JP2010066154A - Method for mounting sensor element to concrete structure and method for inspecting quality of concrete structure - Google Patents

Method for mounting sensor element to concrete structure and method for inspecting quality of concrete structure Download PDF

Info

Publication number
JP2010066154A
JP2010066154A JP2008233484A JP2008233484A JP2010066154A JP 2010066154 A JP2010066154 A JP 2010066154A JP 2008233484 A JP2008233484 A JP 2008233484A JP 2008233484 A JP2008233484 A JP 2008233484A JP 2010066154 A JP2010066154 A JP 2010066154A
Authority
JP
Japan
Prior art keywords
sensor element
concrete structure
small
elastic wave
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008233484A
Other languages
Japanese (ja)
Other versions
JP5403976B2 (en
Inventor
Takashi Sakai
孝 坂井
Minoru Kaneko
稔 金子
Masayuki Yasuda
正雪 安田
Eiji Sueoka
英二 末岡
Naoki Arakane
直樹 荒金
Yuji Shirane
勇二 白根
Masashi Funahashi
政司 舟橋
Kosuke Minami
浩輔 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Toray Engineering Co Ltd
Maeda Corp
Original Assignee
Akebono Brake Industry Co Ltd
Maeda Corp
Toyo Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd, Maeda Corp, Toyo Construction Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2008233484A priority Critical patent/JP5403976B2/en
Publication of JP2010066154A publication Critical patent/JP2010066154A/en
Application granted granted Critical
Publication of JP5403976B2 publication Critical patent/JP5403976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for mounting a sensor element to a concrete structure and a method for properly inspecting quality of a concrete structure for existing concrete structures. <P>SOLUTION: A rodlike reinforcement 7 with sensor elements 10A, 10B, 10C mounted thereon, in which electrical energy and mechanical energy are convertibly converted, is previously prepared, and the reinforcement 7 with the sensor elements 10A, 10B, 10C mounted thereon is inserted into a small diameter hole 5 that is bored into an existing concrete structure 3 and thereafter the small diameter hole 5 is filled with a filler 3a. Mechanical vibration, in the condition that an oscillator 11 is brought into contact with the outside surface of the concrete structure 3, is generated by applying an oscillating signal to the oscillator 11. With this mechanical vibration, an elastic wave propagating in the concrete is detected by the sensor elements 10A, 10B, 10C, as a received vibration signal. The quality of the concrete structure 3 is inspected by calculating the propagation speed of the elastic wave from the phase difference between the oscillated signal and the received vibration signal determined in that case. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、センサ素子の既設のコンクリート構造物への取り付け方法およびコンクリート構造物の品質(版厚、内部の剥離及び亀裂等)を非破壊で検査するコンクリート構造物品質検査方法に関する。   The present invention relates to a method for attaching a sensor element to an existing concrete structure and a concrete structure quality inspection method for nondestructively inspecting the quality (plate thickness, internal peeling, cracks, etc.) of the concrete structure.

従来、既設のコンクリート構造物等の品質を非破壊で検査する技術が広く知られている。
例えば、特許文献1においては、物品上に対向配置した一方の超音波プローブより放出した超音波列を他方の超音波プローブで受信し、プローブ間の離間寸法から伝播時間を測定することにより、寸法−伝播時間測定値毎に算出される超音波列の伝播速度から物品の内部欠点の有無等を検査する、いわゆる対面法と呼ばれる方法が提案されている。
また、特許文献2においては、既設コンクリート構造物の表面に配置した発信探触子及び受信探触子のいずれか一方又は双方を構造物表面に沿って移動させながらエコーの受信を行うことにより、コンクリート内の障害物の有無に関係なく版厚や内部欠陥等を正確に測定できる、いわゆる表面法と呼ばれる方法が提案されている。
Conventionally, a technique for inspecting the quality of an existing concrete structure or the like in a nondestructive manner is widely known.
For example, in Patent Document 1, an ultrasonic train emitted from one ultrasonic probe disposed oppositely on an article is received by the other ultrasonic probe, and the propagation time is measured from the distance between the probes. -A so-called face-to-face method has been proposed, in which the presence or absence of internal defects of an article is inspected from the propagation speed of an ultrasonic train calculated for each measured propagation time.
Further, in Patent Document 2, by performing echo reception while moving either or both of the transmitting probe and the receiving probe arranged on the surface of the existing concrete structure, A so-called surface method has been proposed that can accurately measure the plate thickness and internal defects regardless of the presence or absence of obstacles in the concrete.

特開平5−107233号公報JP-A-5-107233 特開2004−184276号公報JP 2004-184276 A

しかしながら、上記公報で提案された検査方法は、たとえ伝播能力に優れた対面法であっても、検査対象となるコンクリート構造物が分厚い場合に、一方の超音波プローブより送信される弾性波エネルギが減衰して他方の超音波プローブで受信することができず、測定を行えないことがある。測定可能にするため、送信パワーを上げることも考えられるが、それでも限界があり、しかも、大電力化すると装置本体の大型化や製造コストの上昇、検査コストの高騰等を招く。
また、2つの超音波プローブを、測定箇所を挟んで対向配置させる対面法は、例えば測定箇所に隣接して外壁や上層階の床などが存在すると、一方の超音波プローブを当てることができず、そのため測定できないことがある。
However, even if the inspection method proposed in the above publication is a face-to-face method with excellent propagation ability, when the concrete structure to be inspected is thick, the elastic wave energy transmitted from one ultrasonic probe is It may be attenuated and not received by the other ultrasonic probe, and measurement may not be performed. Although it is conceivable to increase the transmission power in order to make it possible to measure, there is still a limit, and when the power is increased, the apparatus body becomes larger, the manufacturing cost increases, and the inspection cost increases.
In addition, the facing method in which two ultrasonic probes are arranged to face each other with a measurement point sandwiched between them, for example, when an outer wall or an upper floor is present adjacent to the measurement point, one ultrasonic probe cannot be applied. Therefore, measurement may not be possible.

本発明は係る事情に鑑みてなされたものであり、センサ素子の既設のコンクリート構造物への取り付け方法を提供すること、並びに、コンクリート構造物が分厚い場合であっても、コンクリート構造物の品質検査を行うことができ、しかも測定箇所の状況に左右されず検査を行うことができるコンクリート構造物品質検査方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a method for attaching a sensor element to an existing concrete structure, and even if the concrete structure is thick, the quality inspection of the concrete structure is provided. It is another object of the present invention to provide a method for inspecting the quality of a concrete structure that can perform inspection without being influenced by the situation of the measurement location.

本発明に係る上記目的は、下記構成により達成される。
(1) 電気エネルギと機械エネルギを可逆的に変換可能な第1のセンサ素子が取り付けられた棒状体を準備する工程と、
既設のコンクリート構造物に小径孔を形成する工程と、
前記小径孔に前記センサ素子が取り付けられた前記棒状体を挿入し、その後、前記小径孔に充填材を充填して前記センサ素子を埋設する工程と、を含むことを特徴とするセンサ素子のコンクリート構造物への取り付け方法。
The above object of the present invention is achieved by the following configuration.
(1) preparing a rod-like body to which a first sensor element capable of reversibly converting electrical energy and mechanical energy is attached;
Forming a small-diameter hole in an existing concrete structure;
Inserting the rod-like body having the sensor element attached thereto into the small-diameter hole, and then filling the small-diameter hole with a filler to embed the sensor element in concrete. How to attach to the structure.

上記方法によれば、既設のコンクリート構造物であっても、センサ素子が取り付けられて既設のコンクリート構造物の品質検査を行うことができる。   According to the said method, even if it is an existing concrete structure, a sensor element is attached and a quality inspection of the existing concrete structure can be performed.

(2) 前記第1のセンサ素子を前記棒状体に離間して複数配置し、一つのセンサ素子に一定の周波数の発振信号を印加して機械的振動を発生させ、この機械的振動によりコンクリート内を伝播する弾性波を他のセンサ素子で検出し、そのときに得られる受振信号と前記一つのセンサ素子に印加した発振信号との位相差を求め、求めた位相差とセンサ素子間の離間距離とから、前記弾性波の伝播速度を算出して、前記充填材の強度の発現を検査することを特徴とする(1)のセンサ素子のコンクリート構造物への取り付け方法。 (2) A plurality of the first sensor elements are arranged apart from the rod-like body, and an oscillation signal having a constant frequency is applied to one sensor element to generate mechanical vibration. A sensor wave is detected by another sensor element, and a phase difference between the vibration receiving signal obtained at that time and an oscillation signal applied to the one sensor element is obtained, and the obtained phase difference and the separation distance between the sensor elements Then, the propagation speed of the elastic wave is calculated, and the expression of strength of the filler is inspected. (1) The method of attaching the sensor element to a concrete structure according to (1).

上記方法によれば、小径孔に充填される充填材の強度の発現が、コンクリート内を伝播する弾性波の伝播速度を算出することで検査できる。強度の発現が確認されて、充填材が既設のコンクリート構造物と同等の強度が得られれば、センサ素子をコンクリート打設前の構造物に配置して打設後にコンクリート内に埋設した状態にして品質検査を行う場合と同等の品質検査を行うことができる。   According to the above method, the strength development of the filler filled in the small-diameter hole can be inspected by calculating the propagation speed of the elastic wave propagating through the concrete. If the development of strength is confirmed and the filler material has the same strength as the existing concrete structure, the sensor element is placed in the structure before placing the concrete and is placed in the concrete after placing. A quality inspection equivalent to the quality inspection can be performed.

(3) 前記棒状体の少なくとも一部を前記小径孔の内壁に当接させて該棒状体を位置規制する工程を含み、
前記第1のセンサ素子を前記小径孔の内壁から離間して配置することを特徴とする(1)のセンサ素子のコンクリート構造物への取り付け方法。
(3) including a step of restricting the position of the rod-shaped body by bringing at least a part of the rod-shaped body into contact with the inner wall of the small-diameter hole;
(1) The method of attaching a sensor element to a concrete structure according to (1), wherein the first sensor element is disposed apart from an inner wall of the small-diameter hole.

上記方法によれば、センサ素子が小径孔の内壁から離間した孔中央部に配置されることにより、既設のコンクリート構造物との接触による影響を回避して、充填される充填材の強度の発現を高精度に検査することができる。   According to the above method, the sensor element is arranged at the center of the hole spaced from the inner wall of the small-diameter hole, thereby avoiding the influence of the contact with the existing concrete structure and developing the strength of the filler to be filled. Can be inspected with high accuracy.

(4) (1)乃至(3)のセンサ素子のコンクリート構造物への取り付け方法を実施するとともに、電気エネルギと機械エネルギを可逆的に変換可能な第2のセンサ素子又は弾性波を発生できる発振素子あるいは弾性波を受振できる受振素子を前記コンクリート構造物の外表面に当てた状態で該第2のセンサ素子又は該発振素子又は前記第1のセンサ素子のいずれかに発振信号を印加して機械的振動を発生させ、この機械的振動によりコンクリート内を伝播する弾性波を前記第1のセンサ素子又は前記第2のセンサ素子又は前記受振素子で検出し、そのときに得られる受振信号と前記第2のセンサ素子又は前記発振素子又は前記第1のセンサ素子に印加した発振信号との位相差を求め、求めた位相差と前記コンクリート構造物の外表面に当てた前記第2のセンサ素子又は前記発振素子あるいは前記受振素子と前記コンクリート構造物内に配置した前記第1のセンサ素子との離間距離とから、前記弾性波の伝播速度を算出して品質検査を行うことを特徴とするコンクリート構造物品質検査方法。 (4) The second sensor element capable of reversibly converting electrical energy and mechanical energy while performing the method of attaching the sensor element of (1) to (3) to a concrete structure, or an oscillation capable of generating an elastic wave An oscillating signal is applied to either the second sensor element, the oscillating element or the first sensor element in a state where the element or a receiving element capable of receiving an elastic wave is applied to the outer surface of the concrete structure. The first sensor element, the second sensor element, or the receiving element detects an elastic wave that propagates through the concrete due to the mechanical vibration, and the received vibration signal and the first 2 is obtained, and the phase difference from the oscillation signal applied to the sensor element 2 or the oscillation element or the first sensor element is obtained, and the obtained phase difference is applied to the outer surface of the concrete structure. Further, from the distance between the second sensor element, the oscillating element or the receiving element and the first sensor element disposed in the concrete structure, the propagation speed of the elastic wave is calculated to perform quality inspection. A method for inspecting the quality of a concrete structure, characterized in that it is performed.

上記方法によれば、第2のセンサ素子又は発振素子又は第1のセンサ素子のいずれかに印加した発振信号と該発振信号を第1のセンサ素子又は第2のセンサ素子又は受振素子で受振して得られた受振信号との位相差と、コンクリート構造物内の第1のセンサ素子とコンクリート構造物表面の第2のセンサ素子又は発振素子又は受振素子との離間距離とに基いてコンクリート中を伝播する弾性波の速度を求め、この弾性波の速度が、健全なコンクリートでの速度に比べて著しく遅い場合、ひび割れを含む欠陥があると判定できる。すなわち、健全な既設のコンクリート構造物における伝播速度は、一般に、4000m/s前後であるが、ひび割れや欠陥等により空気層を含むと、伝播速度が半分程度に遅くなる傾向があるため、伝播速度を検出することで欠陥等の有無を検査することができる。また、欠陥等を補修した後の伝播速度を検出することで、補修の効果を確認することができる。   According to the above method, the oscillation signal applied to either the second sensor element, the oscillation element or the first sensor element and the oscillation signal are received by the first sensor element, the second sensor element or the reception element. In the concrete based on the phase difference from the received vibration signal and the separation distance between the first sensor element in the concrete structure and the second sensor element, the oscillation element or the vibration receiving element on the surface of the concrete structure. The velocity of the propagating elastic wave is obtained, and when the velocity of the elastic wave is significantly slower than that of sound concrete, it can be determined that there is a defect including a crack. That is, the propagation speed in a sound existing concrete structure is generally around 4000 m / s, but if the air layer is included due to cracks, defects, etc., the propagation speed tends to be reduced to about half. By detecting this, it is possible to inspect the presence or absence of a defect or the like. Moreover, the effect of repair can be confirmed by detecting the propagation speed after repairing a defect etc.

(5) (1)乃至(3)のセンサ素子のコンクリート構造物への取り付け方法を、所定間隔に離間したコンクリート構造物上の位置に形成した少なくとも二つの小径孔のそれぞれに適用し、第1の小径孔に埋設したセンサ素子に発振信号を印加して機械的振動を発生させ、この機械的振動によりコンクリート内を伝播する弾性波を第2の小径孔に埋設したセンサ素子で検出し、そのときに得られる受振信号と前記第1の小径孔に埋設したセンサ素子に印加した発振信号との位相差を求め、求めた位相差と前記小径孔間の離間距離とから、前記弾性波の伝播速度を算出して前記既設コンクリート構造物の品質検査を行うことを特徴とするコンクリート構造物品質検査方法。 (5) The method for attaching the sensor element of (1) to (3) to the concrete structure is applied to each of at least two small-diameter holes formed at positions on the concrete structure spaced apart by a predetermined distance. An oscillation signal is applied to the sensor element embedded in the small-diameter hole to generate mechanical vibration, and an elastic wave propagating in the concrete due to the mechanical vibration is detected by the sensor element embedded in the second small-diameter hole. The phase difference between the vibration signal obtained from time to time and the oscillation signal applied to the sensor element embedded in the first small-diameter hole is obtained, and the propagation of the elastic wave is obtained from the obtained phase difference and the separation distance between the small-diameter holes. A method for inspecting the quality of a concrete structure, characterized by calculating a speed and inspecting the quality of the existing concrete structure.

上記方法によれば、第1の小径孔に埋設したセンサ素子に印加した発振信号と該発振信号を第2の小径孔に埋設したセンサ素子で受振して得られた受振信号との位相差と、第1、第2の小径孔間の離間距離とに基づいてコンクリート中を伝播する弾性波の伝播速度を求めるので、既設のコンクリート構造物の部材厚が大き過ぎて、コンクリート内を伝播する弾性波エネルギを例えばコンクリート上に対向配置したセンサ素子で受振できない場合でも、弾性波エネルギの受振範囲内にセンサ素子を埋設することで、弾性波の伝播速度を求めて品質検査を行うことができる。   According to the above method, the phase difference between the oscillation signal applied to the sensor element embedded in the first small-diameter hole and the received signal obtained by receiving the oscillation signal with the sensor element embedded in the second small-diameter hole, Since the propagation speed of the elastic wave propagating in the concrete is obtained based on the separation distance between the first and second small-diameter holes, the member thickness of the existing concrete structure is too large and the elasticity propagating in the concrete Even when the wave energy cannot be received by a sensor element disposed on the concrete, for example, by embedding the sensor element in the receiving range of the elastic wave energy, the propagation speed of the elastic wave can be obtained to perform quality inspection.

本発明によれば、既設のコンクリート構造物であっても、また、コンクリート構造物が分厚い場合であっても、コンクリート構造物品質検査を行うことができる。また、測定箇所の状況に左右されず検査を行うことができる。さらに、コンクリート構造物が分厚すぎる場合であっても、弾性波エネルギの受振範囲内に形成した第1、第2の小径孔内にセンサ素子をそれぞれ配置することによって検査を行うことができる。   According to the present invention, even if it is an existing concrete structure, or even when the concrete structure is thick, the concrete structure quality inspection can be performed. Moreover, it can test | inspect regardless of the condition of a measurement location. Further, even when the concrete structure is too thick, the inspection can be performed by arranging the sensor elements in the first and second small-diameter holes formed in the elastic wave energy receiving range.

以下、本発明を実施するための好適な実施の形態について、図面を参照して詳細に説明する。
図1は、本発明の第1の実施の形態に係るコンクリート構造物品質検査方法に適用される品質検査装置の概略構成を示すブロック図である。なお、本実施の形態では、既設のコンクリート構造物における「ひび割れ」検査について述べる。
図1において、コンクリート構造物3の品質検査装置1は、「ひび割れ」を計測する欠陥検知機能を有し、この機能を実現するため、既設のコンクリート構造物3に削孔された小径孔5に挿入する3つのセンサ素子10A〜10Cと、コンクリート構造物3の表面に当てられる1つの発振素子11と、発振回路13と、受振回路14と、演算回路16と、欠陥検知情報表示回路17とを備えている。小径孔5は、測定箇所に対応してコンクリート表面に形成される。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing a schematic configuration of a quality inspection apparatus applied to the concrete structure quality inspection method according to the first embodiment of the present invention. In the present embodiment, “crack” inspection in an existing concrete structure will be described.
In FIG. 1, the quality inspection apparatus 1 for a concrete structure 3 has a defect detection function for measuring “cracking”, and in order to realize this function, a small-diameter hole 5 drilled in an existing concrete structure 3 is provided. Three sensor elements 10A to 10C to be inserted, one oscillation element 11 applied to the surface of the concrete structure 3, oscillation circuit 13, vibration receiving circuit 14, arithmetic circuit 16, and defect detection information display circuit 17 I have. The small-diameter hole 5 is formed on the concrete surface corresponding to the measurement location.

センサ素子10A〜10Cはいずれも同一構成を採り、図2に示すように、棒状体である細径の鉄筋7上に不図示の結束バンドを用いて所定間隔に離して固着係止される。なお、センサ素子10A〜10Cの構造について詳述はしないが、金属板に固定した圧電セラミックスを主要部とし、この圧電セラミックスをケースに収容して形成されている。
棒状体としては、鉄筋7の外に、各種ワイヤーや鋼材以外の材料を用いることもできる。また、棒状体は、断面を丸形形状に限らず、四角形や三角形とすることもできる。
Each of the sensor elements 10A to 10C has the same configuration, and is fixedly locked to a thin reinforcing bar 7 which is a rod-like body at a predetermined interval with a binding band (not shown) as shown in FIG. Although the structure of the sensor elements 10A to 10C will not be described in detail, the main part is piezoelectric ceramics fixed to a metal plate, and the piezoelectric ceramics are housed in a case.
As the rod-shaped body, materials other than various wires and steel materials can be used in addition to the reinforcing bars 7. Further, the rod-like body is not limited to a round shape in cross section, and may be a quadrangle or a triangle.

センサ素子10Aとセンサ素子10Bは、小径孔5内に充填される充填材3aの強度の発現を検知するために用いられる。また、センサ素子10Cと発振素子11はコンクリート構造物3のひび割れ検出に用いられる。   The sensor element 10A and the sensor element 10B are used to detect the development of the strength of the filler 3a filled in the small diameter hole 5. The sensor element 10 </ b> C and the oscillation element 11 are used for detecting cracks in the concrete structure 3.

圧電セラミックスは、電気信号の機械信号への変換及びその逆の作用が可能であり、発振素子だけでなく受振素子としても使用することができる。本実施の形態では、センサ素子10Aは発振素子として使用し、センサ素子10B,10Cは受振素子として使用する。センサ素子10A〜10Cに圧電セラミックスを使用することで装置を安価にできるとともに、精度の高い検査が可能となる。   Piezoelectric ceramics can convert electrical signals into mechanical signals and vice versa, and can be used not only as oscillation elements but also as receiving elements. In the present embodiment, the sensor element 10A is used as an oscillation element, and the sensor elements 10B and 10C are used as vibration receiving elements. By using piezoelectric ceramics for the sensor elements 10A to 10C, the apparatus can be made inexpensive and high-precision inspection can be performed.

所定間隔に離間して鉄筋7上に配置されたセンサ素子10A〜10Cは、図3に示すように、既設のコンクリート構造物3の測定箇所に削孔した小径孔5に鉄筋7と一体に挿入される。
センサ素子10A〜10Cが挿入された小径孔5には、図4に示すように、注入ポンプ9を用いて高強度の充填材3aが充填される。
As shown in FIG. 3, the sensor elements 10 </ b> A to 10 </ b> C arranged on the reinforcing bar 7 at a predetermined interval are integrally inserted with the reinforcing bar 7 into a small-diameter hole 5 drilled in a measurement location of the existing concrete structure 3. Is done.
The small-diameter hole 5 into which the sensor elements 10A to 10C are inserted is filled with a high-strength filler 3a using an infusion pump 9, as shown in FIG.

充填された充填材3aは、強度の発現が確認されると、コンクリート構造物3と一体化したと看做される。これにより、既設のコンクリート構造物3の品質検査を行う際に、センサ素子10A〜10Cは、コンクリート打設前の構造物内に配置され打設後に構造物内に埋設されてコンクリート構造物の非破壊検査を行う場合と略同等に取り扱うことができる。
なお、充填材3aとしては、密度がコンクリートに近い、セメント系の超速硬型無収縮モルタル(例えば、太平洋マテリアル(株)『プレユーロックススーパー』)を用いることが望ましい。
It is considered that the filled filler 3a is integrated with the concrete structure 3 when the strength is confirmed. Thereby, when quality inspection of the existing concrete structure 3 is performed, the sensor elements 10A to 10C are arranged in the structure before the concrete is placed and embedded in the structure after the placement, so that the non-concrete structure is removed. It can be handled almost the same as when performing destructive inspection.
In addition, as the filler 3a, it is desirable to use a cement-type super-hard hard non-shrink mortar (for example, Taiheiyo Material Co., Ltd. “Preeurox Super”) whose density is close to that of concrete.

センサ素子10Aおよびセンサ素子10Bは、既述したとおり鉄筋7上に所定距離Lに隔てて配置されている。
図1に戻って、センサ素子10Aには、発振回路13から加振用信号Srが印加される。センサ素子10Bは、センサ素子10Aの加振により発生して充填材3a内を伝播する弾性波30の受振検知に用いられる。なお、センサ素子10Bは、センサ素子10Aの加振により発生した弾性波30を受振検知する外に、後述するコンクリート構造物3の「ひび割れ」を検知するために発振素子11の加振により発生し、コンクリート構造物3内を伝播する弾性波30の受振検知にも用いる。
The sensor element 10A and the sensor element 10B are arranged on the reinforcing bar 7 with a predetermined distance L as described above.
Returning to FIG. 1, the vibration signal Sr is applied from the oscillation circuit 13 to the sensor element 10A. The sensor element 10B is used for vibration detection of the elastic wave 30 generated by the vibration of the sensor element 10A and propagating through the filler 3a. The sensor element 10B is generated not only by receiving and detecting the elastic wave 30 generated by the vibration of the sensor element 10A, but also by the vibration of the oscillation element 11 in order to detect “cracking” of the concrete structure 3 described later. It is also used for vibration detection of the elastic wave 30 propagating in the concrete structure 3.

発振素子11は弾性波を発生させるものであり、コンクリート構造物3の「ひび割れ」を計測する際、発振回路13から加振用信号Srが印加される。センサ素子10A、10B、10Cは、発振素子11の加振により発生し、コンクリート構造物3内を伝播する弾性波30を受振検知する。   The oscillation element 11 generates an elastic wave, and when the “crack” of the concrete structure 3 is measured, an oscillation signal Sr is applied from the oscillation circuit 13. The sensor elements 10 </ b> A, 10 </ b> B, and 10 </ b> C detect and receive the elastic wave 30 that is generated by the vibration of the oscillation element 11 and propagates in the concrete structure 3.

発振回路13は一定周波数(例えば20kHzから60kHz)の正弦波の電気信号を発生して、センサ素子10A又は発振素子11を駆動する加振用信号Srを出力する。   The oscillation circuit 13 generates a sinusoidal electric signal having a constant frequency (for example, 20 kHz to 60 kHz), and outputs an excitation signal Sr for driving the sensor element 10A or the oscillation element 11.

受振回路14は、センサ素子10Aの加振により発生し、充填材3a内を伝播する弾性波30をセンサ素子10Bで受振する。また、受振回路14は、発振素子11の加振により発生し、コンクリート構造物3内を伝播する弾性波30をセンサ素子10Cで受振する。また、センサ素子10A、10Bは、コンクリート構造物3の表面を移動させた際の発振素子11の加振によってコンクリート構造物3内を伝播する弾性波30を受振できる。受振回路14は、センサ素子10B又はセンサ素子10C、あるいはセンサ素子10Aで得られた受振信号Suを演算回路16に入力する。   The vibration receiving circuit 14 receives the elastic wave 30 generated by the vibration of the sensor element 10A and propagating through the filler 3a by the sensor element 10B. The vibration receiving circuit 14 receives the elastic wave 30 generated by the vibration of the oscillation element 11 and propagating through the concrete structure 3 by the sensor element 10C. Further, the sensor elements 10 </ b> A and 10 </ b> B can receive the elastic wave 30 propagating through the concrete structure 3 by the vibration of the oscillation element 11 when the surface of the concrete structure 3 is moved. The vibration receiving circuit 14 inputs the vibration receiving signal Su obtained by the sensor element 10B or the sensor element 10C or the sensor element 10A to the arithmetic circuit 16.

演算回路16は、マイクロコンピュータ等で構成され、センサ素子10Aに印加した加振用信号Srと、受振回路14がセンサ素子10Bで受振して得た受振信号Suとの位相差△tを求める。そして、求めた位相差△tとセンサ素子10A、センサ素子10B間の離間距離Lとから充填材3a内を伝播する弾性波30の音速(以下、伝播速度と呼ぶ)Vを算出して、充填材3aの強度の発現を検査する。   The arithmetic circuit 16 is composed of a microcomputer or the like, and obtains a phase difference Δt between the vibration signal Sr applied to the sensor element 10A and the vibration receiving signal Su obtained by the vibration receiving circuit 14 receiving the vibration with the sensor element 10B. Then, the acoustic velocity (hereinafter referred to as propagation velocity) V of the elastic wave 30 propagating in the filler 3a is calculated from the obtained phase difference Δt and the separation distance L between the sensor element 10A and the sensor element 10B, and the filling is performed. The strength expression of the material 3a is inspected.

また、演算回路16は、発振素子11に印加した加振用信号Srと、受振回路14がセンサ素子10C又はセンサ素子10B、あるいはセンサ素子10Aで受振して得た受振信号Suとの位相差△tを求め、求めた位相差△tと素子11,10C間又は素子11,10B間、あるいは素子11,11Aの離間距離L1とからコンクリート構造物3内を伝播する弾性波30の伝播速度V1を算出し、既設のコンクリート構造物3におけるひび割れの検出や欠陥等の有無を検査する。   Further, the arithmetic circuit 16 has a phase difference Δ between the vibration signal Sr applied to the oscillation element 11 and the vibration receiving signal Su obtained by the vibration receiving circuit 14 receiving the vibration at the sensor element 10C, the sensor element 10B, or the sensor element 10A. t is obtained, and the propagation velocity V1 of the elastic wave 30 propagating in the concrete structure 3 is determined from the obtained phase difference Δt and the element 11, 10C, the element 11, 10B, or the separation distance L1 of the element 11, 11A. Calculate and inspect the presence or absence of cracks in the existing concrete structure 3 and detection of defects.

情報表示回路17は、図示せぬ液晶表示パネル等の表示手段を備え、演算回路16の演算結果から、充填材3aの凝結、強度の発現と、コンクリート構造物3の欠陥判定結果を可視的に表示する。   The information display circuit 17 includes display means such as a liquid crystal display panel (not shown), and from the calculation result of the calculation circuit 16, the condensation of the filler 3a, the development of strength, and the defect determination result of the concrete structure 3 are visibly displayed. indicate.

演算回路16は、加振用信号Srと受振信号Suの位相差△tを求めた後、以下に示す式(1)を用いて充填材3aあるいはコンクリート構造物3内を伝播する伝播速度V又はV1を算出する。この場合、センサ素子10Aとセンサ素子10Bとの間の距離L、あるいは、発振素子11とセンサ素子10Cとの間の離間距離L1は既知の値であるから、容易に伝播速度V又はV1を求めることができる。
V(又はV1)=L(又はL1)/△t
The arithmetic circuit 16 obtains the phase difference Δt between the vibration signal Sr and the vibration signal Su, and then uses the following equation (1) to propagate the propagation velocity V or the propagation velocity V or the concrete structure 3. V1 is calculated. In this case, since the distance L between the sensor element 10A and the sensor element 10B or the separation distance L1 between the oscillation element 11 and the sensor element 10C is a known value, the propagation velocity V or V1 is easily obtained. be able to.
V (or V1) = L (or L1) / Δt

伝播速度Vが規定値に達することで、充填材3aの強度の発現が確認される。すなわち、伝播速度Vは、充填材3aの硬化前の強度が小さいとき(始発時)に遅く、硬化時の強度が大きいとき(終結時)には速くなるので、速度が遅ければ始発と判定でき、速度が速ければ終結と判定できる。このようにして充填材3aの凝結を判定することができる。   When the propagation velocity V reaches the specified value, the strength of the filler 3a is confirmed. That is, the propagation speed V is slow when the strength before curing of the filler 3a is small (at the start), and is fast when the strength at the time of curing is high (at the end). If the speed is high, it can be determined that the process is complete. In this way, the condensation of the filler 3a can be determined.

なお、充填材3aの強度の発現は、JIS A 1108の圧縮強度試験により検査しても良い。あるいは、図5に示すように、小径孔5の開口位置に配置したシュミットハンマー20を使用して確認することもできる。   In addition, you may test | inspect the expression of the intensity | strength of the filler 3a by the compressive strength test of JISA1108. Or as shown in FIG. 5, it can also confirm using the Schmidt hammer 20 arrange | positioned in the opening position of the small diameter hole 5. FIG.

充填材3aの強度が増進して所定の強度発現が確認された後、発振素子11をコンクリート構造物3の外表面に当ててコンクリート内部に弾性波30を印加する。これにより、演算回路16は、既述したとおり発振素子11に印加された加振用信号Srとセンサ素子10Cで受振した受振信号Suとの位相差△t、及びコンクリート構造物3の表面からセンサ素子10Cまでの距離(深さ)とに基いて弾性波30の伝播速度V1を算出し、コンクリート内における「ひび割れ」の有無を検査する。   After the strength of the filler 3a is increased and a predetermined strength expression is confirmed, the oscillating element 11 is applied to the outer surface of the concrete structure 3 and the elastic wave 30 is applied inside the concrete. As a result, the arithmetic circuit 16 detects the phase difference Δt between the vibration signal Sr applied to the oscillation element 11 and the vibration reception signal Su received by the sensor element 10C and the surface of the concrete structure 3 as described above. The propagation velocity V1 of the elastic wave 30 is calculated based on the distance (depth) to the element 10C, and the presence or absence of “crack” in the concrete is inspected.

すなわち、健全なコンクリート構造物3における伝播速度は、一般に、4000m/s前後であるが、ひび割れや欠陥等により空気層を含むと、伝播速度が半分程度に遅くなる傾向があるため、伝播速度V1を検出することで欠陥等の有無を検査することができる。
なお、充填材3aの強度の発現で求められた伝播速度Vを、コンクリート構造物3内を伝播する弾性波30の伝播速度と看做して、欠陥検出に利用することもできる。この場合には、コンクリート構造物3の表面からセンサ素子10Cまでの距離(深さ)は設定する必要がなく、任意の距離にすることができる。
That is, the propagation speed in a sound concrete structure 3 is generally around 4000 m / s, but if an air layer is included due to cracks, defects, etc., the propagation speed tends to be reduced to about half, so the propagation speed V1 It is possible to inspect for the presence or absence of a defect or the like by detecting
Note that the propagation velocity V obtained by developing the strength of the filler 3a can be regarded as the propagation velocity of the elastic wave 30 propagating in the concrete structure 3 and used for defect detection. In this case, the distance (depth) from the surface of the concrete structure 3 to the sensor element 10C does not need to be set, and can be set to an arbitrary distance.

情報表示回路17は、液晶パネル、複数個のLED(発光ダイオード)、ブザー等の表示手段や報知手段を有し、演算回路16で演算された伝播速度V又はV1や、伝播速度Vから推定された充填材3aの強度検査、伝播速度V1から推定されたコンクリート内の欠陥等の有無を液晶パネルで数値表示したり、LEDを使用して段階(レベル)表示したりすると共に、演算回路16から報知信号が入力されたときにブザーを鳴動させたり、LEDを点灯させたりする。   The information display circuit 17 has display means such as a liquid crystal panel, a plurality of LEDs (light emitting diodes), a buzzer, and a notification means, and is estimated from the propagation velocity V or V1 calculated by the arithmetic circuit 16 and the propagation velocity V. The strength of the filler 3a, the presence or absence of defects in the concrete estimated from the propagation velocity V1 is numerically displayed on the liquid crystal panel, or is displayed in stages (levels) using LEDs. When a notification signal is input, a buzzer is sounded or an LED is lit.

なお、上記センサ素子10A〜10Cは第1のセンサ素子に対応する。また、発振素子11はセンサ素子10A,10Bと同一構成を採ることで、電気エネルギと機械エネルギを可逆的に変換可能にして、発振素子だけでなく受振素子としても使用可能なセンサ素子に置き換えることもできる。この場合のセンサ素子は第2のセンサ素子に対応する。   The sensor elements 10A to 10C correspond to the first sensor element. Further, the oscillation element 11 has the same configuration as the sensor elements 10A and 10B, so that electric energy and mechanical energy can be reversibly converted, and replaced with a sensor element that can be used not only as an oscillation element but also as a vibration receiving element. You can also. The sensor element in this case corresponds to the second sensor element.

本実施の形態では、センサ素子10A〜10Cが取り付けられた鉄筋7を単に小径孔5に挿入するとのみ記載したが、好ましくは、センサ素子10A〜10Cは小径孔5の内壁から離間した孔中央部に配置されるように、鉄筋7である棒状体が孔内で位置規制されていると良い。   In the present embodiment, it has been described that the reinforcing bar 7 to which the sensor elements 10A to 10C are attached is simply inserted into the small diameter hole 5, but preferably, the sensor elements 10A to 10C are located in the center of the hole spaced from the inner wall of the small diameter hole 5. It is preferable that the position of the rod-shaped body that is the reinforcing bar 7 is regulated in the hole so as to be disposed in the hole.

図10,図11は、棒状体の位置規制について例示したものである。
図10は、2本の鉄筋7a,7bが、小径孔5の内径より若干狭い間隔で離間配置され、センサ素子10A〜10Cが両鉄筋7a,7bを架け渡すように取り付けられている。
図11は、1本の鉄筋7cが、小径孔5の内径より若干狭い間隔の幅で連続した山型状に折曲され、折曲された各屈曲部を小径孔5の内壁に当接させて小径孔内で位置規制されるようになっている。各センサ素子10A〜10Cは、折曲された鉄筋7cのそれぞれの中央部に取り付けられている。
10 and 11 illustrate the position restriction of the rod-shaped body.
In FIG. 10, two rebars 7a and 7b are spaced apart at a slightly narrower interval than the inner diameter of the small-diameter hole 5, and the sensor elements 10A to 10C are attached so as to bridge both the rebars 7a and 7b.
In FIG. 11, one reinforcing bar 7 c is bent into a continuous mountain shape with a width slightly narrower than the inner diameter of the small-diameter hole 5, and each bent portion is brought into contact with the inner wall of the small-diameter hole 5. The position is regulated within the small-diameter hole. Each of the sensor elements 10A to 10C is attached to each central portion of the bent reinforcing bar 7c.

このように棒状体を小径孔5内に位置規制することにより、センサ素子10A〜10Cは小径孔5の中央部に配置されて内壁との接触が回避されることになるので、充填材3aの強度の発現を検知する際の既設のコンクリート構造物との接触による誤検出が防止される。あるいは、コンクリート構造物3の表面から各センサ素子10A〜10Cまでの距離(深さ)を安定化させて、正確なひび割れ検出を行うことができる。   By restricting the position of the rod-like body in the small-diameter hole 5 in this way, the sensor elements 10A to 10C are arranged at the center of the small-diameter hole 5 to avoid contact with the inner wall. False detection due to contact with an existing concrete structure when detecting the development of strength is prevented. Or the distance (depth) from the surface of the concrete structure 3 to each sensor element 10A-10C is stabilized, and an exact crack detection can be performed.

次に、本実施の形態のコンクリート構造物品質検査方法について図6に基いて説明する。
既設のコンクリート構造物3の品質検査方法を実施するには、まずコンクリート構造物3の測定箇所に小径孔5を削孔し、センサ素子10A〜10Cが取り付けられた鉄筋7を小径孔5に挿入した後、小径孔5内に充填材3aを充填する。この際、センサ素子10Aとセンサ素子10Bとの間の距離Lは予め設定(図2参照)しておく。次いで、センサ素子10Aとセンサ素子10Bとの間で発振、受振を行い、発振波形と受振波形の位相差△tとセンサ素子10A,10B間の距離Lとから伝播速度Vを計測する。
Next, the concrete structure quality inspection method of the present embodiment will be described with reference to FIG.
In order to carry out the quality inspection method for the existing concrete structure 3, first, the small-diameter hole 5 is drilled in the measurement location of the concrete structure 3, and the reinforcing bar 7 to which the sensor elements 10 </ b> A to 10 </ b> C are attached is inserted into the small-diameter hole 5. Then, the small diameter hole 5 is filled with the filler 3a. At this time, the distance L between the sensor element 10A and the sensor element 10B is set in advance (see FIG. 2). Next, the sensor element 10A and the sensor element 10B oscillate and receive vibration, and the propagation velocity V is measured from the phase difference Δt between the oscillation waveform and the received waveform and the distance L between the sensor elements 10A and 10B.

計測された伝播速度Vに基いて充填材3aの硬化が確認されたら、続いて、センサ素子10Cに対向させてコンクリート外表面に発振素子11を接触させ、この発振素子11と、センサ素子10Cとの間で発振、受振を行い、発振波形と受振波形の位相差△tと、発振素子11及びセンサ素子10C間の距離(深さ)L1とから伝播速度V1を計測する。計測された伝播速度V1が、健全なコンクリート構造物における伝播速度に比べて著しく遅い場合には、コンクリート内に「ひび割れ:C」があると判定する。   When the hardening of the filler 3a is confirmed based on the measured propagation velocity V, the oscillating element 11 is then brought into contact with the outer surface of the concrete so as to face the sensor element 10C. The oscillating element 11 and the sensor element 10C The oscillation speed and the vibration are received, and the propagation velocity V1 is measured from the phase difference Δt between the oscillation waveform and the reception waveform and the distance (depth) L1 between the oscillation element 11 and the sensor element 10C. When the measured propagation velocity V1 is significantly slower than the propagation velocity in a sound concrete structure, it is determined that “crack: C” exists in the concrete.

なお、ひび割れCを検出して、このひび割れCに対し補修工事を実施した場合、補修後に、コンクリート構造物検査方法を再び行い、補修前後における弾性波の伝播速度を比較することにより、補修の効果を確認することができる。   In addition, when crack C is detected and repair work is carried out on this crack C, after repairing, the concrete structure inspection method is performed again, and the effect of repair is compared by comparing the propagation speed of elastic waves before and after repair. Can be confirmed.

このように、本実施の形態のコンクリート構造物品質検査方法によれば、既設のコンクリート構造物3に対し、後工程で形成した小径孔内にセンサ素子10A〜10Cを配置してひび割れCを計測しているので、既設のコンクリート構造物3であっても、コンクリート構造物の品質検査を行うことができる。   As described above, according to the concrete structure quality inspection method of the present embodiment, the sensor elements 10A to 10C are arranged in the small-diameter holes formed in the subsequent process with respect to the existing concrete structure 3, and the crack C is measured. Therefore, even if it is the existing concrete structure 3, the quality inspection of a concrete structure can be performed.

また、コンクリート構造物が分厚い場合であっても、弾性波エネルギの受振範囲内にセンサ素子を埋設することで、弾性波の伝播速度が求められて品質検査を行うことができる。
さらに、従来技術においてひび割れ検査を実施する際、測定箇所に隣接して外壁や上層階の床などが存在して、二つの超音波プローブを当てることが困難な場合であっても、一つの発振素子11をコンクリート構造物3の外表面に当てることができれば、コンクリート構造物の形状の影響等を受けることなく品質検査を行うことができる。
Even if the concrete structure is thick, by embedding the sensor element within the elastic wave energy receiving range, the propagation speed of the elastic wave can be obtained and quality inspection can be performed.
In addition, when performing crack inspection in the prior art, even if it is difficult to apply two ultrasonic probes because there are external walls or upper floors adjacent to the measurement location, If the element 11 can be applied to the outer surface of the concrete structure 3, the quality inspection can be performed without being affected by the shape of the concrete structure.

なお、上記の実施の形態では、鉄筋7に3個のセンサ素子10A〜10Cを取り付けて小径孔5内に配置しているが、充填材3aの強度の発現を、例えば図5に示したような他の方法、装置を用いて検出するのであれば、品質検査は、1個のセンサ素子10Cをコンクリート内に配置して行うことができる。   In the above embodiment, the three sensor elements 10A to 10C are attached to the reinforcing bar 7 and arranged in the small-diameter hole 5. The strength of the filler 3a is expressed as shown in FIG. 5, for example. If the detection is performed using another method or apparatus, the quality inspection can be performed by placing one sensor element 10C in the concrete.

また、上記の実施の形態では、発振素子11により発振した弾性波をセンサ素子10Cで受振するとしたが、既述したように、コンクリート構造物3の表面を移動させた発振素子11の加振によって発生する弾性波30をセンサ素子10A、10Bで受振して伝播速度を求めることにしても良い。特に、本実施の形態のセンサ素子10A〜10Cは異方性が無いため、前後左右上下のいずれの方向にでも均等に発振、受振することができる。また、ひび割れの検出に、センサ素子10Cを使用せずセンサ素子10A、10Bを使用すれば、製品コストを下げることができる。   In the above embodiment, the acoustic wave oscillated by the oscillating element 11 is received by the sensor element 10C. However, as described above, the vibration of the oscillating element 11 that has moved the surface of the concrete structure 3 is applied. The generated elastic wave 30 may be received by the sensor elements 10A and 10B to determine the propagation velocity. In particular, since the sensor elements 10A to 10C of the present embodiment have no anisotropy, they can oscillate and receive waves evenly in any of the front, rear, left, and right directions. Further, if the sensor elements 10A and 10B are used for detecting cracks without using the sensor element 10C, the product cost can be reduced.

また、上記実施の形態では、「ひび割れ」を計測するだけであったが、弾性波の伝播速度は、コンクリートの圧縮強度と相関があることから、コンクリート構造物3の劣化診断を行う際の診断基準として、圧縮強度を推定することもできる。すなわち、圧縮強度が小さいときは伝播速度が小さく、圧縮強度が大きいときは伝播速度が大きくなるので、この速度関数から「コンクリートの圧縮強度」を推定して、劣化診断を行うことができる。   In the above embodiment, only “cracking” is measured. However, since the propagation speed of the elastic wave is correlated with the compressive strength of the concrete, the diagnosis is performed when the deterioration of the concrete structure 3 is diagnosed. As a reference, the compressive strength can also be estimated. That is, when the compressive strength is small, the propagation speed is small, and when the compressive strength is large, the propagation speed is large. Therefore, it is possible to estimate the “compressive strength of the concrete” from this speed function and perform deterioration diagnosis.

また、上記実施の形態では、発振素子11は、弾性波を発生させるものであったが、センサ素子10A〜10Cと同様に、電気エネルギと機械エネルギを可逆的に変換可能なセンサ素子であっても良い。   In the above embodiment, the oscillating element 11 generates an elastic wave. Like the sensor elements 10A to 10C, the oscillating element 11 is a sensor element capable of reversibly converting electrical energy and mechanical energy. Also good.

また、上記実施の形態では、発振素子11で発生した機械的振動によりコンクリート内を伝播する弾性波をセンサ素子10Cで検出するとしたが、発振素子11に代えて電気エネルギと機械エネルギを可逆的に変換可能なセンサ素子(本明細書で言う「第2のセンサ素子」)を適用して、例えば、センサ素子10Aに発振信号を印加して機械的振動を発生させ、この機械的振動によりコンクリート内を伝播する弾性波を、コンクリート外表面に当てた上記の第2のセンサ素子で検出して受振信号を取り出し、この取り出した受振信号とセンサ素子10Aに印加した発振信号との位相差を求めることもできる。   In the above embodiment, the acoustic wave propagating in the concrete due to the mechanical vibration generated by the oscillation element 11 is detected by the sensor element 10C. However, instead of the oscillation element 11, electric energy and mechanical energy are reversibly changed. Applying a convertible sensor element (a “second sensor element” in the present specification), for example, an oscillation signal is applied to the sensor element 10A to generate mechanical vibration, and the mechanical vibration causes the inside of concrete. The second sensor element applied to the outer surface of the concrete is detected by detecting the elastic wave propagating through the surface of the concrete to extract the vibration receiving signal, and the phase difference between the extracted vibration receiving signal and the oscillation signal applied to the sensor element 10A is obtained. You can also.

なお、上記の実施の形態では、センサ間の位相差と伝播速度とから「ひび割れ」を計測するとしたが、コンクリート内にひび割れによる空気層が発生すると、発振波形と受振波形との位相差が著しく大きくなることから、求められた位相差だけでひび割れを推定することもできる。   In the above embodiment, “cracking” is measured from the phase difference between the sensors and the propagation speed. However, when an air layer is generated in the concrete, the phase difference between the oscillation waveform and the receiving waveform is remarkably large. Since it becomes large, it is possible to estimate a crack only by the obtained phase difference.

次に、本発明の第2の実施の形態に係るコンクリート構造物品質検査方法について、図7を用いて説明する。
図7において、前述した図6と共通する部分には同一の符号を付けてその説明を省略する。
本実施の形態のコンクリート構造物品質検査方法は、既設のコンクリート構造物内に埋設したセンサ素子10A〜10Cを発振素子(電気エネルギを機械エネルギに変換する素子)として使用するとともに、コンクリート構造物3の外表面に取り付ける複数個のセンサ素子12A,12B,・・・,12Nを受振素子(機械エネルギを電気エネルギに変換する素子)として使用し、各々のセンサ素子間の離間距離を算出して、弾性波30の伝播速度を求めるようしたものである。そして、伝播速度が著しく遅い箇所ではひび割れやジャンカ(豆板)などの欠陥が生じていると推定する。
Next, a concrete structure quality inspection method according to the second embodiment of the present invention will be described with reference to FIG.
In FIG. 7, the same reference numerals are given to the same parts as those in FIG.
The concrete structure quality inspection method according to the present embodiment uses the sensor elements 10A to 10C embedded in an existing concrete structure as oscillation elements (elements that convert electrical energy into mechanical energy), and the concrete structure 3 A plurality of sensor elements 12A, 12B,..., 12N attached to the outer surface of the sensor are used as vibration receiving elements (elements that convert mechanical energy into electrical energy), and the distance between the sensor elements is calculated, The propagation speed of the elastic wave 30 is obtained. Then, it is estimated that defects such as cracks and junka (bean board) are generated at locations where the propagation speed is extremely slow.

即ち、本実施の形態のコンクリート構造物品質検査方法は、発振素子となるセンサ素子10A〜10Cに発振信号を順次印加して機械的振動を発生させ、この機械的振動を発生させた発振素子と対向位置にあるセンサ素子12A,12B,・・・,12Nにて発振素子(10A〜10C)の機械的振動によりコンクリート内を伝播する弾性波を検出した受振信号を取り出して、例えばセンサ素子10Aの発振信号とセンサ素子12Aの受振信号との位相差と、センサ素子10A,12A間の距離とに基づいて弾性波の伝播速度を求める。   That is, the concrete structure quality inspection method according to the present embodiment generates mechanical vibrations by sequentially applying an oscillation signal to the sensor elements 10A to 10C serving as the oscillation elements, and the oscillation element that generates the mechanical vibrations. From the sensor elements 12A, 12B,..., 12N at the opposing positions, a vibration receiving signal obtained by detecting an elastic wave propagating in the concrete by mechanical vibration of the oscillation elements (10A to 10C) is extracted. The propagation speed of the elastic wave is obtained based on the phase difference between the oscillation signal and the vibration receiving signal of the sensor element 12A and the distance between the sensor elements 10A and 12A.

これにより、コンクリート構造物3の測定箇所を一度に広範囲に検査することができる。
なお、上記の実施の形態のように、複数の測定箇所を同時に検査する場合には、各センサ素子の組に対応して演算回路16及び情報表示回路17を夫々に設ける必要はなく、マルチプレクサ等の切替え器を用いて適宜切り替えるようにする。
Thereby, the measurement location of the concrete structure 3 can be test | inspected extensively at once.
In the case where a plurality of measurement locations are inspected simultaneously as in the above-described embodiment, it is not necessary to provide the arithmetic circuit 16 and the information display circuit 17 corresponding to each set of sensor elements. It is made to switch suitably using the switcher of.

なお、受振素子となるセンサ素子12A,12B,・・・,12Nをコンクリート内のセンサ素子10A又はセンサ素子10B又はセンサ素子10Cの直上に配置することで、正確な「ひび割れ」を求めることができるが、直上に配置されなくても、ヘロンの公式を用いることで、正確に「ひび割れ」を求めることができる。実際の現場では、コンクリート内のセンサ素子10A又はセンサ素子10B又はセンサ素子10Cの位置を正確に把握することができないことがあり、正確な伝播速度が求まらない。そこで、ヘロンの公式を用いることで、受振素子(12A,12B,・・・,12N)がセンサ素子10A又はセンサ素子10B又はセンサ素子10Cの直上に配置されなくとも正確に伝播速度を求めることができる。   In addition, accurate “cracking” can be obtained by arranging the sensor elements 12A, 12B,..., 12N serving as vibration receiving elements directly above the sensor element 10A, the sensor element 10B, or the sensor element 10C in the concrete. However, even if it is not placed directly above, the “crack” can be accurately obtained by using the Heron formula. In an actual site, the position of the sensor element 10A, the sensor element 10B, or the sensor element 10C in the concrete may not be accurately grasped, and an accurate propagation speed cannot be obtained. Therefore, by using Heron's formula, it is possible to accurately determine the propagation velocity even if the receiving elements (12A, 12B,..., 12N) are not arranged immediately above the sensor element 10A, the sensor element 10B, or the sensor element 10C. it can.

例えば、図8に示すように、“A”は受振素子であるセンサ素子12Aの位置、“B”は発振素子であるセンサ素子10Aの位置、“C”は発振素子であるセンサ素子10Bの位置とする。“B”と“C”との間の距離aは、センサ素子10Aとセンサ素子10Bの距離であり既知である。“A”と“C”との間の距離bは、弾性波の速度と、発振素子(10B)の発振信号と受振素子(12A)の受振信号の位相差とから求まり、また“A”と“B”との間の距離cは、弾性波の速度と、発振素子(10A)の発振信号と受振素子(12A)の受振信号の位相差とから求まる。したがって、3つの距離a、b、cからA、B、Cを各頂点とする三角形の面積Sは、ヘロンの公式より求めることができる。   For example, as shown in FIG. 8, "A" is the position of the sensor element 12A that is the receiving element, "B" is the position of the sensor element 10A that is the oscillation element, and "C" is the position of the sensor element 10B that is the oscillation element. And The distance a between “B” and “C” is the distance between the sensor element 10A and the sensor element 10B and is known. The distance b between “A” and “C” is obtained from the velocity of the elastic wave and the phase difference between the oscillation signal of the oscillation element (10B) and the oscillation signal of the oscillation element (12A). The distance c between “B” is obtained from the velocity of the elastic wave and the phase difference between the oscillation signal of the oscillation element (10A) and the reception signal of the reception element (12A). Accordingly, the area S of a triangle having A, B, and C as vertices from the three distances a, b, and c can be obtained from Heron's formula.

S=(s×(s−a)×(s−b)×(s−c))1/2
但し、s=1/2×(a+b+c)である。
したがって、センサ素子10A又はセンサ素子10Bの直上に配置されるべき受振素子(12A)と、センサ素子10A又はセンサ素子10Bとの正確な離間距離Lは、以下のようになる。
L=2S/a
2方向(X、Y)で両方の“L”が最小となる位置が、受振素子(12A)が配置されるべきセンサ素子10A又はセンサ素子10Bの直上となり、この距離Lから正確な伝播速度を求めて、ひび割れを計測できる。
S = (s × (s−a) × (s−b) × (s−c)) 1/2
However, s = 1/2 × (a + b + c).
Therefore, the accurate separation distance L between the vibration receiving element (12A) to be disposed immediately above the sensor element 10A or the sensor element 10B and the sensor element 10A or the sensor element 10B is as follows.
L = 2S / a
The position where both “L” values are minimum in the two directions (X, Y) is directly above the sensor element 10A or 10B where the vibration receiving element (12A) is to be arranged. In search of cracks.

図9は、本発明の第3の実施の形態に係るコンクリート構造物品質検査方法を説明する図である。
図9において、先の図6と共通する部分には同一の符号を付けてその説明を省略する。
この実施の形態に係るコンクリート構造物品質検査方法は、コンクリート構造物の部材厚が大き過ぎて、コンクリート内を伝播する弾性波エネルギを例えばコンクリート構造物の外表面に当てたセンサ素子では受振できない場合に好適となるものである。
FIG. 9 is a diagram illustrating a concrete structure quality inspection method according to the third embodiment of the present invention.
In FIG. 9, the same reference numerals are given to the portions common to FIG. 6, and the description thereof is omitted.
In the concrete structure quality inspection method according to this embodiment, the thickness of the concrete structure member is too large, and the elastic wave energy propagating in the concrete cannot be received by, for example, a sensor element applied to the outer surface of the concrete structure. It is suitable for.

すなわち、この品質検査方法は、既設のコンクリート構造物3上で、所定間隔に離間して弾性波エネルギの受振範囲内となる位置に、二つの小径孔5A,5Bを削孔し、第1の小径孔5Aに埋設したセンサ素子10Aに発振信号を印加して機械的振動を発生させ、この機械的振動によりコンクリート内を伝播する弾性波を第2の小径孔5Bに埋設したセンサ素子12Aで検出し、そのときに得られる受振信号と、第1の小径孔5Aに埋設したセンサ素子10Aに印加した発振信号との位相差Δtを求め、求めた位相差Δtと小径孔5A,5B間の離間距離とから、弾性波の伝播速度Vを算出して既設コンクリート構造物3の品質検査を行う。   That is, in this quality inspection method, two small-diameter holes 5A and 5B are drilled at positions on the existing concrete structure 3 that are separated by a predetermined interval and within the elastic wave energy receiving range. An oscillation signal is applied to the sensor element 10A embedded in the small-diameter hole 5A to generate mechanical vibration, and an elastic wave propagating through the concrete by the mechanical vibration is detected by the sensor element 12A embedded in the second small-diameter hole 5B. Then, the phase difference Δt between the vibration receiving signal obtained at that time and the oscillation signal applied to the sensor element 10A embedded in the first small-diameter hole 5A is obtained, and the obtained phase difference Δt is separated from the small-diameter holes 5A and 5B. From the distance, the propagation velocity V of the elastic wave is calculated, and the quality inspection of the existing concrete structure 3 is performed.

これにより、測定箇所に対応させて二つの小径孔5A,5Bを削孔して発振素子及び受振素子を既設のコンクリート構造物3内に埋設することにより、コンクリート構造物の部材厚が大き過ぎても、弾性波の伝播速度を求めて品質検査を確実に行うことができる。   Thereby, by drilling the two small diameter holes 5A and 5B corresponding to the measurement location and embedding the oscillation element and the receiving element in the existing concrete structure 3, the member thickness of the concrete structure is too large. However, it is possible to reliably perform quality inspection by obtaining the propagation speed of the elastic wave.

本発明の第1の実施の形態に適用されるコンクリート構造物品質検査装置の構成を示すブロック図である。It is a block diagram which shows the structure of the concrete structure quality inspection apparatus applied to the 1st Embodiment of this invention. 鉄筋に取り付けたセンサ素子の構成を示す図である。It is a figure which shows the structure of the sensor element attached to the reinforcing bar. センサ埋設用の小径孔を示す図である。It is a figure which shows the small diameter hole for sensor embedding. 充填材を充填する様子を示す図である。It is a figure which shows a mode that a filler is filled. 充填材の強度検査を説明する図である。It is a figure explaining the intensity inspection of a filler. 本発明の第1の実施の形態に係るコンクリート構造物品質検査方法を説明する図である。It is a figure explaining the concrete structure quality inspection method which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係るコンクリート構造物品質検査方法を説明する図である。It is a figure explaining the concrete structure quality inspection method which concerns on the 2nd Embodiment of this invention. ヘロンの公式によりセンサ間の離間距離を求める方法を説明する図である。It is a figure explaining the method of calculating | requiring the separation distance between sensors by Heron's formula. 本発明の第3の実施の形態に係るコンクリート構造物品質検査方法を説明する図である。It is a figure explaining the concrete structure quality inspection method which concerns on the 3rd Embodiment of this invention. 本発明の各実施の形態に適用される棒状体の変更例を説明する図である。It is a figure explaining the example of a change of the rod-shaped object applied to each embodiment of this invention. 本発明の各実施の形態に適用される棒状体の他の変更例を説明する図である。It is a figure explaining the other example of a change of the rod-shaped object applied to each embodiment of the present invention.

符号の説明Explanation of symbols

1 コンクリート構造物品質検査装置
5 小径孔
5A 第1の小径孔
5B 第2の小径孔
7 鉄筋
10A,10B,10C センサ素子
11 発振素子
12A,12B,・・・,12N 受振素子
13 発振回路
14 受振回路
16 演算回路
17 情報表示回路
30 弾性波
DESCRIPTION OF SYMBOLS 1 Concrete structure quality inspection apparatus 5 Small diameter hole 5A 1st small diameter hole 5B 2nd small diameter hole 7 Reinforcing bar 10A, 10B, 10C Sensor element 11 Oscillation element 12A, 12B, ..., 12N Vibration receiving element 13 Oscillation circuit 14 Vibration receiving Circuit 16 Arithmetic circuit 17 Information display circuit 30 Elastic wave

Claims (5)

電気エネルギと機械エネルギを可逆的に変換可能な第1のセンサ素子が取り付けられた棒状体を準備する工程と、
既設のコンクリート構造物に小径孔を形成する工程と、
前記小径孔に前記センサ素子が取り付けられた前記棒状体を挿入し、その後、前記小径孔に充填材を充填して前記センサ素子を埋設する工程と、を含むことを特徴とするセンサ素子のコンクリート構造物への取り付け方法。
Preparing a rod-like body to which a first sensor element capable of reversibly converting electrical energy and mechanical energy is attached;
Forming a small-diameter hole in an existing concrete structure;
Inserting the rod-like body having the sensor element attached to the small-diameter hole, and then filling the small-diameter hole with a filler to embed the sensor element in concrete. How to attach to the structure.
前記第1のセンサ素子を前記棒状体に離間して複数配置し、一つのセンサ素子に一定の周波数の発振信号を印加して機械的振動を発生させ、この機械的振動によりコンクリート内を伝播する弾性波を他のセンサ素子で検出し、そのときに得られる受振信号と前記一つのセンサ素子に印加した発振信号との位相差を求め、求めた位相差とセンサ素子間の離間距離とから、前記弾性波の弾性速度を算出して、前記充填材の強度の発現を検査することを特徴とする請求項1に記載のセンサ素子のコンクリート構造物への取り付け方法。   A plurality of the first sensor elements are arranged apart from the rod-shaped body, an oscillation signal having a constant frequency is applied to one sensor element to generate mechanical vibration, and the mechanical vibration is propagated in the concrete. The elastic wave is detected by another sensor element, the phase difference between the vibration receiving signal obtained at that time and the oscillation signal applied to the one sensor element is obtained, and from the obtained phase difference and the separation distance between the sensor elements, The method for attaching a sensor element to a concrete structure according to claim 1, wherein an elastic velocity of the elastic wave is calculated to check the expression of strength of the filler. 前記棒状体の少なくとも一部を前記小径孔の内壁に当接させて該棒状体を位置規制する工程を含み、
前記第1のセンサ素子を前記小径孔の内壁から離間して配置することを特徴とする請求項1に記載のセンサ素子のコンクリート構造物への取り付け方法。
Including a step of restricting the position of the rod-shaped body by bringing at least a part of the rod-shaped body into contact with the inner wall of the small-diameter hole,
2. The method for attaching a sensor element to a concrete structure according to claim 1, wherein the first sensor element is disposed apart from an inner wall of the small-diameter hole.
請求項1乃至3に記載のセンサ素子のコンクリート構造物への取り付け方法を実施するとともに、電気エネルギと機械エネルギを可逆的に変換可能な第2のセンサ素子又は弾性波を発生できる発振素子あるいは弾性波を受振できる受振素子を前記コンクリート構造物の外表面に当てた状態で該第2のセンサ素子又は該発振素子又は前記第1のセンサ素子のいずれかに発振信号を印加して機械的振動を発生させ、この機械的振動によりコンクリート内を伝播する弾性波を前記第1のセンサ素子又は前記第2のセンサ素子又は前記受振素子で検出し、そのときに得られる受振信号と前記第2のセンサ素子又は前記発振素子又は前記第1のセンサ素子に印加した発振信号との位相差を求め、求めた位相差と前記コンクリート構造物の外表面に当てた前記第2のセンサ素子又は前記発振素子あるいは前記受振素子と前記コンクリート構造物内に配置した前記第1のセンサ素子との離間距離とから、前記弾性波の弾性速度を算出して品質検査を行うことを特徴とするコンクリート構造物品質検査方法。   The second sensor element capable of reversibly converting electric energy and mechanical energy, or an oscillation element or elastic element capable of generating an elastic wave while performing the method of attaching the sensor element according to claim 1 to a concrete structure. An oscillation signal is applied to either the second sensor element, the oscillation element or the first sensor element in a state where a receiving element capable of receiving a wave is applied to the outer surface of the concrete structure. The elastic wave that is generated and propagates in the concrete by the mechanical vibration is detected by the first sensor element, the second sensor element or the vibration receiving element, and the vibration receiving signal and the second sensor obtained at that time are detected. The phase difference with the oscillation signal applied to the element or the oscillation element or the first sensor element was obtained, and the obtained phase difference was applied to the outer surface of the concrete structure. A quality inspection is performed by calculating an elastic velocity of the elastic wave from a distance between the second sensor element or the oscillation element or the receiving element and the first sensor element disposed in the concrete structure. Concrete structure quality inspection method characterized by the above. 請求項1乃至3に記載のセンサ素子のコンクリート構造物への取り付け方法を、所定間隔に離間したコンクリート構造物上の位置に形成した少なくとも二つの小径孔のそれぞれに適用し、第1の小径孔に埋設したセンサ素子に発振信号を印加して機械的振動を発生させ、この機械的振動によりコンクリート内を伝播する弾性波を第2の小径孔に埋設したセンサ素子で検出し、そのときに得られる受振信号と前記第1の小径孔に埋設したセンサ素子に印加した発振信号との位相差を求め、求めた位相差と前記小径孔間の離間距離とから、前記弾性波の伝播速度を算出して品質検査を行うことを特徴とするコンクリート構造物品質検査方法。   The method for attaching the sensor element to a concrete structure according to any one of claims 1 to 3 is applied to each of at least two small-diameter holes formed at positions on the concrete structure that are spaced apart by a predetermined distance. An oscillation signal is applied to the sensor element embedded in the surface to generate mechanical vibration, and the elastic wave propagating in the concrete due to the mechanical vibration is detected by the sensor element embedded in the second small-diameter hole, and obtained at that time. The phase difference between the received vibration signal and the oscillation signal applied to the sensor element embedded in the first small-diameter hole is obtained, and the propagation speed of the elastic wave is calculated from the obtained phase difference and the separation distance between the small-diameter holes. A quality inspection method for a concrete structure, characterized by performing quality inspection.
JP2008233484A 2008-09-11 2008-09-11 Concrete structure quality inspection method Active JP5403976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008233484A JP5403976B2 (en) 2008-09-11 2008-09-11 Concrete structure quality inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008233484A JP5403976B2 (en) 2008-09-11 2008-09-11 Concrete structure quality inspection method

Publications (2)

Publication Number Publication Date
JP2010066154A true JP2010066154A (en) 2010-03-25
JP5403976B2 JP5403976B2 (en) 2014-01-29

Family

ID=42191861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008233484A Active JP5403976B2 (en) 2008-09-11 2008-09-11 Concrete structure quality inspection method

Country Status (1)

Country Link
JP (1) JP5403976B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221684B1 (en) 2010-07-06 2013-01-11 성균관대학교산학협력단 System for measuring of impedance and ultrasonic wave in concrete structure, and the method
CN103808914A (en) * 2014-02-07 2014-05-21 中国民航大学 Airport asphalt concrete pavement performance acquisition system and control evaluation method
JP2015190839A (en) * 2014-03-28 2015-11-02 一般社団法人日本建設機械施工協会 Method and system for inspecting concrete structure, and piezoelectric transducer
JP2016125926A (en) * 2015-01-06 2016-07-11 大成建設株式会社 Ultrasonic probe
CN105842343A (en) * 2016-03-18 2016-08-10 中南大学 Acoustic emission testing apparatus with acoustic emission sensors built in true triaxial chamber
KR101872695B1 (en) * 2017-11-29 2018-06-29 한국지질자원연구원 Device and method for predicting location of structural damage
CN109738523A (en) * 2019-01-24 2019-05-10 西京学院 A kind of geotechnical engineering wall-rock crack detection method
CN111948289A (en) * 2020-08-24 2020-11-17 四川升拓检测技术股份有限公司 Concrete cold joint quality detection method, device and system based on impact elastic wave
CN112649500A (en) * 2020-11-13 2021-04-13 交通运输部公路科学研究所 Method for verifying internal defects of concrete by controlling percussion drill drilling based on sound wave signals
CN113340992A (en) * 2021-05-27 2021-09-03 机械工业第九设计研究院有限公司 Concrete embedded crack monitoring sensor and monitoring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133004A (en) * 1997-10-31 1999-05-21 Tokyo Soil Reserch:Kk Method and device for evaluating soundness of underground concrete structure such as cast-ins-place concrete pile
JP2001116730A (en) * 1999-10-19 2001-04-27 Ohbayashi Corp Method for diagnosing inside of concrete structure
JP2007003475A (en) * 2005-06-27 2007-01-11 Akebono Brake Ind Co Ltd Method and device for concrete placement inspection
JP2007033139A (en) * 2005-07-25 2007-02-08 Railway Technical Res Inst Soundness diagnosing system and soundness diagnosing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133004A (en) * 1997-10-31 1999-05-21 Tokyo Soil Reserch:Kk Method and device for evaluating soundness of underground concrete structure such as cast-ins-place concrete pile
JP2001116730A (en) * 1999-10-19 2001-04-27 Ohbayashi Corp Method for diagnosing inside of concrete structure
JP2007003475A (en) * 2005-06-27 2007-01-11 Akebono Brake Ind Co Ltd Method and device for concrete placement inspection
JP2007033139A (en) * 2005-07-25 2007-02-08 Railway Technical Res Inst Soundness diagnosing system and soundness diagnosing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101221684B1 (en) 2010-07-06 2013-01-11 성균관대학교산학협력단 System for measuring of impedance and ultrasonic wave in concrete structure, and the method
CN103808914A (en) * 2014-02-07 2014-05-21 中国民航大学 Airport asphalt concrete pavement performance acquisition system and control evaluation method
JP2015190839A (en) * 2014-03-28 2015-11-02 一般社団法人日本建設機械施工協会 Method and system for inspecting concrete structure, and piezoelectric transducer
JP2016125926A (en) * 2015-01-06 2016-07-11 大成建設株式会社 Ultrasonic probe
CN105842343B (en) * 2016-03-18 2018-08-07 中南大学 A kind of Experimental on acoustic emission device that acoustic emission sensor is built in true triaxial chamber
CN105842343A (en) * 2016-03-18 2016-08-10 中南大学 Acoustic emission testing apparatus with acoustic emission sensors built in true triaxial chamber
KR101872695B1 (en) * 2017-11-29 2018-06-29 한국지질자원연구원 Device and method for predicting location of structural damage
CN109738523A (en) * 2019-01-24 2019-05-10 西京学院 A kind of geotechnical engineering wall-rock crack detection method
CN109738523B (en) * 2019-01-24 2021-09-14 西京学院 Geotechnical engineering surrounding rock crack detection method
CN111948289A (en) * 2020-08-24 2020-11-17 四川升拓检测技术股份有限公司 Concrete cold joint quality detection method, device and system based on impact elastic wave
CN112649500A (en) * 2020-11-13 2021-04-13 交通运输部公路科学研究所 Method for verifying internal defects of concrete by controlling percussion drill drilling based on sound wave signals
CN112649500B (en) * 2020-11-13 2021-07-20 交通运输部公路科学研究所 Method for verifying internal defects of concrete by controlling percussion drill drilling based on sound wave signals
CN113340992A (en) * 2021-05-27 2021-09-03 机械工业第九设计研究院有限公司 Concrete embedded crack monitoring sensor and monitoring method
CN113340992B (en) * 2021-05-27 2023-12-01 机械工业第九设计研究院股份有限公司 Concrete embedded crack monitoring sensor and monitoring method

Also Published As

Publication number Publication date
JP5403976B2 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5403976B2 (en) Concrete structure quality inspection method
JP4667228B2 (en) Pile inspection method and sensor crimping device
JP4938050B2 (en) Ultrasonic diagnostic evaluation system
US20040123665A1 (en) Nondestructive detection of reinforcing member degradation
JP6405106B2 (en) Method and system for inspecting concrete structures
JP2010203810A (en) Method and device for non-destructive inspection of concrete structure, and anchor bolt
JP2007003537A (en) Piping inspection method and device
JP2004085370A (en) Pipe inspection method and system
JP2011523070A (en) Ultrasonic nondestructive inspection method and apparatus for performing the method
JP5163857B2 (en) Concrete structure quality inspection method and concrete structure quality inspection apparatus
JP2011242332A (en) Ultrasonic nondestructive measurement method, ultrasonic nondestructive measurement instrument, and program
RU2613624C1 (en) Method for nondestructive ultrasonic inspection of water conduits of hydraulic engineering facilities
JP2008267897A (en) Method of measuring cracks of critical depth on the surface of concrete
JP4373627B2 (en) Defect depth measurement method for structures
JP5868653B2 (en) Interface inspection method and interface inspection apparatus for composite structure
JP6619282B2 (en) Non-destructive inspection device for steel and non-destructive inspection method for steel
JP2000002692A (en) Method for searching defect in concrete structure or behind the structure
JP2002168841A (en) Device for inspecting exfoliation in composite plate interface
JP4587535B2 (en) Method and apparatus for detecting peeling of composite structure
JP5676084B2 (en) Diagnosis method of parts subjected to compressive stress in concrete structures
JP6478637B2 (en) Ultrasonic probe
JPH0768763B2 (en) METHOD AND DEVICE FOR DETECTING INTERNAL STATE OF PACKING GROUT FOR CONCRETE STRUCTURE
JP2001116731A (en) Method for managing quality of concrete and form for concrete test body
JP7440008B2 (en) Non-destructive testing method for reinforced concrete structures
JP2003090829A (en) Non-destructive inspection method of composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5403976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250