質二次電池の用途は、特に限定されないが、例えばノートパソコン、電子ブックプレーヤー、DVDプレーヤー、携帯オーディオプレーヤー、ビデオムービー、携帯テレビ、携帯電話などの電子機器に使用できるほか、コードレス掃除機やコードレス電動工具、電気自動車、ハイブリッドカーなどのバッテリー、燃料電池車の補助電源などの民生用機器に使用できる。このうち特に高出力が求められる自動車用バッテリーとして好適に用いられる。   The use of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, but for example, it can be used for electronic devices such as notebook computers, electronic book players, DVD players, portable audio players, video movies, portable TVs, mobile phones, It can be used in consumer equipment such as cordless vacuum cleaners, cordless electric tools, batteries for electric vehicles, hybrid cars, etc., and auxiliary power sources for fuel cell vehicles. Among these, it is suitably used as a battery for automobiles that require particularly high output.

以下、本発明を具体的に示す実施例等について説明する。なお、評価項目の測定方法等について下記に示す。   Examples and the like specifically showing the present invention will be described below. In addition, it shows below about the measuring method of an evaluation item, etc.

(正極活物質原料粒子の平均凝集粒子径)
レーザー回折/散乱式粒度分布測定装置(堀場製作所社製、LA−920)を用い、水を分散媒とし、正極活物質原料粒子15g/水85gのスラリーについて、超音波照射強度レベル1で超音波1分照射後の粒度分布を相対屈折率1.7で測定したときの体積中位粒径(D50)の値を平均凝集粒子径とした。
(Average agglomerated particle diameter of positive electrode active material raw material particles)
Using a laser diffraction / scattering particle size distribution measuring apparatus (LA-920, manufactured by Horiba, Ltd.), water is used as a dispersion medium, and a slurry of 15 g of positive electrode active material raw material particles / 85 g of water is ultrasonically applied at an ultrasonic irradiation intensity level of 1. The value of the volume median particle size (D50) when the particle size distribution after 1 minute irradiation was measured at a relative refractive index of 1.7 was taken as the average aggregated particle size.

(正極活物質原料粒子の平均一次粒子径)
電界放出型走査電子顕微鏡S−4000(日立製作所製)を用いて、一次粒子が凝集した凝集粒子のうち、平均凝集粒子径±(平均凝集粒子径×0.2)の凝集粒子を選び、当該凝集粒子を上記顕微鏡で観察し、顕微鏡視野に、一次粒子の二次元SEM画像(以下、一次粒子画像という)が50〜100個入る倍率でのSEM像を撮影した。そして、撮影された一次粒子画像から50個の一次粒子画像を抽出し、そのフェレー(Feret)径を測定し、当該50個についてのフェレー径の平均値を平均一次粒子径とした。なお、抽出された上記50個のうちの1つの一次粒子画像のフェレー径とは、上記1つの一次粒子画像を通過(接することを含む)する任意の直線Lに平行な直線群の中で、最も距離の離れた2本の平行線の間の距離を指す。ただし、2本の平行線の間の距離とは、当該2本の平行線に垂直な直線が、当該2本の平行線に切り取られる線分の長さをいう。
(Average primary particle size of positive electrode active material raw material particles)
Using the field emission scanning electron microscope S-4000 (manufactured by Hitachi, Ltd.), among the aggregated particles obtained by aggregating the primary particles, select the aggregated particles having an average aggregated particle size ± (average aggregated particle size × 0.2), and Aggregated particles were observed with the above microscope, and SEM images were taken at a magnification such that 50 to 100 two-dimensional SEM images of primary particles (hereinafter referred to as primary particle images) were included in the microscope field of view. Then, 50 primary particle images were extracted from the photographed primary particle images, their ferret diameters were measured, and the average value of the ferret diameters for the 50 particles was taken as the average primary particle diameter. Note that the ferret diameter of one of the 50 extracted primary particle images is a straight line group parallel to an arbitrary straight line L that passes through (including touches) the one primary particle image. The distance between two parallel lines that are the farthest away. However, the distance between the two parallel lines refers to the length of a line segment that is cut by the two parallel lines from a straight line perpendicular to the two parallel lines.

(BET比表面積)
比表面積測定装置(島津製作所社製、フローソーブIII2305)を用いてBET比表面積を測定した。
(BET specific surface area)
The BET specific surface area was measured using a specific surface area measuring apparatus (Shimadzu Corporation, Flowsorb III2305).

(細孔分布)
水銀ポロシメーター(島津製作所社製、ポアサイザー9320)を用いて、細孔径0.008μm〜200μmの範囲の細孔分布を測定した。また、全細孔容積については、上記水銀ポロシメーターを用いて細孔径0.008μm〜8μmの範囲の細孔容積を測定し、積算した値をその試料の全細孔容積とした。
(Pore distribution)
Using a mercury porosimeter (manufactured by Shimadzu Corporation, Pore Sizer 9320), the pore distribution in the range of pore diameters of 0.008 μm to 200 μm was measured. Moreover, about the total pore volume, the pore volume of the range of 0.008 micrometers-8 micrometers of pore diameters was measured using the said mercury porosimeter, and the integrated value was made into the total pore volume of the sample.

(正極活物質粒子の平均粒径)
レーザー回折/散乱式粒度分布測定装置(堀場製作所社製、LA−920)を用い、エタノールを分散媒とし、正極活物質粒子15g/エタノール85gのスラリーについて、循環速度設定4、超音波照射強度レベル7で超音波5分照射後の粒度分布を相対屈折率1.7で測定したときの体積中位粒径(D50)の値を平均粒径とした。
(Average particle diameter of positive electrode active material particles)
Using a laser diffraction / scattering particle size distribution analyzer (LA-920, manufactured by Horiba, Ltd.), with a dispersion medium of ethanol and 15 g of positive electrode active material particles / 85 g of ethanol, circulation rate setting 4, ultrasonic irradiation intensity level 7, the value of the volume median particle size (D50) when the particle size distribution after irradiation with ultrasonic waves for 5 minutes was measured at a relative refractive index of 1.7 was taken as the average particle size.

(DBP吸油量)
JISK6217−4に基づいてDBP吸油量を測定した。
(DBP oil absorption)
DBP oil absorption was measured based on JISK6217-4.

(正極の作製)
集電体として用いたアルミニウム箔(厚さ20μm)上に、後述する各実施例及び各比較例で得られた塗工用スラリーをコーターにより均一に塗工し、これを140℃にて10分以上かけて乾燥した。乾燥後、プレス機で均一な膜厚に成型した後、所定の大きさ(20mm×15mm)に切断し、試験用正極とした。なお、試験用正極の電極重量は0.0435gで、集電体を含む電極層の厚みは57μmであった。
(Preparation of positive electrode)
On the aluminum foil (thickness 20 μm) used as a current collector, the coating slurry obtained in each of Examples and Comparative Examples described later was uniformly applied by a coater, and this was applied at 140 ° C. for 10 minutes. Dried over. After drying, it was formed into a uniform film thickness with a press machine, and then cut into a predetermined size (20 mm × 15 mm) to obtain a test positive electrode. The electrode weight of the test positive electrode was 0.0435 g, and the thickness of the electrode layer including the current collector was 57 μm.

(負極の作製)
ハードカーボン(呉羽化学工業社製、カーボトロンP粉末)90重量部に、バインダーとして10重量部のポリフッ化ビニリデン(呉羽化学工業社製、#9210)を添加し、これにN-メチル-2-ピロリドンを添加して混練したスラリーを、厚さ10μmの圧延銅箔の片面に塗布し、140℃にて10分以上かけて乾燥した。乾燥後、プレス機で均一な膜厚に成型した後、所定の大きさ(20mm×15mm)に切断し、試験用負極とした。
(Preparation of negative electrode)
10 parts by weight of polyvinylidene fluoride (manufactured by Kureha Chemical Industry Co., Ltd., # 9210) is added as a binder to 90 parts by weight of hard carbon (manufactured by Kureha Chemical Industry Co., Ltd., Carbotron P powder), and N-methyl-2-pyrrolidone is added thereto. Was added to one side of a rolled copper foil having a thickness of 10 μm and dried at 140 ° C. over 10 minutes. After drying, it was formed into a uniform film thickness with a press machine, and then cut into a predetermined size (20 mm × 15 mm) to obtain a test negative electrode.

(試験セルの作製)
上記の正極及び負極と、セパレータ(セルガード社製、セルガード#2400)並びに電解液を用いて試験セルを作製した。電解液としては、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(EC:DEC=1:1vol%)に、LiPFを1mol/lの濃度で溶解させたものを用いた。試験セルの組み立て後、25℃にて24時間放置し、以下の内部抵抗評価を行った。
(Production of test cell)
A test cell was prepared using the positive electrode and the negative electrode described above, a separator (Celguard # 2400, manufactured by Celgard) and an electrolytic solution. As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC: DEC = 1: 1 vol%) was used. After the test cell was assembled, it was left at 25 ° C. for 24 hours, and the following internal resistance evaluation was performed.

(内部抵抗評価)
上記各試験セルについて、0.2Cの定電流でCVCC(Constant Voltage Constant Current power supply、定電位定電流)モードにおいて4.2Vまで充電した後、4.2Vで定電位充電を1時間行い、0.2Cで2Vまで放電し、各試験セルを満充電の約60%の充電状態に調整した。この後、再度0.2Cの定電流でCVCCモードにおいて4.0Vまで充電した後、5Cの定電流で30秒間放電した。この放電の際、放電開始から0.2秒後の電位降下値と30秒後の電位降下値を測定した。そして、0.2秒後の電位降下値を放電電流値で除して、試験セルの内部抵抗の初期抵抗値とし、更に30秒後の電位降下値を放電電流値で除して、試験セルの内部抵抗の全抵抗値とした。また、全抵抗値から初期抵抗値を引いた値を差分抵抗値とした。なお、内部抵抗の全抵抗値及び差分抵抗値が低いほど、正極内におけるリチウムイオンの拡散抵抗が低いと考えられる。
(Internal resistance evaluation)
About each said test cell, after charging to 4.2V in CVCC (Constant Voltage Constant Current power supply, constant potential constant current) mode with the constant current of 0.2C, constant potential charge is performed at 4.2V for 1 hour, 0 .2C was discharged to 2V and each test cell was adjusted to a charge state of about 60% of full charge. Thereafter, the battery was charged again to 4.0 V at a constant current of 0.2 C in the CVCC mode, and then discharged for 30 seconds at a constant current of 5 C. During the discharge, the potential drop value 0.2 seconds after the start of discharge and the potential drop value 30 seconds after were measured. Then, the potential drop value after 0.2 seconds is divided by the discharge current value to obtain the initial resistance value of the internal resistance of the test cell, and the potential drop value after 30 seconds is further divided by the discharge current value to obtain the test cell. The total resistance value of the internal resistance. A value obtained by subtracting the initial resistance value from the total resistance value was defined as the differential resistance value. In addition, it is thought that the diffusion resistance of the lithium ion in a positive electrode is so low that the total resistance value of internal resistance and a differential resistance value are low.

(実施例1)
(正極活物質粒子の作製)
正極活物質原料粒子として、平均一次粒子径1.2μm、平均凝集粒子径3μmのマンガン酸リチウム100gを用い、平均粒径6μmのt-ブチルメタクリレート粒子(綜研化学製、商品名:MR−7G)8gと共にイオン交換水666gに混合して、マンガン酸リチウムのスラリー(固形分濃度13重量%)を得た。このスラリーを用いて、噴霧乾燥装置(EYELA製、SPRAY DRYER SD−1000)で、熱風供給温度約125℃、乾燥機の出口温度約75℃の条件で噴霧乾燥した。次いで、得られた粉末を、昇温速度400℃/hrで800℃まで昇温し、800℃で30時間焼成し、正極活物質粒子を得た。得られた正極活物質粒子の特性を表1に示す。なお、空孔形成用樹脂粒子として使用したt-ブチルメタクリレート粒子の平均粒径の測定方法は、以下のとおりである。
Example 1
(Preparation of positive electrode active material particles)
As positive electrode active material raw material particles, 100 g of lithium manganate having an average primary particle diameter of 1.2 μm and an average aggregate particle diameter of 3 μm was used, and t-butyl methacrylate particles having an average particle diameter of 6 μm (trade name: MR-7G, manufactured by Soken Chemical Co., Ltd.) 8 g was mixed with 666 g of ion-exchanged water to obtain a lithium manganate slurry (solid concentration: 13% by weight). Using this slurry, spray drying was performed with a spray dryer (manufactured by EYELA, SPRAY DRYER SD-1000) under conditions of a hot air supply temperature of about 125 ° C. and a dryer outlet temperature of about 75 ° C. Next, the obtained powder was heated to 800 ° C. at a temperature rising rate of 400 ° C./hr and baked at 800 ° C. for 30 hours to obtain positive electrode active material particles. Table 1 shows the characteristics of the obtained positive electrode active material particles. The method for measuring the average particle size of the t-butyl methacrylate particles used as the pore-forming resin particles is as follows.

(t-ブチルメタクリレート粒子の平均粒径の測定方法)
レーザー回折/散乱式粒度分布測定装置(堀場製作所社製、LA−920)を用い、エタノールを分散媒とし、t-ブチルメタクリレート粒子15g/エタノール85gのスラリーについて、循環速度設定4、超音波照射強度レベル7で超音波5分照射後の粒度分布を相対屈折率1.7で測定したときの体積中位粒径(D50)の値を平均粒径とした。
(Measurement method of average particle size of t-butyl methacrylate particles)
Using a laser diffraction / scattering particle size distribution measuring device (LA-920, manufactured by HORIBA, Ltd.), with a dispersion medium of ethanol and a slurry of 15 g of t-butyl methacrylate particles / 85 g of ethanol, circulation rate setting 4, ultrasonic irradiation intensity The value of volume median particle size (D50) when the particle size distribution after irradiation with ultrasonic waves at level 7 was measured at a relative refractive index of 1.7 was taken as the average particle size.

(塗工用スラリーの作製)
エタノール500重量部に、導電性物質1であるDBP吸油量495cm/100gのケッチェンブラックを7重量部添加し、超音波ホモジナイザー(日本精機製作所社製、US−300T)を用いて、周波数19kHz、出力300Wで6分間超音波照射を行い、平均粒径5μmのケッチェンブラックの分散液を得た。この分散液に、上述した正極活物質粒子100重量部を加えてスラリー1を調製し、このスラリー1に上記超音波ホモジナイザーを用いて周波数19kHz、出力300Wで2分間超音波照射を行った。その後、エタノールを溜去して、正極活物質粒子とケッチェンブラックとを含有する凝集粒子を得た。この凝集粒子107重量部と、導電性物質2であるDBP吸油量180cm/100gのカーボンブラック(電気化学工業社製、HS−100)5.5重量部と、ポリフッ化ビニリデンの5重量%N-メチル-2-ピロリドン溶液(呉羽化学工業社製、#7305)250重量部と、N-メチル-2-ピロリドン137.5重量部とを混合したスラリー(100g)を、自転/公転プロペラレス混和方式ミキサー(THINKY製、あわとり練太郎 ARE−250)を用いて混練処理し、スラリー2(塗工用スラリー)を得た。なお、上記混練処理では、スラリーを上記ミキサーの専用容器(容量300ml)に入れ、雰囲気温度23℃、自転速度800rpm、公転速度2000rpm、混練時間0.5時間の条件で行った。
(Preparation of slurry for coating)
Ethanol 500 parts by weight, Ketjen black DBP oil absorption 495cm 3 / 100g is a conductive material 1 7 parts by weight was added, an ultrasonic homogenizer (Nippon Seiki Seisakusho Co., Ltd., US-300T) with frequency 19kHz Then, ultrasonic irradiation was performed at an output of 300 W for 6 minutes to obtain a dispersion of ketjen black having an average particle size of 5 μm. To this dispersion, 100 parts by weight of the positive electrode active material particles described above were added to prepare slurry 1, and this slurry 1 was irradiated with ultrasonic waves for 2 minutes at a frequency of 19 kHz and an output of 300 W using the above ultrasonic homogenizer. Thereafter, ethanol was distilled off to obtain aggregated particles containing positive electrode active material particles and ketjen black. This and aggregated particles 107 parts by weight, DBP oil absorption of a conductive material 2 180cm 3/100 g carbon black (manufactured by Denki Kagaku Kogyo Kabushiki Kaisha, HS-100) and 5.5 parts by weight, 5 wt% N polyvinylidene fluoride -Slurry (100 g) in which 250 parts by weight of a methyl-2-pyrrolidone solution (Kureha Chemical Industries, # 7305) and 137.5 parts by weight of N-methyl-2-pyrrolidone were mixed with rotation / revolution propeller. Kneading was performed using a system mixer (manufactured by THINKY, Awatori Nertaro ARE-250) to obtain slurry 2 (coating slurry). In the kneading process, the slurry was placed in a dedicated container (capacity 300 ml) of the mixer, and the conditions were an ambient temperature of 23 ° C., a rotation speed of 800 rpm, a revolution speed of 2000 rpm, and a kneading time of 0.5 hours.

(実施例2)
実施例1と同種の正極活物質粒子(100重量部)、及び実施例1と同種の導電性物質1(7重量部)を、N-メチル-2-ピロリドン137.5重量部に添加してスラリーを調製した。次いで、上記スラリーに実施例1と同種の導電性物質2(5.5重量部)、及びポリフッ化ビニリデンの5重量%N-メチル-2-ピロリドン溶液(呉羽化学工業社製、#7305)250重量部を混合し、得られたスラリー(100g)を実施例1と同様の条件で混練処理し、塗工用スラリーを得た。
(Example 2)
The same kind of positive electrode active material particles (100 parts by weight) as Example 1 and the same kind of conductive material 1 (7 parts by weight) as Example 1 were added to 137.5 parts by weight of N-methyl-2-pyrrolidone. A slurry was prepared. Next, a conductive material 2 of the same type as in Example 1 (5.5 parts by weight) and a 5% by weight N-methyl-2-pyrrolidone solution of polyvinylidene fluoride (# 7305, manufactured by Kureha Chemical Industry Co., Ltd.) 250 in the slurry. Weight parts were mixed, and the resulting slurry (100 g) was kneaded under the same conditions as in Example 1 to obtain a coating slurry.

(実施例3)
導電性物質1をN-メチル-2-ピロリドンに添加して、該導電性物質1の平均粒径が24μmとなるように超音波照射した後で正極活物質粒子と混合したことと、混練時間を1.0時間としたこと以外は、実施例2と同様の方法で塗工用スラリーを得た。
(Example 3)
Adding conductive material 1 to N-methyl-2-pyrrolidone, irradiating the conductive material 1 with ultrasonic waves so that the average particle size of the conductive material 1 is 24 μm, and then mixing with the positive electrode active material particles; kneading time; A slurry for coating was obtained in the same manner as in Example 2 except that was set to 1.0 hour.

(実施例4)
正極活物質粒子として下記に示す方法で作製したものを用いたこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
Example 4
A slurry for coating was obtained in the same manner as in Example 1 except that the positive electrode active material particles were prepared by the method shown below.

(実施例4で用いた正極活物質粒子の作製)
正極活物質原料粒子として、平均一次粒子径1.2μm、平均凝集粒子径3μmのマンガン酸リチウム100gを用い、これをイオン交換水666gに混合して、マンガン酸リチウムのスラリー(固形分濃度13重量%)を得た。このスラリーを用いて、噴霧乾燥装置(EYELA製、SPRAY DRYER SD−1000)で、熱風供給温度約125℃、乾燥機の出口温度約75℃の条件で噴霧乾燥した。次いで、得られた粉末を、昇温速度200℃/hrで800℃まで昇温し、800℃で30時間焼成し、正極活物質粒子を得た。
(Preparation of positive electrode active material particles used in Example 4)
As positive electrode active material raw material particles, 100 g of lithium manganate having an average primary particle size of 1.2 μm and an average aggregated particle size of 3 μm was used, mixed with 666 g of ion-exchanged water, and a lithium manganate slurry (solid content concentration 13 weight) %). Using this slurry, spray drying was performed with a spray dryer (manufactured by EYELA, SPRAY DRYER SD-1000) under conditions of a hot air supply temperature of about 125 ° C. and a dryer outlet temperature of about 75 ° C. Next, the obtained powder was heated to 800 ° C. at a temperature rising rate of 200 ° C./hr and baked at 800 ° C. for 30 hours to obtain positive electrode active material particles.

(実施例5)
正極活物質粒子として下記に示す方法で作製したものを用いたこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
(Example 5)
A slurry for coating was obtained in the same manner as in Example 1 except that the positive electrode active material particles were prepared by the method shown below.

(実施例5で用いた正極活物質粒子の作製)
正極活物質原料粒子として、平均一次粒子径1.2μm、平均凝集粒子径3μmのマンガン酸リチウム100gを用い、平均粒径1μmの架橋アクリル粒子(綜研化学製、商品名:MR−7G)16gと共にイオン交換水666gに混合して、マンガン酸リチウムのスラリー(固形分濃度12.7重量%)を得た。このスラリーを用いて、噴霧乾燥装置(EYELA製、SPRAY DRYER SD−1000)で、熱風供給温度約125℃、乾燥機の出口温度約75℃の条件で噴霧乾燥した。次いで、得られた粉末を、昇温速度200℃/hrで800℃まで昇温し、800℃で5時間焼成し、正極活物質粒子を得た。
(Preparation of positive electrode active material particles used in Example 5)
As positive electrode active material raw material particles, 100 g of lithium manganate having an average primary particle diameter of 1.2 μm and an average aggregated particle diameter of 3 μm was used, together with 16 g of crosslinked acrylic particles having an average particle diameter of 1 μm (trade name: MR-7G, manufactured by Soken Chemical). Mixing with 666 g of ion-exchanged water, a lithium manganate slurry (solid content concentration of 12.7% by weight) was obtained. Using this slurry, spray drying was performed with a spray dryer (manufactured by EYELA, SPRAY DRYER SD-1000) under conditions of a hot air supply temperature of about 125 ° C. and a dryer outlet temperature of about 75 ° C. Next, the obtained powder was heated to 800 ° C. at a temperature rising rate of 200 ° C./hr and baked at 800 ° C. for 5 hours to obtain positive electrode active material particles.

(実施例6)
ケッチェンブラック分散液を得る際の超音波照射時間を4分間としたこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
(Example 6)
A slurry for coating was obtained in the same manner as in Example 1 except that the ultrasonic irradiation time for obtaining the ketjen black dispersion was 4 minutes.

(実施例7)
ケッチェンブラック分散液を得る際の超音波照射時間を8分間としたこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
(Example 7)
A slurry for coating was obtained in the same manner as in Example 1 except that the ultrasonic irradiation time for obtaining the ketjen black dispersion was 8 minutes.

(実施例8)
ケッチェンブラック分散液を得る際にケッチェンブラックを5重量部添加したことと、塗工用スラリーを得る際にカーボンブラック(電気化学工業社製、HS−100)を7.5重量部混合したこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
(Example 8)
When obtaining ketjen black dispersion, 5 parts by weight of ketjen black was added, and when obtaining slurry for coating, 7.5 parts by weight of carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd., HS-100) was mixed. Except for this, a slurry for coating was obtained in the same manner as in Example 1.

(実施例9)
ケッチェンブラック分散液を得る際にケッチェンブラックを10重量部添加したことと、塗工用スラリーを得る際にカーボンブラック(電気化学工業社製、HS−100)を2.5重量部混合したこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
Example 9
10 parts by weight of ketjen black was added when obtaining a ketjen black dispersion, and 2.5 parts by weight of carbon black (HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.) was mixed when obtaining a slurry for coating. Except for this, a slurry for coating was obtained in the same manner as in Example 1.

(実施例10)
塗工用スラリーを得る際にN-メチル-2-ピロリドンを470.8重量部混合したこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
(Example 10)
A coating slurry was obtained in the same manner as in Example 1 except that 470.8 parts by weight of N-methyl-2-pyrrolidone was mixed when obtaining the coating slurry.

(実施例11)
導電性物質1として、DBP吸油量が420cm/100gのカーボンブラック(デグサ社製、XE−2B)を用いたこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
(Example 11)
As the conductive material 1, DBP oil absorption of 420 cm 3/100 g carbon black (Degussa Corp., XE-2B) of except for using, to obtain a coating slurry in the same manner as in Example 1.

(実施例12)
導電性物質2として、DBP吸油量が69cm/100gのカーボンブラック(三菱化学社製、#25)を用いたこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
Example 12
As the conductive material 2, DBP oil absorption of 69cm 3/100 g of carbon black (manufactured by Mitsubishi Chemical Corporation, # 25) of except for using, to obtain a coating slurry in the same manner as in Example 1.

(実施例13)
塗工用スラリーを得る際にカーボンブラック(電気化学工業社製、HS−100)を混合しなかったこと以外は、実施例8と同様の方法で塗工用スラリーを得た。
(Example 13)
A coating slurry was obtained in the same manner as in Example 8 except that carbon black (manufactured by Denki Kagaku Kogyo Co., Ltd., HS-100) was not mixed when obtaining the coating slurry.

(比較例1)
正極活物質粒子として、平均一次粒子径1.2μm、平均凝集粒子径3μmのマンガン酸リチウムを用いたこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
(Comparative Example 1)
A coating slurry was obtained in the same manner as in Example 1 except that lithium manganate having an average primary particle size of 1.2 μm and an average aggregated particle size of 3 μm was used as the positive electrode active material particles.

(比較例2)
導電性物質1として、DBP吸油量180cm/100gのカーボンブラック(電気化学工業社製、HS−100)を用いたこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
(Comparative Example 2)
As the conductive material 1, DBP oil absorption 180cm 3/100 g of carbon black (manufactured by Denki Kagaku Kogyo Kabushiki Kaisha, HS-100) of except for using, to obtain a coating slurry in the same manner as in Example 1.

(比較例3)
導電性物質1として、ケッチェンブラックを25重量部添加したことと、導電性物質2として、カーボンブラック(電気化学工業社製、HS−100)を19.5重量部混合したこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
(Comparative Example 3)
Except that 25 parts by weight of ketjen black was added as the conductive substance 1, and 19.5 parts by weight of carbon black (HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.) was mixed as the conductive substance 2. A slurry for coating was obtained in the same manner as in Example 1.

(比較例4)
導電性物質1として、ケッチェンブラックを2重量部添加したことと、導電性物質2として、カーボンブラック(電気化学工業社製、HS−100)を10.5重量部混合したこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
(Comparative Example 4)
Except that 2 parts by weight of ketjen black was added as the conductive material 1 and 10.5 parts by weight of carbon black (HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.) was mixed as the conductive material 2. A slurry for coating was obtained in the same manner as in Example 1.

(比較例5)
混練時間を10時間としたこと以外は、実施例1と同様の方法で塗工用スラリーを得た。
(Comparative Example 5)
A coating slurry was obtained in the same manner as in Example 1 except that the kneading time was 10 hours.

(比較例6)
混練時間を10時間としたこと以外は、実施例3と同様の方法で塗工用スラリーを得た。
(Comparative Example 6)
A coating slurry was obtained in the same manner as in Example 3 except that the kneading time was 10 hours.

上記の各実施例及び各比較例について、構成材料の詳細を表1に示し、スラリー調製条件及び評価結果を表2に示した。なお、比較例1のピーク細孔径2については、比較例1の細孔分布において存在していなかった。また、比較例3の塗工用スラリーのレオロジー特性及び内部抵抗評価については、流動性を有する塗工用スラリーが得られなかったため測定できなかった。   For each of the above examples and comparative examples, details of the constituent materials are shown in Table 1, and slurry preparation conditions and evaluation results are shown in Table 2. Incidentally, the peak pore diameter 2 of Comparative Example 1 was not present in the pore distribution of Comparative Example 1. Further, the rheological properties and internal resistance evaluation of the coating slurry of Comparative Example 3 could not be measured because a fluid coating slurry was not obtained.

Figure 2010067365
Figure 2010067365

Figure 2010067365
Figure 2010067365

表2に示すように、実施例1〜13は、いずれも比較例1〜6に比べ内部抵抗評価について良好な結果が得られた。なお、比較例5,6では、混練時間が長すぎたため、勾配Δが±0.30の範囲外となり、全抵抗値及び差分抵抗値が高くなったものと考えられる。   As shown in Table 2, in Examples 1 to 13, good results were obtained for internal resistance evaluation as compared with Comparative Examples 1 to 6. In Comparative Examples 5 and 6, since the kneading time was too long, the gradient Δ was outside the range of ± 0.30, and it is considered that the total resistance value and the differential resistance value were increased.

A〜Cは、本発明に使用できる正極活物質粒子の一例におけるピーク細孔径2を抽出する際に使用する細孔分布データである。A to C are pore distribution data used when extracting the peak pore diameter 2 in an example of the positive electrode active material particles that can be used in the present invention.

Claims (16)

正極活物質粒子及び導電性物質1を溶媒1中で混合し、前記正極活物質粒子、前記導電性物質1及び前記溶媒1を含むスラリー1を得る工程1と、この工程1の後に、前記正極活物質粒子、前記導電性物質1、バインダー及び溶媒2を混練して前記正極活物質粒子、前記導電性物質1、前記バインダー及び前記溶媒2を含有するスラリー2を得る工程2とを有する非水電解質二次電池の正極用組成物の製造方法であって、
前記正極活物質粒子は、BET比表面積が1〜6m/gであり、水銀ポロシメーターで測定した全細孔容積が0.1〜1cc/gであり、水銀ポロシメーターで測定した細孔分布において、最大の微分細孔容積値を与えるピーク細孔径1が細孔径0.01〜8μmの範囲に存在し、かつ前記最大の微分細孔容積値の5%以上の微分細孔容積値を与えるピーク細孔径2が細孔径0.01μm以上で前記ピーク細孔径1未満の範囲に存在し、レーザー回折/散乱式粒度分布測定による平均粒径が前記ピーク細孔径1以上で20μm以下であり、
前記導電性物質1は、前記正極活物質粒子と混合する際の平均粒径が1〜50μmであり、自己凝集性を有し、前記スラリー1中の含有量が前記正極活物質粒子100重量部に対して3〜20重量部であり、
レオロジー測定装置で測定した前記スラリー2のレオロジー特性において、剪断速度0.001〜0.1s−1の範囲における剪断速度に対する剪断応力が1000〜40000mPa、かつ前記剪断速度範囲における剪断応力の勾配Δが−0.30〜0.30となるように、前記工程2の混練を行う、非水電解質二次電池の正極用組成物の製造方法。
Step 1 of mixing the positive electrode active material particles and the conductive material 1 in the solvent 1 to obtain the slurry 1 containing the positive electrode active material particles, the conductive material 1 and the solvent 1, and after this step 1, the positive electrode A non-aqueous step of kneading active material particles, the conductive material 1, a binder, and a solvent 2 to obtain a slurry 2 containing the positive electrode active material particles, the conductive material 1, the binder, and the solvent 2. A method for producing a positive electrode composition for an electrolyte secondary battery, comprising:
The positive electrode active material particles have a BET specific surface area of 1 to 6 m 2 / g, a total pore volume measured with a mercury porosimeter of 0.1 to 1 cc / g, and a pore distribution measured with a mercury porosimeter. The peak fine diameter 1 that gives the maximum differential pore volume value is in the range of 0.01 to 8 μm, and the peak fine diameter gives a differential pore volume value that is 5% or more of the maximum differential pore volume value. The pore diameter 2 is present in the range of the pore diameter of 0.01 μm or more and less than the peak pore diameter of 1, and the average particle diameter by laser diffraction / scattering particle size distribution measurement is from the peak pore diameter of 1 to 20 μm,
The conductive material 1 has an average particle size of 1 to 50 μm when mixed with the positive electrode active material particles, has self-aggregation, and the content in the slurry 1 is 100 parts by weight of the positive electrode active material particles. 3 to 20 parts by weight with respect to
In the rheological properties of the slurry 2 measured by the rheology measuring device, the shear stress with respect to the shear rate in the range of the shear rate of 0.001 to 0.1 s −1 is 1000 to 40000 mPa, and the shear stress gradient Δ in the shear rate range is -The manufacturing method of the composition for positive electrodes of the nonaqueous electrolyte secondary battery which kneads the said process 2 so that it may become -0.30-0.30.
前記工程1の後で、前記工程2の前に、前記スラリー1中の前記導電性物質1を前記正極活物質粒子と共に凝集させて、前記正極活物質粒子と前記導電性物質1とを含有する凝集粒子を得る凝集工程を更に有する、請求項1に記載の正極用組成物の製造方法。   After the step 1 and before the step 2, the conductive material 1 in the slurry 1 is aggregated together with the positive electrode active material particles to contain the positive electrode active material particles and the conductive material 1 The method for producing a positive electrode composition according to claim 1, further comprising an aggregation step for obtaining aggregated particles. 前記凝集工程において、前記溶媒1を除去しながら前記導電性物質1を前記正極活物質粒子と共に凝集させて前記凝集粒子を得る、請求項2に記載の正極用組成物の製造方法。   The manufacturing method of the composition for positive electrodes of Claim 2 which aggregates the said electroconductive substance 1 with the said positive electrode active material particle while removing the said solvent 1 in the said aggregation process. 前記溶媒1として、沸点が100℃以下の溶媒を使用する請求項3に記載の正極用組成物の製造方法。   The method for producing a positive electrode composition according to claim 3, wherein a solvent having a boiling point of 100 ° C. or lower is used as the solvent 1. 前記工程1において、前記スラリー1中での前記導電性物質1の平均粒径が10μm以下となるように、前記スラリー1に超音波を照射する、請求項2〜4のいずれか1項に記載の正極用組成物の製造方法。   5. The ultrasonic wave is applied to the slurry 1 so that the average particle diameter of the conductive material 1 in the slurry 1 is 10 μm or less in the step 1. The manufacturing method of the composition for positive electrodes of this. 前記導電性物質1のDBP吸油量が、300〜600cm/100gである請求項1〜5のいずれか1項に記載の正極用組成物の製造方法。 Manufacturing method of the DBP oil absorption of the conductive material 1, a positive electrode composition according to claim 1 which is 300~600cm 3 / 100g. 前記工程2において、前記スラリー2に、更に、自己凝集性を有さない導電性物質2を混合する請求項1〜6のいずれか1項に記載の正極用組成物の製造方法。   In the said process 2, the manufacturing method of the composition for positive electrodes of any one of Claims 1-6 which further mixes the electroconductive substance 2 which does not have self-aggregation property with the said slurry. 前記導電性物質2のDBP吸油量が、50〜250cm/100gである請求項7に記載の正極用組成物の製造方法。 Manufacturing method of the DBP oil absorption of the conductive material 2 is, positive electrode composition according to claim 7 is 50~250cm 3 / 100g. 前記導電性物質1と前記導電性物質2との重量比(導電性物質1/導電性物質2)が、25/75〜95/5である請求項7又は8に記載の正極用組成物の製造方法。   9. The composition for a positive electrode according to claim 7, wherein a weight ratio of the conductive material 1 to the conductive material 2 (conductive material 1 / conductive material 2) is 25/75 to 95/5. Production method. 正極活物質粒子、導電性物質1、バインダー及び溶媒を含有する非水電解質二次電池の正極用スラリーであって、
前記正極活物質粒子は、BET比表面積が1〜6m/gであり、水銀ポロシメーターで測定した全細孔容積が0.1〜1cc/gであり、水銀ポロシメーターで測定した細孔分布において、最大の微分細孔容積値を与えるピーク細孔径1が細孔径0.01〜8μmの範囲に存在し、かつ前記最大の微分細孔容積値の5%以上の微分細孔容積値を与えるピーク細孔径2が細孔径0.01μm以上で前記ピーク細孔径1未満の範囲に存在し、レーザー回折/散乱式粒度分布測定による平均粒径が前記ピーク細孔径1以上で20μm以下であり、
前記導電性物質1は、前記正極活物質粒子と混合する際の平均粒径が1〜50μmであり、自己凝集性を有し、前記正極用スラリー中の含有量が前記正極活物質粒子100重量部に対して3〜20重量部であり、
レオロジー測定装置で測定した前記正極用スラリーのレオロジー特性において、剪断速度0.001〜0.1s−1の範囲における剪断速度に対する剪断応力が1000〜40000mPa、かつ前記剪断速度範囲における剪断応力の勾配Δが−0.30〜0.30である、非水電解質二次電池の正極用スラリー。
A slurry for a positive electrode of a nonaqueous electrolyte secondary battery containing positive electrode active material particles, conductive material 1, a binder and a solvent,
The positive electrode active material particles have a BET specific surface area of 1 to 6 m 2 / g, a total pore volume measured with a mercury porosimeter of 0.1 to 1 cc / g, and a pore distribution measured with a mercury porosimeter. The peak fine diameter 1 that gives the maximum differential pore volume value is in the range of 0.01 to 8 μm, and the peak fine diameter gives a differential pore volume value that is 5% or more of the maximum differential pore volume value. The pore diameter 2 is present in the range of the pore diameter of 0.01 μm or more and less than the peak pore diameter of 1, and the average particle diameter by laser diffraction / scattering particle size distribution measurement is from the peak pore diameter of 1 to 20 μm,
The conductive material 1 has an average particle size of 1 to 50 μm when mixed with the positive electrode active material particles, has a self-aggregation property, and the content in the positive electrode slurry is 100 weights of the positive electrode active material particles. 3 to 20 parts by weight with respect to parts,
In the rheological properties of the positive electrode slurry measured with a rheology measuring apparatus, the shear stress with respect to the shear rate in the range of the shear rate of 0.001 to 0.1 s −1 is 1000 to 40000 mPa and the shear stress gradient Δ in the shear rate range. Is a slurry for positive electrode of a non-aqueous electrolyte secondary battery, which is −0.30 to 0.30.
前記導電性物質1のDBP吸油量が、300〜600cm/100gである請求項10に記載の正極用スラリー。 The DBP oil absorption of the conductive material 1, a positive electrode slurry according to claim 10 which is 300~600cm 3 / 100g. 自己凝集性を有さない導電性物質2を更に含む請求項10又は11に記載の正極用スラリー。   The slurry for positive electrodes of Claim 10 or 11 which further contains the electroconductive substance 2 which does not have self-aggregation property. 前記導電性物質2のDBP吸油量が、50〜250cm/100gである請求項12に記載の正極用スラリー。 The DBP oil absorption of the conductive material 2 is, positive electrode slurry according to claim 12 which is 50~250cm 3 / 100g. 前記導電性物質1と前記導電性物質2との重量比(導電性物質1/導電性物質2)が、25/75〜95/5である請求項12又は13に記載の正極用スラリー。   The slurry for positive electrodes according to claim 12 or 13, wherein a weight ratio (conductive material 1 / conductive material 2) between the conductive material 1 and the conductive material 2 is 25/75 to 95/5. 請求項10〜14のいずれか1項に記載の正極用スラリーの乾燥体を含有してなる非水電解質二次電池の正極。   The positive electrode of the nonaqueous electrolyte secondary battery formed by containing the dry body of the slurry for positive electrodes of any one of Claims 10-14. 請求項15に記載の正極を備える非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising the positive electrode according to claim 15.
JP2008229984A 2008-09-08 2008-09-08 Method for producing composition for positive electrode of non-aqueous electrolyte secondary battery Expired - Fee Related JP5334506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008229984A JP5334506B2 (en) 2008-09-08 2008-09-08 Method for producing composition for positive electrode of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229984A JP5334506B2 (en) 2008-09-08 2008-09-08 Method for producing composition for positive electrode of non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2010067365A true JP2010067365A (en) 2010-03-25
JP5334506B2 JP5334506B2 (en) 2013-11-06

Family

ID=42192799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229984A Expired - Fee Related JP5334506B2 (en) 2008-09-08 2008-09-08 Method for producing composition for positive electrode of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5334506B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149396A (en) * 2012-01-17 2013-08-01 Mitsubishi Rayon Co Ltd Positive electrode slurry for secondary battery, method for manufacturing the same, method for manufacturing positive electrode for secondary battery, and lithium ion secondary battery
US9825296B2 (en) 2013-03-12 2017-11-21 Sony Corporation Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2018045815A (en) * 2016-09-13 2018-03-22 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20190140819A (en) * 2018-06-12 2019-12-20 서울대학교산학협력단 Slurry including the elastic binder for secondary battery electrode, electrodes including the slurry for secondary battery, and secondary battery including the electrode
US10749167B2 (en) 2017-07-31 2020-08-18 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of manufacturing the same
JP2022158238A (en) * 2021-04-01 2022-10-17 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of electrode for secondary battery and wet powder
WO2023106563A1 (en) * 2021-12-07 2023-06-15 한국공학대학교산학협력단 Composite electrode, manufacturing method therefor, and secondary battery comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312792A (en) * 1997-05-12 1998-11-24 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery and manufacture thereof
JP2008034377A (en) * 2006-06-27 2008-02-14 Kao Corp Method for manufacturing composite material for positive electrode of lithium battery
JP2008034376A (en) * 2006-06-27 2008-02-14 Kao Corp Composite positive electrode material for lithium ion battery and battery using the same
JP2008063213A (en) * 2006-08-10 2008-03-21 Kao Corp Method of manufacturing lithium manganate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10312792A (en) * 1997-05-12 1998-11-24 Toyota Central Res & Dev Lab Inc Positive electrode for lithium secondary battery and manufacture thereof
JP2008034377A (en) * 2006-06-27 2008-02-14 Kao Corp Method for manufacturing composite material for positive electrode of lithium battery
JP2008034376A (en) * 2006-06-27 2008-02-14 Kao Corp Composite positive electrode material for lithium ion battery and battery using the same
JP2008063213A (en) * 2006-08-10 2008-03-21 Kao Corp Method of manufacturing lithium manganate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013149396A (en) * 2012-01-17 2013-08-01 Mitsubishi Rayon Co Ltd Positive electrode slurry for secondary battery, method for manufacturing the same, method for manufacturing positive electrode for secondary battery, and lithium ion secondary battery
US9825296B2 (en) 2013-03-12 2017-11-21 Sony Corporation Secondary battery-use active material, secondary battery-use electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
JP2018045815A (en) * 2016-09-13 2018-03-22 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US10374224B2 (en) 2016-09-13 2019-08-06 Toyota Jidosha Kabushiki Kaisha Method of manufacturing non-aqueous electrolyte solution secondary battery and non-aqueous electrolyte solution secondary battery
US10749167B2 (en) 2017-07-31 2020-08-18 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery and method of manufacturing the same
KR20190140819A (en) * 2018-06-12 2019-12-20 서울대학교산학협력단 Slurry including the elastic binder for secondary battery electrode, electrodes including the slurry for secondary battery, and secondary battery including the electrode
KR102223989B1 (en) * 2018-06-12 2021-03-09 서울대학교산학협력단 Slurry including the elastic binder for secondary battery electrode, electrodes including the slurry for secondary battery, and secondary battery including the electrode
JP2022158238A (en) * 2021-04-01 2022-10-17 プライムプラネットエナジー&ソリューションズ株式会社 Manufacturing method of electrode for secondary battery and wet powder
JP7372277B2 (en) 2021-04-01 2023-10-31 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing electrodes for secondary batteries and wet powder
US11949094B2 (en) 2021-04-01 2024-04-02 Prime Planet Energy & Solutions, Inc. Method for manufacturing electrode for secondary battery, and moisture powder
WO2023106563A1 (en) * 2021-12-07 2023-06-15 한국공학대학교산학협력단 Composite electrode, manufacturing method therefor, and secondary battery comprising same

Also Published As

Publication number Publication date
JP5334506B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
JP5892393B2 (en) Nonaqueous electrolyte secondary battery and method for producing negative electrode for secondary battery
JP5475934B1 (en) Negative electrode material for lithium ion secondary battery, composite negative electrode material for lithium ion secondary battery, resin composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101153532B1 (en) Method for producing composite material for positive electrode of lithium battery
JP5326567B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery equipped with the same, and method for producing the same
JP5561559B2 (en) Method for manufacturing lithium secondary battery
JP5415012B2 (en) Positive electrode active material sintered body for battery
JP5500395B2 (en) Method for manufacturing electrode for power storage device
JP5334506B2 (en) Method for producing composition for positive electrode of non-aqueous electrolyte secondary battery
JP2008027664A (en) Negative electrode for lithium ion secondary battery, and negative electrode active material
JP2008034378A (en) Method for manufacturing composite material for positive electrode of lithium battery
JP2022121546A (en) Method of manufacturing secondary battery electrode using non-aqueous electrolyte solution, and secondary battery electrode binding agent using non-aqueous electrolyte solution
JPWO2019216275A1 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2015079727A (en) Negative electrode material for lithium ion secondary batteries, method for manufacturing negative electrode material for lithium ion secondary batteries, resin composition for lithium ion secondary battery negative electrodes, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP6162482B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2004186075A (en) Electrode for secondary battery and secondary battery using this
JP4104645B2 (en) Method for producing composite material for positive electrode of lithium battery
JP2019160789A (en) Negative electrode for lithium ion battery and lithium ion battery
JP7130540B2 (en) Negative electrode for lithium ion battery and lithium ion battery
JP2015176744A (en) Method of manufacturing secondary battery
JP2018081787A (en) Method for manufacturing positive electrode for lithium ion secondary battery
JP2005149792A (en) Carbonaceous negative electrode material for lithium secondary battery
JP7223999B2 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5841805B2 (en) Method for producing composite material for positive electrode of lithium secondary battery
JP6487369B2 (en) Conductive paste for preparing positive electrode of lithium ion secondary battery
JP2015022913A (en) Method for producing composition for forming negative electrode active material layer

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130730

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees