JP2005149792A - Carbonaceous negative electrode material for lithium secondary battery - Google Patents

Carbonaceous negative electrode material for lithium secondary battery Download PDF

Info

Publication number
JP2005149792A
JP2005149792A JP2003382477A JP2003382477A JP2005149792A JP 2005149792 A JP2005149792 A JP 2005149792A JP 2003382477 A JP2003382477 A JP 2003382477A JP 2003382477 A JP2003382477 A JP 2003382477A JP 2005149792 A JP2005149792 A JP 2005149792A
Authority
JP
Japan
Prior art keywords
negative electrode
less
carbonaceous
electrode material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003382477A
Other languages
Japanese (ja)
Inventor
Manabu Hayashi
学 林
Toshiko Kondo
寿子 近藤
Keita Yamaguchi
慶太 山口
Nobuyuki Onishi
伸幸 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2003382477A priority Critical patent/JP2005149792A/en
Publication of JP2005149792A publication Critical patent/JP2005149792A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonaceous negative electrode material for a lithium secondary battery, which has good liquid absorbing property even in a case of high density. <P>SOLUTION: The carbonaceous negative electrode material whose disappearing period at wettability test is 320 second or less is obtained by applying a weak, namely, slight dry type ozone treatment to a carbonaceous material of an ordinary-use lithium secondary battery. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はリチウム二次電池用の炭素質負極材料に関するものである。本発明に係る炭素質負極材料を用いて作成された負極は、電解液の吸液特性に優れているので、リチウム二次電池の生産性を向上させることができ、かつ出力特性に優れたリチウム二次電池を与える。   The present invention relates to a carbonaceous negative electrode material for a lithium secondary battery. Since the negative electrode made using the carbonaceous negative electrode material according to the present invention is excellent in the liquid absorption characteristics of the electrolytic solution, it can improve the productivity of the lithium secondary battery and is excellent in the output characteristics. Give a secondary battery.

近年、様々な機器の電源として、高性能の二次電池が求められている。この要求を満足するものとして注目されているのがリチウム二次電池であり、携帯電話やノートパソコンなどのいわゆる民生用機器の電源から、自動車の駆動用車載電源までの広範な用途において、その実用化が図られつつある。
リチウム二次電池用の負極材料としては、高容量であり、かつ放電電位の平坦性に優れているなどの理由で、天然黒鉛、人造黒鉛、黒鉛化メソフェーズピッチ、及び黒鉛化炭素繊維などの黒鉛質の炭素材料が主に用いられている。また電解液の溶媒に常用されるプロピレンカーボネートなどに対して比較的不活性であるなどの理由で、非晶質の炭素材料も用いられている。また、これらの炭素材料の特性を改良する方法も種々提案されている。例えば黒鉛質の炭素材料の表面を非晶質の炭素材料で被覆することにより、両者の特性を兼ね備えた炭素材料とすることが提案されている。また、この炭素材料にフッ素化剤、オゾン又は硝酸による表面処理を施して、25℃から800℃まで昇温したときの一酸化炭素と二酸化炭素の脱離量の和が5〜100μmol/gの炭素材料とすることにより、高電流密度での充放電においても高容量を維持することのできる負極材料とすることも提案されている(特許文献1参照)。
In recent years, high-performance secondary batteries have been demanded as power sources for various devices. Lithium secondary batteries are attracting attention as satisfying this requirement, and they are practically used in a wide range of applications, from the power sources of so-called consumer devices such as mobile phones and laptop computers to in-vehicle power sources for driving automobiles. Is becoming possible.
As a negative electrode material for a lithium secondary battery, graphite such as natural graphite, artificial graphite, graphitized mesophase pitch, and graphitized carbon fiber is used because of its high capacity and excellent flatness of discharge potential. Quality carbon materials are mainly used. Amorphous carbon materials are also used because they are relatively inert to propylene carbonate or the like commonly used as a solvent for electrolytic solutions. Various methods for improving the characteristics of these carbon materials have also been proposed. For example, it has been proposed that the surface of a graphitic carbon material is coated with an amorphous carbon material to obtain a carbon material having both characteristics. The carbon material is subjected to a surface treatment with a fluorinating agent, ozone or nitric acid, and the sum of the amounts of carbon monoxide and carbon dioxide desorbed when the temperature is raised from 25 ° C. to 800 ° C. is 5 to 100 μmol / g. It has also been proposed to use a carbon material as a negative electrode material that can maintain a high capacity even during charge and discharge at a high current density (see Patent Document 1).

負極材料の改良の外に、負極活物質層を高密度化することにより、リチウム二次電池を高容量とすることも検討されている。しかしながら負極活物質層を高密度化すると、電解液が負極活物質層に浸透する、いわゆる吸液特性が低下する。吸液特性の低下は、電池の生産工程において電池に電解液を注入するに要する時間の延長を招き、生産性を低下させる。また電池の出力特性も低下しやすい。
特開2000−306582号公報
In addition to the improvement of the negative electrode material, it has been studied to increase the capacity of the lithium secondary battery by increasing the density of the negative electrode active material layer. However, when the density of the negative electrode active material layer is increased, so-called liquid absorption characteristics in which the electrolytic solution penetrates into the negative electrode active material layer is deteriorated. The decrease in the liquid absorption characteristics leads to an increase in the time required for injecting the electrolyte into the battery in the battery production process, thereby reducing the productivity. Also, the output characteristics of the battery are likely to deteriorate.
JP 2000-306582 A

本発明は、高密度化した場合にも良好な吸液特性を示す負極活物質層を与える炭素質負極材料を提供しようとするものである。   The present invention seeks to provide a carbonaceous negative electrode material that provides a negative electrode active material layer that exhibits good liquid absorption characteristics even when densified.

本発明者らは、下記の濡れ性試験での液滴消失時間が320秒以下である炭素質材料は、高密度化した場合でも吸液特性のよい負極活物質層を与えることを見出し、本発明を完成した。この条件を満足する炭素質材料は、従来から負極材料として用いられている炭素質材料に、気相で弱い乾式オゾン処理を施すことにより得ることができる。
<濡れ性試験>
(1)スラリーの調製;
粉末状カルボキシメチルセルロースナトリウム(エーテル化度0.6〜0.8、1重量%水溶液の30℃、剪断速度40S-1の条件下での粘度100〜1000mPa.s)1gを蒸留水100mLに溶解する。得られた水溶液100gと炭素質負極材料100gとを混合し、10時間撹拌して十分に分散させる。次いでこれにスチレンブタジエンゴム(Tg=−10〜0℃)の水性エマルション(固形分濃度50重量%)2gを加え、撹拌し
て均一なスラリーとする。なお、全ての操作は25℃で行う。
(2)試験片の作製;
厚さ20μmの銅箔上に、上記で調製したスラリーを固形分が(13±0.2)mg/cm2となるようにドクターブレード法により塗布して塗膜を形成する。これを60〜8
0℃に加熱して十分に乾燥させ、水分を除去する。これからポンチで12.5mmφの円板を打抜き、膜密度が(1.5〜1.6)g/cm3となるようにプレス機で加圧して試
験片とする。
(3)液滴消失時間の測定;
アルゴン雰囲気下、25℃で、上記で作製した試験片の中央に、エチレンカーボネート300mL及びジメチルカーボネート700mLから成る混合溶液に六フッ化リン酸リチウム(LiPF6)180gを溶解させた溶液を、5mmの高さから、マイクロシリンジ
で1μL滴下する。滴下終了から溶液が試験片の内部に吸収されて、見掛け上表面から消失するまでの時間を測定し、この測定値を液滴消失時間とする。
The present inventors have found that a carbonaceous material having a droplet disappearance time of 320 seconds or less in the following wettability test gives a negative electrode active material layer with good liquid absorption characteristics even when the density is increased. Completed the invention. A carbonaceous material satisfying this condition can be obtained by subjecting a carbonaceous material conventionally used as a negative electrode material to a weak dry ozone treatment in a gas phase.
<Wettability test>
(1) Preparation of slurry;
Dissolve 1 g of powdered sodium carboxymethylcellulose (etherification degree: 0.6 to 0.8, viscosity of 100 to 1000 mPa.s at 30 ° C. in 1 wt% aqueous solution at a shear rate of 40 S −1 ) in 100 mL of distilled water. . 100 g of the obtained aqueous solution and 100 g of the carbonaceous negative electrode material are mixed and stirred for 10 hours to be sufficiently dispersed. Next, 2 g of an aqueous emulsion (solid content concentration 50% by weight) of styrene butadiene rubber (Tg = −10 to 0 ° C.) is added and stirred to obtain a uniform slurry. All operations are performed at 25 ° C.
(2) Preparation of test piece;
On the copper foil having a thickness of 20 μm, the slurry prepared above is applied by a doctor blade method so that the solid content becomes (13 ± 0.2) mg / cm 2 to form a coating film. This is 60-8
Heat to 0 ° C. to dry thoroughly to remove moisture. From this, a 12.5 mmφ disc is punched with a punch, and a test piece is formed by pressing with a press machine so that the film density is (1.5 to 1.6) g / cm 3 .
(3) Measurement of droplet disappearance time;
A solution prepared by dissolving 180 g of lithium hexafluorophosphate (LiPF 6 ) in a mixed solution consisting of 300 mL of ethylene carbonate and 700 mL of dimethyl carbonate at the center of the test piece prepared above at 25 ° C. in an argon atmosphere was 5 mm. From the height, 1 μL is dropped with a microsyringe. The time from the end of dropping until the solution is absorbed inside the test piece and apparently disappears from the surface is measured, and this measured value is taken as the droplet disappearance time.

本発明に係る炭素質負極材料を用いれば、活物質層を1.5g/cm3以上の高密度に
しても、電解液の浸透性に優れ、かつ負極抵抗の低い活物質層を形成することができる。従って、この活物質層を有する負極を用いることにより、電池の生産性を向上させることができる。また得られたリチウム二次電池は、高出力で長期信頼性が高く、品質も安定しているので、前述したような民生用から車載用に至る種々の電源として好適に用いることができる。
By using the carbonaceous negative electrode material according to the present invention, an active material layer having excellent electrolyte permeability and low negative electrode resistance can be formed even if the active material layer has a high density of 1.5 g / cm 3 or more. Can do. Therefore, the productivity of the battery can be improved by using the negative electrode having this active material layer. Further, since the obtained lithium secondary battery has high output, high long-term reliability, and stable quality, it can be suitably used as various power sources from consumer use to in-vehicle use as described above.

本発明に係る炭素質負極材料は、後述する濡れ性試験での液滴消失時間が320秒以下であることを特徴とするものである。液滴消失時間が280秒以下、特に200秒以下であれば更に好ましい。このものは従来からリチウム二次電池の負極材料として提案されている種々の炭素質材料に、弱い乾式オゾン処理を施すことにより製造することができる。本発明者らの知見によれば、この弱い乾式オゾン処理は炭素質材料の電解液に対する濡れ性は向上させるが、他の物性、例えば平均粒径、粒径分布、比表面積、見掛け密度、結晶化度その他の結晶としての特性などは事実上変化させない。従ってこの処理を施した炭素質材料の負極材料としての特性は、濡れ性及びこれに関連するもの以外は、この処理に供する炭素質材料の特性を実質的にそのまま保持している。   The carbonaceous negative electrode material according to the present invention is characterized in that a droplet disappearance time in a wettability test described later is 320 seconds or less. More preferably, the droplet disappearance time is 280 seconds or less, particularly 200 seconds or less. This can be produced by subjecting various carbonaceous materials conventionally proposed as negative electrode materials for lithium secondary batteries to weak dry ozone treatment. According to the knowledge of the present inventors, this weak dry ozone treatment improves the wettability of the carbonaceous material to the electrolyte, but other physical properties such as average particle size, particle size distribution, specific surface area, apparent density, crystal The degree of conversion and other characteristics as crystals are virtually unchanged. Accordingly, the properties of the carbonaceous material subjected to this treatment as the negative electrode material substantially retain the properties of the carbonaceous material subjected to this treatment as it is, except for wettability and related properties.

乾式オゾン処理に供する炭素質材料の代表的なものは、天然黒鉛、人造黒鉛、メソフェーズピッチ系黒鉛、メソカーボンマイクロビーズ系黒鉛、黒鉛化炭素繊維などの黒鉛質のものである。これらはそのまま用いることもでき、また加熱その他種々の方法により精製処理を施して用いることもできる。黒鉛質炭素材料の面間隔(d002)は0.348nm
以下であるのが好ましく、0.338nm以下、特に0.337nm以下であれば更に好ましい。またC軸方向の結晶子の厚さ(Lc)は20nm以上であるのが好ましく、40
nm以上、特に90nm以上であれば更に好ましい。
Typical carbonaceous materials to be subjected to dry ozone treatment are graphite materials such as natural graphite, artificial graphite, mesophase pitch graphite, mesocarbon microbead graphite, and graphitized carbon fiber. These can be used as they are, or can be used after purification by heating or other various methods. The interplanar spacing (d 002 ) of the graphitic carbon material is 0.348 nm
Or less, more preferably 0.338 nm or less, and particularly preferably 0.337 nm or less. The crystallite thickness (Lc) in the C-axis direction is preferably 20 nm or more,
More preferably, it is more than nm, especially more than 90 nm.

周知のように、リチウムイオンが黒鉛層間に格納されて生成する層間化合物であるC6
Liを基準とした黒鉛1g当りの理論容量値は372mAhであるが、本発明で用いる黒鉛質炭素材料としては、充放電レートを0.2mA/cm2としたリチウム金属対極を用
いた半電池で測定した場合の容量が320mAhr/g以上のものが好ましい。容量が340mAhr/g以上、特に350mAhr/g以上であれば更に好ましい。
As is well known, C 6 , which is an intercalation compound formed by storing lithium ions between graphite layers.
The theoretical capacity value per gram of graphite based on Li is 372 mAh, but the graphitic carbon material used in the present invention is a half-cell using a lithium metal counter electrode with a charge / discharge rate of 0.2 mA / cm 2. The capacity when measured is preferably 320 mAhr / g or more. More preferably, the capacity is 340 mAhr / g or more, particularly 350 mAhr / g or more.

また黒鉛質炭素材料は、波長514.3nmのアルゴンイオンレーザー光を用いたラマンスペクトルにおいて、1580cm-1〜1620cm-1のピーク強度をIA、その半値
幅をΔνとし、、1350cm-1〜1370cm-1のピーク強度をIBとしたとき、ピー
ク強度比R(=IB/IA)が0.7以下であるのが好ましい。ピーク強度比Rが0.6以下、特に0.4以下であれば更に好ましい。ただしピーク強度比Rは0.2を下廻らないのが好ましい。また半値幅Δνは40cm-1以下であるのが好ましく、36cm-1以下であれば更に好ましい。半値幅Δνは一般に小さいほど好ましいが、通常は20cm-1以上である。
The graphitic carbon material has a peak intensity of 1580 cm −1 to 1620 cm −1 as I A and a half width of Δν in a Raman spectrum using an argon ion laser beam having a wavelength of 514.3 nm, and 1350 cm −1 to 1370 cm. When the peak intensity at −1 is I B , the peak intensity ratio R (= I B / I A ) is preferably 0.7 or less. More preferably, the peak intensity ratio R is 0.6 or less, particularly 0.4 or less. However, the peak intensity ratio R is preferably not less than 0.2. The half-value width Δν is preferably 40 cm −1 or less, and more preferably 36 cm −1 or less. In general, the half-value width Δν is preferably as small as possible, but is usually 20 cm −1 or more.

また、これらの黒鉛質炭素材料をそのまま用いる代りに、これらの黒鉛質炭素材料の表面を非晶質の炭素材料で被覆した複合化炭素質材料を用いるものも好ましい。このような複合化炭素質材料は公知であり、全体に占める非晶質炭素材料の割合は0.1〜50重量%であるが、2〜10重量%であるのが好ましい。また、複合化炭素質材料の中心核となる黒鉛質炭素材料の面間隔(d002)や結晶子の厚さ(Lc)は、前述した黒鉛質炭素材料のそれと同様であるのが好ましい。そのレーザー回折式粒度分布計による平均粒径(D50)は30μm以下、特に25μm以下であるのが好ましい。D50が20μm以下、更には18μm以下であれば最も好ましいが、通常は10μmよりも小さくする必要はない。BET比表面積は20m2/g以下であるのが好ましく、15m2/g以下、特に12m2
g以下であれば最も好ましい。その下限は1m2/g以上、特に4m2/g以上であるのが好ましい。
Further, instead of using these graphitic carbon materials as they are, it is also preferable to use a composite carbonaceous material in which the surface of these graphitic carbon materials is coated with an amorphous carbon material. Such composite carbonaceous materials are known, and the proportion of the amorphous carbon material in the whole is 0.1 to 50% by weight, preferably 2 to 10% by weight. In addition, the interplanar spacing (d 002 ) and the crystallite thickness (L c ) of the graphitic carbon material serving as the central core of the composite carbonaceous material are preferably the same as those of the graphitic carbon material described above. The average particle diameter (D 50 ) measured by the laser diffraction particle size distribution meter is preferably 30 μm or less, particularly preferably 25 μm or less. Most preferably, D 50 is 20 μm or less, more preferably 18 μm or less, but usually it is not necessary to make it smaller than 10 μm. Is preferably a BET specific surface area is less than 20m 2 / g, 15m 2 / g or less, particularly 12m 2 /
It is most preferable if it is g or less. The lower limit is preferably 1 m 2 / g or more, particularly 4 m 2 / g or more.

複合化炭素質材料は、例えば次のような方法により製造することができる。
(1)黒鉛質炭素材料と非晶質炭素材料とを混合して加熱する。
(2)黒鉛質炭素材料と炭素質前駆体とを混合して加熱する。
(3)黒鉛質炭素材料と非晶質炭素材料及び炭素質前駆体とを混合して加熱する。
得られた複合化炭素質材料は、粉砕及び分級して、負極材料に要求される粒径とする。複合化に用いる炭素質前駆体としては、ピッチなどの石炭系ないしは石油系重質油、フェノール・ホルムアルデヒド樹脂などの熱硬化性樹脂、ポリ塩化ビニルなどの熱可塑性樹脂など、負極材料として用いる炭素材料の前駆体として用い得ることが知られている任意のものを用いることができる。また、非晶質炭素材料の粒径は、通常は中心核となる黒鉛質炭素材料の粒径の1/10以下である。非晶質炭素材料として好ましいのは、面間隔(d002 )が0.338nm以上、結晶子の厚さ(Lc)が10nm未満のものである。d002 が0.340〜0.355nmで、Lcが7nm以下であれば更に好ましい。Lcは小さいほど好ましく、5nm以下、特に3nm以下であれば更に好ましい。
The composite carbonaceous material can be produced, for example, by the following method.
(1) A graphite carbon material and an amorphous carbon material are mixed and heated.
(2) A graphite carbon material and a carbonaceous precursor are mixed and heated.
(3) A graphite carbon material, an amorphous carbon material, and a carbonaceous precursor are mixed and heated.
The obtained composite carbonaceous material is pulverized and classified to a particle size required for the negative electrode material. Carbon materials used for composites include carbon materials used as negative electrode materials, such as coal-based or petroleum-based heavy oils such as pitch, thermosetting resins such as phenol / formaldehyde resins, and thermoplastic resins such as polyvinyl chloride. Any of those known to be used as precursors can be used. Moreover, the particle size of the amorphous carbon material is usually 1/10 or less of the particle size of the graphitic carbon material which is the central core. Preferred as the amorphous carbon material is one having an interplanar spacing (d 002 ) of 0.338 nm or more and a crystallite thickness (Lc) of less than 10 nm. d 002 is in 0.340~0.355nm, Lc is more preferably equal to 7nm or less. Lc is preferably as small as possible, and more preferably 5 nm or less, particularly 3 nm or less.

黒鉛質炭素材料と非晶質炭素材料や炭素質前駆体との混合は、公知の任意の混合装置を用いて行うことができる。得られた混合物はそのまま加熱してもよいが、加熱前に予じめ粉砕や分級などの処理を施すのも好ましい。混合物の加熱条件は複合化に用いる材料により異なるが、通常は700℃以上、好ましくは900℃以上である。上限は中心核の黒鉛質材料の結晶構造を上廻る構造が生成しない温度であり、通常は2800℃以下、好ましくは1500℃以下である。従って、得られた複合化炭素質材料は、前述のアルゴンイオンレーザー光を用いたラマンスペクトルにおけるピーク強度比R、半値幅Δν及び面間隔(d200 )は複合化に用いた黒鉛質材料のそれよりも大きく、また結晶子厚さ(Lc)は黒鉛質炭素材料のLcよりも小さい。複合化炭素質材料のピーク強度比Rは通常は0.01〜1.0であるが、0.05〜0.8、特に0.2〜0.7であるのが好ましい。強度比Rの最も好ましい値は0.3〜0.5である。 The mixing of the graphitic carbon material with the amorphous carbon material or the carbonaceous precursor can be performed using any known mixing device. The obtained mixture may be heated as it is, but it is also preferable to perform a treatment such as pulverization or classification before heating. The heating condition of the mixture varies depending on the material used for the composite, but is usually 700 ° C. or higher, preferably 900 ° C. or higher. The upper limit is a temperature at which a structure exceeding the crystal structure of the graphite material of the central core is not generated, and is usually 2800 ° C. or less, preferably 1500 ° C. or less. Therefore, the obtained composite carbonaceous material has the peak intensity ratio R, the half-value width Δν, and the interplanar spacing (d 200 ) in the Raman spectrum using the argon ion laser beam described above, that of the graphite material used for the composite. The crystallite thickness (Lc) is smaller than that of the graphitic carbon material. The peak intensity ratio R of the composite carbonaceous material is usually 0.01 to 1.0, but is preferably 0.05 to 0.8, particularly preferably 0.2 to 0.7. The most preferable value of the intensity ratio R is 0.3 to 0.5.

なお、乾式オゾン処理に供する炭素質材料としては、上述の黒鉛質炭素材料や複合化炭素質材料に限られるものではなく、例えば種々の製法で得られた非晶質炭素材料など、負極材料として用い得ることが知られている任意の炭素質材料を用いることができる。
また、上述のような常用の炭素質材料以外に、一酸化炭素や炭化水素を鉄、ニッケル、コバルト、バナジウム、モリブデンなどの金属触媒の存在下で気相熱分解して製造されるカーボンホイスカーを用いることもできる。炭素質材料の由来の如何を問はず、本発明で
乾式オゾン処理に供する炭素質材料は、前述のアルゴンイオンレーザー光を用いたラマンスペクトルにおける強度比Rが1.1以下であるのが好ましい。強度比Rが0.6以下、更には0.4以下であればより好ましい。また、その下限は0.01以上であり、通常は0.1以上であるが、特に0.2以上であるのが好ましい。半値幅Δνは通常60cm-1以下であるが45cm-1以下が好ましい。このΔνの値が30cm-1以下、特に27cm-1以下であれば更に好ましい。Δνの値は小さいほど好ましいが、通常は14cm-1以上である。
The carbonaceous material to be subjected to the dry ozone treatment is not limited to the above-mentioned graphitic carbon material and composite carbonaceous material, and for example, as an anode material such as an amorphous carbon material obtained by various manufacturing methods. Any carbonaceous material known to be usable can be used.
In addition to the conventional carbonaceous materials as described above, carbon whiskers manufactured by vapor phase pyrolysis of carbon monoxide and hydrocarbons in the presence of a metal catalyst such as iron, nickel, cobalt, vanadium, molybdenum, etc. It can also be used. Regardless of the origin of the carbonaceous material, the carbonaceous material subjected to the dry ozone treatment in the present invention preferably has an intensity ratio R in the Raman spectrum using the aforementioned argon ion laser light of 1.1 or less. More preferably, the intensity ratio R is 0.6 or less, more preferably 0.4 or less. Further, the lower limit is 0.01 or more, usually 0.1 or more, but particularly preferably 0.2 or more. The half-width Δν is usually 60cm -1 or less but preferably 45cm -1 or less. It is more preferable that the value of Δν is 30 cm −1 or less, particularly 27 cm −1 or less. The smaller the value of Δν, the better, but it is usually 14 cm −1 or more.

炭素質材料の平均粒径は、レーザ回折式粒径分布計による測定で、3μm以上であるのが好ましく、6μm以上、特に8μm以上であるのが最も好ましい。平均粒径が小さ過ぎると高密度の活物質層を形成するのが困難である。逆に平均粒径が大き過ぎると、活物質層の表面から突出してセパレーターを貫通し、短絡を起す恐れがあるので上限は30μm以下、特に26μm以下が好ましい。また、粒径が50μm以上、特に100μm以上のものは実質的に存在しないのが好ましい。一般に携帯電話などの民生用には平均粒径20〜26μm、車載用には平均粒径8〜13μm程度のものを用いるのが好ましい。   The average particle size of the carbonaceous material is preferably 3 μm or more, most preferably 6 μm or more, and most preferably 8 μm or more, as measured by a laser diffraction particle size distribution meter. If the average particle size is too small, it is difficult to form a high-density active material layer. On the other hand, if the average particle size is too large, it may protrude from the surface of the active material layer, penetrate the separator, and cause a short circuit. Therefore, the upper limit is preferably 30 μm or less, particularly 26 μm or less. Moreover, it is preferable that the particle diameter is substantially 50 μm or more, particularly 100 μm or more. In general, it is preferable to use those having an average particle diameter of 20 to 26 μm for consumer use such as a mobile phone and an average particle diameter of about 8 to 13 μm for in-vehicle use.

炭素質材料の比表面積は一般に0.5〜20m2/gであるのが好ましい。上限は10
2/g以下、特に5m2/g以下であれば更に好ましい。下限は電池に要求される特性により異なり、待機用など保存特性を重視する用途では0.5m2/g以上でよいが、電流
放出性と保存性との双方が要求される家電機器などの民生用途では1.0m2/g以上、
大電流の放出が要求される車載用途では2.0m2/g以上であるのが好ましい。
In general, the specific surface area of the carbonaceous material is preferably 0.5 to 20 m 2 / g. The upper limit is 10
It is more preferable if it is m 2 / g or less, particularly 5 m 2 / g or less. The lower limit depends on the characteristics required of the battery, and may be 0.5 m 2 / g or more for applications that emphasize storage characteristics such as standby, but consumer electronics such as home appliances that require both current discharge and storage characteristics. 1.0m 2 / g or more in use,
It is preferably 2.0 m 2 / g or more for in-vehicle applications that require a large current discharge.

炭素質材料の平均円形度は0.85以上、特に0.89以上であるのが好ましい。平均円形度の小さい炭素質材料を用いたのでは、一般に急速充放電特性の優れた負極を作成するのは困難である。逆に平均円形度が大き過ぎると、負極の作成に際しバインダーとの付着力が低下するので、負極の強度が弱くなり、電池の長期に亘る充放電サイクル特性を悪化させる。従って平均円形度の上限は0.99以下、特に0.97以下であるのが好ましい。なお、円形度は粒子と同一の投影面積を有する真円(相当円)の円周を分子に、粒子の周長を分母とした比として定義される指標である。従って粒子の投影像が真円の場合は円形度は1となり、粒子が細長かったり凹凸が多いほど円形度は小さくなる。本明細書における平均円形度は、フロー式粒子像解析装置で9000〜11000個の粒子の形状を撮像してその円形度を求め、その算術平均として算出される値である。なお、円形度の測定に際しては、分散媒としてのイオン交換水に測定対象の炭素材料と界面活性剤(ポリオキシエチレン(20)ソルビタンモノラウレート)とを加えて撹拌し、30分間超音波分散させたものを試料とする。   The average circularity of the carbonaceous material is preferably 0.85 or more, particularly preferably 0.89 or more. If a carbonaceous material having a small average circularity is used, it is generally difficult to produce a negative electrode having excellent rapid charge / discharge characteristics. On the other hand, if the average circularity is too large, the adhesive strength with the binder is reduced during the production of the negative electrode, so that the strength of the negative electrode is weakened and the long-term charge / discharge cycle characteristics of the battery are deteriorated. Therefore, the upper limit of the average circularity is preferably 0.99 or less, particularly 0.97 or less. The circularity is an index defined as a ratio in which the circumference of a perfect circle (equivalent circle) having the same projected area as the particle is a numerator and the circumference of the particle is a denominator. Therefore, when the projected image of the particle is a perfect circle, the circularity is 1, and the circularity is smaller as the particle is longer or more uneven. The average circularity in this specification is a value calculated as an arithmetic average by imaging the shape of 9000 to 11000 particles with a flow type particle image analyzer and obtaining the circularity. In measuring the circularity, the carbon material to be measured and a surfactant (polyoxyethylene (20) sorbitan monolaurate) are added to ion exchange water as a dispersion medium and stirred, and ultrasonic dispersion is performed for 30 minutes. A sample is used.

平均円形度の大きい炭素質材料は、周知のように炭素質材料に表面粉砕を施すことにより得ることができる。例えばケーシング内部に多数のブレードを設置した高速回転ローターを備えた粉砕装置を用いて、炭素質材料に対して衝撃圧縮、摩擦、剪断等の機械的作用を与えて、粉砕しながら表面処理を行えばよい。ローターの周速度は30〜100m/秒、特に50〜100m/秒が好ましい。粉砕後の分級はミクロンセパレーター、ターボプレックス等の強制渦流式遠心分級機やエルボジェット等の慣性分級機などの気流式分級機を用いるのが一般的であるが、湿式の沈降分離法や遠心沈降機などを用いることもできる。   A carbonaceous material having a large average circularity can be obtained by subjecting the carbonaceous material to surface pulverization as is well known. For example, using a crusher equipped with a high-speed rotating rotor with a large number of blades installed inside the casing, mechanical treatment such as impact compression, friction, shearing, etc. is applied to the carbonaceous material to perform surface treatment while crushing. Just do it. The peripheral speed of the rotor is preferably 30 to 100 m / sec, particularly 50 to 100 m / sec. The classification after pulverization is generally performed using an airflow classifier such as a forced vortex centrifugal classifier such as a micron separator or turboplex, or an inertia classifier such as an elbow jet. A machine can also be used.

本発明に係る濡れ性試験における液滴消失時間が320秒以下の炭素質負極材料は、上述の炭素質材料に弱い乾式オゾン処理を施すことによって得ることができる。乾式オゾン処理は液滴消失時間が280秒以下、特に200秒以下となるように行うのが好ましい。液滴消失時間が短いほど電池の生産性が向上すると考えられるが、50秒を下廻るほど短時間にする必要はないと考えられる。一般的には液滴消失時間は100秒程度まで短縮で
きれば十分と考えられる。
The carbonaceous negative electrode material having a droplet disappearance time of 320 seconds or less in the wettability test according to the present invention can be obtained by subjecting the above-mentioned carbonaceous material to a weak dry ozone treatment. The dry ozone treatment is preferably performed so that the droplet disappearance time is 280 seconds or less, particularly 200 seconds or less. Although it is considered that the productivity of the battery is improved as the droplet disappearance time is shorter, it is not necessary to make the time shorter as it falls below 50 seconds. In general, it is considered sufficient that the droplet disappearance time can be shortened to about 100 seconds.

乾式オゾン処理は、処理容器に炭素質材料を仕込み、これにオゾン含有ガスを室温で導入して所定時間保持すればよい。オゾン含有ガスとしてはオゾン発生装置から得られるものをそのまま用いてもよく、またこれを窒素やヘリウムなどの不活性ガスで稀釈して用いてもよい。オゾン含有ガス中のオゾン濃度は0.01〜5体積%、特に1〜3体積%であるのが好ましい。オゾン−酸素−不活性ガスの混合ガスを用いる場合には、その酸素濃度は1〜30体積%が好ましい。オゾン処理は減圧〜加圧の任意の圧力で行ない得るが、通常は1×10-5Pa〜常圧で行う。処理に要する時間は一般に0.1秒〜180分であるが、オゾン濃度や圧力により異なる。常圧ないし加圧でオゾン処理を行う場合には、通常は1分〜180分間の処理を行うが、多くの場合には1分〜30分間の処理で十分である。減圧で処理を行う場合には通常は1秒〜120分間の処理を行うが、多くの場合に処理時間は60分間以下で十分であり、30分以下、特に10分以下でも十分なことが多い。処理容器に炭素質材料を収容し、容器を減圧にしてオゾン含有ガスを供給すると、オゾンは炭素質材料内部の細孔にまで万遍なく行き渡るので、細孔内部まで均一にオゾン処理された炭素質材料を得ることができるので好ましい。処理温度は常温でよく、昇温下で処理する場合でも通常は80℃以下であり、多くの場合には50℃以下である。また炭素材料1kg当りのオゾンの使用量は0.01〜10gで十分である。 In dry ozone treatment, a carbonaceous material is charged into a treatment vessel, and an ozone-containing gas is introduced into the treatment vessel at room temperature and held for a predetermined time. As the ozone-containing gas, one obtained from an ozone generator may be used as it is, or it may be diluted with an inert gas such as nitrogen or helium. The ozone concentration in the ozone-containing gas is preferably 0.01 to 5% by volume, particularly preferably 1 to 3% by volume. When a mixed gas of ozone-oxygen-inert gas is used, the oxygen concentration is preferably 1 to 30% by volume. The ozone treatment can be performed at any pressure from reduced pressure to increased pressure, but is usually performed at 1 × 10 −5 Pa to normal pressure. The time required for the treatment is generally from 0.1 second to 180 minutes, but varies depending on the ozone concentration and pressure. When the ozone treatment is performed at normal pressure or under pressure, the treatment is usually performed for 1 minute to 180 minutes, but in many cases, the treatment for 1 minute to 30 minutes is sufficient. When the treatment is performed under reduced pressure, the treatment is usually carried out for 1 second to 120 minutes. In many cases, the treatment time is 60 minutes or less, and 30 minutes or less, particularly 10 minutes or less is often sufficient. . When carbonaceous material is stored in a processing vessel and the container is decompressed and ozone-containing gas is supplied, ozone spreads all the way to the pores inside the carbonaceous material. Since a quality material can be obtained, it is preferable. The treatment temperature may be room temperature, and is usually 80 ° C. or less even in the case of treatment at elevated temperature, and in many cases 50 ° C. or less. In addition, 0.01 to 10 g of ozone is sufficient per 1 kg of the carbon material.

このような軽度のオゾン処理により炭素材料の吸液特性が改善される理由は不明である。しかし、前述の特許文献1に記載されているような強いオゾン処理では、後記する比較例に示すように、優れた吸液特性が発現しないことからして、上述のような軽度のオゾン処理を行うと炭素質材料を実質的に変化させずにその表面のみに少量の官能基が導入され、これが吸液特性の改良をもたらしているものと考えられる。なお、このオゾン処理によっては、前述のように炭素質材料の結晶性や粒径、表面積などは見掛け上変化しない。従ってオゾン処理を経た炭素質材料の諸特性は、吸液特性に関連するものを除き、オゾン処理に供する前のそれと同一である。   The reason why the liquid absorption property of the carbon material is improved by such mild ozone treatment is unknown. However, in the strong ozone treatment as described in the above-mentioned Patent Document 1, as shown in the comparative example described later, since the excellent liquid absorption characteristics are not expressed, the mild ozone treatment as described above is performed. When this is done, it is considered that a small amount of functional groups are introduced only on the surface of the carbonaceous material without substantially changing the carbonaceous material. In addition, by this ozone treatment, the crystallinity, particle size, surface area, etc. of the carbonaceous material do not change apparently as described above. Therefore, the characteristics of the carbonaceous material that has been subjected to the ozone treatment are the same as those before being subjected to the ozone treatment except those related to the liquid absorption characteristics.

上述のオゾン処理により炭素材料の吸液特性がどの程度改良されたかは、次のようにして確認することができる。
蒸留水100mLに粉末状カルボキシメチルセルロースナトリウム(エーテル化度0.6〜0.8、1重量%水溶液の30℃、剪断速度40S-1の条件下での粘度100〜1000mPa・s)1gを室温で溶解する。この水溶液100gにオゾン処理を経た炭素材料100gを加え、室温で10時間撹拌して十分に分散させたのち、これにスチレン・ブタジエンゴム(Tg=−10〜0℃)の水性エマルション(固形分濃度50重量%)2gを加え、撹拌して均一なスラリーとする。
To what extent the liquid absorption characteristics of the carbon material have been improved by the above-described ozone treatment can be confirmed as follows.
1 g of powdered sodium carboxymethylcellulose (viscosity 100-1000 mPa · s under the conditions of etherification degree 0.6-0.8, 1 wt% aqueous solution 30 ° C., shear rate 40S −1 ) in 100 mL of distilled water at room temperature Dissolve. 100 g of this aqueous solution was added with 100 g of ozone-treated carbon material, and stirred at room temperature for 10 hours to sufficiently disperse, and then an aqueous emulsion (solid content concentration) of styrene-butadiene rubber (Tg = −10 to 0 ° C.). 50 g) 2 g is added and stirred to make a uniform slurry.

厚さ20μmの銅箔上に、このスラリーを固形分が(13±0.2)mg/cm2とな
るようにドクターブレード法により塗布する。これを60〜80に加熱して十分に乾燥させ水分を除去する。これからポンチで直径12.5mmの円板を打抜き、プレス機で加圧して膜密度が(1.5〜1.6)g/cm3の試験片とする。
This slurry is applied onto a copper foil having a thickness of 20 μm by a doctor blade method so that the solid content becomes (13 ± 0.2) mg / cm 2 . This is heated to 60-80 and dried sufficiently to remove moisture. From this, a disk having a diameter of 12.5 mm is punched with a punch, and pressed with a press machine to obtain a test piece having a film density of (1.5 to 1.6) g / cm 3 .

アルゴン雰囲気下、25℃で、この試験片の中央に、高さ5mmの位置から、マイクロシリンジを用いて試験液1μLを滴下し、滴下終了から試験液が試験片の内部に吸収されて、見掛け上表面から消失するまでの時間を測定する。なお、試験片としてはエチレンカーボネート300mLとジメチルカーボネート700mLとの混合溶液に六フッ化リン酸リチウム(LiPF6)180gを溶解させたものを用いる。 In an argon atmosphere at 25 ° C., 1 μL of the test solution was dropped from the position of 5 mm height into the center of the test piece using a microsyringe, and the test solution was absorbed into the test piece from the end of dropping, and apparently The time until disappearance from the upper surface is measured. Incidentally, use of which is dissolved a mixture solution in lithium hexafluorophosphate (LiPF 6) 180 g of ethylene carbonate 300mL and dimethyl carbonate 700mL as a test piece.

本発明に係る炭素質負極材料を用いる負極の作成は常法により行うことができる。通常はこの負極材料と結着及び増粘効果を有する有機物とを、適宜の溶媒に分散させてスラリ
ーとし、これを金属箔などの集電体上に塗布する。これを乾燥したのち活物質層が所定の厚さ(密度)となるようにプレスして負極とする。
負極用集電体としては、構成された電池において化学変化を起こさない電子伝導体であれば任意のものを用いることができる。集電体の材料としては、例えば、ステンレス鋼、ニッケル、銅、チタン等の金属やこれらの合金、炭素、導電性樹脂などの他に、銅やステンレス鋼の表面にカーボン、ニッケル又はチタンを被覆したものなどが挙げられ、特に、銅又は銅合金が好ましい。なお、これらの材料の表面を酸化して用いることもできる。また、集電体表面は凹凸を有するのが好ましい。集電体の形状としては、フォイルの他、フィルム、シート、ネット、パンチングされたもの、ラス体、多孔質体、発泡体、繊維群の成形体などが挙げられる。厚みは任意だが、1〜500μmのものが好ましい。
The production of the negative electrode using the carbonaceous negative electrode material according to the present invention can be performed by a conventional method. Usually, the negative electrode material and an organic substance having a binding and thickening effect are dispersed in an appropriate solvent to form a slurry, which is applied onto a current collector such as a metal foil. After drying this, the active material layer is pressed so as to have a predetermined thickness (density) to obtain a negative electrode.
Any negative electrode current collector can be used as long as it is an electronic conductor that does not cause a chemical change in the battery. Examples of current collector materials include metals such as stainless steel, nickel, copper, and titanium, alloys thereof, carbon, and conductive resins, as well as the surface of copper and stainless steel covered with carbon, nickel, or titanium. In particular, copper or a copper alloy is preferable. In addition, the surface of these materials can be oxidized and used. The current collector surface preferably has irregularities. Examples of the shape of the current collector include films, sheets, nets, punched materials, lath bodies, porous bodies, foamed bodies, and molded bodies of fiber groups, in addition to foils. Although thickness is arbitrary, the thing of 1-500 micrometers is preferable.

結着及び増粘効果を有する有機物には、常用されている任意の有機物を用いることができ、通常、熱可塑性樹脂又は熱硬化性樹脂が用いられる。
結着剤としては、例えば、カルボキシメチルセルロースなどのセルロース類、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、テトラフルオロエチレン−ヘキサフルオロエチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−クロロトリフルオロエチレン共重合体、エチレン−テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン−ペンタフルオロプロピレン共重合体、プロピレン−テトラフルオロエチレン共重合体、エチレン−クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン−ヘキサフルオロプロピレン−テトラフルオロエチレン共重合体、フッ化ビニリデン−パーフルオロ−メチルビニルエーテル−テトラフルオロエチレン共重合体、エチレンとアクリル酸やメタクリル酸ないしはそのエステルとの共重合体及びこれらの共重合体の塩などが挙げられる。これらのうち、スチレンブタジエンゴム、ポリフッ化ビニリデン、エチレンとアクリル酸やメタクリル酸ないしはそのエステルとの共重合体又はこれらの共重合体の塩が好ましい。これらは単独でも、又は混合物でも用いることができる。
Any organic material that is commonly used can be used as the organic material having a binding and thickening effect, and usually a thermoplastic resin or a thermosetting resin is used.
Examples of the binder include celluloses such as carboxymethyl cellulose, polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetra Fluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer , Ethylene-tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, pro Lene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoro-methyl vinyl ether-tetrafluoroethylene Examples thereof include copolymers, copolymers of ethylene and acrylic acid, methacrylic acid or esters thereof, and salts of these copolymers. Of these, styrene-butadiene rubber, polyvinylidene fluoride, a copolymer of ethylene and acrylic acid, methacrylic acid, or an ester thereof, or a salt of these copolymers is preferable. These can be used alone or in a mixture.

負極活物質層には、必要に応じて、負極用導電剤を含有させることもできる。負極用導電剤は、電子伝導性材料であって、活物質層の均一性を損なわないものであれば任意のものを用いることができる。負極用導電剤としては、例えば、天然黒鉛、人造黒鉛、膨張黒鉛などのグラファイト類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維、金属繊維などの導電性繊維類、銅、ニッケル等の金属粉末類及びポリフェニレン誘導体などの有機導電性材料などが挙げられる。これらのうち、人造黒鉛、アセチレンブラック又は炭素繊維が好ましい。これらの負極用導電剤は、単独でも、又はこれらの混合物としてでも用いることができる。導電剤の平均粒径としては、3μm以下、特に1μm以下が好ましく、平均粒径が数nm程度と小さくとも、極板の性能に支障はない。   If necessary, the negative electrode active material layer may contain a negative electrode conductive agent. As the negative electrode conductive agent, any material can be used as long as it is an electron conductive material and does not impair the uniformity of the active material layer. Examples of the negative electrode conductive agent include graphites such as natural graphite, artificial graphite, and expanded graphite, carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black, carbon fiber, and metal. Examples thereof include conductive fibers such as fibers, metal powders such as copper and nickel, and organic conductive materials such as polyphenylene derivatives. Among these, artificial graphite, acetylene black, or carbon fiber is preferable. These negative electrode conductive agents can be used alone or as a mixture thereof. The average particle diameter of the conductive agent is preferably 3 μm or less, particularly preferably 1 μm or less. Even if the average particle diameter is as small as several nm, there is no problem in the performance of the electrode plate.

負極活物質層には、更に、フィラー、分散剤、イオン伝導体等の添加剤を配合することができる。フィラーは、構成された電池において、化学変化を起こさない繊維状材料であれば任意のものを用いることができ、例えば、ポリプロピレン、ポリエチレンなどのオレフィン系ポリマーや、ガラス、炭素などの繊維が挙げられる。導電剤及び添加剤を含有させると、電極内に粒子配列の微細な乱れを生じさせ、電解液濡れ性が向上するので好ましい。   The negative electrode active material layer can further contain additives such as a filler, a dispersant, and an ionic conductor. Any filler can be used as long as it is a fibrous material that does not cause a chemical change in the constructed battery, and examples thereof include olefin polymers such as polypropylene and polyethylene, and fibers such as glass and carbon. . The inclusion of a conductive agent and an additive is preferable because it causes fine disturbance of the particle arrangement in the electrode and improves the electrolyte solution wettability.

スラリーの調製に用いられる有機溶媒としては、N−メチルピロリドン等の環状アミド類;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類
;アニソール、トルエン、キシレン等の芳香族炭化水素やその誘導体類;エタノール、ブタノール、シクロヘキサノール等のアルコール類などが挙げられ、中でも、N−メチルピロリドン等の環状アミド類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等の直鎖状アミド類が好ましい。なお、スラリーの調製には、環状アミド類やアルコール類等の水溶性の有機溶媒と水との混合溶媒を用いてもよい。混合溶媒中の水溶性有機溶媒は、30重量%以内であるのが好ましい。
Examples of the organic solvent used for the preparation of the slurry include cyclic amides such as N-methylpyrrolidone; linear amides such as N, N-dimethylformamide and N, N-dimethylacetamide; aromatics such as anisole, toluene and xylene Group hydrocarbons and their derivatives; alcohols such as ethanol, butanol, cyclohexanol and the like, among others, cyclic amides such as N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, etc. Linear amides are preferred. In preparing the slurry, a mixed solvent of water and a water-soluble organic solvent such as cyclic amides or alcohols may be used. The water-soluble organic solvent in the mixed solvent is preferably within 30% by weight.

スラリー中における負極活物質の濃度は、通常30重量%以上、70重量%以下であるが40〜55重量%が好ましい。活物質の濃度が低いとスラリーの保存中に活物質が沈降しやすく、逆に、活物質の濃度が高いと活物質の凝集が生じやすい。
また、スラリー中における結着剤の濃度は、通常0.1重量%以上、30重量%以下であるが0.5〜10重量%が好ましい。結着剤の濃度が低いと負極の機械的強度が小さくなる。逆に、結着剤の濃度が高いと電池の内部抵抗が大きくなる。
The concentration of the negative electrode active material in the slurry is usually 30% by weight or more and 70% by weight or less, but preferably 40 to 55% by weight. If the concentration of the active material is low, the active material tends to settle during storage of the slurry. Conversely, if the concentration of the active material is high, the active material tends to aggregate.
The concentration of the binder in the slurry is usually 0.1% by weight or more and 30% by weight or less, but preferably 0.5 to 10% by weight. When the concentration of the binder is low, the mechanical strength of the negative electrode is reduced. Conversely, when the concentration of the binder is high, the internal resistance of the battery increases.

更に、スラリー中における負極用導電剤の濃度は0〜5重量%が好ましく、フィラー等添加剤の濃度は0〜30重量%が好ましい。
スラリーを塗布した負極集電体は、スラリーに用いた溶媒の沸点よりも低い温度で乾燥するのが好ましい。乾燥温度が高すぎると活物質層内に不均一を生じ電解液の濡れ性を悪化させることがある。乾燥は50℃以上、特に60℃以上で、かつ用いた溶媒の沸点よりも20℃以上低い温度、特に沸点よりも30℃以上低い温度で行うのが好ましい。
Further, the concentration of the negative electrode conductive agent in the slurry is preferably 0 to 5% by weight, and the concentration of additives such as fillers is preferably 0 to 30% by weight.
The negative electrode current collector coated with the slurry is preferably dried at a temperature lower than the boiling point of the solvent used in the slurry. If the drying temperature is too high, the active material layer may become non-uniform and the wettability of the electrolytic solution may be deteriorated. The drying is preferably performed at a temperature of 50 ° C. or higher, particularly 60 ° C. or higher, and 20 ° C. or lower than the boiling point of the solvent used, and particularly 30 ° C. or lower.

活物質層の厚みは、通常10μm以上、200μm以下である。活物質層が薄いと短絡しやすくなるので、15μm以上が好ましい。逆に厚すぎると電池の耐久性が悪化することがあるので、100μm以下、特に40μm以下が好ましい。
活物質層の密度は、通常0.8g/cm3以上、2.0g/cm3以下である。密度が低いと電池の耐久性が悪化するので、1.2g/cm3以上、特に1.4g/cm3以上が好ましい。本発明に係る炭素質負極材料を用いた負極は、活物質層を高密度にしても濡れ性が良いことが特徴であるが、密度が高すぎると電池の容量が減少することがあるので、活物質層の密度は1.8g/cm3以下、特に1.7g/cm3以下が好ましい。
The thickness of the active material layer is usually 10 μm or more and 200 μm or less. When the active material layer is thin, short-circuiting easily occurs, so that the thickness is preferably 15 μm or more. On the other hand, if the thickness is too thick, the durability of the battery may be deteriorated.
The density of the active material layer is usually 0.8 g / cm 3 or more and 2.0 g / cm 3 or less. If the density is low, the durability of the battery deteriorates, so 1.2 g / cm 3 or more, particularly 1.4 g / cm 3 or more is preferable. The negative electrode using the carbonaceous negative electrode material according to the present invention is characterized by good wettability even if the active material layer has a high density, but if the density is too high, the battery capacity may decrease. The density of the active material layer is preferably 1.8 g / cm 3 or less, particularly preferably 1.7 g / cm 3 or less.

負極活物質層を上述した厚み及び密度とするには、例えば、錠剤成型機等の面圧荷重をかける形式のプレス機、ロールプレス機等の線圧荷重をかける形式のプレス機などを用いて加圧すればよい。
上述した負極に常用のリチウムを吸蔵・放出可能な正極、及び非水溶媒に電解質であるリチウム塩を溶解させた電解液を組合せることにより、リチウム二次電池を作成することができる。リチウムを吸蔵・放出可能な正極は、正極用集電体上に、正極活物質と、結着及び増粘効果を有する有機物とを含有する活物質層を形成したものである。正極活物質は、通常、正極活物質と結着及び増粘効果とを有する有機物を水及び/又は有機溶媒中に分散させたスラリーとし、これを金属箔などの集電体上に薄く塗布・乾燥したのち、所定の厚み・密度まで圧密することにより形成される。
In order to obtain the above-described thickness and density of the negative electrode active material layer, for example, using a press machine that applies a surface pressure load such as a tablet molding machine, a press machine that applies a linear pressure load such as a roll press machine, etc. What is necessary is just to pressurize.
A lithium secondary battery can be produced by combining the above-described negative electrode with a positive electrode capable of inserting and extracting ordinary lithium and an electrolyte solution in which a lithium salt as an electrolyte is dissolved in a non-aqueous solvent. A positive electrode capable of inserting and extracting lithium is obtained by forming an active material layer containing a positive electrode active material and an organic substance having a binding and thickening effect on a positive electrode current collector. The positive electrode active material is usually a slurry in which an organic substance having a binding and thickening effect with the positive electrode active material is dispersed in water and / or an organic solvent, and this is applied thinly on a current collector such as a metal foil. After drying, it is formed by compacting to a predetermined thickness and density.

正極活物質としては、例えば、LiCoO2、LiNiO2、LiMnO2などのリチウ
ム含有遷移金属酸化物を用いる。またこの金属酸化物に含まれるCo、Ni又はMnの一部を他の遷移金属やNa、Mg、Sc、Y、Fe、Cu、Zn、Al、Cr、Pb、Sb、Bなどで置き換えたものを用いることもできる。更に、遷移金属カルコゲン化物、バナジウム酸化物及びそのリチウム化合物、ニオブ酸化物及びそのリチウム化合物、有機導電性物質を用いた共役系ポリマー、シェブレル相化合物等の他の正極活物質を用いることもできる。これらの正極活物質は単独で用いても、複数の異なった正極活物質を混合して用いてもよい。正極活物質粒子の平均粒径は1〜30μmが好ましい。
As the positive electrode active material, for example, a lithium-containing transition metal oxide such as LiCoO 2 , LiNiO 2 , LiMnO 2 is used. Also, a part of Co, Ni or Mn contained in this metal oxide is replaced with other transition metals, Na, Mg, Sc, Y, Fe, Cu, Zn, Al, Cr, Pb, Sb, B, etc. Can also be used. Further, other positive electrode active materials such as transition metal chalcogenides, vanadium oxides and lithium compounds thereof, niobium oxides and lithium compounds thereof, conjugated polymers using organic conductive materials, and chevrel phase compounds can also be used. These positive electrode active materials may be used alone or as a mixture of a plurality of different positive electrode active materials. The average particle diameter of the positive electrode active material particles is preferably 1 to 30 μm.

正極用集電体としては、正極活物質の充放電電位において化学変化を起こさない電子伝導体であれば任意のものを用いることができる。集電体の材料としては、例えば、ステンレス鋼、アルミニウム、チタン等の金属やこれらの合金、炭素、導電性樹脂などの他に、アルミニウムやステンレス鋼の表面にカーボン又はチタンを被覆したものが挙げられ、特に、アルミニウム又はアルミニウム合金が好ましい。なお、これらの材料の表面を酸化して用いることもできる。また、集電体表面は凹凸を有するのが好ましい。集電体の形状としては、フォイルの他、フィルム、シート、ネット、パンチされたもの、ラス体、多孔質体、発泡体、繊維群、不織布体の成形体などが挙げられる。厚みは任意だが、1〜500μmのものが好ましい。   Any positive electrode current collector can be used as long as it is an electronic conductor that does not cause a chemical change at the charge / discharge potential of the positive electrode active material. Examples of the current collector material include metals such as stainless steel, aluminum, and titanium, alloys thereof, carbon, conductive resin, and the like, and a surface of aluminum or stainless steel coated with carbon or titanium. In particular, aluminum or an aluminum alloy is preferable. In addition, the surface of these materials can be oxidized and used. The current collector surface preferably has irregularities. Examples of the shape of the current collector include a foil, a film, a sheet, a net, a punched material, a lath body, a porous body, a foamed body, a fiber group, and a molded body of a nonwoven fabric body. Although thickness is arbitrary, the thing of 1-500 micrometers is preferable.

正極活物質層に用いられる結着及び増粘度効果を有する有機物には、前述した負極活物層の形成に用いるものと同様のものを用いることができ、通常、熱可塑性樹脂又は熱硬化性樹脂が用いられる。
正極活物質層には、更に前述した負極活物層の形成に用いるものと同様の導電剤、フィラー、分散剤、イオン伝導体等の添加剤を配合することができる。
なお導電剤としてはカーボン又はグラファイトを正極活物質に対して1〜50重量%、特に2〜15重量%となるように用いるのが好ましい。
正極活物質スラリーの調製は、負極活物質スラリーの調製と同様に行えばよい。
The organic material having a binding and thickening effect used for the positive electrode active material layer can be the same as that used for forming the negative electrode active material layer described above, and is usually a thermoplastic resin or a thermosetting resin. Is used.
The positive electrode active material layer may further contain additives such as the same conductive agent, filler, dispersant, and ion conductor as those used for forming the negative electrode active material layer described above.
In addition, it is preferable to use carbon or graphite so that it may become 1 to 50 weight% with respect to a positive electrode active material, especially 2 to 15 weight% as a electrically conductive agent.
The positive electrode active material slurry may be prepared in the same manner as the negative electrode active material slurry.

電解液の非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)などの環状カーボネート類;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジプロピルカーボネート(DPC)などの鎖状カーボネート類;ギ酸メチル、酢酸メチル、プロピオン酸メチル、プロピオン酸エチルなどの脂肪族カルボン酸エステル類;γ−ブチロラクトン等のラクトン類;エチルエーテル、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)、エチルモノグライム等の鎖状エーテル類;テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、ジオキソラン誘導体、テトラヒドロフラン誘導体等の環状エーテル類;アニソール等の芳香族エーテル類;トリメトキシメタン等のオルトエステル類;ホルムアミド、アセトアミド、ジメチルホルムアミド等の鎖状アミド類;N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン等の環状アミド類;アセトニトリル、プロピルニトリル等のニトリル化合物;ニトロメタン等のニトロ化合物;ジメチルスルホキシド、スルホラン、メチルスルホラン、1,3−プロパンサルトン等の硫黄含有化合物;リン酸トリエステル等のリン酸エステルなどの非プロトン性有機溶媒が挙げられる。これらのうち、環状カーボネート及び鎖状カーボネートの混合溶媒又は環状カーボネート、鎖状カーボネート及び脂肪族カルボン酸エステルの混合溶媒が好ましい。   Examples of the nonaqueous solvent for the electrolyte include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC); dimethyl carbonate (DMC), diethyl carbonate (DEC). ), Chain carbonates such as ethyl methyl carbonate (EMC) and dipropyl carbonate (DPC); aliphatic carboxylic acid esters such as methyl formate, methyl acetate, methyl propionate and ethyl propionate; lactones such as γ-butyrolactone Chain ethers such as ethyl ether, 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EME), ethyl monoglyme; tetrahydrofuran, 2-methyltetrahydro Cyclic ethers such as lofuran, 1,3-dioxolane, dioxolane derivatives and tetrahydrofuran derivatives; aromatic ethers such as anisole; orthoesters such as trimethoxymethane; chain amides such as formamide, acetamide and dimethylformamide; N -Cyclic amides such as methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone and 3-methyl-2-oxazolidinone; Nitrile compounds such as acetonitrile and propylnitrile; Nitro compounds such as nitromethane; Dimethyl sulfoxide, sulfolane and methyl Examples include sulfur-containing compounds such as sulfolane and 1,3-propane sultone; and aprotic organic solvents such as phosphate esters such as phosphate triesters. Among these, a mixed solvent of cyclic carbonate and chain carbonate or a mixed solvent of cyclic carbonate, chain carbonate and aliphatic carboxylic acid ester is preferable.

非水溶媒に溶解させるリチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCl、LiCF3、SO3、LiC
3CO2、Li(CF3SO22、LiAsF6、LiN(CF3SO22、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、クロロボランリチウ
ム、四フェニルホウ酸リチウム、イミド類等が挙げられ、これらのうちLiPF6が好ま
しい。リチウム塩は、単独で用いても、2種以上を併用してもよい。2種以上を併用する場合には、LiPF6と他のものとを併用するのが好ましい。
Examples of the lithium salt dissolved in the non-aqueous solvent include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCl, LiCF 3 , SO 3 , LiC.
F 3 CO 2 , Li (CF 3 SO 2 ) 2 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic lithium carboxylate, LiCl, LiBr, LiI, chloroborane lithium, tetraphenylborane Lithium acid, imides and the like can be mentioned, and among these, LiPF 6 is preferable. A lithium salt may be used independently or may use 2 or more types together. When used in combination of two or more it is preferably used in combination as LiPF 6 and others.

また、リチウム二次電池には、リチウム塩を複合させた固体電解質を用いることもできる。固体電解質としては、無機固体電解質及び有機固体電解質が挙げられる。無機固体電解質としては、例えば、リチウムの窒化物、ハロゲン化物又は酸素酸塩等の無機固体電解質が挙げられ、これらのうちLi4SiO4、Li4SiO4−LiI−LiOH、xLi3
PO4−(1−x)Li4SiO4、Li2SiS3、Li3PO4−Li2S−SiS2、硫化
リン化合物が好ましい。有機固体電解質としては、例えば、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン等やこれらの誘導体、混合物、複合体などのポリマー材料にリチウム塩を複合させたものが挙げられる。
A solid electrolyte combined with a lithium salt can also be used for the lithium secondary battery. Examples of solid electrolytes include inorganic solid electrolytes and organic solid electrolytes. Examples of the inorganic solid electrolyte include inorganic solid electrolytes such as lithium nitride, halide, or oxyacid salt. Among these, Li 4 SiO 4 , Li 4 SiO 4 —LiI-LiOH, xLi 3
PO 4 - (1-x) Li 4 SiO 4, Li 2 SiS 3, Li 3 PO 4 -Li 2 S-SiS 2, phosphorus compounds are preferred sulfide. Examples of the organic solid electrolyte include polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, polyhexafluoropropylene, etc. and their derivatives, mixtures, composites and other polymer materials such as lithium. Examples include a compound of salt.

電解液中のリチウム塩の濃度は、0.2〜2mol/L、特に0.5〜1.5mol/Lが好ましい。
電解液として好ましいものの一つは、エチレンカーボネート及びエチルメチルカーボネートを含む非水溶媒にLiPF6を溶解させたものである。
電解液には、放電や充放電特性を改良する目的で、他の添加剤を添加してもよい。添加剤としては、例えば、トリエチルフォスファイト、トリエタノールアミン、環状エーテル、エチレンジアミン、n−グライム、ピリジン、ヘキサリン酸トリアミド、ニトロベンゼン誘導体、クラウンエーテル類、第四級アンモニウム塩、エチレングリコールジアルキルエーテル等が挙げられる。
The concentration of the lithium salt in the electrolytic solution is preferably 0.2 to 2 mol / L, particularly 0.5 to 1.5 mol / L.
One preferable electrolyte is one in which LiPF 6 is dissolved in a non-aqueous solvent containing ethylene carbonate and ethyl methyl carbonate.
Other additives may be added to the electrolytic solution for the purpose of improving discharge and charge / discharge characteristics. Examples of the additive include triethyl phosphite, triethanolamine, cyclic ether, ethylenediamine, n-glyme, pyridine, hexaphosphoric triamide, nitrobenzene derivatives, crown ethers, quaternary ammonium salts, ethylene glycol dialkyl ether, and the like. It is done.

正極と負極との間には、非水電解質を保持するセパレーターを備えていてもよい。セパレーターには、通常、イオン透過度が大きく、所定の機械的強度を有する絶縁性の微多孔性薄膜が用いられており、一定温度以上では孔が閉塞して抵抗が大きくなり、両極間の通電を阻止する機能をもつのが好ましい。セパレーターとしては、耐有機溶剤性と疎水性とを有するポリプロピレン、ポリエチレン等の単独若しくはこれらを組み合わせたオレフィン系ポリマー又はガラス繊維などから作られたシートや不織布又は織布が好ましい。セパレーターの孔径は、電極より脱離した正負極材料、結着剤、導電剤が透過しない範囲であればよく、通常は0.01〜1μmである。また、セパレーターの厚みは、通常は10〜300μmである。更に、セパレーターの空孔率は、電子やイオンの透過性と素材や膜厚に応じて定めればよく、通常は30〜80%である。また、ポリマー材料に有機電解液を吸収保持させたものを正極合剤及び負極合剤に含ませ、更に有機電解液を吸収保持するポリマーからなる多孔性のセパレーターを正極と負極と一体化した電池を構成することも可能である。このポリマー材料としては、有機電解液を吸収保持できるものであればよいが、特にフッ化ビニリデンとヘキサフルオロプロピレンの共重合体が好ましい。このセパレーターの厚みは、通常10μm以上、60μm以下である。セパレーターが薄いと正負極が短絡しやすくなるので、15μm以上が好ましい。逆に、セパレーターが厚すぎると電池の内部抵抗が上昇しやすくなるので、50μm以下、特に40μm以下が好ましい。   A separator that holds the nonaqueous electrolyte may be provided between the positive electrode and the negative electrode. The separator usually uses an insulating microporous thin film with high ion permeability and a predetermined mechanical strength. When the temperature is above a certain level, the pores close and resistance increases, and the current between the electrodes is increased. It is preferable to have a function of preventing the above. As the separator, a sheet, a nonwoven fabric or a woven fabric made of an olefin polymer or glass fiber or the like such as polypropylene or polyethylene having organic solvent resistance and hydrophobicity alone or a combination thereof is preferable. The pore diameter of the separator may be in a range in which the positive and negative electrode materials, the binder, and the conductive agent separated from the electrode do not permeate, and is usually 0.01 to 1 μm. Moreover, the thickness of a separator is 10-300 micrometers normally. Furthermore, the porosity of the separator may be determined according to the permeability of electrons and ions, the material, and the film thickness, and is usually 30 to 80%. Also, a battery in which a polymer material containing an organic electrolyte solution absorbed and held is included in the positive electrode mixture and the negative electrode mixture, and a porous separator made of a polymer that absorbs and holds the organic electrolyte solution is integrated with the positive electrode and the negative electrode. It is also possible to configure. The polymer material is not particularly limited as long as it can absorb and retain the organic electrolyte solution, but a copolymer of vinylidene fluoride and hexafluoropropylene is particularly preferable. The thickness of this separator is usually 10 μm or more and 60 μm or less. When the separator is thin, the positive and negative electrodes are likely to be short-circuited. Conversely, if the separator is too thick, the internal resistance of the battery tends to increase, so 50 μm or less, particularly 40 μm or less is preferable.

リチウム二次電池の形状は任意であり、例えば、コイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型が挙げられる。
リチウム二次電池製造工程の中でタクトタイムの律速となる工程の一つは、電解液注入工程である(「高性能二次電池における材料技術とその評価、応用展開」(1998年(株)技術情報協会発行)第7節参照)。この工程は、一部のポリマー電池を除き、多くの非水電解液二次電池に必須の工程である。したがって、本発明に係る濡れ性の良好な負極活物質を用いれば、電解液の含浸速度を早め、注液工程に要する時間を短縮することができるので、工業的に有利である。
The shape of the lithium secondary battery is arbitrary, and examples include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type.
One of the processes that control the takt time in the lithium secondary battery manufacturing process is the electrolyte injection process (“Material Technology, Evaluation and Application Development in High Performance Secondary Batteries” (1998) (Published by the Technical Information Association) (See Section 7). This process is an essential process for many non-aqueous electrolyte secondary batteries except for some polymer batteries. Therefore, the use of the negative electrode active material having good wettability according to the present invention is industrially advantageous because the impregnation rate of the electrolytic solution can be increased and the time required for the pouring step can be shortened.

本発明に係る負極材料の好ましい適用対象の一つは、注液工程に時間がかかりすぎるために工業的製造に制約のあった型式の電池である。このような電池としては、例えば、携帯電話などの小型電子機器を始め多くの用途に用いられている角型電池が挙げられる。角形電池は、通常、厚み5mm程度の薄型であるため、注液口が直径1mm以下と非常に小さくなるので注液に時間がかかるが本発明に係る負極材料を用いると、電池の作成時間を短縮することができる。また、大型の電池においては、電解液の注入を急速に行うと負極
内部における電解液の分布にむらが生じ易いので、この点から注入速度に制約があるが、本発明に係る負極材料を用いると、こうした制約を回避することができ、電池の品質安定化と向上をもたらすことができる。
One of preferred application targets of the negative electrode material according to the present invention is a battery of a type in which industrial production is restricted because the injection process takes too much time. As such a battery, for example, a rectangular battery used for many applications such as a small electronic device such as a mobile phone can be cited. Since a rectangular battery is usually thin with a thickness of about 5 mm, the injection port takes a very small diameter of 1 mm or less, and thus it takes time to inject the liquid. It can be shortened. In addition, in a large battery, if the electrolyte is rapidly injected, uneven distribution of the electrolyte in the negative electrode is likely to occur. Therefore, the injection rate is limited from this point, but the negative electrode material according to the present invention is used. Such restrictions can be avoided, and battery quality can be stabilized and improved.

以下に実施例及び比較例を用いて、本発明を更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例により限定されるものではない。なお、炭素質材料の物性測定は以下の方法により行った。
(1)体積基準平均粒径の測定
ポリオキシエチレン(20)ソルビタンモノラウレートの2体積%水溶液約1mL、イオン交換水10mL及び炭素質材料0.2gを混合し、イオン交換水を分散媒として、レーザー回折式粒度分布計(堀場製作所製、型番LA−920型)を用いて体積基準平均粒径(D50)を測定した。
(2)比表面積測定
炭素質材料を350℃に加熱し、15分間窒素ガスを流した後、窒素ガス吸着による相対圧0.3におけるBET1点法によって比表面積を測定した。
(3)平均円形度測定
イオン交換水100mL中で、炭素質材料0.2gとポリオキシエチレン(20)ソルビタンモノラウレート0.1gとを混合して攪拌し、30分間超音波照射したものを試料とし、東亜医用電子社製フロー式粒子像分析装置「FPIA−1000」を用いて平均円形度を測定した。
EXAMPLES The present invention will be described in more detail below using examples and comparative examples, but the present invention is not limited by the following examples unless it exceeds the gist. The physical properties of the carbonaceous material were measured by the following method.
(1) Measurement of volume-based average particle diameter About 1 mL of 2% by volume aqueous solution of polyoxyethylene (20) sorbitan monolaurate, 10 mL of ion exchange water and 0.2 g of carbonaceous material are mixed, and ion exchange water is used as a dispersion medium. The volume standard average particle diameter (D50) was measured using a laser diffraction particle size distribution meter (manufactured by Horiba, model number LA-920).
(2) Specific surface area measurement After heating a carbonaceous material to 350 degreeC and flowing nitrogen gas for 15 minutes, the specific surface area was measured by the BET 1 point method in the relative pressure 0.3 by nitrogen gas adsorption | suction.
(3) Measurement of average circularity In 100 mL of ion-exchanged water, 0.2 g of carbonaceous material and 0.1 g of polyoxyethylene (20) sorbitan monolaurate were mixed and stirred and subjected to ultrasonic irradiation for 30 minutes. The average circularity was measured using a flow particle image analyzer “FPIA-1000” manufactured by Toa Medical Electronics Co., Ltd. as a sample.

(実施例1)
天然黒鉛粉末(体積基準平均粒径11μm、比表面積10.8m2/g、平均円形度0
.91)とナフサ熱分解時に得られた石油系重質油とを混合し、不活性ガス中で1100℃に加熱した後、得られた焼結物を粉砕・分級処理して、黒鉛粒子表面が非晶質炭素で被覆された非晶質被覆黒鉛を得た。このものの残炭率を測定したところ、黒鉛100重量部に対して10重量部の非晶質炭素で被覆されていた。得られた非晶質被覆黒鉛5kgをガス流通式の容器に入れ、室温下、オゾン2体積%、酸素25体積%及び窒素73体積%の混合ガスを大気圧で、容器をロッキング運動させながら7分間流通させることにより、炭素質負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。また、この負極材料を用いて、以下の方法によりリチウム二次電池用負極、更にリチウム二次電池を作製し、この電池の性能を評価した。
(Example 1)
Natural graphite powder (volume-based average particle diameter 11 μm, specific surface area 10.8 m 2 / g, average circularity 0
. 91) and a petroleum heavy oil obtained during naphtha pyrolysis, and heated to 1100 ° C. in an inert gas, the obtained sintered product is pulverized and classified to obtain a graphite particle surface. Amorphous coated graphite coated with amorphous carbon was obtained. When the residual carbon ratio of this product was measured, it was covered with 10 parts by weight of amorphous carbon with respect to 100 parts by weight of graphite. 5 kg of the obtained amorphous coated graphite is put into a gas flow type container, and at room temperature, a mixed gas of 2 vol% ozone, 25 vol% oxygen and 73 vol% nitrogen is atmospheric pressure and the container is rocked 7 The carbonaceous negative electrode material was obtained by making it distribute | circulate for minutes. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1. Moreover, using this negative electrode material, a negative electrode for a lithium secondary battery and further a lithium secondary battery were prepared by the following method, and the performance of this battery was evaluated.

[正極の作製]
ニッケル酸リチウム(LiNiO2)90重量%、アセチレンブラック5重量%、及び
ポリフッ化ビニリデン(PVdF)5重量%を、N−メチルピロリドン中で混合して得られたスラリーを、厚さ20μmのアルミ箔の片面に塗布して乾燥し、更にプレス機で活物質層とアルミ箔の合計厚みが60μmになるように圧延した。これを直径12.5mmのポンチで円盤状に打ち抜き、コイン電池用正極とした。なお、これらの作業は25℃で行った。
[Production of positive electrode]
A slurry obtained by mixing 90% by weight of lithium nickelate (LiNiO 2 ), 5% by weight of acetylene black, and 5% by weight of polyvinylidene fluoride (PVdF) in N-methylpyrrolidone was formed into an aluminum foil having a thickness of 20 μm. This was coated on one side and dried, and further rolled with a press so that the total thickness of the active material layer and the aluminum foil was 60 μm. This was punched into a disk shape with a punch having a diameter of 12.5 mm to obtain a positive electrode for a coin battery. These operations were performed at 25 ° C.

[負極の作製]
負極活物質94重量部にカルボキシメチルセルロースとスチレン−ブタジエンゴム(SBR)を固形分で各々3重量部となるように加えたものを、蒸留水に加えてスラリーとした。このスラリーを、厚さ18μmの銅箔の片面に均一に塗布し、乾燥した後、プレス機で活物質層と銅箔の合計厚みが50μmになるように圧延した。これを直径13.0mmのポンチで円盤状に打ち抜き、コイン電池用負極とした。なお、これらの作業は25℃で行った。
[Production of negative electrode]
What added carboxymethylcellulose and styrene-butadiene rubber (SBR) to 94 weight part of negative electrode active materials so that it might become 3 weight part each in solid content was added to distilled water, and it was set as the slurry. This slurry was uniformly applied to one side of a 18 μm thick copper foil, dried, and then rolled with a press so that the total thickness of the active material layer and the copper foil was 50 μm. This was punched out into a disk shape with a punch having a diameter of 13.0 mm to obtain a negative electrode for a coin battery. These operations were performed at 25 ° C.

[電解液の調製]
乾燥アルゴン雰囲気下で、精製したエチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びジエチルカーボネート(DEC)の体積比3:3:4の混合溶媒に、十分に乾燥したヘキサフルオロリン酸リチウム(LiPF6)を1mol/Lの濃度にな
るように溶解させ、電解液とした。
[Preparation of electrolyte]
Under a dry argon atmosphere, a well-dried lithium hexafluorophosphate (LiPF 6) was added to a mixed solvent of purified ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) in a volume ratio of 3: 3: 4. ) Was dissolved to a concentration of 1 mol / L to obtain an electrolytic solution.

[電池の組立]
正極及び負極に電解液を十分に浸透させてから、多孔質ポリエチレンシートのセパレーターをはさんで対向させ、電池缶に収納した。その後、かしめ成形を行ってコイン型電池を作製した。
[電池の評価]
1)初期充放電
25℃で充放電(容量確認)を行い、その結果をもとに、リチウム二次電池の充電状態を50%に調整した。
[Battery assembly]
The electrolyte was sufficiently infiltrated into the positive electrode and the negative electrode, and then the porous polyethylene sheet separator was opposed to each other and stored in a battery can. Thereafter, caulking was performed to produce a coin-type battery.
[Battery evaluation]
1) Initial charge / discharge Charge / discharge (capacity confirmation) was performed at 25 ° C., and the charge state of the lithium secondary battery was adjusted to 50% based on the result.

2)低温出力評価
−20℃で、1)の電池を、1/4C、1/2C、1.0C、1.5C、2.5C、3.0C(1Cとは定格容量を1時間で放電する電流値)の各電流値で10秒間定電流放電させ、各条件の放電における10秒後の電圧降下を測定した。その測定値から放電下限電圧を3.0Vとした際に、10秒間流すことのできる電流値Iを算出し、3.0×I(W)という式で計算される値を電池の初期出力とした。
2) Low temperature output evaluation At -20 ° C, the battery of 1) was discharged at 1 / 4C, 1 / 2C, 1.0C, 1.5C, 2.5C, 3.0C (1C is the rated capacity in 1 hour) Discharge at a constant current for 10 seconds at each current value, and the voltage drop after 10 seconds in the discharge under each condition was measured. When the discharge lower limit voltage is set to 3.0 V from the measured value, the current value I that can flow for 10 seconds is calculated, and the value calculated by the formula 3.0 × I (W) is used as the initial output of the battery. did.

作製したリチウム二次電池の出力は、後述する比較例1に記載のリチウム二次電池の出力を100%としたとき、110%であった。これは穏和なオゾン処理により、負極の界面抵抗が低減したことにより、電池出力が向上したことを意味する。
(実施例2)
実施例1の方法で得た非晶質被覆黒鉛1kgを直径300mm高さ300mmの円筒容器に入れ、1×10-4MPaに減圧した。この容器に、室温下、オゾンを2体積%含有する空気を流入させて30秒かけて大気圧まで復圧したのち5分後に容器から取出すことにより、真空オゾン処理を施された負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
The output of the produced lithium secondary battery was 110% when the output of the lithium secondary battery described in Comparative Example 1 described later was 100%. This means that the battery output has been improved by reducing the interfacial resistance of the negative electrode by mild ozone treatment.
(Example 2)
1 kg of the amorphous coated graphite obtained by the method of Example 1 was put in a cylindrical container having a diameter of 300 mm and a height of 300 mm, and the pressure was reduced to 1 × 10 −4 MPa. Into this container, air containing 2% by volume of ozone was introduced at room temperature, the pressure was restored to atmospheric pressure over 30 seconds, and then taken out from the container after 5 minutes to obtain a negative electrode material subjected to vacuum ozone treatment. It was. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.

(比較例1)
実施例1の方法で得た非晶質被覆黒鉛について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。また、この非晶質被覆黒鉛を用いて、リチウム二次電池用負極、更にリチウム二次電池を作製し、この電池の性能を評価した。
(Comparative Example 1)
The amorphous coated graphite obtained by the method of Example 1 was measured for laser diffraction particle size distribution, specific surface area and average circularity, and subjected to a wettability test. The results are listed in Table 1. Moreover, a negative electrode for a lithium secondary battery and further a lithium secondary battery were prepared using this amorphous coated graphite, and the performance of this battery was evaluated.

(比較例2)
実施例1の方法で得た非晶質被覆黒鉛粉末40g及び0.1N酢酸100mLを湿式オゾン処理用反応器に入れ、特許文献1記載の方法により、オゾン発生装置を用いて、オゾン濃度10重量%の酸素ガスを流量3L/minで流しながら、室温下、2.5時間オゾン処理して、オゾン処理炭素材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Comparative Example 2)
40 g of amorphous coated graphite powder obtained by the method of Example 1 and 100 mL of 0.1N acetic acid were put into a reactor for wet ozone treatment, and an ozone concentration of 10 wt. An ozone-treated carbon material was obtained by performing ozone treatment at room temperature for 2.5 hours while flowing oxygen gas at a flow rate of 3 L / min. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.

(実施例3)
市販の天然黒鉛粉末(体積基準平均粒径24μm、比表面積6.2m2/g、平均円形度0.90)とナフサ熱分解時に得られる石油系重質油を混合し、不活性ガス中で1100
℃の炭化処理を施した。得られた焼結物を粉砕・分級処理することにより、黒鉛粒子表面が非晶質炭素で被覆された非晶質被覆黒鉛を得た。このものの残炭率を測定したところ、黒鉛100重量部に対して5重量部の非晶質炭素で被覆されていた。得られた非晶質被覆黒鉛に、実施例1の方法で大気圧下のオゾン処理を施すことにより、負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Example 3)
Commercially available natural graphite powder (volume-based average particle size 24 μm, specific surface area 6.2 m 2 / g, average circularity 0.90) and petroleum heavy oil obtained during naphtha pyrolysis are mixed in an inert gas. 1100
Carbonization treatment at 0 ° C. was performed. The obtained sintered product was pulverized and classified to obtain amorphous coated graphite whose graphite particle surfaces were coated with amorphous carbon. When the residual carbon ratio of this product was measured, it was covered with 5 parts by weight of amorphous carbon with respect to 100 parts by weight of graphite. The obtained amorphous coated graphite was subjected to ozone treatment under atmospheric pressure by the method of Example 1 to obtain a negative electrode material. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.

(実施例4)
実施例3の方法で得た非晶質被覆黒鉛に、実施例2の方法で真空オゾン処理を施すことにより負極材料を得た。このものについて、レーザー回折式粒径分布測定、比表面積測定、平均円形度測定、濡れ性試験を行った。結果を表1に記載する。
(比較例3)
実施例3の方法で得た非晶質被覆黒鉛について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
Example 4
The amorphous coated graphite obtained by the method of Example 3 was subjected to vacuum ozone treatment by the method of Example 2 to obtain a negative electrode material. This was subjected to laser diffraction particle size distribution measurement, specific surface area measurement, average circularity measurement, and wettability test. The results are listed in Table 1.
(Comparative Example 3)
The amorphous coated graphite obtained by the method of Example 3 was measured for laser diffraction particle size distribution, specific surface area and average circularity, and subjected to a wettability test. The results are listed in Table 1.

(比較例4)
実施例3の方法で得た非晶質被覆黒鉛に、比較例2の方法で湿式オゾン処理を施して得られたオゾン処理炭素材料について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(実施例5)
市販の天然黒鉛粉末(体積基準平均粒径17μm、比表面積6.9m2/g、平均円形度0.95)に、石油系重質油の使用量を減らした以外は実施例1と同じ方法で非晶質被覆処理を施し、黒鉛100重量部に対して1重量部の非晶質炭素で被覆されている非晶質被覆黒鉛を得た。得られた非晶質被覆黒鉛に、実施例1の方法で大気圧下のオゾン処理を施すことにより、負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Comparative Example 4)
About the ozone-treated carbon material obtained by subjecting the amorphous coated graphite obtained by the method of Example 3 to the wet ozone treatment by the method of Comparative Example 2, the laser diffraction particle size distribution, specific surface area and average circularity are Measured and tested for wettability. The results are listed in Table 1.
(Example 5)
The same method as in Example 1 except that the amount of heavy petroleum oil used was reduced to commercially available natural graphite powder (volume-based average particle size 17 μm, specific surface area 6.9 m 2 / g, average circularity 0.95). Amorphous coating treatment was carried out to obtain amorphous coated graphite coated with 1 part by weight of amorphous carbon with respect to 100 parts by weight of graphite. The obtained amorphous coated graphite was subjected to ozone treatment under atmospheric pressure by the method of Example 1 to obtain a negative electrode material. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.

(実施例6)
実施例5の方法で得た非晶質被覆黒鉛に、実施例2の方法で真空オゾン処理を施すことにより負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(比較例5)
実施例5の方法で得た非晶質被覆黒鉛について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Example 6)
The amorphous coated graphite obtained by the method of Example 5 was subjected to vacuum ozone treatment by the method of Example 2 to obtain a negative electrode material. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.
(Comparative Example 5)
The amorphous coated graphite obtained by the method of Example 5 was measured for laser diffraction particle size distribution, specific surface area and average circularity, and subjected to a wettability test. The results are listed in Table 1.

(比較例6)
実施例5の方法で得た非晶質被覆黒鉛に、比較例2の方法で湿式オゾン処理を施して得られたオゾン処理炭素材料について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(実施例7)
バインダーピッチ中に黒鉛微粒子を多数分散させたものを加熱してバインダーピッチを黒鉛化させ、黒鉛粒子がバインダーピッチの黒鉛化物を介して多方向に配列した人造黒鉛粉末(体積基準平均粒径17μm、比表面積4.7m2/g、平均円形度0.87)を作
成した。この人造黒鉛粉末に、実施例1の方法で大気圧下のオゾン処理を施すことにより、負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Comparative Example 6)
For the ozone-treated carbon material obtained by subjecting the amorphous coated graphite obtained by the method of Example 5 to the wet ozone treatment by the method of Comparative Example 2, the laser diffraction particle size distribution, specific surface area and average circularity are Measured and tested for wettability. The results are listed in Table 1.
(Example 7)
Artificial graphite powder (volume-based average particle diameter of 17 μm, in which a number of graphite fine particles dispersed in a binder pitch are heated to graphitize the binder pitch, and the graphite particles are arranged in multiple directions through the graphitized material of the binder pitch. A specific surface area of 4.7 m 2 / g and an average circularity of 0.87) were prepared. The artificial graphite powder was subjected to ozone treatment under atmospheric pressure by the method of Example 1 to obtain a negative electrode material. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.

(実施例8)
実施例7の方法で得た人造黒鉛粉末に、実施例2の方法で真空オゾン処理を施すことにより、負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均
円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(比較例7)
実施例7の方法で得た人造黒鉛粉末について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Example 8)
The artificial graphite powder obtained by the method of Example 7 was subjected to vacuum ozone treatment by the method of Example 2 to obtain a negative electrode material. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.
(Comparative Example 7)
The artificial graphite powder obtained by the method of Example 7 was measured for laser diffraction particle size distribution, specific surface area and average circularity, and subjected to a wettability test. The results are listed in Table 1.

(比較例8)
実施例7の方法で得た人造黒鉛粉末に、比較例2の方法で湿式オゾン処理を施して得られたオゾン処理人造黒鉛粉末について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(実施例9)
ニードルコークス(三菱化学社製)に粉体加工処理を施して得られる非晶質炭素粉末に、実施例1の方法で大気圧下のオゾン処理を施すことにより、負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Comparative Example 8)
Measurement of laser diffraction particle size distribution, specific surface area and average circularity of the ozone-treated artificial graphite powder obtained by subjecting the artificial graphite powder obtained by the method of Example 7 to wet ozone treatment by the method of Comparative Example 2. The wettability test was conducted. The results are listed in Table 1.
Example 9
The amorphous carbon powder obtained by subjecting Needle Coke (Mitsubishi Chemical Corporation) to powder processing was subjected to ozone treatment under atmospheric pressure by the method of Example 1 to obtain a negative electrode material. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.

(実施例10)
実施例9の方法で得た非晶質炭素粉末に、実施例2の方法で真空オゾン処理を施すことにより、負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(比較例9)
実施例9の方法で得た非晶質炭素粉末について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Example 10)
The amorphous carbon powder obtained by the method of Example 9 was subjected to vacuum ozone treatment by the method of Example 2 to obtain a negative electrode material. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.
(Comparative Example 9)
The amorphous carbon powder obtained by the method of Example 9 was measured for laser diffraction particle size distribution, specific surface area and average circularity, and subjected to a wettability test. The results are listed in Table 1.

(比較例10)
実施例9の方法で得た非晶質炭素粉末に、比較例2の方法で湿式オゾン処理を施して得られたオゾン処理炭素材料について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(実施例11)
ニードルコークス(三菱化学社製)を黒鉛化炉を用いて2800℃以上で焼成して得られる黒鉛化物に粉体加工処理を施した後、実施例1の方法で大気圧下のオゾン処理を施すことにより、負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Comparative Example 10)
For the ozone-treated carbon material obtained by subjecting the amorphous carbon powder obtained by the method of Example 9 to wet ozone treatment by the method of Comparative Example 2, the laser diffraction particle size distribution, the specific surface area and the average circularity were determined. Measured and tested for wettability. The results are listed in Table 1.
(Example 11)
Powder processing is performed on graphitized material obtained by firing needle coke (Mitsubishi Chemical Co., Ltd.) at 2800 ° C. or higher using a graphitization furnace, and then subjected to ozone treatment under atmospheric pressure by the method of Example 1. Thus, a negative electrode material was obtained. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.

(実施例12)
実施例11の方法で得た粉体加工処理を施した黒鉛化物に、実施例2の方法で真空オゾン処理を施すことにより、負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(比較例11)
実施例11の方法で得た黒鉛化物について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Example 12)
A negative electrode material was obtained by subjecting the graphitized material subjected to the powder processing obtained by the method of Example 11 to vacuum ozone treatment by the method of Example 2. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.
(Comparative Example 11)
The graphitized material obtained by the method of Example 11 was measured for laser diffraction particle size distribution, specific surface area and average circularity, and subjected to a wettability test. The results are listed in Table 1.

(比較例12)
実施例11の方法で得た黒鉛化物について、比較例2の方法で湿式オゾン処理を施して得られたオゾン処理黒鉛化物について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(実施例13)
実施例5で用いた天然黒鉛粉末に、実施例1の方法で大気圧下のオゾン処理を施すことにより、負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Comparative Example 12)
About the graphitized material obtained by the method of Example 11, the ozone-treated graphitized material obtained by performing the wet ozone treatment by the method of Comparative Example 2, the laser diffraction particle size distribution, the specific surface area and the average circularity are measured, A wettability test was performed. The results are listed in Table 1.
(Example 13)
The natural graphite powder used in Example 5 was subjected to ozone treatment under atmospheric pressure by the method of Example 1 to obtain a negative electrode material. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.

(実施例14)
実施例5で用いた天然黒鉛粉末に、実施例2の方法で真空オゾン処理を施すことにより、負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(比較例13)
実施例5で用いた天然黒鉛粉末について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Example 14)
The natural graphite powder used in Example 5 was vacuum ozone treated by the method of Example 2 to obtain a negative electrode material. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.
(Comparative Example 13)
The natural graphite powder used in Example 5 was measured for laser diffraction particle size distribution, specific surface area and average circularity, and subjected to a wettability test. The results are listed in Table 1.

(比較例14)
実施例5で用いた天然黒鉛粉末に、比較例2の方法で湿式オゾン処理を施して得られたオゾン処理黒鉛粉末について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(実施例15)
実施例3で用いた天然黒鉛粉末に、実施例1の方法で大気圧下のオゾン処理を施すことにより、負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Comparative Example 14)
For the ozone-treated graphite powder obtained by subjecting the natural graphite powder used in Example 5 to wet ozone treatment by the method of Comparative Example 2, the laser diffraction particle size distribution, the specific surface area and the average circularity were measured and wetted. A sex test was performed. The results are listed in Table 1.
(Example 15)
The natural graphite powder used in Example 3 was subjected to ozone treatment under atmospheric pressure by the method of Example 1 to obtain a negative electrode material. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.

(実施例16)
実施例3で用いた天然黒鉛粉末に、実施例2の方法で真空オゾン処理を施すことにより、負極材料を得た。このものについて、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(比較例15)
実施例3で用いた天然黒鉛粉末について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Example 16)
The natural graphite powder used in Example 3 was subjected to vacuum ozone treatment by the method of Example 2 to obtain a negative electrode material. About this thing, the laser diffraction type particle size distribution, the specific surface area, and the average circularity were measured, and the wettability test was done. The results are listed in Table 1.
(Comparative Example 15)
The natural graphite powder used in Example 3 was measured for laser diffraction particle size distribution, specific surface area and average circularity, and subjected to a wettability test. The results are listed in Table 1.

(比較例16)
実施例3で用いた天然黒鉛粉末に、比較例2の方法で湿式オゾン処理を施して得られたオゾン処理黒鉛粉末について、レーザー回折式粒径分布、比表面積及び平均円形度を測定し、濡れ性試験を行った。結果を表1に記載する。
(Comparative Example 16)
For the ozone-treated graphite powder obtained by subjecting the natural graphite powder used in Example 3 to wet ozone treatment by the method of Comparative Example 2, the laser diffraction particle size distribution, specific surface area and average circularity were measured, and the wetness was measured. A sex test was performed. The results are listed in Table 1.

Figure 2005149792
Figure 2005149792

表1から、炭素質材料に弱い乾式オゾン処理を施して得られる本発明に係るリチウム二
次電池用の炭素質負極材料は、同じ炭素質材料に特許文献1に記載されている湿式オゾン処理を施して得られる負極材料よりも濡れ性試験の消失時間が短く、優れた吸液特性を示すことがわかる。
From Table 1, the carbonaceous negative electrode material for a lithium secondary battery according to the present invention obtained by subjecting a carbonaceous material to a weak dry ozone treatment is the same carbonaceous material as the wet ozone treatment described in Patent Document 1. It can be seen that the disappearance time of the wettability test is shorter than that of the negative electrode material obtained by applying, and exhibits excellent liquid absorption characteristics.

Claims (7)

以下の濡れ性試験での液滴消失時間が320秒以下であることを特徴とするリチウム二次電池用の炭素質負極材料。
<濡れ性試験>
(1)スラリーの調製;
粉末状カルボキシメチルセルロースナトリウム(エーテル化度0.6〜0.8、1重量%水溶液の30℃、剪断速度40S-1の条件下での粘度100〜1000mPa.s)1gを蒸留水100mLに溶解する。得られた水溶液100gと炭素質負極材料100gとを混合し、10時間撹拌して十分に分散させる。次いでこれにスチレンブタジエンゴム(Tg=−10〜0℃)の水性エマルション(固形分濃度50重量%)2gを加え、撹拌して均一なスラリーとする。なお、全ての操作は25℃で行う。
(2)試験片の作製;
厚さ20μmの銅箔上に、上記で調製したスラリーを固形分が(13±0.2)mg/cm2となるようにドクターブレード法により塗布して塗膜を形成する。これを60〜8
0℃に加熱して十分に乾燥させ、水分を除去する。これからポンチで12.5mmφの円板を打抜き、膜密度が(1.5〜1.6)g/cm3となるようにプレス機で加圧して試
験片とする。
(3)液滴消失時間の測定;
アルゴン雰囲気下、25℃で、上記で作製した試験片の中央に、エチレンカーボネート300mL及びジメチルカーボネート700mLから成る混合溶液に六フッ化リン酸リチウム(LiPF6)180gを溶解させた溶液を、5mmの高さから、マイクロシリンジ
で1μL滴下する。滴下終了から溶液が試験片の内部に吸収されて、見掛け上表面から消失するまでの時間を測定し、この測定値を液滴消失時間とする。
A carbonaceous negative electrode material for a lithium secondary battery, wherein a droplet disappearance time in the following wettability test is 320 seconds or less.
<Wettability test>
(1) Preparation of slurry;
Dissolve 1 g of powdered sodium carboxymethylcellulose (etherification degree: 0.6 to 0.8, viscosity of 100 to 1000 mPa.s at 30 ° C. in 1 wt% aqueous solution at a shear rate of 40 S −1 ) in 100 mL of distilled water. . 100 g of the obtained aqueous solution and 100 g of the carbonaceous negative electrode material are mixed and stirred for 10 hours to be sufficiently dispersed. Next, 2 g of an aqueous emulsion (solid content concentration 50% by weight) of styrene butadiene rubber (Tg = −10 to 0 ° C.) is added and stirred to obtain a uniform slurry. All operations are performed at 25 ° C.
(2) Preparation of test piece;
On the copper foil having a thickness of 20 μm, the slurry prepared above is applied by a doctor blade method so that the solid content becomes (13 ± 0.2) mg / cm 2 to form a coating film. This is 60-8
Heat to 0 ° C. to dry thoroughly to remove moisture. From this, a 12.5 mmφ disc is punched with a punch, and a test piece is formed by pressing with a press machine so that the film density is (1.5 to 1.6) g / cm 3 .
(3) Measurement of droplet disappearance time;
A solution prepared by dissolving 180 g of lithium hexafluorophosphate (LiPF 6 ) in a mixed solution consisting of 300 mL of ethylene carbonate and 700 mL of dimethyl carbonate at the center of the test piece prepared above at 25 ° C. in an argon atmosphere was 5 mm. From the height, 1 μL is dropped with a microsyringe. The time from the end of dropping until the solution is absorbed inside the test piece and apparently disappears from the surface is measured, and this measured value is taken as the droplet disappearance time.
液滴消失時間が200秒以下であることを特徴とする請求項1記載の炭素質負極材料。   The carbonaceous negative electrode material according to claim 1, wherein the droplet disappearance time is 200 seconds or less. 平均円形度が0.85以上であることを特徴とする請求項1又は2記載の炭素質負極材料。   The carbonaceous negative electrode material according to claim 1 or 2, wherein the average circularity is 0.85 or more. 波長514.3nmのアルゴンイオンレーザー光を用いたラマンスペクトルにおいて、1580cm-1〜1620cm-1の範囲のピーク強度をIA、その半値幅をΔν、135
0cm-1〜1370cm-1の範囲のピーク強度をIBとしたときのピーク強度比R(=IB/IA)が1.1以下であり、かつ半値幅Δνが60cm-1以下であることを特徴とする
請求項1ないし3のいずれかに記載の炭素質負極材料。
In a Raman spectrum using an argon ion laser beam having a wavelength of 514.3 nm, the peak intensity in the range of 1580 cm −1 to 1620 cm −1 is I A , and the half width is Δν, 135
0cm peak intensity ratio of the peak intensity in the range of -1 ~1370cm -1 when the I B R (= I B / I A) is 1.1 or less, and the half-value width Δν is at 60cm -1 or less The carbonaceous negative electrode material according to any one of claims 1 to 3, wherein:
平均粒径が30μm以下、比表面積が20m2/g以下である粉末状炭素質材料に、こ
の材料1kgにつき0.01〜10gのオゾンを気相で接触させる乾式オゾン処理を施したものであることを特徴とする請求項1ないし4のいずれかに記載の炭素質負極材料。
A powdery carbonaceous material having an average particle diameter of 30 μm or less and a specific surface area of 20 m 2 / g or less is subjected to dry ozone treatment in which 0.01 to 10 g of ozone per 1 kg of the material is contacted in a gas phase. The carbonaceous negative electrode material according to any one of claims 1 to 4, wherein
集電体上に、請求項1ないし5のいずれかに記載の炭素質負極材料と結着剤とを含有する負極活物質層を有することを特徴とするリチウム二次電池用負極。   6. A negative electrode for a lithium secondary battery, comprising a negative electrode active material layer containing the carbonaceous negative electrode material according to claim 1 and a binder on a current collector. 請求項6記載の負極、リチウムイオンを吸蔵・放出可能な正極、及び非水電解液を有することを特徴とするリチウム二次電池。   A lithium secondary battery comprising: the negative electrode according to claim 6; a positive electrode capable of inserting and extracting lithium ions; and a non-aqueous electrolyte.
JP2003382477A 2003-11-12 2003-11-12 Carbonaceous negative electrode material for lithium secondary battery Pending JP2005149792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003382477A JP2005149792A (en) 2003-11-12 2003-11-12 Carbonaceous negative electrode material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003382477A JP2005149792A (en) 2003-11-12 2003-11-12 Carbonaceous negative electrode material for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2005149792A true JP2005149792A (en) 2005-06-09

Family

ID=34691536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003382477A Pending JP2005149792A (en) 2003-11-12 2003-11-12 Carbonaceous negative electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2005149792A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084675A1 (en) * 2006-12-26 2008-07-17 Mitsubishi Chemical Corporation Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
WO2009157478A1 (en) * 2008-06-25 2009-12-30 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
JP2011256358A (en) * 2010-06-11 2011-12-22 Samsung Electro-Mechanics Co Ltd Carboxymethyl cellulose and slurry composition containing the same
KR20170063250A (en) * 2015-11-30 2017-06-08 주식회사 엘지화학 Electrolyte dosing calculation method for lithium secondary battery
KR20170112106A (en) * 2016-03-30 2017-10-12 주식회사 엘지화학 Method for preparing lithium secondary battery
KR20170113419A (en) * 2016-03-30 2017-10-12 주식회사 엘지화학 Method for preparing lithium secondary battery
KR20170113420A (en) * 2016-03-30 2017-10-12 주식회사 엘지화학 Method for preparing lithium secondary battery
JP2021020190A (en) * 2019-07-30 2021-02-18 三菱鉛筆株式会社 Liquid absorbing body

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8431270B2 (en) 2006-12-26 2013-04-30 Mitsubishi Chemical Corporation Composite graphite particles for nonaqueous secondary battery, negative-electrode material containing the same, negative electrode, and nonaqueous secondary battery
WO2008084675A1 (en) * 2006-12-26 2008-07-17 Mitsubishi Chemical Corporation Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
WO2009157478A1 (en) * 2008-06-25 2009-12-30 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
JP2010034036A (en) * 2008-06-25 2010-02-12 Mitsubishi Chemicals Corp Compound graphite particles for nonaqueous secondary battery, negative electrode material containing the same, negative electrode, and nonaqueous secondary battery
CN102067363A (en) * 2008-06-25 2011-05-18 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
US8974968B2 (en) 2008-06-25 2015-03-10 Mitsubishi Chemical Corporation Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
JP2011256358A (en) * 2010-06-11 2011-12-22 Samsung Electro-Mechanics Co Ltd Carboxymethyl cellulose and slurry composition containing the same
KR102045478B1 (en) 2015-11-30 2019-11-15 주식회사 엘지화학 Electrolyte dosing calculation method for lithium secondary battery
KR20170063250A (en) * 2015-11-30 2017-06-08 주식회사 엘지화학 Electrolyte dosing calculation method for lithium secondary battery
KR20170112106A (en) * 2016-03-30 2017-10-12 주식회사 엘지화학 Method for preparing lithium secondary battery
KR20170113420A (en) * 2016-03-30 2017-10-12 주식회사 엘지화학 Method for preparing lithium secondary battery
KR102005506B1 (en) * 2016-03-30 2019-07-30 주식회사 엘지화학 Method for preparing lithium secondary battery
KR102005505B1 (en) * 2016-03-30 2019-07-30 주식회사 엘지화학 Method for preparing lithium secondary battery
KR20170113419A (en) * 2016-03-30 2017-10-12 주식회사 엘지화학 Method for preparing lithium secondary battery
US10541421B2 (en) 2016-03-30 2020-01-21 Lg Chem, Ltd. Method of preparing lithium secondary battery
KR102128010B1 (en) * 2016-03-30 2020-06-29 주식회사 엘지화학 Method for preparing lithium secondary battery
US10700340B2 (en) 2016-03-30 2020-06-30 Lg Chem, Ltd. Method of preparing lithium secondary battery
JP2021020190A (en) * 2019-07-30 2021-02-18 三菱鉛筆株式会社 Liquid absorbing body
JP7418165B2 (en) 2019-07-30 2024-01-19 三菱鉛筆株式会社 liquid absorption

Similar Documents

Publication Publication Date Title
JP4729716B2 (en) Lithium secondary battery negative electrode and lithium secondary battery
JP5343347B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4031009B2 (en) Positive electrode for lithium battery and lithium battery using the same
JP5415012B2 (en) Positive electrode active material sintered body for battery
JP4210710B2 (en) Method for producing positive electrode active material for lithium battery
TWI344714B (en) High density electrode and battery using the electrode
JP5949555B2 (en) Method for producing positive electrode active material for secondary battery, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP6304774B2 (en) Method for producing paste for negative electrode production, method for producing negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6188158B2 (en) Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery
JP2012038724A (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same
WO2016136211A1 (en) Nonaqueous electrolyte secondary battery
JP6615785B2 (en) Method for producing paste for negative electrode production, method for producing negative electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20180027022A (en) Anode active material for secondary battery and preparation method thereof
KR102078606B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP6638513B2 (en) Active material for negative electrode of non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and lithium ion secondary battery
CN110088970B (en) Nonaqueous electrolyte secondary battery
JP2014199750A (en) Negative electrode carbon material for lithium secondary battery, negative electrode for lithium battery, and lithium secondary battery
WO2018179934A1 (en) Negative electrode material and nonaqueous electrolyte secondary battery
JP2013025887A (en) Positive electrode for lithium secondary battery and lithium secondary battery including the same
JP4765253B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery negative electrode and lithium secondary battery
JP2016149340A (en) Composite active material for lithium secondary battery, manufacturing method for the same and lithium secondary battery
JP4542352B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2005149792A (en) Carbonaceous negative electrode material for lithium secondary battery
JP6183569B1 (en) Negative electrode active material, negative electrode and lithium ion secondary battery
KR20220090461A (en) Method for preparing positive electrode for lithium secondary battery and positive electrode for lithium secondary battery thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309