JPH0768763B2 - METHOD AND DEVICE FOR DETECTING INTERNAL STATE OF PACKING GROUT FOR CONCRETE STRUCTURE - Google Patents

METHOD AND DEVICE FOR DETECTING INTERNAL STATE OF PACKING GROUT FOR CONCRETE STRUCTURE

Info

Publication number
JPH0768763B2
JPH0768763B2 JP2308869A JP30886990A JPH0768763B2 JP H0768763 B2 JPH0768763 B2 JP H0768763B2 JP 2308869 A JP2308869 A JP 2308869A JP 30886990 A JP30886990 A JP 30886990A JP H0768763 B2 JPH0768763 B2 JP H0768763B2
Authority
JP
Japan
Prior art keywords
grout
state
steel rod
wave
concrete structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2308869A
Other languages
Japanese (ja)
Other versions
JPH04182568A (en
Inventor
正義 榎園
Original Assignee
社団法人日本建設機械化協会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 社団法人日本建設機械化協会 filed Critical 社団法人日本建設機械化協会
Priority to JP2308869A priority Critical patent/JPH0768763B2/en
Publication of JPH04182568A publication Critical patent/JPH04182568A/en
Publication of JPH0768763B2 publication Critical patent/JPH0768763B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Bridges Or Land Bridges (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 開示技術は、土木、建築工事におけるコンクリート構造
物に介設されたPC鋼棒周囲のシース内のグラウトの充填
状態等を非破壊的に測定する技術の分野に属する。
[Detailed Description of the Invention] <Industrial field of application> The disclosed technology measures non-destructively the filling state of grout in the sheath around the PC steel rod interposed in the concrete structure in civil engineering and construction work. Belongs to the field of technology.

〈要旨の概要〉 而して、この出願の発明は山間の橋梁等の大型のコンク
リート構造物のプレストレスコンクリート部材に要いら
れているPC鋼棒周辺に於いて、シース内に充填されてい
るセメントモルタル等のグラウトの充填の有無状態、或
いは、充填後の経時的凝固状態、更には、腐蝕による空
隙やひび割れ発生等の状態を超音波等の弾性波を入力
し、その反射波を測定することにより該グラウトの介装
状態を経時的に連続的に、或いは、間欠的に検出する方
法、及び、該方法に直接使用する装置に関する発明であ
り、特に、グラウト内に対し介装したPC鋼棒の開放側の
一端から数十kHz〜数MHzの高周波パルスの超音波の弾性
波を発信センサの振動子により入力し、他端側からの反
射波を受信センサの振動子から出力受信し、超音波は発
信装置の同期作動するオシロスコープによりPC鋼棒周囲
のグラウトの介装状態を非破壊的に測定するようにした
コンクリート構造物の充填グラウトの介装状態検出方
法、及び、装置に係る発明である。
<Summary of summary> Therefore, the invention of this application is filled in the sheath around the PC steel rod required for the prestressed concrete member of a large concrete structure such as a mountain bridge. Input the elastic wave such as ultrasonic wave and measure the reflected wave of the presence or absence of filling of grout such as cement mortar, the solidification state over time after filling, and the state of voids and cracks caused by corrosion. It is an invention relating to a method for continuously or intermittently detecting the interposed state of the grout, and an apparatus directly used for the method, and in particular, PC steel interposed in the grout. An ultrasonic elastic wave of a high frequency pulse of several tens of kHz to several MHz is input from the oscillator of the transmitting sensor from one end on the open side of the rod, and a reflected wave from the other end is output from the oscillator of the receiving sensor and received. Ultrasonic wave transmitter Interposed state detecting method for filling grout concrete structure which is adapted to nondestructively measure the interposed state of the grout around the PC steel rod by an oscilloscope synchronized operation, and an invention relating to the apparatus.

〈従来の技術〉 周知の如く、近代文明は科学技術に裏付けられた多くの
種類の器具類,機械装置,構造物等により支持されてい
る。
<Prior Art> As is well known, modern civilization is supported by many kinds of instruments, mechanical devices, structures, etc. backed by science and technology.

而して、かかる器具類,機械装置,構造物等はその本来
的な機能を設計通り充分、且つ、確実に発揮するために
はこれらの完成に至るまでの間、そして、稼動中におけ
る定期,不定期的な試験,機能検査,保守点検整備等が
不可欠であり、中には法的に義務づけられているものも
ある。
Therefore, in order for such instruments, machines, structures, etc. to fully and reliably exhibit their original functions as designed, until their completion and at regular intervals during operation, Irregular tests, functional tests, maintenance and maintenance are essential, and some are legally obligatory.

蓋し、これらの器具,装置,構造物は初期製造,組立,
構築時の誤差,振動,稼働中での種々の外力,熱挙動,
環境変化等により、機能が充分果せられなくなる場合が
あるからである。
Lid, these tools, devices and structures are initially manufactured, assembled,
Errors during construction, vibration, various external forces during operation, thermal behavior,
This is because the functions may not be fully fulfilled due to environmental changes and the like.

このうち、各種の機械装置類はその殆どが複数部品の組
付体,組立体であることから、各要素に亘って分解可能
であり、そたがって、組付,組立時のプロセスや完成後
の試験や機能検査は概してし易く、又、定期,不定期点
検の際に分解して充分に検査することもまた比較的用意
ではある。
Of these, most of the various mechanical devices are assembly and assembly of multiple parts, so each element can be disassembled, and the assembly and assembly processes and after completion In general, it is easy to carry out tests and functional tests, and it is also relatively easy to disassemble and fully inspect during regular and irregular inspections.

しかしながら、これらの器具,装置類の機能を不充分に
する誤差,振動,外力,熱挙動,周辺環境の変化等は比
較的小さく、又、本体自体も小サイズであるが、本体自
体が大サイズで、印加される外力や振動も大きく、環境
変化も激しい鉄骨,コンクリート構造物等、或いは、こ
れらの複合タイプの構造物、就中、大型構造物はいった
ん構築されると、取り扱い容易な部分に分解,解体等し
て各個に検査することは殆ど不可能に近く、又、検査装
置,記録装置の取付け,取外し,操作が高所作業等から
安全対策上極めて難しく、又、周辺環境等を本体側へ調
整すること等は全く出来ないものであり、したがって、
これに対処するに完成後や稼動中における機能検査には
所謂非破壊検査が必要とされる。
However, errors, vibrations, external forces, thermal behavior, changes in the surrounding environment, etc. that make the functions of these instruments and devices insufficient are relatively small, and the main body itself is a small size, but the main body itself is a large size. Therefore, the applied external force and vibration are large, and the environment is subject to severe environmental changes, such as steel frames and concrete structures, or composite types of these structures, especially large structures, once they are constructed, they are easy to handle. It is almost impossible to inspect each one by disassembling and dismantling, and it is extremely difficult to attach and detach the inspection device and the recording device and operate them from a high place due to safety measures. It is impossible to adjust to the side, so
To deal with this, a so-called nondestructive inspection is required for the functional inspection after completion or during operation.

そこで、例えば、山間地に構築された橋梁等のコンクリ
ート構造物等に対する非破壊的検査方法としては、一般
的にエックス線法,超音波検査法(AE検査法)、更には
レーダー検査法等がある。
Therefore, for example, non-destructive inspection methods for concrete structures such as bridges constructed in mountainous areas generally include X-ray method, ultrasonic inspection method (AE inspection method), and radar inspection method. .

〈発明が解決しようとする課題〉 さりながら、かかる構造物、就中、大型構造物に対する
非破壊的検査においては検査装置のセットが構造物の山
間部の高位置構築や長高サイズ等、それ自体の構造や周
辺との取合いの関係上、危険性が高く、又、入りくんだ
構造部分にはセットし難いという難点があり、しかも、
検査部位の数が多く、広範囲に亘る場合であると、大規
模な検査となり、コウト高となる不利点があり、特に、
コンクリート構造物にあってはPC鋼棒の定着部の一部を
除いてはコンクリート内部に埋設されているために必要
部分等への装置のセットが実質的には不可能であるとい
う欠点があった。
<Problems to be solved by the invention> By the way, in the non-destructive inspection of such a structure, especially a large structure, a set of inspection devices has a structure such as a high position construction of a mountain portion of a structure or a long and high size. Due to the structure of itself and the relationship with the surroundings, there is a high risk, and it is difficult to set in a complicated structure part, and moreover,
When the number of inspection sites is large and covers a wide area, there is a disadvantage that the inspection becomes large-scale and the cost is high.
In the case of a concrete structure, there is a drawback that it is practically impossible to set the device to necessary parts because it is embedded inside the concrete except a part of the fixing part of the PC steel rod. It was

例えば、橋梁等のコンクリート構造物のPC鋼棒を用いて
プレストレスを導入している等の態様において、PC鋼棒
が不測にして経時的に腐蝕等によりひび割れが生じた
り、疲労したりすることから損傷し、該プレストレスが
大きく減少し、耐力が低下するような場合には、極めて
ゆゆしい問題があり、したがって、コンクリート構造物
等ではPC鋼棒の腐食防止や耐疲労のために導入したプレ
ストレスの応力伝達のためにPC鋼棒を囲繞するシース内
にグラウトのセメントモルタル等が充填されてPC鋼棒と
の付着力を図るようにしているが、不測にして当該セメ
ントモルタルの充填量が不充分であったり、不幸にして
充填忘れ等が生じたり、腐蝕による空隙が発生したりし
てPC鋼棒とグラウトとの付着力が低下したり、不足した
りすると、付着破壊が生じ、PC鋼棒の破断に至り、大事
故が生ずるという虞がある。
For example, in a mode where prestressing is introduced using PC steel rods for concrete structures such as bridges, the PC steel rods may unexpectedly become cracked due to corrosion or fatigue over time. There is an extremely problematic problem in the case where the prestress is greatly reduced and the proof stress is reduced.Therefore, in concrete structures, etc. In order to transmit stress, the grout cement mortar, etc. is filled in the sheath surrounding the PC steel rod so as to achieve the adhesive force with the PC steel rod. If the adhesion between the PC steel rod and the grout is reduced or insufficient due to insufficientness, unfortunately forgetting to fill, etc., or voids due to corrosion are generated, adhesion fracture may occur. , Led to the breaking of the PC steel rod, there is a possibility that a major accident occurs.

かかる付着破壊による付着力の低下は、ひび割れ発生状
況の違いやひび割れの集中を生じたり、桁のたわみ増加
として現われ、更に、付着破壊が定着部まで達すると、
そのネジ部で疲労破断を生じる可能性が大きくなる。
The decrease in adhesive force due to such adhesive failure causes differences in the cracking occurrence state and concentration of cracks, and appears as an increase in deflection of the girder, and when adhesive failure reaches the fixing portion,
There is a high possibility that fatigue fracture will occur at the threaded portion.

したがって、これに対処するには、PC鋼棒の外周部に於
けるシース内のセメントモルタル等のグラウトの注入充
填が設計通りに行われているかどうかの測定検査が直接
的にも、又、後の管理のためにも必要となってくる。
Therefore, in order to deal with this, it is necessary to directly and after-measurement and inspect whether or not the injection and filling of grout such as cement mortar in the sheath in the outer peripheral portion of the PC steel rod is performed as designed. It will also be necessary for the management of.

そこで、比較的に装置の設置がし易く、危険性も少く、
安全性が高く、取扱いもし易く、ノイズに対して強い超
音波探傷試験法が実用化されており、平面的で近距離に
ある欠陥に対する検査に用いる超音波は最小欠陥部に応
じて1〜10メガヘルツの直進波が用いられているが、導
波棒としてのPC鋼棒の周囲に充填されているセメントモ
ルタル等のグラウトによる影響が少いために、逆に該PC
鋼棒周囲のグラウトの適性充填量,ひび割れ,疲労発生
の有無等のグラウトの充填直後からの経時的な介装状態
の検出が出来ないという不具合があった。
Therefore, the installation of the device is relatively easy and the risk is small,
An ultrasonic flaw detection method that has high safety, is easy to handle, and is strong against noise has been put into practical use, and ultrasonic waves used for inspection of defects that are planar and at a short distance range from 1 to 10 depending on the minimum defect portion. Although a direct wave of megahertz is used, since the influence of grout such as cement mortar filled around the PC steel rod as a waveguide rod is small, the PC
There was a problem in that it was not possible to detect the time-dependent intervention state immediately after the grout was filled, such as the appropriate amount of grout around the steel rod, cracking, and the occurrence of fatigue.

又、コンクリート構造物のPC鋼棒周囲のシース内のグラ
ウトの既成充填の有無とは別に充填直後からの経時的な
強固充填状態の変化を時間的に計測する必要がある場合
(腐蝕による空隙発生の検査や予測)があるが、かかる
場合には、上記1〜10メガヘルツの指向性を有する直進
波の超音波ではPC鋼棒の周囲の影響状態が検出出来ない
ために所定の検査が出来ないという不都合さがあった。
In addition, if it is necessary to measure temporally the change in the solid filling state with time immediately after filling, independently of the presence or absence of pre-filled grout in the sheath around the PC steel rod of the concrete structure (void formation due to corrosion However, in such a case, the prescribed inspection cannot be performed because the influence state around the PC steel bar cannot be detected by the straight wave ultrasonic wave having the directivity of 1 to 10 MHz. There was an inconvenience.

そして、シース内のグラウト充填の有無,充分か不充分
か、又、該グラウトとPC鋼棒の付着状態の良否検出は極
めて重要であり、その計測手段が強く望まれているにも
かかわらず、これに応える技術は開発されておらず、そ
の現出が大きく期待されているのが現状である。
And, it is extremely important to detect whether or not the grout is filled in the sheath, whether it is sufficient or not, and whether the grout and the PC steel rod are in good contact with each other. The technology to respond to this has not been developed, and it is the current situation that its appearance is greatly expected.

〈発明の目的〉 この出願の発明の目的は上述従来技術に基づくコンクリ
ート構造物のPC鋼棒周囲のグラウトの適性充填量の有無
の状態や介装状態の稼動中における、或いは、充填直後
からの経時的な状態変化検査測定の問題点、及び、関係
業界の期待を解決すべき技術的課題とし、数十kHz〜数M
Hzの広領域の弾性波を発生させるに数十kHzから数百kHz
の指向性のない高周波パルス周波数領域での距離による
減衰が小さく、しかも、分解能を必要としない高周波パ
ルスの超音波を用いることにより、PC鋼棒一端に弾性波
として入力させ、その反射波を他端から受信して測定す
ることにより充填されたグラウトの介装状態を所定タイ
ミングで、或いは、経時的に介装状態をリアルタイムで
把握することが出来るようにして建設産業等における測
定技術利用分野に益する優れたコンクリート構造物の充
填グラウトの介装状態検出方法、及び、該方法に直接使
用する装置を提供せんとするものである。
<Object of the invention> The object of the invention of this application is in the presence or absence of an appropriate filling amount of grout around the PC steel rod of the concrete structure based on the above-mentioned conventional technique or during the operation of the interposed state, or immediately after the filling. Problems of state change inspection and measurement over time, and technical issues that should be resolved by the expectations of related industries.
Tens to hundreds of kHz to generate elastic waves in a wide range of Hz
High-frequency pulse with no directivity, the attenuation by distance in the frequency range is small, and by using the ultrasonic wave of the high-frequency pulse that does not require resolution, it is input as an elastic wave at one end of the PC steel bar and the reflected wave is By receiving and measuring from the end, it is possible to grasp the installation state of the filled grout at a predetermined timing or in real time over time. It is an object of the present invention to provide an improved method for detecting the state of interposition of a filling grout of a concrete structure, and an apparatus directly used for the method.

〈課題を解決するための手段・作用〉 上述目的に沿い先述特許請求の範囲を要旨とするこの出
願の発明の構成は前述課題を解決するために、山間の橋
梁等のコンクリート構造物のプレキャストコンクリート
内のシース内のセメントモルタル等の充填グラフの内部
にPC鋼棒を挿入,埋設してその開放部の一端に発信セン
サの振動子を当接一体化させ、数十kHzから数MHzの高周
波パルスの超音波を入力させて広帯域の弾性波を発生さ
せ、高周波の数MHzの波動はその指向性によりPC鋼棒内
を直進し、低周波数の数十kHz〜数百kHzの波動はPC鋼棒
内で反射を繰返し、他端に設けた受信センサの振動子に
受信されるようにされ、弾性波はPC鋼棒の周囲にグラウ
トが存在する場合には、その影響を大きく受け、無い場
合には影響を受けない反射波(エコー)が出力受信セン
サの振動子により出力されてオシロスコープにより測定
され、グラウトの経時的な凝固やゲル化も弾性波の反射
波に対する影響として観測され、したがって、グラウト
の充填の有無や充填後の経時的な凝固やゲル化状態、更
には、空隙やひび割れ等もリアルタイムで観測,測定さ
れ、又、接写,記録されて適宜に対処し得るようにし、
発受信センサの振動子はPC鋼棒の開放端に困難性なく着
脱が出来、容易に装着,取外しが出来、測定がスムース
に行えるようにし、又、超音波測定であるために安全で
ノイズも拾い難い状態で測定が出来るようにした技術的
手段を講じたものである。
<Means and Actions for Solving the Problem> In order to solve the above-mentioned problems, the structure of the invention of the present application, which is based on the above-mentioned object, is made of precast concrete for concrete structures such as mountain bridges. Insert and embed a PC steel rod inside the filling graph of cement mortar, etc. in the inner sheath, abut the oscillator of the transmission sensor at one end of the open part, and integrate it into a high frequency pulse of several tens of kHz to several MHz. The ultrasonic waves are input to generate a wide-band elastic wave, and the high-frequency wave of several MHz goes straight in the PC steel bar due to its directivity, and the low-frequency wave of several tens of kHz to several hundred kHz is the PC steel bar. Reflection is repeated in the inside and is received by the transducer of the receiving sensor provided at the other end.When the grout exists around the PC steel rod, the elastic wave is greatly affected by it, and when there is no grout. Produces a reflected wave (echo) that is not affected Output from the transducer of the receiving sensor and measured by an oscilloscope, and coagulation or gelation of grout with time is also observed as an effect on the reflected wave of the elastic wave. And gelation state, as well as voids, cracks, etc. are observed and measured in real time, and are taken in close-up and recorded so that appropriate measures can be taken.
The oscillator of the transmission / reception sensor can be easily attached to and detached from the open end of the PC steel rod, can be easily attached and detached, and the measurement can be performed smoothly. Also, because it is an ultrasonic measurement, it is safe and no noise is generated. It is a technical measure that makes it possible to perform measurements in a state that is difficult to pick up.

〈発明の原理的背景〉 鋼棒の一端に設置した発信センサに超音波等の高周波パ
ルスを入力して、数十kHz〜数MHzの広帯域の弾性波動を
発生すると、該弾性波が鋼棒の長手方向へと伝播する場
合、周波数の高い数MHzの波動は指向性があるため、直
進し、これに対し比較的低い周波数の数十kHz〜数百kHz
の波動は指向性がないため、鋼棒の内部で反射を繰返し
て、反対側に設置した受信センサで感知される。
<Principle Background of the Invention> When a high-frequency pulse such as an ultrasonic wave is input to a transmission sensor installed at one end of a steel rod to generate a broadband elastic wave of several tens of kHz to several MHz, the elastic wave of the steel rod is generated. When propagating in the longitudinal direction, a wave with a high frequency of several MHz has directivity, so it travels straight, while a relatively low frequency of several tens of kHz to several hundred kHz.
Since the wave motion of is not directional, it repeats reflection inside the steel rod and is detected by the reception sensor installed on the opposite side.

このような波動が鋼棒中を軸方向に伝播する場合、該鋼
棒の伝播距離に応じて音圧が低下することが分ってい
る。
It has been found that when such a wave propagates through the steel rod in the axial direction, the sound pressure decreases according to the propagation distance of the steel rod.

而して、第1図に示す様に、アンボンドの鋼棒1が自由
表面状態では振動子2により発生された弾性波は直進す
る縦波P1の他にも鋼棒1の内部で反射して伝播する反射
波Psは音速の違いから速度分散を生じて複数の波群とな
る。
Thus, as shown in FIG. 1, when the unbonded steel rod 1 is in the free surface state, the elastic wave generated by the oscillator 2 is reflected inside the steel rod 1 in addition to the longitudinal wave P 1 traveling straight. The reflected wave P s propagating as a result of velocity dispersion due to the difference in sound velocity and becomes a plurality of wave groups.

これに比し、第2図に示す様に、ボンド状態の鋼棒1が
グラウト3内に埋設されて自由表面でない場合は、該鋼
棒1の側面とグラウト3の境界で反射を繰返すたびに鋼
棒1の外へと波動の逸散を生じて、そのエネルギーは徐
々に減衰する。
On the other hand, as shown in FIG. 2, when the steel rod 1 in the bonded state is embedded in the grout 3 and is not a free surface, each time reflection is repeated at the boundary between the side surface of the steel rod 1 and the grout 3. The wave is dissipated to the outside of the steel rod 1, and its energy is gradually attenuated.

かかる第1,2図の弾性波の状態は図示しない受信センサ
を介してオシロスコープのCRTで目視することが出来、
横軸に時間軸を縦軸に電圧軸をとると、第3図(第1図
対応),第4図(第2図対応)の様になる(T1は波動ス
タートからP1波受信までの時間)。
The state of such elastic waves in FIGS. 1 and 2 can be visually checked with a CRT of an oscilloscope through a reception sensor (not shown),
When the horizontal axis is the time axis and the vertical axis is the voltage axis, the results are as shown in Fig. 3 (corresponding to Fig. 1) and Fig. 4 (corresponding to Fig. 2) (T 1 is from wave start to P 1 wave reception) time of).

このような現象はアンボンド部材(グラウト無し)中の
PC鋼棒については自由表面状態であることにより波動を
ほぼ完全に反射し、一方、ボンド部材(グラウト有り)
中のPC鋼棒についてはシース内のグラウトによる拘束か
ら、PC鋼棒内の反射波は該グラウトとPC鋼棒との境界か
らグラウト中に吸収され易い状態となることが分り、こ
のことから、PC鋼棒内を伝播してきた弾性波動の受信波
形を測定すれば、その変化からPC鋼棒とそれを囲繞する
グラウトの充填介装状況が検出出来る。
This phenomenon occurs in the unbonded member (without grout).
For PC steel rod, the wave is almost completely reflected due to the free surface state, while the bond member (with grout)
Regarding the PC steel rod in the inside, from the constraint by the grout in the sheath, it is known that the reflected wave in the PC steel rod is in a state of being easily absorbed in the grout from the boundary between the grout and the PC steel rod, and from this, If the received waveform of the elastic wave propagating in the PC steel rod is measured, the filling and inserting condition of the PC steel rod and the grout surrounding it can be detected from the change.

この出願の発明は上述原理的背景の基に開発,案出され
たものである。
The invention of this application was developed and devised based on the above-mentioned theoretical background.

〈実施例〉 次に、この出願の発明についてコンクリート構造物のプ
レストレスコンクリート部材のPC鋼棒の周囲にシースを
介して充填したグラウトのセメントモルタルの既成充填
状態検出測定の態様を実施例として図面を参照して説明
すれば以下の通りである。
<Example> Next, regarding the invention of this application, an embodiment of the state of the existing filling state detection measurement of grout cement mortar filled with a sheath around the PC steel rod of the prestressed concrete member of the concrete structure is illustrated as an example. It will be described below with reference to.

図示実施例は、橋桁のプレストレスコンクリート部材PC
桁のプレストレス付与のためのPC鋼棒に対しシースを介
してのグラウトのセメントモルタルが設定状態に充填し
てあるか否かを非破壊的に検査する態様であり、第5図
に示す様に、プレストレス付与のために橋桁のPC桁4に
埋設介装したPC鋼棒5の外側にはシース6が在来態様同
様に同軸的に配設され、そして、PC鋼棒5とシース6と
の間にはグラウトのセメントモルタル3が充填介装され
ている。
The illustrated embodiment shows a PC prestressed concrete member for bridge girders.
It is a mode to non-destructively inspect whether or not the grout cement mortar through the sheath is filled into the PC steel rod for prestressing the girder through the sheath, as shown in FIG. In addition, a sheath 6 is coaxially arranged on the outside of the PC steel rod 5 embedded in the PC girder 4 of the bridge girder for prestressing as in the conventional manner, and the PC steel rod 5 and the sheath 6 are provided. A cement mortar 3 made of grout is filled between and.

又、PC鋼棒5の一端には発信センサとしての超音波振動
子2が添着されて超音波発生装置7に回路8を介して電
気的に接続されている。
An ultrasonic transducer 2 serving as a transmission sensor is attached to one end of the PC steel rod 5 and electrically connected to the ultrasonic generator 7 via a circuit 8.

そして、PC鋼棒5の他端には受信センサとしての超音波
振動子2′が添着されてオシロスコープ9に回路10を介
して電気的に接続されている。
An ultrasonic transducer 2'as a receiving sensor is attached to the other end of the PC steel rod 5 and is electrically connected to the oscilloscope 9 via a circuit 10.

超音波発生装置7とオシロスコープ9とは同期信号回路
11で接続され、又、オシロスコープ9には記録様の接写
装置12が接続されている。
The ultrasonic wave generator 7 and the oscilloscope 9 are synchronous signal circuits.
11 is connected, and the oscilloscope 9 is connected to a recording-like close-up device 12.

上述構成において、超音波発生装置7からの出力パルス
信号は回路8を介し超音波振動子2を起振し、弾性波を
PC鋼棒5内に伝播させる。
In the above-mentioned configuration, the output pulse signal from the ultrasonic generator 7 excites the ultrasonic transducer 2 via the circuit 8 to generate an elastic wave.
Propagate into the PC steel rod 5.

そして、PC鋼棒5内を伝播した弾性波(反射波を含め
て)は他端の受信センサの超音波振動子2′に受信さ
れ、その受信信号は回路10を介しオシロスコープ9に目
視波形を形成して所定に測定され、又、併せて、接写装
置12より接写記録される。
The elastic wave (including the reflected wave) propagating in the PC steel rod 5 is received by the ultrasonic transducer 2'of the receiving sensor at the other end, and the received signal is visually observed by the oscilloscope 9 via the circuit 10. It is formed and measured in a predetermined manner, and is also recorded in close-up by the close-up device 12.

而して、オシロスコープ9で形成される波形は前述第1
〜4図に示した様に、基本的に介装されているグラウト
のセメントモルタル3が充填されているボンド状態の場
合、反射波は認められず、直線波形が現われ、非充填の
アンボンド状態の場合は反射波が現われ波形が乱れる。
Thus, the waveform formed by the oscilloscope 9 has the above-mentioned first waveform.
As shown in FIGS. 4A to 4C, in the bond state in which the grout cement mortar 3 which is basically interposed is filled, a reflected wave is not observed, a linear waveform appears, and the unfilled unbonded state appears. In this case, the reflected wave appears and the waveform is disturbed.

したがって、オシロスコープ9の弾性波の受信波形を測
定することによりグラウトのセメントモルタル3の有
無,介装状態(腐蝕,空隙,ひび割れ)等がアナログ的
にリアルタイムで観測され、又、検出データは接写装置
12で記録され、直ちに最適対応がなされ得る。
Therefore, by measuring the reception waveform of the elastic wave of the oscilloscope 9, the presence or absence of the grout cement mortar 3 and the state of interposition (corrosion, voids, cracks) and the like can be observed in real time in an analog manner, and the detected data is a close-up device.
Recorded at 12, the best response can be taken immediately.

そして、このようにして、PC鋼棒5内を伝播した弾性波
は受信波形変化を測定して該PC鋼棒5と周囲の介装グラ
ウト3の介装状態が観測出来ることになる。
In this way, the elastic wave propagating in the PC steel rod 5 can be measured for changes in the received waveform, and the interposition state of the PC steel rod 5 and the surrounding interposition grout 3 can be observed.

次に、上述実施例に則す実験例を示す。Next, an experimental example according to the above-mentioned embodiment will be shown.

用いた供試体は第6〜9図に示す様なPC桁(桁高さ65c
m,幅50cm,長さ6.4m)4で、内部にφ45mmのシース6を
配置し、その中にφ32mmのPC鋼棒(B種2号φ32SBPR 9
5/120)5を1本セットした短形断面のポストテンショ
ン方式のもの5体を用いた。
The specimen used was a PC girder (girder height 65c as shown in Figs. 6-9).
m, width 50 cm, length 6.4 m) 4 with φ45 mm sheath 6 placed inside, and φ32 mm PC steel rod (Type B No. 2 φ32 SBPR 9
5/120) 5 post-tension type 5 bodies with a short section were used.

尚、13は仕切板、14は埋込み型の支圧板である。Incidentally, 13 is a partition plate, and 14 is an embedded bearing plate.

該PC鋼棒5には52.8tfのプレストレスを導入し、その
後、4本はPC桁4のシース6内へグラウト3を注入し
た。
A prestress of 52.8 tf was introduced into the PC steel rods 5, and then four grouts 3 were injected into the sheath 6 of the PC girder 4.

コンクリート、及び、グラウト材の配合を表1,2に、圧
縮強度を表3に示す。
Tables 1 and 2 show the formulations of concrete and grout, and Table 3 shows the compressive strength.

尚、セメントは早強セメントを用いた。As the cement, early-strength cement was used.

そして、載荷試験には、容量150tfの電気油圧式疲労試
験機(50tfレンジ)を用い、載荷方法は、第10図に示す
様な荷重分配桁15を用いた2点集中載荷による曲げ試験
で、疲労試験は下限荷重21tf(PC鋼棒応力60kgf/mm2
当)とし、上限荷重は応力変動分を上乗せした荷重で、
繰返し速度は2〜2.5Hzとした。
An electrohydraulic fatigue tester with a capacity of 150 tf (50 tf range) was used for the loading test, and the loading method was a bending test by two-point concentrated loading using a load distribution girder 15 as shown in FIG. In the fatigue test, the lower limit load is 21 tf (PC steel bar stress 60 kgf / mm 2 equivalent), and the upper limit load is the load added with stress fluctuation,
The repetition rate was 2 to 2.5 Hz.

弾性波計測の測定方法については、各供試体4の試験供
用前と疲労試験中の任意の繰返し回数で測定した。
Regarding the measuring method of the elastic wave measurement, the measurement was performed at an arbitrary number of repetitions before the test use of each sample 4 and during the fatigue test.

伝播弾性波の観測は、受信センサ2′からの電気信号を
直接オシロスコープ(20MHz)9で受信してリアルタイ
ムで観察した。
In the observation of the propagating elastic wave, the electrical signal from the receiving sensor 2'is directly received by the oscilloscope (20 MHz) 9 and observed in real time.

そして、受信波形の状況はCRTの画面を接写装置12で撮
影して記録をした。
The situation of the received waveform was recorded by photographing the screen of the CRT with the close-up device 12.

その後、受信波形の面積をプラニメータで図り、そのデ
ータを波面率(s/so×100%s:ボンド部材の面積,so
アンボンド部材の面積)として整理した。
Thereafter, work to the area of the received waveform with planimetry, the data wavefront ratio (s / s o × 100% s: area of bond members, s o:
The area of unbonded members).

尚、PC鋼棒5とグラウト3の付着破壊の確認は、PC桁4
の両端の固定側、及び、緊張側の定着用ナット(ディビ
ダーク工法)に貼り付けたひずみゲージによるモニター
方法で行った。
The PC girder 4 is used to confirm the adhesion failure of the PC steel rod 5 and the grout 3.
Was monitored by a strain gauge attached to the fixing nuts (Dividark method) on the fixed side and the tension side of both ends.

そして、PC桁供試体4の試験供用前と疲労試験時の波面
率を次の表4に示す。
Table 4 below shows the wavefront ratio of the PC girder specimen 4 before the test and during the fatigue test.

尚、疲労試験時の波面率はPC桁4の破壊に最も近い繰返
し載荷時の値とした。
The wave front factor during the fatigue test was the value at the time of repeated loading that was closest to the destruction of the PC girder 4.

グラウト3無しのアンボンド供試体No.1については、PC
鋼棒5内では完全反射状態のため受信波形の減衰は小さ
く、P1波と速度分散により発生したP5波がつづいた波群
となった。
PC for unbonded specimen No.1 without grout 3
The attenuation of the received waveform was small in the steel rod 5 due to the perfect reflection state, and the wave group was composed of the P 1 wave and the P 5 wave generated by velocity dispersion.

このグラウト無しの状態の波面率を100%とした。The wavefront ratio without grout was set to 100%.

一方、グラウトを充填したボンド供試体No.2〜No.5の試
験前の受信波形は、P1波(音速5540m/s)のみで、Ps
の存在は認められなかった。
On the other hand, the received waveforms of the bond specimens No. 2 to No. 5 filled with grout before the test were only P 1 wave (sound velocity 5540 m / s), and the existence of P s wave was not recognized.

これは、Ps波がPC鋼棒5内での反射を繰返す際に、該PC
鋼棒5とグラウト3の音響インピーダンスが近いため、
該グラウト3との境界から徐々にエネルギーが吸収され
てPs波の振幅が減衰したためと判断される。
This is because when the P s wave repeats reflection inside the PC steel rod 5,
Since the acoustic impedance of the steel rod 5 and the grout 3 are close,
It is judged that the energy was gradually absorbed from the boundary with the grout 3 and the amplitude of the Ps wave was attenuated.

このように試験前の付着の良好状態の波面率は0.4〜1.1
%と著しく小さいことが判った。
As described above, the wavefront ratio of the adhesion state before the test is 0.4 to 1.1.
It was found to be remarkably small.

以上の試験データから、PC桁4中のシース6内のグラウ
ト3の充填の有・無については、PC鋼棒5内の伝播弾性
波の受信波形として明瞭な形でその現象がオシロスコー
プ9のCRT上で観察された。
From the above test data, the presence or absence of the filling of the grout 3 in the sheath 6 in the PC girder 4 is clearly seen as the received waveform of the propagating elastic wave in the PC steel rod 5, and the phenomenon is CRT of the oscilloscope 9. Observed above.

したがって、グラウト3の充填度についてキャリブレー
ションを行うことにより評価が可能であると判断され
た。
Therefore, it was determined that the filling degree of the grout 3 can be evaluated by performing the calibration.

弾性波のPC鋼棒5内での反射の繰返し回数(N)に応じ
た受信波形の例を供試体No.4について第11,12,13図(受
信感度:20mV/div,時間軸:0.5msec/div)に示す。
Example of reception waveform according to the number of repetitions (N) of reflection of elastic wave in the PC steel bar 5 Figure 11, 12, 13 for sample No. 4 (Reception sensitivity: 20 mV / div, time axis: 0.5 msec / div).

試験供用前にの受信波形は第11図N=0に示す様に、P1
波のみ(波面率0.5%)で、繰返し回数Nの増加(N=
1.6万回:第12図波面率2%,N=20.8万回:第13図波面
率24%)に応じて Ps波が多く受信される傾向が判った。
As shown in Fig. 11 N = 0, the received waveform before the test use is P 1
With only waves (wave front ratio 0.5%), the number of repetitions N increases (N =
16 thousand times: Fig. 12 wave front ratio 2%, N = 208,000 times: Fig. 13 wave front ratio 24%), and it was found that a lot of Ps waves were received.

各応力度のPC鋼棒5端の締付け定着様のナットのひずみ
と反射繰返し回数の関係を第14図に示す。
Fig. 14 shows the relationship between the strain of the nut and the number of reflection repetitions, such as the tightening and fixing of the end of the PC steel rod at each stress level.

反射繰返し回数の増加と共に付着破壊が進行し定着用の
ナットの位置まで達した結果、ナットには試験荷重によ
る変動が伝播し始め、ひずみ(圧縮)振幅が増加して、
PC鋼棒5とグラウト3との付着力が低下することが判っ
た。
As the number of repeated reflections increased and the adhesion failure progressed and reached the position of the fixing nut, the fluctuation due to the test load began to propagate to the nut and the strain (compression) amplitude increased,
It was found that the adhesion between the PC steel rod 5 and the grout 3 was reduced.

又、波面率は第15図に示す様に、上記第14図に対応して
ナットひずみ振幅の増大に伴って増加することも判っ
た。
It was also found that the wavefront ratio increases with an increase in nut strain amplitude, as shown in Fig. 15, corresponding to Fig. 14 described above.

いずれの供試体No.1〜5においても、波面率の変化はひ
ずみ振幅の挙動と良く一致していることが判る。
It can be seen that the change in the wavefront rate is in good agreement with the behavior of the strain amplitude in any of the sample Nos. 1 to 5.

そして、応力振幅が高い場合や、試験前でも波面率が大
きい場合は付着破壊の進行も早く、その影響が現れてい
ることが判った。
Then, it was found that when the stress amplitude was high, or when the wave front ratio was large even before the test, the adhesion fracture proceeded quickly and the effect thereof appeared.

又、表4に示した様に、破断位置が定着部に在る供試体
No.3は繰返し載荷時に波面率が20%程度を維持し、更
に、応力振幅により8%程度の波面率の変動が認められ
た。
In addition, as shown in Table 4, the specimen whose fracture position is in the fixing part
In No.3, the wave front ratio was maintained at about 20% after repeated loading, and a fluctuation of about 8% was observed due to the stress amplitude.

これに対し、供試体No.5では繰返し載荷時の波面率が10
%前後と小さく、応力振幅による変動も2%以下であっ
た。
In contrast, specimen No. 5 has a wavefront ratio of 10 when repeatedly loaded.
%, Which was small, and the variation due to stress amplitude was 2% or less.

一旦、疲労試験を中心(破断せず)した供試体No.2の受
信波形には除荷重時でもP1波とPs波が観測され、付着力
の低下が認められた。
In the received waveform of Specimen No. 2 which was once subjected to the fatigue test (without breaking), P 1 wave and P s wave were observed even during unloading, and a decrease in adhesion was confirmed.

このように、波面率の増加はPC鋼棒5とグラウト3との
付着力の低下傾向を明らかに示しているものであった。
As described above, the increase in the wave front ratio clearly showed the tendency of the decrease in the adhesive force between the PC steel rod 5 and the grout 3.

これらのことから、PC鋼棒5内の伝播弾性波の受信波形
におけるPs波の観測がPC鋼棒5とグラウト3との付着性
状の評価に有力な検出手段となることが試験からも確認
されたものである。
From these facts, it was confirmed from the test that the observation of the P s wave in the received waveform of the propagating elastic wave in the PC steel rod 5 is an effective detection means for the evaluation of the adhesion property between the PC steel rod 5 and the grout 3. It was done.

〈発明の効果〉 以上、この出願の発明によれば、基本的に橋梁等のコン
クリート構造物のプレストレス付与のPC鋼棒の一端から
数十kHzから数MHzの超音波等の弾性波を入力させ、該PC
鋼棒の周囲のセメントモルタル等のグラウトの弾性波吸
収による他端からの反射波を受信しオシロスコープ等に
より観測し、該グラウトの介装状態を観測することによ
り、シース内のグラウトの良好な設計充填状態や経時的
な凝固状態や腐蝕発生状態,空隙,ひび割れの存在状態
等を検出することが出来、したがって、構造物の稼動中
における非破壊的検査が行え、しかも、データをアナロ
グデジタル化してリアルタイムで観測したり記憶するこ
とが出来、そのため、しかるべき早急の対処手段が取れ
大事に至らなくて済み、そのうえ、他の構造物の参考デ
ータにも供することが出来るという優れた効果が奏され
る。
<Effects of the Invention> As described above, according to the invention of this application, basically, an elastic wave such as an ultrasonic wave of several tens of kHz to several MHz is input from one end of a PC steel rod for prestressing a concrete structure such as a bridge. Let the PC
Good design of the grout in the sheath by observing the reflected wave from the other end due to elastic wave absorption of grout such as cement mortar around the steel rod and observing it with an oscilloscope and observing the interposed state of the grout It is possible to detect the filling state, the solidification state over time, the corrosion occurrence state, the existence state of voids, cracks, etc. Therefore, non-destructive inspection during the operation of the structure can be performed, and the data can be converted into analog digital form. Since it can be observed and memorized in real time, it is not necessary to take appropriate measures to deal with it immediately, and it can be used as reference data for other structures. It

このようにPC桁等のコンクリート構造物中のPC鋼棒に弾
性波の超音波を入力し、該PC鋼棒を伝播してきた波動状
況からシース内のグラウト充填の有・無を検知すること
が出来、PC鋼棒と該グラウトの付着破壊状況は、Ps波の
存在による波面率の変化から観測出来、これらのことは
繰返し載荷時は勿論のこと、荷重保持状態、或いは、除
荷重時でも適用可能である効果がある。
In this way, by inputting ultrasonic waves of elastic waves into PC steel rods in concrete structures such as PC girders, it is possible to detect the presence or absence of grout filling in the sheath from the wave condition that has propagated through the PC steel rods. can, adhesion fracture in PC steel bar and the grout can be observed from the change of the wavefront rate due to the presence of P s-wave, these things during cyclic loading is of course, load holding state or even when removing the load There are effects that are applicable.

而して、検出装置においてはPC鋼棒の定着部の開放端の
端面に発信センサとして超音波振動子を、他端に受信セ
ンサの超音波振動子を添着させたことにより、複数のPC
鋼棒に対する取付け,取外しが簡単に行え、取り扱いが
し易く、早急な能率的な介装状態の検出が行えるという
効果もある。
Thus, in the detection device, by attaching an ultrasonic transducer as a transmission sensor to the end face of the open end of the fixing portion of the PC steel rod and an ultrasonic transducer of a reception sensor at the other end
There is also an effect that it can be easily attached to and detached from the steel rod, is easy to handle, and can detect the inserted state quickly and efficiently.

又、超音波は数十kHzから数MHzのパルスの超音波を用い
るために安全でノイズを拾うこともなく、しかも、指向
性の無いグラウトの影響を充分に受けた状態で過渡的な
現象から他端面の反射波を分離して受信することが出来
るという効果があり、コンクリート構造物等の工事終了
検査や稼動中における耐久性の検討や保全管理等に寄与
することが出来るという効果がある。
In addition, since ultrasonic waves are pulsed ultrasonic waves of several tens of kHz to several MHz, they are safe and do not pick up noise. Moreover, transient phenomena occur under the influence of grout without directivity. There is an effect that the reflected wave from the other end surface can be separated and received, and there is an effect that it can contribute to inspection of construction completion of concrete structures and the like, examination of durability during operation, and maintenance management.

【図面の簡単な説明】[Brief description of drawings]

図面はこの出願の発明の実施例の説明図であり、第1,2
図は基本実施例のグラウトの弾性波の伝播状態の概略模
式断面図、第3,4図はPC鋼棒内に於ける弾性波の百kHzの
受信波のCRT波形図、第5図は検出装置の模式図、第6
〜9図は供試体のPC桁の平面図、側面図、第7図IIX−I
IX断面図、第7図IX−IX断面図、第10図は載荷試験模式
側面図、第11〜13図は受信波形のCRT図、第14図は反射
繰返し回数とナットひずみの特性グラフ図、第15図は反
射繰返し回数と波面率の特性グラフ図である。 3……グラウト、5……PC鋼棒 6……シース
The drawings are explanatory views of an embodiment of the invention of this application, and
The figure is a schematic cross-sectional view of the propagation state of the elastic wave of the grout of the basic embodiment, FIGS. 3 and 4 are the CRT waveform diagrams of the received wave of 100 kHz of the elastic wave in the PC steel rod, and FIG. Schematic diagram of the device, No. 6
~ Fig. 9 is a plan view, side view and Fig. 7 IIX-I of the PC girder of the specimen.
IX sectional view, FIG. 7 IX-IX sectional view, FIG. 10 is a schematic side view of a loading test, FIGS. 11 to 13 are CRT diagrams of received waveforms, FIG. 14 is a characteristic graph diagram of the number of reflection repetitions and nut strain, FIG. 15 is a characteristic graph of the number of reflection repetitions and the wavefront ratio. 3 ... Grout, 5 ... PC steel rod, 6 ... Sheath

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】シース内に充填したグラウトに挿通された
PC鋼棒に対し弾性波を付与して該弾性波の反射波を測定
し該グラウトの充填介装状態を検出する方法において、
上記PC鋼棒の一端から数十kHz〜数MHzの弾性波を入力
し、他端から反射波を受信して該PC鋼棒周囲のグラウト
の充填体の介装状態を非破壊的に測定するようにしたこ
とを特徴とするコンクリート構造物の充填グラウトの介
装状態検出方法。
1. A grout filled in a sheath.
In the method of applying an elastic wave to a PC steel rod and measuring the reflected wave of the elastic wave to detect the filling interposition state of the grout,
An elastic wave of several tens of kHz to several MHz is input from one end of the PC steel rod and a reflected wave is received from the other end to nondestructively measure the interposed state of the grout filling body around the PC steel rod. A method for detecting the state of insertion of a filling grout of a concrete structure, characterized by the above.
【請求項2】上記入力弾性波が超音波であることを特徴
とする特許請求の範囲第1項記載のコンクリート構造物
の充填グラウトの介装状態検出方法。
2. The method for detecting the state of interposition of a filling grout for a concrete structure according to claim 1, wherein the input elastic wave is an ultrasonic wave.
【請求項3】上記グラウトがセメントモルタルであるこ
とを特徴とする特許請求の範囲第1項記載のコンクリー
ト構造物の充填グラウトの介装状態検出方法。
3. The method for detecting the state of interposition of a filled grout for a concrete structure according to claim 1, wherein the grout is cement mortar.
【請求項4】上記測定が経時的に連続的、或いは間欠的
に行われるようにしたことを特徴とする特許請求の範囲
第1項記載のコンクリート構造物の充填グラウトの介装
状態検出方法。
4. The method for detecting the state of interposition of a filling grout for a concrete structure according to claim 1, wherein the measurement is performed continuously or intermittently with time.
【請求項5】シースのグラウト内に挿入したPC鋼棒の端
部に振動子を設けて測定装置に電気的に接続したコンク
リート構造物の充填グラウトの介装状態検出装置におい
て、上記振動子の一方が発信センサであって超音波パル
ス発振装置に電気的に接続され、他方の振動子が受信セ
ンサであって、上記超音波パルス発信装置に同期的に接
続されたオシロスコープに電気的に接続されていること
を特徴とするコンクリート構造物の充填グラウトの介装
状態検出装置。
5. An interposition detecting device for a filling grout of a concrete structure in which a vibrator is provided at an end of a PC steel rod inserted into a grout of a sheath and electrically connected to a measuring device, wherein One is a transmission sensor and is electrically connected to the ultrasonic pulse oscillation device, and the other transducer is a reception sensor and is electrically connected to an oscilloscope that is synchronously connected to the ultrasonic pulse transmission device. An insertion state detecting device for a filling grout of a concrete structure, which is characterized in that
【請求項6】上記オシロスコープに接写装置が接続され
ていることを特徴とする特許請求の範囲第5項記載のコ
ンクリート構造物の充填グラウトの介装状態検出装置。
6. A device for detecting the state of interposition of a filling grout for a concrete structure according to claim 5, wherein a close-up device is connected to the oscilloscope.
JP2308869A 1990-11-16 1990-11-16 METHOD AND DEVICE FOR DETECTING INTERNAL STATE OF PACKING GROUT FOR CONCRETE STRUCTURE Expired - Fee Related JPH0768763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2308869A JPH0768763B2 (en) 1990-11-16 1990-11-16 METHOD AND DEVICE FOR DETECTING INTERNAL STATE OF PACKING GROUT FOR CONCRETE STRUCTURE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2308869A JPH0768763B2 (en) 1990-11-16 1990-11-16 METHOD AND DEVICE FOR DETECTING INTERNAL STATE OF PACKING GROUT FOR CONCRETE STRUCTURE

Publications (2)

Publication Number Publication Date
JPH04182568A JPH04182568A (en) 1992-06-30
JPH0768763B2 true JPH0768763B2 (en) 1995-07-26

Family

ID=17986241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2308869A Expired - Fee Related JPH0768763B2 (en) 1990-11-16 1990-11-16 METHOD AND DEVICE FOR DETECTING INTERNAL STATE OF PACKING GROUT FOR CONCRETE STRUCTURE

Country Status (1)

Country Link
JP (1) JPH0768763B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032211A (en) 1999-05-17 2001-02-06 Anderson Technology Kk Box girder structure of bridge having external cable, and building method of box girder
KR100862028B1 (en) * 2007-03-12 2008-10-07 주식회사 포스코건설 Measuring system for grouting-defect of rock-bolt and Measuring method using the same
JP5868653B2 (en) * 2011-10-19 2016-02-24 株式会社Ihi Interface inspection method and interface inspection apparatus for composite structure
CN107894459B (en) * 2017-11-09 2021-07-27 四川陆通检测科技有限公司 Prestressed duct grouting compactness testing method based on fluctuation signal characteristic analysis
CN110068611A (en) * 2019-05-14 2019-07-30 山东住工装配建筑有限公司 Intelligent measurement grouting device and detection method
CN117420810B (en) * 2023-12-19 2024-03-12 中铁三局集团广东建设工程有限公司 Multi-mode data processing method and device for high-pressure jet grouting pile control

Also Published As

Publication number Publication date
JPH04182568A (en) 1992-06-30

Similar Documents

Publication Publication Date Title
Chaki et al. Guided ultrasonic waves for non-destructive monitoring of the stress levels in prestressed steel strands
Lanza di Scalea et al. Stress measurement and defect detection in steel strands by guided stress waves
Chen et al. Measurement of tensile forces in a seven-wire prestressing strand using stress waves
Rens et al. Review of nondestructive evaluation techniques of civil infrastructure
Shah et al. Non-linear ultrasonic evaluation of damaged concrete based on higher order harmonic generation
Beard Guided wave inspection of embedded cylindrical structures
Chaki et al. Stress level measurement in prestressed steel strands using acoustoelastic effect
Liu et al. Influence factors analysis and accuracy improvement for stress measurement using ultrasonic longitudinal critically refracted (LCR) wave
US7614303B2 (en) Device for measuring bulk stress via insonification and method of use therefor
Ni et al. Use of highly nonlinear solitary waves in nondestructive testing
Sun et al. Application of low-profile piezoceramic transducers for health monitoring of concrete structures
Bartoli et al. Prediction of stress waves propagation in progressively loaded seven wire strands
Ongpeng et al. Contact and noncontact ultrasonic nondestructive test in reinforced concrete beam
Im et al. Non-destructive testing methods to identify voids in external post-tensioned tendons
Gehlot et al. Study of concrete quality assessment of structural elements using ultrasonic pulse velocity test
Rizzo et al. Effect of frequency on the acoustoelastic response of steel bars
Cao et al. Debonding detection in FRP-strengthened concrete structures utilising nonlinear Rayleigh wave mixing
JPH0768763B2 (en) METHOD AND DEVICE FOR DETECTING INTERNAL STATE OF PACKING GROUT FOR CONCRETE STRUCTURE
Seshu et al. Non destructive testing of bridge pier-a case study
Bartoli et al. Load monitoring in multiwire strands by interwire ultrasonic measurements
Cao et al. Study on non-destructive testing method of grouting sleeve compactness with wavelet packet energy ratio change
Mahbaz et al. De-bonding assessment of rebars using an ultrasonic method with laser vibrometer tests and numerical simulations
Bartoli et al. Nonlinear ultrasonic guided waves for stress monitoring in prestressing tendons for post-tensioned concrete structures
Li et al. Influence of backing layer on the non-metallic encapsulated acoustic emission sensor for concrete monitoring
Khan et al. Integrated health monitoring system for damage detection in civil structural components

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees