JP2010065671A - Failure diagnosis device of cooling system for vehicle - Google Patents

Failure diagnosis device of cooling system for vehicle Download PDF

Info

Publication number
JP2010065671A
JP2010065671A JP2008235811A JP2008235811A JP2010065671A JP 2010065671 A JP2010065671 A JP 2010065671A JP 2008235811 A JP2008235811 A JP 2008235811A JP 2008235811 A JP2008235811 A JP 2008235811A JP 2010065671 A JP2010065671 A JP 2010065671A
Authority
JP
Japan
Prior art keywords
water temperature
inlet
outlet
cooling water
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008235811A
Other languages
Japanese (ja)
Inventor
Hiroaki Takeishi
紘明 武石
Naoyuki Kamiya
直行 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008235811A priority Critical patent/JP2010065671A/en
Publication of JP2010065671A publication Critical patent/JP2010065671A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve failure diagnosis accuracy of an electric W/P (electric water pump) provided in an engine cooling system. <P>SOLUTION: This device is provided with: an inlet side water temperature sensor 20 detecting inlet water temperature of an engine 11 (cooling water temperature near a cooling water inlet); and an outlet side water temperature sensor 21 detecting outlet water temperature of the engine 11 (cooling water temperature near a cooling water outlet). Since received heat quantity of cooling water increases in the engine 11 if flow rate of the cooling water drops due to a failure of the electric W/P 12, a difference between inlet water temperature and outlet water temperature of the engine 11 becomes abnormally large. By paying attention to the phenomenon, inlet and outlet water temperature difference which is a difference between outlet water temperature detection value detected by the outlet side water temperature sensor 21 and inlet water temperature detection value detected by the inlet side water temperature sensor 20 is found, and occurrence of a failure in the electric W/P 12 is determined if the inlet and outlet water temperature difference become failure determination value corresponding to a vehicle operation state, or higher. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、内燃機関とラジエータとの間で冷却水を循環させる電動式ウォータポンプを備えた車両用冷却システムの故障診断装置に関する発明である。   The present invention relates to a failure diagnosis device for a cooling system for a vehicle including an electric water pump that circulates cooling water between an internal combustion engine and a radiator.

車両に搭載される内燃機関の冷却システムにおいては、電動式ウォータポンプによって内燃機関とラジエータとの間で冷却水を循環させるようにしたものがある。このような電動式ウォータポンプを備えた冷却システムの故障診断としては、特許文献1(特開2006−336626号公報)に記載されているように、内燃機関の冷却水出口付近に冷却水温センサを1つのみ設け、この冷却水温センサで検出した冷却水温の変化量が所定値を越えたか否かによって、電動式ウォータポンプの故障の有無を判定するようにしたものがある。
特開2006−336626号公報(第8頁、図4等)
In some cooling systems for internal combustion engines mounted on vehicles, cooling water is circulated between the internal combustion engine and the radiator by an electric water pump. As described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2006-336626), as a failure diagnosis of a cooling system provided with such an electric water pump, a cooling water temperature sensor is provided near the cooling water outlet of the internal combustion engine. Only one is provided, and the presence or absence of a failure of the electric water pump is determined depending on whether or not the amount of change in the coolant temperature detected by the coolant temperature sensor exceeds a predetermined value.
Japanese Patent Laying-Open No. 2006-336626 (page 8, FIG. 4 etc.)

しかし、上記特許文献1の故障診断では、1つの冷却水温センサで検出した冷却水温の変化量が所定値を越えた場合に電動式ウォータポンプの故障発生と判定するようにしているため、電動式ウォータポンプが正常に動作しているにも拘らず、ラジエータの冷却風を発生させる電動式冷却ファンの故障等によって冷却水温が異常に上昇して、冷却水温センサで検出した冷却水温の変化量が所定値を越えた場合に、正常に動作している電動式ウォータポンプを故障と誤判定してしまう可能性がある。   However, in the failure diagnosis of the above-mentioned Patent Document 1, it is determined that a failure has occurred in the electric water pump when the amount of change in the cooling water temperature detected by one cooling water temperature sensor exceeds a predetermined value. Despite the normal operation of the water pump, the cooling water temperature rises abnormally due to a failure of the electric cooling fan that generates cooling air for the radiator, and the amount of change in the cooling water temperature detected by the cooling water temperature sensor is When the predetermined value is exceeded, there is a possibility that the electric water pump that is operating normally is erroneously determined as a failure.

本発明は、このような事情を考慮してなされたものであり、従って本発明の目的は、車両用冷却システムの構成部品(例えば、電動式ウォータポンプ、電動式冷却ファン等)の故障診断精度を向上させることができる車両用冷却システムの故障診断装置を提供することにある。   The present invention has been made in consideration of such circumstances, and therefore the object of the present invention is to provide fault diagnosis accuracy for components of a vehicle cooling system (for example, an electric water pump, an electric cooling fan, etc.). It is an object of the present invention to provide a failure diagnosis apparatus for a vehicle cooling system that can improve the efficiency.

上記目的を達成するために、請求項1に係る発明は、内燃機関とラジエータとの間で冷却水を循環させる電動式ウォータポンプを備えた車両用冷却システムの故障診断装置において、内燃機関の冷却水入口又はその付近の冷却水温(以下「入口水温」という)を検出する入口側水温センサと、内燃機関の冷却水出口又はその付近の冷却水温(以下「出口水温」という)を検出する出口側水温センサとを備え、故障診断手段によって出口側水温センサで検出した出口水温検出値と入口側水温センサで検出した入口水温検出値との差又は比を車両運転状態に応じた故障判定値と比較して電動式ウォータポンプの故障の有無を判定するようにしたものである。   In order to achieve the above object, an invention according to claim 1 is directed to a failure diagnosis apparatus for a cooling system for a vehicle including an electric water pump that circulates cooling water between the internal combustion engine and a radiator. An inlet-side water temperature sensor that detects a cooling water temperature at or near the water inlet (hereinafter referred to as “inlet water temperature”), and an outlet side that detects the cooling water outlet of the internal combustion engine or a cooling water temperature near it (hereinafter referred to as “outlet water temperature”). Comparing the difference or ratio between the outlet water temperature detection value detected by the outlet side water temperature sensor and the inlet water temperature detection value detected by the inlet side water temperature sensor by the failure diagnosis means with the failure judgment value according to the vehicle operating condition Thus, it is determined whether or not there is a failure in the electric water pump.

電動式ウォータポンプの故障で冷却水の流量が低下すると、冷却水が内燃機関を通過する時間(冷却水が内燃機関から受熱する時間)が長くなって、内燃機関での冷却水の受熱量が増加するため、内燃機関の入口水温に対して出口水温が異常に高くなって、出口水温と入口水温との差が異常に大きくなる。一方、電動式冷却ファンの故障等によってラジエータでの冷却水の放熱量が変化しても、電動式ウォータポンプが正常に動作して冷却水が正常に循環していれば、内燃機関での冷却水の受熱量はあまり変化しないため、内燃機関の出口水温と入口水温との差はあまり変化しない。   When the flow rate of the cooling water decreases due to a failure of the electric water pump, the time for the cooling water to pass through the internal combustion engine (the time for the cooling water to receive heat from the internal combustion engine) becomes longer, and the amount of heat received by the cooling water in the internal combustion engine becomes smaller. Therefore, the outlet water temperature becomes abnormally high with respect to the inlet water temperature of the internal combustion engine, and the difference between the outlet water temperature and the inlet water temperature becomes abnormally large. On the other hand, even if the amount of heat dissipated in the cooling water in the radiator changes due to a failure of the electric cooling fan, etc., if the electric water pump operates normally and the cooling water circulates normally, the cooling in the internal combustion engine Since the amount of heat received by water does not change much, the difference between the outlet water temperature and the inlet water temperature of the internal combustion engine does not change much.

従って、出口側水温センサで検出した出口水温検出値と入口側水温センサで検出した入口水温検出値との差又は比を故障判定値と比較すれば、電動式ウォータポンプの故障の有無を精度良く判定することができる。しかも、車両運転状態に応じた故障判定値を用いるようにしたので、車両運転状態に応じて内燃機関の発熱量(内燃機関での冷却水の受熱量)が変化して出口水温と入口水温との差が変化するのに対応して、故障判定値を変化させて故障判定値を適正値に設定することができ、電動式ウォータポンプの故障診断精度を更に向上させることができる。   Therefore, if the difference or ratio between the outlet water temperature detection value detected by the outlet side water temperature sensor and the inlet water temperature detection value detected by the inlet side water temperature sensor is compared with the failure judgment value, the presence or absence of failure of the electric water pump can be accurately determined. Can be determined. In addition, since the failure determination value according to the vehicle operating state is used, the amount of heat generated by the internal combustion engine (the amount of heat received by the cooling water in the internal combustion engine) changes according to the vehicle operating state, and the outlet water temperature and the inlet water temperature Corresponding to the change in the difference, the failure determination value can be changed to set the failure determination value to an appropriate value, and the failure diagnosis accuracy of the electric water pump can be further improved.

この場合、請求項2のように、出口水温検出値と入口水温検出値との差が故障判定値以上の場合に電動式ウォータポンプの故障発生と判定するようにすると良い。電動式ウォータポンプの故障で冷却水の流量が低下すると、冷却水が内燃機関を通過する時間(冷却水が内燃機関から受熱する時間)が長くなって、内燃機関の出口水温と入口水温との差が異常に大きくなるため、出口水温検出値と入口水温検出値との差が故障判定値以上の場合には、電動式ウォータポンプの故障発生と判定することができる。   In this case, as in claim 2, when the difference between the detected outlet water temperature value and the detected inlet water temperature value is greater than or equal to the failure determination value, it may be determined that a failure has occurred in the electric water pump. When the flow rate of the cooling water decreases due to a failure of the electric water pump, the time for the cooling water to pass through the internal combustion engine (the time for the cooling water to receive heat from the internal combustion engine) becomes longer, and the outlet water temperature and the inlet water temperature of the internal combustion engine Since the difference becomes abnormally large, when the difference between the outlet water temperature detection value and the inlet water temperature detection value is equal to or greater than the failure determination value, it can be determined that a failure has occurred in the electric water pump.

更に、請求項3のように、出口水温検出値が所定値以上の場合に電動式ウォータポンプの故障発生と判定するようにしても良い。電動式ウォータポンプの故障で冷却水の流量が低下すると、内燃機関の出口水温が異常に高くなるため、出口水温検出値が異常に高い場合にも、電動式ウォータポンプの故障発生と判定することができる。   Further, as in claim 3, when the outlet water temperature detection value is equal to or higher than a predetermined value, it may be determined that the electric water pump has failed. When the flow rate of cooling water decreases due to a failure of the electric water pump, the outlet water temperature of the internal combustion engine becomes abnormally high. Therefore, even when the detected outlet water temperature is abnormally high, it is determined that the electric water pump has failed. Can do.

また、請求項4のように、出口側水温センサで検出した出口水温検出値と入口側水温センサで検出した入口水温検出値との差に基づいて内燃機関での冷却水の実受熱量を実受熱量算出手段により算出すると共に、内燃機関の運転状態から求めた発熱量と冷却水の目標流量とに基づいて内燃機関での冷却水の受熱量を受熱量推定手段により推定し、実受熱量算出手段で算出した冷却水の実受熱量と受熱量推定手段で推定した冷却水の受熱量推定値とを比較して電動式ウォータポンプの故障の有無を判定するようにしても良い。   Further, as in claim 4, the actual amount of heat received by the cooling water in the internal combustion engine is actually calculated based on the difference between the detected outlet water temperature detected by the outlet water temperature sensor and the detected inlet water temperature detected by the inlet water temperature sensor. The amount of heat received is calculated by the heat receiving amount calculating means, and the amount of heat received by the internal combustion engine is estimated by the heat receiving amount estimating means based on the heat generation amount obtained from the operating state of the internal combustion engine and the target flow rate of the cooling water. It may be possible to determine whether or not there is a failure in the electric water pump by comparing the actual amount of received heat of the cooling water calculated by the calculating means and the estimated amount of received heat of the cooling water estimated by the heat receiving amount estimating means.

電動式ウォータポンプの故障で冷却水の流量が低下すると、内燃機関の出口水温と入口水温との差が異常に大きくなるため、出口側水温センサで検出した出口水温検出値と入口側水温センサで検出した入口水温検出値との差から求めた冷却水の実受熱量が異常に大きくなる。従って、冷却水の実受熱量と冷却水の受熱量推定値とを比較すれば、電動式ウォータポンプの故障の有無を精度良く判定することができる。   If the flow rate of cooling water decreases due to a failure of the electric water pump, the difference between the outlet water temperature and the inlet water temperature of the internal combustion engine becomes abnormally large.Therefore, the outlet water temperature detection value detected by the outlet water temperature sensor and the inlet water temperature sensor The actual heat receiving amount of the cooling water obtained from the difference from the detected inlet water temperature detection value becomes abnormally large. Therefore, if the actual amount of heat received by the cooling water is compared with the estimated amount of heat received by the cooling water, it is possible to accurately determine whether or not the electric water pump has failed.

また、請求項5のように、内燃機関の運転状態から求めた発熱量と冷却水の目標流量とに基づいて内燃機関での冷却水の受熱量を受熱量推定手段により推定して、入口側水温センサで検出した入口水温検出値と受熱量推定手段で推定した冷却水の受熱量推定値とに基づいて出口水温を出口水温推定手段により推定し、出口側水温センサで検出した出口水温検出値と出口水温推定手段で推定した出口水温推定値とを比較して電動式ウォータポンプの故障の有無を判定するようにしても良い。   Further, as in claim 5, the amount of heat received by the internal combustion engine is estimated by the heat receiving amount estimating means based on the amount of heat generated from the operating state of the internal combustion engine and the target flow rate of the cooling water, and the inlet side The outlet water temperature estimated value detected by the outlet water temperature sensor is estimated by the outlet water temperature estimating means based on the detected inlet water temperature value detected by the water temperature sensor and the estimated received heat quantity of the cooling water estimated by the received heat quantity estimating means. And the outlet water temperature estimated value estimated by the outlet water temperature estimating means may be compared to determine the presence or absence of a failure of the electric water pump.

電動式ウォータポンプの故障で冷却水の流量が低下すると、内燃機関の出口水温が異常に高くなって、出口側水温センサで検出した出口水温検出値が異常に高くなる。従って、出口水温検出値と出口水温推定値とを比較すれば、電動式ウォータポンプの故障の有無を精度良く判定することができる。   When the flow rate of the cooling water decreases due to a failure of the electric water pump, the outlet water temperature of the internal combustion engine becomes abnormally high, and the detected outlet water temperature detected by the outlet side water temperature sensor becomes abnormally high. Therefore, if the outlet water temperature detection value and the outlet water temperature estimation value are compared, the presence or absence of a failure of the electric water pump can be accurately determined.

或は、請求項6のように、内燃機関の運転状態から求めた発熱量と冷却水の目標流量とに基づいて内燃機関での冷却水の受熱量を受熱量推定手段により推定して、出口側水温センサで検出した出口水温検出値と受熱量推定手段で推定した冷却水の受熱量推定値とに基づいて入口水温を入口水温推定手段により推定し、入口側水温センサで検出した入口水温検出値と入口水温推定手段で推定した入口水温推定値とを比較して電動式ウォータポンプの故障の有無を判定するようにしても良い。   Alternatively, the amount of heat received by the internal combustion engine is estimated by the heat receiving amount estimating means based on the heat generation amount obtained from the operating state of the internal combustion engine and the target flow rate of the cooling water, and the outlet The inlet water temperature is estimated by the inlet water temperature estimation means based on the detected outlet water temperature value detected by the side water temperature sensor and the estimated received heat quantity of the cooling water estimated by the received heat quantity estimation means, and detected by the inlet water temperature sensor. The value may be compared with the estimated inlet water temperature estimated by the inlet water temperature estimating means to determine whether or not the electric water pump has failed.

電動式ウォータポンプの故障で冷却水の流量が低下すると、内燃機関の出口水温が異常に高くなって、出口側水温センサで検出した出口水温検出値が異常に高くなるため、出口水温検出値と冷却水の受熱量推定値とから求めた入口水温推定値が異常に高くなる。従って、入口水温検出値と入口水温推定値とを比較すれば、電動式ウォータポンプの故障の有無を精度良く判定することができる。   If the flow rate of cooling water decreases due to a failure of the electric water pump, the outlet water temperature of the internal combustion engine becomes abnormally high and the detected outlet water temperature detected by the outlet water temperature sensor becomes abnormally high. The estimated inlet water temperature obtained from the estimated amount of heat received from the cooling water becomes abnormally high. Therefore, if the detected inlet water temperature is compared with the estimated inlet water temperature, it is possible to accurately determine whether or not the electric water pump has failed.

また、請求項7のように、内燃機関とラジエータとの間で冷却水を循環させる電動式ウォータポンプと、ラジエータの冷却風を発生させる電動式冷却ファンと、ラジエータに冷却水を循環させる流路とラジエータに冷却水を循環させないバイパス流路とを切り換える流路切換バルブとを備えた車両用冷却システムの故障診断装置において、内燃機関の冷却水入口又はその付近の冷却水温(以下「入口水温」という)を検出する入口側水温センサと、内燃機関の冷却水出口又はその付近の冷却水温(以下「出口水温」という)を検出する出口側水温センサとを備え、ラジエータでの冷却水の放熱量を決定する要因に基づいて該ラジエータでの冷却水の放熱量を放熱量推定手段により推定して、出口側水温センサで検出した出口水温検出値と放熱量推定手段で推定した冷却水の放熱量推定値とに基づいて入口水温を入口水温推定手段により推定し、入口側水温センサで検出した入口水温検出値と入口水温推定手段で推定した入口水温推定値とを比較して電動式冷却ファン又は流路切換バルブの故障の有無を判定するようにしても良い。   Further, as in claim 7, an electric water pump for circulating cooling water between the internal combustion engine and the radiator, an electric cooling fan for generating cooling air for the radiator, and a flow path for circulating the cooling water to the radiator And a cooling system for a vehicle cooling system having a flow path switching valve that switches between a bypass flow path that does not circulate cooling water in the radiator, a cooling water temperature at or near the cooling water inlet of the internal combustion engine (hereinafter referred to as "inlet water temperature") And an outlet-side water temperature sensor for detecting the cooling water outlet of the internal combustion engine or a cooling water temperature in the vicinity thereof (hereinafter referred to as “outlet water temperature”), and the amount of heat dissipated in the radiator. The amount of heat radiation of the cooling water in the radiator is estimated by the heat radiation amount estimation means based on the factor that determines the outlet water temperature detection value detected by the outlet water temperature sensor and the heat radiation. The inlet water temperature is estimated by the inlet water temperature estimating means based on the estimated heat dissipation amount of the cooling water estimated by the estimating means, and the inlet water temperature detected value detected by the inlet water temperature sensor and the inlet water temperature estimated value estimated by the inlet water temperature estimating means. And the presence or absence of failure of the electric cooling fan or the flow path switching valve may be determined.

電動式冷却ファンの故障で冷却風の風量が低下したり、或は、流路切換バルブの故障でラジエータに循環する冷却水の流量が低下すると、ラジエータでの冷却水の放熱量が減少するため、内燃機関の入口温度が異常に高くなって、入口側水温センサで検出した入口水温検出値が異常に高くなる。従って、入口水温検出値と入口水温推定値とを比較すれば、電動式冷却ファン又は流路切換バルブの故障の有無を精度良く判定することができる。   If the flow rate of the cooling air decreases due to a failure of the electric cooling fan, or if the flow rate of the cooling water circulating to the radiator decreases due to a failure of the flow path switching valve, the heat dissipation amount of the cooling water at the radiator decreases. The inlet temperature of the internal combustion engine becomes abnormally high, and the detected inlet water temperature detected by the inlet side water temperature sensor becomes abnormally high. Therefore, if the detected inlet water temperature is compared with the estimated inlet water temperature, it is possible to accurately determine whether or not the electric cooling fan or the flow path switching valve has failed.

或は、請求項8のように、出口側水温センサで検出した出口水温検出値と入口側水温センサで検出した入口水温検出値との差に基づいてラジエータでの冷却水の実放熱量を実放熱量算出手段により算出すると共に、ラジエータでの冷却水の放熱量を決定する要因に基づいて該ラジエータでの冷却水の放熱量を放熱量推定手段により推定し、実放熱量算出手段で算出した冷却水の実放熱量と放熱量推定手段で推定した冷却水の放熱量推定値とを比較して電動式冷却ファン又は流路切換バルブの故障の有無を判定するようにしても良い。   Alternatively, as in claim 8, the actual heat dissipation amount of the cooling water at the radiator is calculated based on the difference between the detected outlet water temperature detected by the outlet water temperature sensor and the detected inlet water temperature by the inlet water temperature sensor. Calculated by the heat dissipation amount calculation means, and based on the factors that determine the heat dissipation amount of the cooling water in the radiator, the heat dissipation amount of the cooling water in the radiator is estimated by the heat dissipation amount estimation means, and calculated by the actual heat dissipation amount calculation means. It is also possible to determine whether or not there is a failure in the electric cooling fan or the flow path switching valve by comparing the actual heat dissipation amount of the cooling water with the estimated heat dissipation amount estimated by the heat dissipation amount estimation means.

電動式冷却ファンの故障で冷却風の風量が低下したり、或は、流路切換バルブの故障でラジエータに循環する冷却水の流量が低下すると、ラジエータでの冷却水の放熱量が減少するため、出口側水温センサで検出した出口水温検出値と入口側水温センサで検出した入口水温検出値との差から求めたラジエータでの冷却水の実放熱量が異常に小さくなる。従って、冷却水の実放熱量と冷却水の放熱量推定値とを比較すれば、電動式冷却ファン又は流路切換バルブの故障の有無を精度良く判定することができる。   If the flow rate of the cooling air decreases due to a failure of the electric cooling fan, or if the flow rate of the cooling water circulating to the radiator decreases due to a failure of the flow path switching valve, the heat dissipation amount of the cooling water at the radiator decreases. The actual heat release amount of the cooling water in the radiator, which is obtained from the difference between the detected outlet water temperature detected by the outlet water temperature sensor and the detected inlet water temperature detected by the inlet water temperature sensor, becomes abnormally small. Therefore, if the actual heat dissipation amount of the cooling water is compared with the estimated value of the heat dissipation amount of the cooling water, it is possible to accurately determine whether or not the electric cooling fan or the flow path switching valve has failed.

ところで、電動式ウォータポンプを備えた冷却システムでは、内燃機関の早期暖機等のために電動式ウォータポンプの停止要求が発生することがある。しかし、電動式ウォータポンプの停止要求が発生しているときには、電動式ウォータポンプが停止要求に伴って正常に停止している状態と、電動式ウォータポンプの故障によって停止している状態とを区別して判定することができない。   By the way, in a cooling system equipped with an electric water pump, a request to stop the electric water pump may occur for early warming up of the internal combustion engine. However, when an electric water pump stop request is generated, there is a distinction between a state in which the electric water pump is stopped normally in response to the stop request and a state in which the electric water pump is stopped due to a failure of the electric water pump. It cannot be judged separately.

また、電動式ウォータポンプが停止して冷却水の循環が停止すると、ラジエータでの冷却水の放熱量が減少した状態となり、電動式冷却ファンや流路切換バルブの故障によってラジエータでの冷却水の放熱量が減少した状態と似たような状態となるため、電動式冷却ファンや流路切換バルブの故障の有無を精度良く判定することは困難である。   Also, when the electric water pump stops and the circulation of the cooling water stops, the amount of heat dissipated in the cooling water in the radiator decreases, and the cooling water in the radiator is lost due to a failure of the electric cooling fan or the flow path switching valve. Since the state is similar to the state in which the amount of heat radiation is reduced, it is difficult to accurately determine whether or not the electric cooling fan or the flow path switching valve has failed.

そこで、上記請求項1〜8に記載の故障診断装置においては、請求項9のように、電動式ウォータポンプの停止要求が発生しているときに故障診断手段による故障診断を故障診断禁止手段により禁止するようにすると良い。このようにすれば、電動式ウォータポンプの停止要求が発生しているときには、電動式ウォータポンプの故障診断や電動式冷却ファン又は流路切換バルブの故障診断を禁止して、故障診断精度の低下を未然に防止することができる。   Therefore, in the failure diagnosis apparatus according to any one of claims 1 to 8, the failure diagnosis by the failure diagnosis means is performed by the failure diagnosis prohibition means when a stop request for the electric water pump is generated as in claim 9. It is better to ban. In this way, when a stop request for the electric water pump is generated, the failure diagnosis of the electric water pump and the failure diagnosis of the electric cooling fan or the flow path switching valve are prohibited, and the failure diagnosis accuracy decreases. Can be prevented in advance.

しかしながら、電動式ウォータポンプを備えた冷却システムでは、内燃機関の早期暖機等のために電動式ウォータポンプの停止要求が発生しているにも拘らず、電動式ウォータポンプが停止不能になって作動し続ける故障が発生する可能性もあり、このような故障が発生すると、内燃機関の早期暖機が遅れて、燃費や排気エミッションが悪化する。   However, in a cooling system equipped with an electric water pump, the electric water pump cannot be stopped despite a request for stopping the electric water pump due to early warming up of the internal combustion engine or the like. There is a possibility that a failure that continues to operate will occur, and if such a failure occurs, the early warm-up of the internal combustion engine will be delayed, and fuel consumption and exhaust emissions will deteriorate.

そこで、請求項10のように、電動式ウォータポンプの停止要求が発生しているときに出口側水温センサで検出した出口水温検出値と入口側水温センサで検出した入口水温検出値との差が車両運転状態に応じた判定値以下の場合に電動式ウォータポンプが停止不能になって作動し続ける故障発生と判定するようにしても良い。   Therefore, as in claim 10, when the electric water pump stop request is generated, the difference between the detected outlet water temperature detected by the outlet water temperature sensor and the detected inlet water temperature detected by the inlet water temperature sensor is If the electric water pump cannot be stopped when it is equal to or less than a determination value corresponding to the vehicle operating state, it may be determined that a failure has occurred and continues to operate.

電動式ウォータポンプが正常に停止されて冷却水の流量が低下すると、内燃機関での冷却水の受熱量が増加するため、内燃機関の入口水温に対して出口水温が高くなって、出口水温と入口水温との差が大きくなるはずである。従って、電動式ウォータポンプの停止要求が発生しているときに、出口側水温センサで検出した出口水温検出値と入口側水温センサで検出した入口水温検出値との差が判定値以下の場合には、電動式ウォータポンプが停止不能になって作動し続ける故障発生と判定することができる。   When the electric water pump is stopped normally and the flow rate of the cooling water decreases, the amount of heat received by the cooling water in the internal combustion engine increases, so the outlet water temperature becomes higher than the inlet water temperature of the internal combustion engine, The difference from the inlet water temperature should be large. Therefore, when a request to stop the electric water pump is generated, when the difference between the detected outlet water temperature detected by the outlet-side water temperature sensor and the detected inlet water temperature detected by the inlet-side water temperature sensor is equal to or smaller than the determination value. Can be determined as the occurrence of a failure in which the electric water pump cannot be stopped and continues to operate.

或は、請求項11のように、電動式ウォータポンプの停止要求が発生しているときに出口側水温センサで検出した出口水温検出値の変化量が車両運転状態に応じた判定値以下の場合に電動式ウォータポンプが停止不能になって作動し続ける故障発生と判定するようにしても良い。   Alternatively, as in claim 11, when the change amount of the outlet water temperature detected value detected by the outlet water temperature sensor when the electric water pump stop request is generated is equal to or less than the determination value according to the vehicle operating state In addition, it may be determined that the electric water pump is unable to stop and continues to operate.

電動式ウォータポンプが正常に停止されて冷却水の流量が低下すると、内燃機関での冷却水の受熱量が増加するため、内燃機関の出口水温が上昇するはずである。従って、電動式ウォータポンプの停止要求が発生しているときに、出口側水温センサで検出した出口水温検出値の変化量が判定値以下の場合には、電動式ウォータポンプが停止不能になって作動し続ける故障発生と判定することができる。   When the electric water pump is normally stopped and the flow rate of the cooling water is reduced, the amount of heat received by the cooling water in the internal combustion engine is increased, so that the outlet water temperature of the internal combustion engine should be increased. Therefore, when a request for stopping the electric water pump is generated, if the amount of change in the outlet water temperature detection value detected by the outlet water temperature sensor is equal to or less than the determination value, the electric water pump cannot be stopped. It can be determined that the failure continues to operate.

以下、本発明を実施するための最良の形態を具体化した幾つかの実施例を説明する。   Several embodiments embodying the best mode for carrying out the present invention will be described below.

本発明の実施例1を図1乃至図4に基づいて説明する。
まず、図1に基づいてエンジン冷却システム全体の概略構成を説明する。
内燃機関であるエンジン11の冷却水通路(ウォータジャケット)の入口付近には、電動式ウォータポンプ(以下「電動式W/P」と表記する)12が設けられている。このエンジン11の冷却水通路の出口とラジエータ13の入口とが冷却水循環パイプ14によって接続され、ラジエータ13の出口と電動式W/P12の吸入口とが冷却水循環パイプ15によって接続されている。これにより、エンジン11の冷却水通路→冷却水循環パイプ14→ラジエータ13→冷却水循環パイプ15→電動式W/P12→エンジン11の冷却水通路の経路で冷却水が循環する冷却水循環回路16が構成されている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine cooling system will be described with reference to FIG.
An electric water pump (hereinafter referred to as “electric W / P”) 12 is provided in the vicinity of the inlet of the cooling water passage (water jacket) of the engine 11 which is an internal combustion engine. The outlet of the cooling water passage of the engine 11 and the inlet of the radiator 13 are connected by a cooling water circulation pipe 14, and the outlet of the radiator 13 and the intake port of the electric W / P 12 are connected by a cooling water circulation pipe 15. As a result, a cooling water circulation circuit 16 in which the cooling water circulates in the path of the cooling water passage of the engine 11 → the cooling water circulation pipe 14 → the radiator 13 → the cooling water circulation pipe 15 → the electric W / P 12 → the cooling water passage of the engine 11 is configured. ing.

この冷却水循環回路16には、ラジエータ13と並列にバイパス流路17が設けられ、このバイパス流路17の両端が冷却水循環パイプ14,15の途中に接続されている。バイパス流路17と冷却水循環パイプ15との接続部付近には、サーモスタットバルブ18(流路切換バルブ)が設けられ、冷却水温が所定温度(例えば暖機完了に相当する温度)よりも低いときには、サーモスタットバルブ18が閉弁して、エンジン11からの冷却水をバイパス流路17に流して循環させる流路に切り換わり、冷却水温が所定温度以上のときには、サーモスタットバルブ18が開弁して、エンジン11からの冷却水をラジエータ13に流して循環させる流路に切り換わるようになっている。尚、サーモスタットバルブ18は、PTCヒータ等のヒータを内蔵して冷却水温とは無関係に開閉制御できるものを用いても良い。   The cooling water circulation circuit 16 is provided with a bypass flow path 17 in parallel with the radiator 13, and both ends of the bypass flow path 17 are connected to the cooling water circulation pipes 14 and 15. A thermostat valve 18 (flow path switching valve) is provided in the vicinity of the connection portion between the bypass flow path 17 and the cooling water circulation pipe 15, and when the cooling water temperature is lower than a predetermined temperature (for example, a temperature corresponding to the completion of warm-up), The thermostat valve 18 is closed to switch to a flow path for circulating the coolant from the engine 11 through the bypass flow path 17, and when the coolant temperature is equal to or higher than a predetermined temperature, the thermostat valve 18 is opened and the engine 11 is switched to a flow path for circulating the coolant from the radiator 11 through the radiator 13. Note that the thermostat valve 18 may include a built-in heater such as a PTC heater that can be opened and closed regardless of the cooling water temperature.

ラジエータ13の近傍には、冷却風を発生させる電動式冷却ファン19が配置されている。また、エンジン11の冷却水通路の入口又はその付近には、該冷却水通路の入口又はその付近の冷却水温(以下「入口水温」という)を検出する入口側水温センサ20が配置され、エンジン11の冷却水通路の出口又はその付近には、該冷却水通路の出口又はその付近の冷却水温(以下「出口水温」という)を検出する出口側水温センサ21が配置されている。   An electric cooling fan 19 that generates cooling air is disposed in the vicinity of the radiator 13. An inlet-side water temperature sensor 20 that detects a coolant temperature at or near the inlet of the cooling water passage (hereinafter referred to as “inlet water temperature”) is disposed at or near the inlet of the cooling water passage of the engine 11. An outlet-side water temperature sensor 21 that detects a cooling water temperature at or near the outlet of the cooling water passage (hereinafter referred to as “exit water temperature”) is disposed at or near the outlet of the cooling water passage.

更に、冷却水循環回路16には、暖房用の温水回路22がエンジン11に対して並列に接続されている。この温水回路22の途中には、暖房用のヒータコア23が設けられ、このヒータコア23の近傍に、温風を発生させるヒータブロワ24が配置されている。   Further, a heating hot water circuit 22 is connected to the cooling water circulation circuit 16 in parallel to the engine 11. A heater core 23 for heating is provided in the middle of the hot water circuit 22, and a heater blower 24 that generates hot air is disposed in the vicinity of the heater core 23.

また、エンジン11のシリンダブロックには、クランク軸が所定クランク角回転する毎にパルス信号を出力するクランク角センサ25が取り付けられ、このクランク角センサ25の出力信号に基づいてクランク角やエンジン回転速度が検出される。また、エアフローメータ等の吸入空気量センサ26によって吸入空気量が検出され、車速センサ27によって車速が検出される。   The cylinder block of the engine 11 is provided with a crank angle sensor 25 that outputs a pulse signal every time the crankshaft rotates a predetermined crank angle. Based on the output signal of the crank angle sensor 25, the crank angle and the engine rotational speed are attached. Is detected. Further, the intake air amount sensor 26 such as an air flow meter detects the intake air amount, and the vehicle speed sensor 27 detects the vehicle speed.

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)28に入力される。このECU28は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁(図示せず)の燃料噴射量や点火プラグ(図示せず)の点火時期を制御する。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 28. The ECU 28 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium) to thereby control a fuel injection valve (not shown) according to the engine operating state. The fuel injection amount and the ignition timing of a spark plug (not shown) are controlled.

また、ECU28は、図示しないウォータポンプ制御ルーチンを実行することで、図2に示す目標冷却水温のマップを参照して、エンジン運転状態(例えばエンジン回転速度と吸入空気量)に応じた目標冷却水温を算出し、出口側水温センサ21で検出した出口水温検出値を目標冷却水温に一致させるように冷却水の目標流量を算出し、この冷却水の目標流量を実現するように電動式W/P12を制御する。   In addition, the ECU 28 executes a water pump control routine (not shown), and refers to the target cooling water temperature map shown in FIG. 2 so that the target cooling water temperature corresponding to the engine operating state (for example, the engine rotation speed and the intake air amount) is obtained. The target flow rate of the cooling water is calculated so that the detected outlet water temperature value detected by the outlet side water temperature sensor 21 matches the target cooling water temperature, and the electric W / P12 is realized so as to realize the target flow rate of the cooling water. To control.

更に、本実施例1では、ECU28によって後述する図4の故障診断ルーチンを実行することで、電動式W/P12の故障診断を次のようにして行う。出口側水温センサ21で検出した出口水温検出値と、入口側水温センサ20で検出した入口水温検出値との差を算出することで、出入口水温差(=出口水温検出値−入口水温検出値)を求め、この出入口水温差を車両運転状態に応じた故障判定値と比較して電動式W/P12の故障の有無を判定する。   Further, in the first embodiment, the failure diagnosis routine of FIG. 4 to be described later is executed by the ECU 28, whereby the failure diagnosis of the electric W / P 12 is performed as follows. By calculating the difference between the outlet water temperature detection value detected by the outlet side water temperature sensor 21 and the inlet water temperature detection value detected by the inlet side water temperature sensor 20, the difference between the inlet and outlet water temperature (= exit water temperature detection value−inlet water temperature detection value) The difference between the inlet / outlet water temperature and the failure determination value according to the vehicle operating state is compared to determine whether or not the electric W / P 12 has failed.

例えば、図3に示すように、電動式W/P12の故障で冷却水の実流量が低下すると、冷却水がエンジン11を通過する時間(冷却水がエンジン11から受熱する時間)が長くなって、エンジン11での冷却水の受熱量が増加するため、エンジン11の入口水温に対して出口水温が異常に高くなって、出口水温と入口水温との差が異常に大きくなる。一方、電動式冷却ファン19の故障等によってラジエータ13での冷却水の放熱量が変化しても、電動式W/P12が正常に動作して冷却水が正常に循環していれば、エンジン11での冷却水の受熱量はあまり変化しないため、エンジン11の出口水温と入口水温との差はあまり変化しない。従って、出入口水温差(=出口水温検出値−入口水温検出値)が故障判定値以上になった場合には、電動式W/P12の故障発生と判定することができる。   For example, as shown in FIG. 3, when the actual flow rate of the cooling water decreases due to the failure of the electric W / P 12, the time for the cooling water to pass through the engine 11 (the time for the cooling water to receive heat from the engine 11) becomes longer. Since the amount of heat received by the cooling water in the engine 11 increases, the outlet water temperature becomes abnormally high with respect to the inlet water temperature of the engine 11, and the difference between the outlet water temperature and the inlet water temperature becomes abnormally large. On the other hand, even if the heat radiation amount of the cooling water in the radiator 13 changes due to a failure of the electric cooling fan 19 or the like, if the electric W / P 12 operates normally and the cooling water circulates normally, the engine 11 Since the amount of heat received by the cooling water does not change much, the difference between the outlet water temperature of the engine 11 and the inlet water temperature does not change much. Therefore, when the inlet / outlet water temperature difference (= outlet water temperature detected value−inlet water temperature detected value) is equal to or greater than the failure determination value, it can be determined that the electric W / P 12 has failed.

また、電動式W/P12の故障で冷却水の流量が低下すると、エンジン11の出口水温が異常に高くなるため、出口水温検出値が許容温度範囲の上限値以上になった場合にも、電動式W/P12の故障発生と判定することができる。   In addition, if the flow rate of the cooling water decreases due to a failure of the electric W / P 12, the outlet water temperature of the engine 11 becomes abnormally high, so that even when the outlet water temperature detection value is equal to or higher than the upper limit value of the allowable temperature range, It can be determined that a failure has occurred in Formula W / P12.

以下、本実施例1でECU28が実行する図4の故障診断ルーチンの処理内容を説明する。図4に示す故障診断ルーチンは、ECU28の電源オン中に所定周期で繰り返し実行され、特許請求の範囲でいう故障診断手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、エンジン11の早期暖機等のために電動式W/P12の停止要求が発生しているか否かを判定し、電動式W/P12の停止要求が発生していると判定された場合には、電動式W/P12が停止要求に伴って正常に停止している状態と、電動式W/P12の故障によって停止している状態とを区別して判定することができないと判断して、ステップ102以降の処理を行うことなく、本ルーチンを終了する。これにより、電動式W/P12の故障診断が禁止される。この機能が特許請求の範囲でいう故障診断禁止手段としての役割を果たす。   The processing contents of the failure diagnosis routine of FIG. 4 executed by the ECU 28 in the first embodiment will be described below. The failure diagnosis routine shown in FIG. 4 is repeatedly executed at a predetermined cycle while the ECU 28 is turned on, and serves as failure diagnosis means in the claims. When this routine is started, first, at step 101, it is determined whether or not a stop request for the electric W / P 12 is generated for the early warming up of the engine 11, and the electric W / P 12 is stopped. When it is determined that the request is generated, the state where the electric W / P 12 is normally stopped in response to the stop request is distinguished from the state where the electric W / P 12 is stopped due to the failure of the electric W / P 12. It is determined that the determination cannot be made separately, and this routine is terminated without performing the processing from step 102 onward. Thereby, failure diagnosis of the electric W / P 12 is prohibited. This function serves as failure diagnosis prohibition means in the claims.

一方、上記ステップ101で、電動式W/P12の停止要求が発生していないと判定された場合には、ステップ102に進み、入口側水温センサ20と出口側水温センサ21が正常に動作するか否かを、車両に搭載した自己診断機能の診断結果に基づいて判定し、いずれかの故障が検出されていれば、ステップ103に進み、入口側水温センサ20又は出口側水温センサ21の故障と判定して、本ルーチンを終了する。   On the other hand, if it is determined in step 101 that a request for stopping the electric W / P 12 has not occurred, the process proceeds to step 102 where the inlet-side water temperature sensor 20 and the outlet-side water temperature sensor 21 operate normally. Is determined based on the diagnosis result of the self-diagnosis function mounted on the vehicle, and if any failure is detected, the process proceeds to step 103 and the failure of the inlet-side water temperature sensor 20 or the outlet-side water temperature sensor 21 is detected. Determination is made and this routine is terminated.

一方、上記ステップ102で、入口側水温センサ20と出口側水温センサ21が両方とも正常であることが確認されれば、ステップ104以降の故障診断に関する処理を次のようにして実行する。   On the other hand, if it is confirmed in step 102 that both the inlet-side water temperature sensor 20 and the outlet-side water temperature sensor 21 are normal, processing relating to failure diagnosis after step 104 is executed as follows.

まず、ステップ104で、出口側水温センサ21で検出した出口水温検出値と、入口側水温センサ20で検出した入口水温検出値との差を算出することで、出入口水温差を求める。
出入口水温差=出口水温検出値−入口水温検出値
First, in step 104, the difference between the detected outlet water temperature detected by the outlet-side water temperature sensor 21 and the detected inlet water temperature detected by the inlet-side water temperature sensor 20 is calculated to obtain the inlet / outlet water temperature difference.
Inlet / outlet water temperature difference = outlet water temperature detection value-inlet water temperature detection value

この後、ステップ105に進み、エンジン運転状態(例えば吸入空気量又は燃料噴射量)に基づいてエンジン11の発熱量をマップ又は数式等により算出すると共に、エンジン運転状態(例えばエンジン回転速度と吸入空気量)に応じた目標冷却水温(図2参照)から算出した冷却水の目標流量を読み込み、これらのエンジン11の発熱量と冷却水の目標流量とに基づいてエンジン11での冷却水の受熱量推定値をマップ又は数式等により算出する。尚、車速(走行風)や外気温に応じてエンジン11の放熱量が変化してエンジン11での冷却水の受熱量が変化するため、車速や外気温に応じてエンジン11での冷却水の受熱量推定値を補正するようにしても良い。   Thereafter, the routine proceeds to step 105, where the heat generation amount of the engine 11 is calculated by a map or a mathematical formula based on the engine operating state (for example, intake air amount or fuel injection amount), and the engine operating state (for example, engine speed and intake air). The target flow rate of the coolant calculated from the target coolant temperature (see FIG. 2) according to the amount) is read, and the amount of heat received by the engine 11 based on the heat generation amount of the engine 11 and the target flow rate of the coolant. The estimated value is calculated by a map or a mathematical formula. In addition, since the amount of heat radiation of the engine 11 changes according to the vehicle speed (running wind) and the outside air temperature, and the amount of cooling water received by the engine 11 changes, the cooling water in the engine 11 changes according to the vehicle speed and the outside air temperature. The estimated amount of heat received may be corrected.

この後、ステップ106に進み、エンジン11での冷却水の受熱量推定値と、冷却水の目標流量と、冷却水の物性値(例えば比熱と密度)とに基づいてエンジン11での冷却水温の上昇分を算出(推定)した後、ステップ107に進み、エンジン11での冷却水温の上昇分の推定値よりも少し大きい値を故障判定値として設定する。これらのステップ105〜107の処理により、車両運転状態(エンジン回転速度、吸入空気量、車速、外気温等)に応じた故障判定値を設定する。   Thereafter, the process proceeds to step 106, where the cooling water temperature of the engine 11 is determined based on the estimated amount of heat received by the cooling water in the engine 11, the target flow rate of the cooling water, and the physical properties of the cooling water (for example, specific heat and density). After calculating (estimating) the increase, the process proceeds to step 107, and a value slightly larger than the estimated value of the increase in the coolant temperature in the engine 11 is set as the failure determination value. By these processes in steps 105 to 107, a failure determination value corresponding to the vehicle operating state (engine speed, intake air amount, vehicle speed, outside temperature, etc.) is set.

この後、ステップ108に進み、出入口水温差(=出口水温検出値−入口水温検出値)が故障判定値以上であるか否かを判定する。その結果、出入口水温差が故障判定値以上であると判定された場合には、ステップ110に進み、電動式W/P12の故障発生と判定して、故障時の処理を行った後、本ルーチンを終了する。故障時の処理では、例えば、故障フラグをONにセットし、運転席のインストルメントパネルに設けられた警告ランプ29を点灯したり、或は、運転席のインストルメントパネルの警告表示部(図示せず)に警告表示して運転者に警告すると共に、その異常情報(異常コード等)をECU28のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリ(ECU28の電源オフ中でも記憶データを保持する書き換え可能なメモリ)に記憶する。   Thereafter, the process proceeds to step 108, where it is determined whether the inlet / outlet water temperature difference (= exit water temperature detected value−inlet water temperature detected value) is equal to or greater than the failure determination value. As a result, if it is determined that the water temperature difference at the inlet / outlet is equal to or greater than the failure determination value, the routine proceeds to step 110, where it is determined that a failure has occurred in the electric W / P 12, and processing at the time of failure is performed. Exit. In the processing at the time of failure, for example, the failure flag is set to ON and the warning lamp 29 provided on the driver's seat instrument panel is turned on, or the warning display section (not shown) of the driver's seat instrument panel is shown. The warning information is displayed to the driver, and the abnormality information (abnormality code, etc.) is stored in the rewritable nonvolatile memory (not shown) of the ECU 28 such as the backup RAM (not shown), and the stored data is retained even when the ECU 28 is turned off. Stored in a rewritable memory.

一方、上記ステップ108で、出入口水温差が故障判定値よりも小さいと判定された場合には、ステップ109に進み、出口側水温センサ21で検出した出口水温検出値が所定値以上であるか否かを判定する。この所定値は、予め設定した固定値(例えば、目標冷却水温の最大値よりも少し高い値)に設定しても良いし、或は、エンジン運転状態(例えばエンジン回転速度と吸入空気量)に応じた目標冷却水温よりも少し高い値に設定しても良い。   On the other hand, if it is determined in step 108 that the inlet / outlet water temperature difference is smaller than the failure determination value, the process proceeds to step 109, and whether or not the detected outlet water temperature value detected by the outlet-side water temperature sensor 21 is equal to or greater than a predetermined value. Determine whether. This predetermined value may be set to a preset fixed value (for example, a value slightly higher than the maximum value of the target cooling water temperature), or the engine operating state (for example, engine speed and intake air amount). You may set to the value a little higher than the target cooling water temperature according to.

このステップ110で、出口水温検出値が所定値以上であると判定された場合には、ステップ110に進み、電動式W/P12の故障発生と判定して、故障時の処理を行った後、本ルーチンを終了する。   If it is determined in step 110 that the outlet water temperature detection value is equal to or greater than the predetermined value, the process proceeds to step 110, where it is determined that the electric W / P 12 has failed, and processing at the time of failure is performed. This routine ends.

これに対して、上記ステップ108で出入口水温差が故障判定値よりも小さいと判定され、且つ、上記ステップ109で出口水温検出値が所定値よりも低いと判定された場合には、ステップ111に進み、電動式W/P12の故障無し(正常)と判定して、本ルーチンを終了する。   On the other hand, if it is determined in step 108 that the inlet / outlet water temperature difference is smaller than the failure determination value, and it is determined in step 109 that the outlet water temperature detection value is lower than the predetermined value, step 111 is performed. Then, it is determined that there is no failure (normal) of the electric W / P 12, and this routine is terminated.

以上説明した本実施例1では、電動式W/P12の故障で冷却水の流量が低下すると、エンジン11での冷却水の受熱量が増加するため、エンジン11の出口水温と入口水温との差が異常に大きくなるが、電動式冷却ファン19の故障等によってラジエータ13での冷却水の放熱量が変化しても、エンジン11の出口水温と入口水温との差はあまり変化しないことに着目して、出入口水温差(出口側水温センサ21で検出した出口水温検出値と入口側水温センサ20で検出した入口水温検出値との差)を故障判定値と比較して電動式W/P12の故障の有無を判定するようにしたので、電動式W/P12の故障診断精度を向上させることができる。   In the first embodiment described above, when the flow rate of the cooling water decreases due to the failure of the electric W / P 12, the amount of heat received by the cooling water in the engine 11 increases, so the difference between the outlet water temperature of the engine 11 and the inlet water temperature. Note that the difference between the outlet water temperature of the engine 11 and the inlet water temperature does not change much even if the amount of heat dissipated in the radiator 13 changes due to a failure of the electric cooling fan 19 or the like. Thus, the electric W / P 12 malfunctions by comparing the inlet / outlet water temperature difference (the difference between the detected outlet water temperature detected by the outlet water temperature sensor 21 and the detected inlet water temperature detected by the inlet water temperature sensor 20) with the failure determination value. Therefore, the failure diagnosis accuracy of the electric W / P 12 can be improved.

しかも、車両運転状態に応じた故障判定値を用いるようにしたので、車両運転状態に応じてエンジン11での冷却水の受熱量が変化して出口水温と入口水温との差が変化するのに対応して、故障判定値を変化させて故障判定値を適正値に設定することができ、電動式W/P12の故障診断精度を更に向上させることができる。   In addition, since the failure determination value according to the vehicle operating state is used, the amount of cooling water received by the engine 11 changes according to the vehicle operating state, and the difference between the outlet water temperature and the inlet water temperature changes. Correspondingly, the failure determination value can be changed to set the failure determination value to an appropriate value, and the failure diagnosis accuracy of the electric W / P 12 can be further improved.

また、本実施例1では、電動式W/P12の停止要求が発生していると判定された場合には、電動式W/P12が停止要求に伴って正常に停止している状態と、電動式W/P12の故障によって停止している状態とを区別して判定することができないと判断して、電動式W/P12の故障診断を禁止するようにしたので、電動式W/P12の故障診断精度の低下を未然に防止することができる。   In the first embodiment, when it is determined that a stop request for the electric W / P 12 is generated, the electric W / P 12 is normally stopped in accordance with the stop request, Since it is determined that it is not possible to distinguish and determine the state stopped due to the failure of the expression W / P12 and the failure diagnosis of the electric W / P12 is prohibited, the failure diagnosis of the electric W / P12 is performed. A decrease in accuracy can be prevented in advance.

尚、上記実施例1では、出口水温検出値と入口水温検出値との差を故障判定値と比較して電動式W/P12の故障の有無を判定するようにしたが、出口水温検出値と入口水温検出値との比を故障判定値と比較して電動式W/P12の故障の有無を判定するようにしても良い。   In the first embodiment, the difference between the outlet water temperature detection value and the inlet water temperature detection value is compared with the failure determination value to determine whether or not the electric W / P 12 has failed. The presence / absence of a failure in the electric W / P 12 may be determined by comparing the ratio with the detected inlet water temperature with the failure determination value.

次に、図5及び図6を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、ECU28によって後述する図6の故障診断ルーチンを実行することで、出口側水温センサ21で検出した出口水温検出値と入口側水温センサ20で検出した入口水温検出値との差(出入口水温差)に基づいてエンジン11での冷却水の実受熱量を算出すると共に、エンジン運転状態から求めた発熱量と冷却水の目標流量とに基づいてエンジン11での冷却水の受熱量推定値を算出し、これらの冷却水の実受熱量と冷却水の受熱量推定値との差を所定の故障判定値と比較して電動式W/P12の故障の有無を判定する。   In the second embodiment, the ECU 28 executes a failure diagnosis routine of FIG. 6 to be described later, so that the difference between the detected outlet water temperature detected by the outlet water temperature sensor 21 and the detected inlet water temperature detected by the inlet water temperature sensor 20 is different. The actual amount of cooling water received by the engine 11 is calculated based on the (inlet / outlet water temperature difference), and the amount of cooling water received by the engine 11 based on the calorific value obtained from the engine operating state and the target flow rate of the cooling water. An estimated value is calculated, and the difference between the actual amount of heat received from the cooling water and the estimated amount of heat received from the cooling water is compared with a predetermined failure determination value to determine whether or not the electric W / P 12 has failed.

例えば、図5に示すように、電動式W/P12の故障で冷却水の実流量が低下すると、エンジン11の出口水温と入口水温との差が異常に大きくなるため、出入口水温差から求めた冷却水の実受熱量が異常に大きくなる。従って、冷却水の実受熱量と冷却水の受熱量推定値との差が故障判定値以上になった場合には、電動式W/P12の故障発生と判定することができる。   For example, as shown in FIG. 5, when the actual flow rate of the cooling water decreases due to a failure of the electric W / P 12, the difference between the outlet water temperature and the inlet water temperature of the engine 11 becomes abnormally large. The actual heat received by the cooling water becomes abnormally large. Therefore, when the difference between the actual amount of heat received by the cooling water and the estimated amount of heat received by the cooling water is equal to or greater than the failure determination value, it can be determined that the electric W / P 12 has failed.

以下、本実施例2でECU28が実行する図6の故障診断ルーチンの処理内容を説明する。図6に示す故障診断ルーチンでは、ステップ201で、電動式W/P12の停止要求が発生していると判定された場合には、電動式W/P12の故障診断を禁止する。一方、電動式W/P12の停止要求が発生していないと判定された場合には、次のステップ202で、入口側水温センサ20と出口側水温センサ21が両方とも正常であることが確認されれば、ステップ204以降の故障診断に関する処理を次のようにして実行する。   Hereinafter, processing contents of the failure diagnosis routine of FIG. 6 executed by the ECU 28 in the second embodiment will be described. In the failure diagnosis routine shown in FIG. 6, if it is determined in step 201 that a request for stopping the electric W / P 12 is generated, the failure diagnosis of the electric W / P 12 is prohibited. On the other hand, if it is determined that the stop request for the electric W / P 12 has not occurred, it is confirmed in the next step 202 that both the inlet side water temperature sensor 20 and the outlet side water temperature sensor 21 are normal. Then, the process related to the failure diagnosis after step 204 is executed as follows.

まず、ステップ204で、出口側水温センサ21で検出した出口水温検出値と、入口側水温センサ20で検出した入口水温検出値との差を算出することで、出入口水温差を求め、この出入口水温差と、冷却水の目標流量と、冷却水の物性値(例えば比熱と密度)とに基づいてエンジン11での冷却水の実受熱量をマップ又は数式等により算出する。このステップ204の処理が特許請求の範囲でいう実受熱量算出手段としての役割を果たす。   First, in step 204, the difference between the detected outlet water temperature detected by the outlet-side water temperature sensor 21 and the detected inlet water temperature detected by the inlet-side water temperature sensor 20 is calculated to obtain the inlet / outlet water temperature difference. Based on the temperature difference, the target flow rate of the cooling water, and the physical properties of the cooling water (for example, specific heat and density), the actual amount of heat received by the cooling water in the engine 11 is calculated using a map or a mathematical expression. The processing in step 204 serves as actual heat receiving amount calculation means in the claims.

この後、ステップ205に進み、エンジン運転状態(例えば吸入空気量又は燃料噴射量)に基づいてエンジン11の発熱量をマップ又は数式等により算出し、このエンジン11の発熱量と冷却水の目標流量とに基づいてエンジン11での冷却水の受熱量推定値をマップ又は数式等により算出する。尚、車速や外気温に応じてエンジン11での冷却水の受熱量推定値を補正するようにしても良い。このステップ205の処理が特許請求の範囲でいう受熱量推定手段としての役割を果たす。   Thereafter, the process proceeds to step 205, where the heat generation amount of the engine 11 is calculated based on the engine operating state (for example, intake air amount or fuel injection amount) by a map or a mathematical formula, and the heat generation amount of the engine 11 and the target flow rate of the cooling water. Based on the above, the estimated amount of heat received by the cooling water in the engine 11 is calculated by a map or a mathematical expression. In addition, you may make it correct | amend the heat receiving amount estimated value of the cooling water in the engine 11 according to a vehicle speed or external temperature. The process of step 205 plays a role as a heat receiving amount estimation means in the claims.

この後、ステップ206に進み、冷却水の実受熱量と冷却水の受熱量推定値との差の絶対値が故障判定値以上であるか否かを判定する。その結果、冷却水の実受熱量と冷却水の受熱量推定値との差の絶対値が故障判定値以上であると判定された場合には、ステップ207に進み、電動式W/P12の故障発生と判定して、故障時の処理を行った後、本ルーチンを終了する。   Thereafter, the process proceeds to step 206, in which it is determined whether or not the absolute value of the difference between the actual amount of heat received by the cooling water and the estimated amount of heat received by the cooling water is equal to or greater than the failure determination value. As a result, when it is determined that the absolute value of the difference between the actual amount of heat received from the cooling water and the estimated amount of heat received from the cooling water is greater than or equal to the failure determination value, the process proceeds to step 207 and a failure of the electric W / P 12 occurs. After determining that it has occurred and performing processing at the time of failure, this routine is terminated.

これに対して、上記ステップ206で、冷却水の実受熱量と冷却水の受熱量推定値との差の絶対値が故障判定値よりも小さいと判定された場合には、ステップ208に進み、電動式W/P12の故障無し(正常)と判定して、本ルーチンを終了する。   On the other hand, if it is determined in step 206 that the absolute value of the difference between the actual amount of heat received from the cooling water and the estimated amount of heat received from the cooling water is smaller than the failure determination value, the process proceeds to step 208. It is determined that there is no failure (normal) in the electric W / P 12, and this routine is terminated.

以上説明した本実施例2では、電動式W/P12の故障で冷却水の実流量が低下すると、エンジン11の出口水温と入口水温との差が異常に大きくなるため、出入口水温差から求めた冷却水の実受熱量が異常に大きくなることに着目して、冷却水の実受熱量と冷却水の受熱量推定値との差を故障判定値と比較して電動式W/P12の故障の有無を判定するようにしたので、電動式W/P12の故障診断精度を向上させることができる。   In the second embodiment described above, the difference between the outlet water temperature and the inlet water temperature of the engine 11 becomes abnormally large when the actual flow rate of the cooling water is reduced due to the failure of the electric W / P 12, and therefore, the difference is obtained from the inlet / outlet water temperature difference. Focusing on the fact that the actual amount of heat received by the cooling water becomes abnormally large, the difference between the actual amount of heat received by the cooling water and the estimated amount of heat received by the cooling water is compared with the failure judgment value, and the failure of the electric W / P 12 Since the presence / absence is determined, the failure diagnosis accuracy of the electric W / P 12 can be improved.

尚、上記実施例2では、冷却水の実受熱量と冷却水の受熱量推定値との差を故障判定値と比較して電動式W/P12の故障の有無を判定するようにしたが、冷却水の実受熱量と冷却水の受熱量推定値との比を故障判定値と比較して電動式W/P12の故障の有無を判定するようにしても良い。   In Example 2, the difference between the actual amount of heat received from the cooling water and the estimated amount of heat received from the cooling water is compared with the failure determination value to determine whether or not the electric W / P 12 has failed. The ratio between the actual amount of heat received by the cooling water and the estimated amount of heat received by the cooling water may be compared with the failure determination value to determine whether or not the electric W / P 12 has failed.

次に、図7及び図8を用いて本発明の実施例3を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 3 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例3では、ECU28によって後述する図8の故障診断ルーチンを実行することで、エンジン運転状態から求めた発熱量と冷却水の目標流量とに基づいてエンジン11での冷却水の受熱量推定値を算出して、入口側水温センサ20で検出した入口水温検出値と冷却水の受熱量推定値とに基づいて出口水温推定値を算出し、出口側水温センサ21で検出した出口水温検出値と出口水温推定値との差を所定の故障判定値と比較して電動式W/P12の故障の有無を判定する。   In the third embodiment, the ECU 28 executes a failure diagnosis routine of FIG. 8 to be described later, thereby estimating the amount of heat received by the cooling water in the engine 11 based on the heat generation amount obtained from the engine operating state and the target flow rate of the cooling water. The outlet water temperature estimated value is calculated based on the inlet water temperature detected value detected by the inlet water temperature sensor 20 and the received heat amount estimation value of the cooling water, and the outlet water temperature detected value detected by the outlet water temperature sensor 21 is calculated. Is compared with a predetermined failure determination value to determine whether or not the electric W / P 12 has failed.

例えば、図7に示すように、電動式W/P12の故障で冷却水の実流量が低下すると、エンジン11の出口水温が異常に高くなって、出口側水温センサ21で検出した出口水温検出値が異常に高くなる。従って、出口水温検出値と出口水温推定値との差が故障判定値以上になった場合には、電動式W/P12の故障発生と判定することができる。   For example, as shown in FIG. 7, when the actual flow rate of the cooling water decreases due to a failure of the electric W / P 12, the outlet water temperature of the engine 11 becomes abnormally high, and the outlet water temperature detection value detected by the outlet side water temperature sensor 21 Becomes abnormally high. Therefore, when the difference between the detected outlet water temperature value and the estimated outlet water temperature value is equal to or greater than the failure determination value, it can be determined that the electric W / P 12 has failed.

以下、本実施例3でECU28が実行する図8の故障診断ルーチンの処理内容を説明する。図8に示す故障診断ルーチンでは、ステップ301で、電動式W/P12の停止要求が発生していると判定された場合には、電動式W/P12の故障診断を禁止する。一方、電動式W/P12の停止要求が発生していないと判定された場合には、次のステップ302で、入口側水温センサ20と出口側水温センサ21が両方とも正常であることが確認されれば、ステップ304以降の故障診断に関する処理を次のようにして実行する。   Hereinafter, the processing content of the failure diagnosis routine of FIG. 8 executed by the ECU 28 in the third embodiment will be described. In the failure diagnosis routine shown in FIG. 8, if it is determined in step 301 that a request for stopping the electric W / P 12 is generated, the failure diagnosis of the electric W / P 12 is prohibited. On the other hand, if it is determined that the stop request for the electric W / P 12 has not occurred, it is confirmed in the next step 302 that both the inlet side water temperature sensor 20 and the outlet side water temperature sensor 21 are normal. Then, the process related to the failure diagnosis after step 304 is executed as follows.

まず、ステップ304で、エンジン運転状態(例えば吸入空気量又は燃料噴射量)に基づいてエンジン11の発熱量をマップ又は数式等により算出し、このエンジン11の発熱量と冷却水の目標流量とに基づいてエンジン11での冷却水の受熱量推定値をマップ又は数式等により算出する。尚、車速や外気温に応じてエンジン11での冷却水の受熱量推定値を補正するようにしても良い。   First, in step 304, the heat generation amount of the engine 11 is calculated based on the engine operating state (for example, the intake air amount or the fuel injection amount) by a map or a mathematical formula, and the heat generation amount of the engine 11 and the target flow rate of the cooling water are set. Based on this, the estimated amount of heat received by the cooling water in the engine 11 is calculated using a map or mathematical formula. In addition, you may make it correct | amend the heat receiving amount estimated value of the cooling water in the engine 11 according to a vehicle speed or external temperature.

この後、ステップ305に進み、エンジン11での冷却水の受熱量推定値と、冷却水の目標流量と、冷却水の物性値(例えば比熱と密度)とに基づいてエンジン11での冷却水温の上昇分を算出(推定)する。   Thereafter, the process proceeds to step 305, where the cooling water temperature of the engine 11 is determined based on the estimated amount of heat received by the cooling water in the engine 11, the target flow rate of the cooling water, and the physical properties of the cooling water (for example, specific heat and density). Calculate (estimate) the increase.

この後、ステップ306に進み、入口側水温センサ20で検出した入口水温検出値にエンジン11での冷却水温の上昇分を加算して出口水温推定値を求める。
出口水温推定値=入口水温検出値+冷却水温の上昇分
これらのステップ305,306の処理が特許請求の範囲でいう出口水温推定手段としての役割を果たす。
Thereafter, the process proceeds to step 306, where an estimated value of the outlet water temperature is obtained by adding the amount of increase in the cooling water temperature at the engine 11 to the detected inlet water temperature value detected by the inlet-side water temperature sensor 20.
Estimated outlet water temperature = Detected inlet water temperature + Amount of increase in cooling water temperature The processes in these steps 305 and 306 serve as outlet water temperature estimating means in the claims.

この後、ステップ307に進み、出口側水温センサ21で検出した出口水温検出値と出口水温推定値との差の絶対値が故障判定値以上であるか否かを判定する。その結果、出口水温検出値と出口水温推定値との差の絶対値が故障判定値以上であると判定された場合には、ステップ308に進み、電動式W/P12の故障発生と判定して、故障時の処理を行った後、本ルーチンを終了する。   Thereafter, the process proceeds to step 307, in which it is determined whether or not the absolute value of the difference between the detected outlet water temperature value detected by the outlet-side water temperature sensor 21 and the estimated outlet water temperature is equal to or greater than the failure determination value. As a result, when it is determined that the absolute value of the difference between the detected outlet water temperature value and the estimated outlet water temperature is equal to or greater than the failure determination value, the process proceeds to step 308 to determine that the electric W / P 12 has failed. After performing the process at the time of failure, this routine is terminated.

これに対して、上記ステップ307で、出口水温検出値と出口水温推定値との差の絶対値が故障判定値よりも小さいと判定された場合には、ステップ309に進み、電動式W/P12の故障無し(正常)と判定して、本ルーチンを終了する。   On the other hand, if it is determined in step 307 that the absolute value of the difference between the detected outlet water temperature value and the estimated outlet water temperature value is smaller than the failure determination value, the process proceeds to step 309 and the electric W / P 12 It is determined that there is no failure (normal), and this routine is terminated.

以上説明した本実施例3では、電動式W/P12の故障で冷却水の実流量が低下すると、エンジン11の出口水温が異常に高くなって、出口側水温センサ21で検出した出口水温検出値が異常に高くなることに着目して、出口水温検出値と出口水温推定値との差を故障判定値と比較して電動式W/P12の故障の有無を判定するようにしたので、電動式W/P12の故障診断精度を向上させることができる。   In the third embodiment described above, when the actual flow rate of the cooling water decreases due to the failure of the electric W / P 12, the outlet water temperature of the engine 11 becomes abnormally high, and the outlet water temperature detection value detected by the outlet side water temperature sensor 21. Since the difference between the outlet water temperature detection value and the outlet water temperature estimated value is compared with the failure determination value, it is determined whether or not the electric W / P 12 has failed. It is possible to improve the failure diagnosis accuracy of W / P12.

尚、上記実施例3では、出口水温検出値と出口水温推定値との差を故障判定値と比較して電動式W/P12の故障の有無を判定するようにしたが、出口水温検出値と出口水温推定値との比を故障判定値と比較して電動式W/P12の故障の有無を判定するようにしても良い。   In the third embodiment, the difference between the detected outlet water temperature and the estimated outlet water temperature is compared with the failure determination value to determine whether or not the electric W / P 12 has failed. The presence / absence of a failure of the electric W / P 12 may be determined by comparing the ratio with the estimated outlet water temperature with a failure determination value.

次に、図9及び図10を用いて本発明の実施例4を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 4 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例4では、ECU28によって後述する図10の故障診断ルーチンを実行することで、エンジン運転状態から求めた発熱量と冷却水の目標流量とに基づいてエンジン11での冷却水の受熱量推定値を算出して、出口側水温センサ21で検出した出口水温検出値と冷却水の受熱量推定値とに基づいて入口水温推定値を算出し、この入口水温推定値と入口側水温センサ20で検出した入口水温検出値との差を所定の故障判定値と比較して電動式W/P12の故障の有無を判定する。   In the fourth embodiment, the ECU 28 executes a failure diagnosis routine shown in FIG. 10 to be described later, thereby estimating the amount of received heat of the cooling water in the engine 11 based on the heat generation amount obtained from the engine operating state and the target flow rate of the cooling water. The inlet water temperature estimated value is calculated based on the outlet water temperature detected value detected by the outlet side water temperature sensor 21 and the estimated amount of heat received by the cooling water, and the inlet water temperature estimated value and the inlet side water temperature sensor 20 calculate the value. The difference between the detected inlet water temperature detection value and a predetermined failure determination value is compared to determine whether or not the electric W / P 12 has failed.

例えば、図9に示すように、電動式W/P12の故障で冷却水の実流量が低下すると、エンジン11の出口水温が異常に高くなって、出口側水温センサ21で検出した出口水温検出値が異常に高くなるため、出口水温検出値と冷却水の受熱量推定値とから求めた入口水温推定値が異常に高くなる。従って、入口水温推定値と入口水温検出値との差が故障判定値以上になった場合には、電動式W/P12の故障発生と判定することができる。   For example, as shown in FIG. 9, when the actual flow rate of the cooling water decreases due to the failure of the electric W / P 12, the outlet water temperature of the engine 11 becomes abnormally high, and the outlet water temperature detection value detected by the outlet side water temperature sensor 21. Therefore, the estimated inlet water temperature obtained from the detected outlet water temperature and the estimated amount of heat received from the cooling water becomes abnormally high. Therefore, when the difference between the estimated inlet water temperature and the detected inlet water temperature is equal to or greater than the failure determination value, it can be determined that the electric W / P 12 has failed.

以下、本実施例4でECU28が実行する図10の故障診断ルーチンの処理内容を説明する。図10に示す故障診断ルーチンでは、ステップ401で、電動式W/P12の停止要求が発生していると判定された場合には、電動式W/P12の故障診断を禁止する。一方、電動式W/P12の停止要求が発生していないと判定された場合には、次のステップ402で、入口側水温センサ20と出口側水温センサ21が両方とも正常であることが確認されれば、ステップ404以降の故障診断に関する処理を次のようにして実行する。   Hereinafter, processing contents of the failure diagnosis routine of FIG. 10 executed by the ECU 28 in the fourth embodiment will be described. In the failure diagnosis routine shown in FIG. 10, if it is determined in step 401 that a request for stopping the electric W / P 12 is generated, the failure diagnosis of the electric W / P 12 is prohibited. On the other hand, if it is determined that the stop request for the electric W / P 12 has not occurred, it is confirmed in the next step 402 that both the inlet side water temperature sensor 20 and the outlet side water temperature sensor 21 are normal. Then, the process regarding the fault diagnosis after step 404 is executed as follows.

まず、ステップ404で、エンジン運転状態(例えば吸入空気量又は燃料噴射量)に基づいてエンジン11の発熱量をマップ又は数式等により算出し、このエンジン11の発熱量と冷却水の目標流量とに基づいてエンジン11での冷却水の受熱量推定値をマップ又は数式等により算出する。尚、車速や外気温に応じてエンジン11での冷却水の受熱量推定値を補正するようにしても良い。   First, in step 404, the heat generation amount of the engine 11 is calculated based on the engine operating state (for example, the intake air amount or the fuel injection amount) by a map or a mathematical formula, and the heat generation amount of the engine 11 and the target flow rate of the cooling water are set. Based on this, the estimated amount of heat received by the cooling water in the engine 11 is calculated using a map or mathematical formula. In addition, you may make it correct | amend the heat receiving amount estimated value of the cooling water in the engine 11 according to a vehicle speed or external temperature.

この後、ステップ405に進み、エンジン11での冷却水の受熱量推定値と、冷却水の目標流量と、冷却水の物性値(例えば比熱と密度)とに基づいてエンジン11での冷却水温の上昇分を算出(推定)する。   Thereafter, the process proceeds to step 405, where the cooling water temperature of the engine 11 is determined based on the estimated amount of heat received by the cooling water in the engine 11, the target flow rate of the cooling water, and the physical properties of the cooling water (for example, specific heat and density). Calculate (estimate) the increase.

この後、ステップ406に進み、出口側水温センサ21で検出した出口水温検出値からエンジン11での冷却水温の上昇分を減算して入口水温推定値を求める。
入口水温推定値=出口水温検出値−冷却水温の上昇分
これらのステップ405,406の処理が特許請求の範囲でいう入口水温推定手段としての役割を果たす。
Thereafter, the process proceeds to step 406, and an estimated inlet water temperature value is obtained by subtracting the amount of increase in the cooling water temperature at the engine 11 from the detected outlet water temperature value detected by the outlet side water temperature sensor 21.
Estimated inlet water temperature = Detected outlet water temperature-Increased cooling water temperature The processes in steps 405 and 406 serve as inlet water temperature estimating means in the claims.

この後、ステップ407に進み、入口水温推定値と入口側水温センサ20で検出した入口水温検出値との差の絶対値が故障判定値以上であるか否かを判定する。その結果、入口水温推定値と入口水温検出値との差の絶対値が故障判定値以上であると判定された場合には、ステップ408に進み、電動式W/P12の故障発生と判定して、故障時の処理を行った後、本ルーチンを終了する。   Thereafter, the process proceeds to step 407, and it is determined whether or not the absolute value of the difference between the estimated inlet water temperature value and the detected inlet water temperature value detected by the inlet-side water temperature sensor 20 is equal to or greater than the failure determination value. As a result, if it is determined that the absolute value of the difference between the estimated inlet water temperature value and the detected inlet water temperature is equal to or greater than the failure determination value, the process proceeds to step 408, where it is determined that the electric W / P 12 has failed. After performing the process at the time of failure, this routine is terminated.

これに対して、上記ステップ407で、入口水温推定値と入口水温検出値との差の絶対値が故障判定値よりも小さいと判定された場合には、ステップ409に進み、電動式W/P12の故障無し(正常)と判定して、本ルーチンを終了する。   On the other hand, if it is determined in step 407 that the absolute value of the difference between the estimated inlet water temperature value and the detected inlet water temperature value is smaller than the failure determination value, the process proceeds to step 409 and the electric W / P 12 It is determined that there is no failure (normal), and this routine is terminated.

以上説明した本実施例4では、電動式W/P12の故障で冷却水の実流量が低下すると、エンジン11の出口水温が異常に高くなって、出口側水温センサ21で検出した出口水温検出値が異常に高くなるため、出口水温検出値と冷却水の受熱量推定値とから求めた入口水温推定値が異常に高くなることに着目して、入口水温推定値と入口水温検出値との差を故障判定値と比較して電動式W/P12の故障の有無を判定するようにしたので、電動式W/P12の故障診断精度を向上させることができる。   In the fourth embodiment described above, when the actual flow rate of the cooling water decreases due to the failure of the electric W / P 12, the outlet water temperature of the engine 11 becomes abnormally high, and the outlet water temperature detection value detected by the outlet side water temperature sensor 21. Note that the difference between the estimated inlet water temperature and the detected inlet water temperature is notable because the estimated inlet water temperature obtained from the detected outlet water temperature and the estimated amount of heat received from the cooling water is abnormally high. Is compared with the failure determination value to determine whether or not there is a failure in the electric W / P 12. Therefore, the failure diagnosis accuracy of the electric W / P 12 can be improved.

尚、上記実施例4では、入口水温推定値と入口水温検出値との差を故障判定値と比較して電動式W/P12の故障の有無を判定するようにしたが、入口水温推定値と入口水温検出値との比を故障判定値と比較して電動式W/P12の故障の有無を判定するようにしても良い。   In the fourth embodiment, the difference between the estimated inlet water temperature and the detected inlet water temperature is compared with the failure determination value to determine whether or not the electric W / P 12 has failed. The presence / absence of a failure in the electric W / P 12 may be determined by comparing the ratio with the detected inlet water temperature with the failure determination value.

次に、図11及び図12を用いて本発明の実施例5を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 5 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例5では、ECU28によって後述する図12の故障診断ルーチンを実行することで、ラジエータ13での冷却水の放熱量を決定する要因(例えば、車速、電動式冷却ファン19の目標回転速度、冷却水の目標流量等)に基づいて該ラジエータ13での冷却水の放熱量推定値を算出して、出口側水温センサ21で検出した出口水温検出値と冷却水の放熱量推定値とに基づいて入口水温推定値を算出し、入口側水温センサ20で検出した入口水温検出値と入口水温推定値との差を所定の故障判定値と比較して電動式冷却ファン19又はサーモスタットバルブ18の故障の有無を判定する。   In the fifth embodiment, the ECU 28 executes a failure diagnosis routine shown in FIG. 12 to be described later, thereby determining factors that determine the heat dissipation amount of the cooling water in the radiator 13 (for example, the vehicle speed, the target rotational speed of the electric cooling fan 19, Based on the outlet water temperature detection value detected by the outlet side water temperature sensor 21 and the cooling water heat release amount estimated value. The estimated inlet water temperature is calculated, and the difference between the detected inlet water temperature detected by the inlet-side water temperature sensor 20 and the estimated inlet water temperature is compared with a predetermined failure judgment value, so that the electric cooling fan 19 or the thermostat valve 18 fails. The presence or absence of is determined.

例えば、図11に示すように、電動式冷却ファン19の故障で冷却風の風量が低下したり、或は、サーモスタットバルブ18の故障でラジエータ13に循環する冷却水の流量が低下すると、ラジエータ13での冷却水の放熱量が減少するため、エンジン11の入口温度が異常に高くなって、入口側水温センサ20で検出した入口水温検出値が異常に高くなる。従って、入口水温検出値と入口水温推定値との差が故障判定値以上になった場合には、電動式冷却ファン19又はサーモスタットバルブ18の故障発生と判定することができる。   For example, as shown in FIG. 11, when the flow rate of cooling air decreases due to a failure of the electric cooling fan 19 or the flow rate of cooling water circulating to the radiator 13 decreases due to a failure of the thermostat valve 18, the radiator 13. The amount of heat dissipated in the cooling water is reduced, so that the inlet temperature of the engine 11 becomes abnormally high, and the detected inlet water temperature detected by the inlet-side water temperature sensor 20 becomes abnormally high. Therefore, when the difference between the detected inlet water temperature value and the estimated inlet water temperature is equal to or greater than the failure determination value, it can be determined that the electric cooling fan 19 or the thermostat valve 18 has failed.

以下、本実施例5でECU28が実行する図12の故障診断ルーチンの処理内容を説明する。図12に示す故障診断ルーチンでは、ステップ501で、電動式W/P12の停止要求が発生しているか否かを判定し、電動式W/P12の停止要求が発生していると判定された場合には、電動式W/P12が停止して冷却水の循環が停止すると、ラジエータ13での冷却水の放熱量が減少した状態となり、電動式冷却ファン19やサーモスタットバルブ18の故障によってラジエータ13での冷却水の放熱量が減少した状態と似たような状態となるため、電動式冷却ファン19やサーモスタットバルブ18の故障の有無を精度良く判定することは困難であると判断して、ステップ502以降の処理を行うことなく、本ルーチンを終了することで、電動式冷却ファン19及びサーモスタットバルブ18の故障診断を禁止する。この機能が特許請求の範囲でいう故障診断禁止手段としての役割を果たす。   Hereinafter, processing contents of the failure diagnosis routine of FIG. 12 executed by the ECU 28 in the fifth embodiment will be described. In the failure diagnosis routine shown in FIG. 12, it is determined in step 501 whether or not a request for stopping the electric W / P 12 is generated, and it is determined that a request for stopping the electric W / P 12 is generated. When the electric W / P 12 is stopped and the circulation of the cooling water is stopped, the amount of heat dissipated in the cooling water in the radiator 13 is reduced, and the radiator 13 is damaged by the failure of the electric cooling fan 19 or the thermostat valve 18. Therefore, it is determined that it is difficult to accurately determine whether or not the electric cooling fan 19 or the thermostat valve 18 has failed, because the amount of heat radiation of the cooling water is reduced. By ending this routine without performing the subsequent processing, failure diagnosis of the electric cooling fan 19 and the thermostat valve 18 is prohibited. This function serves as failure diagnosis prohibition means in the claims.

一方、上記ステップ501で、電動式W/P12の停止要求が発生していないと判定された場合には、次のステップ502で、入口側水温センサ20と出口側水温センサ21が両方とも正常であることが確認されれば、ステップ503に進み、電動式W/P12が正常であるか否かを電動式W/P12の故障診断結果に基づいて判定し、何等かの故障が検出されていれば、ステップ504に進み、電動式W/P12の故障と判定して、本ルーチンを終了する。   On the other hand, if it is determined in step 501 that a stop request for the electric W / P 12 has not been generated, both the inlet side water temperature sensor 20 and the outlet side water temperature sensor 21 are normal in the next step 502. If it is confirmed, the process proceeds to step 503, where it is determined whether or not the electric W / P 12 is normal based on the failure diagnosis result of the electric W / P 12, and any failure has been detected. If it is determined that the electric W / P 12 has failed, the routine is terminated.

一方、上記ステップ503で、電動式W/P12が正常であることが確認されれば、ステップ505以降の故障診断に関する処理を次のようにして実行する。
まず、ステップ505で、車速、電動式冷却ファン19の目標回転速度、冷却水の目標流量、出口水温検出値、外気温等に基づいてラジエータ13での冷却水の放熱量推定値をマップ又は数式等により算出する。このステップ505の処理が特許請求の範囲でいう放熱量推定手段としての役割を果たす。
On the other hand, if it is confirmed in step 503 that the electric W / P 12 is normal, processing relating to failure diagnosis after step 505 is executed as follows.
First, in step 505, a map or a mathematical expression is used to estimate the cooling water heat release amount in the radiator 13 based on the vehicle speed, the target rotational speed of the electric cooling fan 19, the target flow rate of the cooling water, the detected outlet water temperature, the outside air temperature, and the like. Etc. are calculated. The processing in step 505 serves as heat radiation amount estimation means in the claims.

この後、ステップ506に進み、ラジエータ13での冷却水の放熱量推定値と、冷却水の目標流量と、冷却水の物性値(例えば比熱と密度)とに基づいてラジエータ13での冷却水温の降下分を算出(推定)する。   Thereafter, the process proceeds to step 506, where the cooling water temperature of the radiator 13 is determined based on the estimated heat dissipation amount of the cooling water in the radiator 13, the target flow rate of the cooling water, and the physical properties of the cooling water (for example, specific heat and density). Calculate (estimate) the amount of descent.

この後、ステップ507に進み、出口側水温センサ21で検出した出口水温検出値からラジエータ13での冷却水温の降下分を減算して入口水温推定値を求める。
入口水温推定値=出口水温検出値−冷却水温の降下分
これらのステップ506,507の処理が特許請求の範囲でいう入口水温推定手段としての役割を果たす。
Thereafter, the process proceeds to step 507, and the estimated inlet water temperature is obtained by subtracting the cooling water temperature drop at the radiator 13 from the detected outlet water temperature detected by the outlet-side water temperature sensor 21.
Estimated inlet water temperature = outlet water temperature detected value-decrease in cooling water temperature The processing of these steps 506 and 507 serves as the inlet water temperature estimating means in the claims.

この後、ステップ508に進み、入口側水温センサ20で検出した入口水温検出値と入口水温推定値との差の絶対値が故障判定値以上であるか否かを判定する。その結果、入口水温検出値と入口水温推定値との差の絶対値が故障判定値以上であると判定された場合には、ステップ509に進み、電動式冷却ファン19又はサーモスタットバルブ18の故障発生と判定して、故障時の処理を行った後、本ルーチンを終了する。   Thereafter, the process proceeds to step 508, and it is determined whether or not the absolute value of the difference between the detected inlet water temperature value detected by the inlet-side water temperature sensor 20 and the estimated inlet water temperature is equal to or greater than the failure determination value. As a result, if it is determined that the absolute value of the difference between the detected inlet water temperature value and the estimated inlet water temperature is equal to or greater than the failure determination value, the process proceeds to step 509, where a failure of the electric cooling fan 19 or the thermostat valve 18 occurs. This routine is terminated after the process is determined and the process at the time of failure is performed.

これに対して、上記ステップ508で、入口水温検出値と入口水温推定値との差の絶対値が故障判定値よりも小さいと判定された場合には、ステップ510に進み、電動式冷却ファン19及びサーモスタットバルブ18の故障無し(正常)と判定して、本ルーチンを終了する。   On the other hand, if it is determined in step 508 that the absolute value of the difference between the detected inlet water temperature value and the estimated inlet water temperature value is smaller than the failure determination value, the process proceeds to step 510 and the electric cooling fan 19 Then, it is determined that there is no failure (normal) in the thermostat valve 18, and this routine is terminated.

以上説明した本実施例5では、電動式冷却ファン19の故障で冷却風の実風量が低下したり、或は、サーモスタットバルブ18の故障でラジエータ13に循環する冷却水の流量が低下すると、ラジエータ13での冷却水の放熱量が減少するため、エンジン11の入口温度が異常に高くなって、入口側水温センサ20で検出した入口水温検出値が異常に高くなることに着目して、入口水温検出値と入口水温推定値との差を故障判定値と比較して電動式冷却ファン19又はサーモスタットバルブ18の故障の有無を判定するようにしたので、電動式冷却ファン19やサーモスタットバルブ18の故障診断精度を向上させることができる。   In the fifth embodiment described above, if the actual cooling air flow rate decreases due to the failure of the electric cooling fan 19 or the flow rate of the cooling water circulating to the radiator 13 decreases due to the failure of the thermostat valve 18, the radiator. Since the heat radiation amount of the cooling water at 13 decreases, the inlet temperature of the engine 11 becomes abnormally high, and the inlet water temperature detection value detected by the inlet water temperature sensor 20 becomes abnormally high. Since the difference between the detected value and the estimated inlet water temperature is compared with the failure determination value to determine whether or not the electric cooling fan 19 or the thermostat valve 18 has failed, the electric cooling fan 19 or the thermostat valve 18 has failed. Diagnosis accuracy can be improved.

また、本実施例5では、電動式W/P12の停止要求が発生していると判定された場合には、電動式W/P12が停止して冷却水の循環が停止すると、ラジエータ13での冷却水の放熱量が減少した状態となり、電動式冷却ファン19やサーモスタットバルブ18の故障によってラジエータ13での冷却水の放熱量が減少した状態と似たような状態となるため、電動式冷却ファン19やサーモスタットバルブ18の故障の有無を精度良く判定することは困難であると判断して、電動式冷却ファン19及びサーモスタットバルブ18の故障診断を禁止するようにしたので、電動式冷却ファン19やサーモスタットバルブ18の故障診断精度の低下を未然に防止することができる。   Further, in the fifth embodiment, when it is determined that a request for stopping the electric W / P 12 is generated, when the electric W / P 12 stops and the circulation of the cooling water stops, the radiator 13 Since the heat radiation amount of the cooling water is reduced and a state similar to the state where the heat radiation amount of the cooling water in the radiator 13 is reduced due to the failure of the electric cooling fan 19 or the thermostat valve 18, the electric cooling fan 19 and the thermostat valve 18 are judged to be difficult to determine accurately, and the failure diagnosis of the electric cooling fan 19 and the thermostat valve 18 is prohibited. It is possible to prevent the failure diagnosis accuracy of the thermostat valve 18 from being lowered.

尚、上記実施例5では、入口水温検出値と入口水温推定値との差を故障判定値と比較して電動式冷却ファン19又はサーモスタットバルブ18の故障の有無を判定するようにしたが、入口水温検出値と入口水温推定値との比を故障判定値と比較して電動式冷却ファン19又はサーモスタットバルブ18の故障の有無を判定するようにしても良い。   In the fifth embodiment, the difference between the detected inlet water temperature and the estimated inlet water temperature is compared with the failure determination value to determine whether or not the electric cooling fan 19 or the thermostat valve 18 has failed. The ratio between the detected water temperature value and the estimated inlet water temperature value may be compared with a failure determination value to determine whether or not the electric cooling fan 19 or the thermostat valve 18 has failed.

次に、図13及び図14を用いて本発明の実施例6を説明する。但し、前記実施例5と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例5と異なる部分について説明する。   Next, Embodiment 6 of the present invention will be described with reference to FIGS. However, description of substantially the same parts as in the fifth embodiment will be omitted or simplified, and different parts from the fifth embodiment will be mainly described.

本実施例6では、ECU28によって後述する図14の故障診断ルーチンを実行することで、ラジエータ13での冷却水の放熱量を決定する要因(例えば、車速、電動式冷却ファン19の目標回転速度、冷却水の目標流量等)に基づいて該ラジエータ13での冷却水の放熱量推定値を算出すると共に、出口側水温センサ21で検出した出口水温検出値と入口側水温センサ20で検出した入口水温検出値との差(出入口水温差)に基づいてラジエータ13での冷却水の実放熱量を算出し、これらの冷却水の放熱量推定値と冷却水の実放熱量との差を所定の故障判定値と比較して電動式冷却ファン19又はサーモスタットバルブ18の故障の有無を判定する。   In the sixth embodiment, the ECU 28 executes a failure diagnosis routine shown in FIG. 14 to be described later, thereby determining factors that determine the heat radiation amount of the cooling water in the radiator 13 (for example, the vehicle speed, the target rotational speed of the electric cooling fan 19, The estimated amount of heat radiation of the cooling water in the radiator 13 is calculated based on the target flow rate of the cooling water, and the outlet water temperature detected by the outlet water temperature sensor 21 and the inlet water temperature detected by the inlet water temperature sensor 20 Based on the difference (inlet / outlet water temperature difference) from the detected value, the actual heat dissipation amount of the cooling water in the radiator 13 is calculated, and the difference between the estimated heat dissipation amount of the cooling water and the actual heat dissipation amount of the cooling water is determined as a predetermined failure. Compared with the determination value, it is determined whether or not the electric cooling fan 19 or the thermostat valve 18 has failed.

例えば、図13に示すように、電動式冷却ファン19の故障で冷却風の風量が低下したり、或は、サーモスタットバルブ18の故障でラジエータ13に循環する冷却水の流量が低下すると、ラジエータ13での冷却水の放熱量が減少するため、出入口水温差から求めたラジエータ13での冷却水の実放熱量が異常に小さくなる。従って、冷却水の放熱量推定値と冷却水の実放熱量との差が故障判定値以上になった場合には、電動式冷却ファン19又はサーモスタットバルブ18の故障発生と判定することができる。   For example, as shown in FIG. 13, when the flow rate of the cooling air decreases due to a failure of the electric cooling fan 19 or the flow rate of the cooling water circulating to the radiator 13 decreases due to the failure of the thermostat valve 18, the radiator 13. Therefore, the actual heat dissipation amount of the cooling water at the radiator 13 obtained from the inlet / outlet water temperature difference becomes abnormally small. Therefore, when the difference between the estimated heat dissipation amount of the cooling water and the actual heat dissipation amount of the cooling water is equal to or greater than the failure determination value, it can be determined that the electric cooling fan 19 or the thermostat valve 18 has failed.

以下、本実施例6でECU28が実行する図14の故障診断ルーチンの処理内容を説明する。図14に示す故障診断ルーチンでは、ステップ601で、電動式W/P12の停止要求が発生していると判定された場合には、電動式冷却ファン19及びサーモスタットバルブ18の故障診断を禁止する。一方、電動式W/P12の停止要求が発生していないと判定された場合には、次のステップ602で、入口側水温センサ20と出口側水温センサ21が両方とも正常であることが確認され、更に次のステップ603で、電動式W/P12が正常であることが確認されれば、ステップ505以降の故障診断に関する処理を次のようにして実行する。   Hereinafter, processing contents of the failure diagnosis routine of FIG. 14 executed by the ECU 28 in the sixth embodiment will be described. In the failure diagnosis routine shown in FIG. 14, if it is determined in step 601 that a request for stopping the electric W / P 12 has occurred, failure diagnosis of the electric cooling fan 19 and the thermostat valve 18 is prohibited. On the other hand, if it is determined that the stop request for the electric W / P 12 has not occurred, it is confirmed in the next step 602 that both the inlet side water temperature sensor 20 and the outlet side water temperature sensor 21 are normal. Further, in the next step 603, if it is confirmed that the electric W / P 12 is normal, processing relating to failure diagnosis after step 505 is executed as follows.

まず、ステップ605で、車速、電動式冷却ファン19の目標回転速度、冷却水の目標流量、出口水温検出値、外気温等に基づいてラジエータ13での冷却水の放熱量推定値をマップ又は数式等により算出する。   First, in step 605, a map or a mathematical formula is used to calculate the estimated heat dissipation amount of the cooling water in the radiator 13 based on the vehicle speed, the target rotational speed of the electric cooling fan 19, the target flow rate of the cooling water, the detected outlet water temperature, the outside air temperature and the like. Etc. are calculated.

この後、ステップ606に進み、出口側水温センサ21で検出した出口水温検出値と、入口側水温センサ20で検出した入口水温検出値との差を算出することで、出入口水温差を求め、この出入口水温差と、冷却水の目標流量と、冷却水の物性値(例えば比熱と密度)とに基づいてラジエータ13での冷却水の実放熱量をマップ又は数式等により算出する。このステップ606の処理が特許請求の範囲でいう実放熱量算出手段としての役割を果たす。   Thereafter, the process proceeds to step 606, where the difference between the outlet water temperature detected value detected by the outlet side water temperature sensor 21 and the inlet water temperature detected value detected by the inlet side water temperature sensor 20 is calculated to obtain the inlet / outlet water temperature difference, Based on the inlet / outlet water temperature difference, the target flow rate of the cooling water, and the physical property values (for example, specific heat and density) of the cooling water, the actual heat dissipation amount of the cooling water in the radiator 13 is calculated by a map or a mathematical expression. The processing in step 606 serves as the actual heat radiation amount calculation means in the claims.

この後、ステップ607に進み、冷却水の放熱量推定値と冷却水の実放熱量との差の絶対値が故障判定値以上であるか否かを判定する。その結果、冷却水の放熱量推定値と冷却水の実放熱量との差の絶対値が故障判定値以上であると判定された場合には、ステップ608に進み、電動式冷却ファン19又はサーモスタットバルブ18の故障発生と判定して、故障時の処理を行った後、本ルーチンを終了する。   Thereafter, the process proceeds to step 607, in which it is determined whether or not the absolute value of the difference between the estimated heat dissipation amount of the cooling water and the actual heat dissipation amount of the cooling water is equal to or greater than the failure determination value. As a result, if it is determined that the absolute value of the difference between the estimated heat dissipation amount of the cooling water and the actual heat dissipation amount of the cooling water is greater than or equal to the failure determination value, the process proceeds to step 608 and the electric cooling fan 19 or thermostat. After determining that a failure has occurred in the valve 18 and performing processing at the time of failure, this routine is terminated.

これに対して、上記ステップ607で、冷却水の放熱量推定値と冷却水の実放熱量との差の絶対値が故障判定値よりも小さいと判定された場合には、ステップ609に進み、電動式冷却ファン19及びサーモスタットバルブ18の故障無し(正常)と判定して、本ルーチンを終了する。   On the other hand, if it is determined in step 607 that the absolute value of the difference between the estimated heat dissipation amount of the cooling water and the actual heat dissipation amount of the cooling water is smaller than the failure determination value, the process proceeds to step 609. It is determined that there is no failure (normal) in the electric cooling fan 19 and the thermostat valve 18, and this routine is terminated.

以上説明した本実施例6では、電動式冷却ファン19の故障で冷却風の実風量が低下したり、或は、サーモスタットバルブ18の故障でラジエータ13に循環する冷却水の流量が低下すると、ラジエータ13での冷却水の放熱量が減少するため、出入口水温差から求めたラジエータ13での冷却水の実放熱量が異常に小さくなることに着目して、冷却水の放熱量推定値と冷却水の実放熱量との差を故障判定値と比較して電動式冷却ファン19又はサーモスタットバルブ18の故障の有無を判定するようにしたので、電動式冷却ファン19やサーモスタットバルブ18の故障診断精度を向上させることができる。   In the sixth embodiment described above, when the actual cooling air flow rate decreases due to the failure of the electric cooling fan 19 or when the flow rate of the cooling water circulating to the radiator 13 decreases due to the failure of the thermostat valve 18, the radiator. Since the amount of heat radiation of the cooling water at 13 decreases, the actual heat radiation amount of the cooling water at the radiator 13 obtained from the inlet / outlet water temperature difference becomes abnormally small. The difference between the actual heat radiation amount and the failure determination value is compared to determine whether or not the electric cooling fan 19 or the thermostat valve 18 has failed. Therefore, the failure diagnosis accuracy of the electric cooling fan 19 or the thermostat valve 18 is improved. Can be improved.

尚、上記実施例6では、冷却水の放熱量推定値と冷却水の実放熱量との差を故障判定値と比較して電動式冷却ファン19又はサーモスタットバルブ18の故障の有無を判定するようにしたが、冷却水の放熱量推定値と冷却水の実放熱量との比を故障判定値と比較して電動式冷却ファン19又はサーモスタットバルブ18の故障の有無を判定するようにしても良い。   In the sixth embodiment, the difference between the estimated value of the heat dissipation amount of the cooling water and the actual heat dissipation amount of the cooling water is compared with the failure determination value to determine whether or not the electric cooling fan 19 or the thermostat valve 18 has failed. However, the ratio of the estimated heat dissipation amount of the cooling water and the actual heat dissipation amount of the cooling water may be compared with the failure determination value to determine whether or not the electric cooling fan 19 or the thermostat valve 18 has failed. .

次に、図15及び図16を用いて本発明の実施例7を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 7 of the present invention will be described with reference to FIGS. 15 and 16. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

電動式W/P12を備えたエンジン冷却システムでは、エンジン11の早期暖機等を目的として電動式W/P12の停止要求が発生しているにも拘らず、電動式W/P12が作動している故障が発生する可能性もあり、このような故障が発生すると、エンジン11の早期暖機が遅れて、燃費や排気エミッションが悪化する。   In the engine cooling system equipped with the electric W / P 12, the electric W / P 12 is activated even though a stop request for the electric W / P 12 is generated for the purpose of early warming up of the engine 11. If such a failure occurs, the early warm-up of the engine 11 is delayed, and fuel consumption and exhaust emission are deteriorated.

そこで、本実施例7では、ECU28によって後述する図16の故障診断ルーチンを実行することで、図15に示すように、電動式W/P12の停止要求が発生しているときに、出口側水温センサ21で検出した出口水温検出値と、入口側水温センサ20で検出した入口水温検出値との差を算出することで、出入口水温差(=出口水温検出値−入口水温検出値)を求め、この出入口水温差が車両運転状態に応じた判定値以下の場合に、電動式W/P12が停止不能となって作動し続ける故障発生と判定するようにしている。   In the seventh embodiment, therefore, the ECU 28 executes a failure diagnosis routine shown in FIG. 16 to be described later, and when the electric W / P 12 stop request is generated as shown in FIG. By calculating the difference between the detected outlet water temperature detected by the sensor 21 and the detected inlet water temperature detected by the inlet-side water temperature sensor 20, an inlet / outlet water temperature difference (= outlet water temperature detected value−inlet water temperature detected value) is obtained. When this inlet / outlet water temperature difference is equal to or less than a determination value corresponding to the vehicle operating state, it is determined that a failure has occurred in which the electric W / P 12 cannot be stopped and continues to operate.

電動式W/P12が正常に停止されて冷却水の流量が低下すると、エンジン11での冷却水の受熱量が増加するため、エンジン11の入口水温に対して出口水温が高くなって、出口水温と入口水温との差が大きくなるはずである。従って、電動式W/P12の停止要求が発生しているときに、出入口水温差(=出口水温検出値−入口水温検出値)が判定値以下の場合には、電動式W/P12が停止不能となって作動し続ける故障発生と判定することができる。   When the electric W / P 12 is normally stopped and the flow rate of the cooling water decreases, the amount of cooling water received by the engine 11 increases, so the outlet water temperature becomes higher than the inlet water temperature of the engine 11, and the outlet water temperature The difference between the water temperature and the inlet water temperature should be large. Therefore, when the electric W / P12 stop request is generated, if the inlet / outlet water temperature difference (= the outlet water temperature detected value−the inlet water temperature detected value) is equal to or smaller than the determination value, the electric W / P12 cannot be stopped. Thus, it can be determined that the failure has continued to operate.

以下、本実施例7でECU28が実行する図16の故障診断ルーチンの処理内容を説明する。図16に示す故障診断ルーチンでは、まず、ステップ701で、エンジン11の早期暖機等を目的として電動式W/P12の停止要求が発生しているか否かを判定し、電動式W/P12の停止要求が発生していないと判定された場合には、ステップ702以降の処理を行うことなく、本ルーチンを終了する。   Hereinafter, processing contents of the failure diagnosis routine of FIG. 16 executed by the ECU 28 in the seventh embodiment will be described. In the failure diagnosis routine shown in FIG. 16, first, at step 701, it is determined whether or not a stop request for the electric W / P 12 has been generated for the purpose of early warming up of the engine 11, etc. If it is determined that a stop request has not occurred, this routine is terminated without performing the processing from step 702 onward.

一方、上記ステップ701で、電動式W/P12の停止要求が発生していると判定された場合には、ステップ702に進み、入口側水温センサ20と出口側水温センサ21が正常に動作するか否かを、車両に搭載した自己診断機能の診断結果に基づいて判定し、いずれかの故障が検出されていれば、ステップ703に進み、入口側水温センサ20又は出口側水温センサ21の故障と判定して、本ルーチンを終了する。   On the other hand, if it is determined in step 701 that a request for stopping the electric W / P 12 has occurred, the process proceeds to step 702, where the inlet-side water temperature sensor 20 and the outlet-side water temperature sensor 21 operate normally. Is determined based on the diagnosis result of the self-diagnosis function mounted on the vehicle, and if any failure is detected, the process proceeds to step 703, where the failure of the inlet side water temperature sensor 20 or the outlet side water temperature sensor 21 is detected. Determination is made and this routine is terminated.

一方、上記ステップ702で、入口側水温センサ20と出口側水温センサ21が両方とも正常であることが確認されれば、ステップ704以降の故障診断に関する処理を次のようにして実行する。   On the other hand, if it is confirmed in step 702 that both the inlet-side water temperature sensor 20 and the outlet-side water temperature sensor 21 are normal, processing relating to failure diagnosis after step 704 is executed as follows.

まず、ステップ704で、出口側水温センサ21で検出した出口水温検出値と、入口側水温センサ20で検出した入口水温検出値との差を算出することで、出入口水温差を求める。   First, in step 704, the difference between the detected outlet water temperature detected by the outlet-side water temperature sensor 21 and the detected inlet water temperature detected by the inlet-side water temperature sensor 20 is calculated to obtain the inlet / outlet water temperature difference.

この後、ステップ705に進み、エンジン運転状態(例えば吸入空気量又は燃料噴射量)に基づいてエンジン11の発熱量をマップ又は数式等により算出し、このエンジン11の発熱量に基づいてエンジン11での冷却水の受熱量推定値をマップ又は数式等により算出する。尚、車速や外気温に応じてエンジン11での冷却水の受熱量推定値を補正するようにしても良い。   Thereafter, the process proceeds to step 705, where the heat generation amount of the engine 11 is calculated by a map or a mathematical formula based on the engine operating state (for example, the intake air amount or the fuel injection amount), and the engine 11 is calculated based on the heat generation amount of the engine 11. The estimated amount of heat received by the cooling water is calculated using a map or mathematical formula. In addition, you may make it correct | amend the heat receiving amount estimated value of the cooling water in the engine 11 according to a vehicle speed or external temperature.

この後、ステップ706に進み、エンジン11での冷却水の受熱量推定値と、冷却水の物性値(例えば比熱と密度)とに基づいてエンジン11での冷却水温の上昇分を算出(推定)した後、ステップ707に進み、エンジン11での冷却水温の上昇分又はそれよりも少し小さい値を故障判定値として設定する。   Thereafter, the process proceeds to step 706, and the amount of increase in the cooling water temperature in the engine 11 is calculated (estimated) based on the estimated amount of heat received by the cooling water in the engine 11 and the physical property values (for example, specific heat and density) of the cooling water. After that, the process proceeds to step 707, and an increase in the coolant temperature in the engine 11 or a value slightly smaller than that is set as a failure determination value.

この後、ステップ708に進み、出入口水温差(=出口水温検出値−入口水温検出値)が判定値以下であるか否かを判定する。その結果、出入口水温差が判定値以下であると判定された場合には、ステップ709に進み、電動式W/P12が停止不能になって作動し続ける故障発生と判定して、故障時の処理を行った後、本ルーチンを終了する。   Thereafter, the process proceeds to step 708, where it is determined whether the inlet / outlet water temperature difference (= the outlet water temperature detected value−the inlet water temperature detected value) is equal to or smaller than a determination value. As a result, when it is determined that the inlet / outlet water temperature difference is equal to or less than the determination value, the process proceeds to step 709, where it is determined that a failure has occurred and the electric W / P 12 cannot be stopped and continues to operate, and processing at the time of the failure After this, this routine is finished.

これに対して、上記ステッ708で、出入口水温差が判定値よりも大きいと判定された場合には、ステップ710に進み、電動式W/P12の故障無し(電動式W/P12が停止要求に応じて正常に停止している)と判定して、本ルーチンを終了する。   On the other hand, if it is determined in step 708 that the inlet / outlet water temperature difference is larger than the determination value, the process proceeds to step 710 and there is no failure of the electric W / P 12 (the electric W / P 12 is requested to stop). Accordingly, the routine is terminated.

以上説明した本実施例7では、電動式W/P12の停止要求が発生しているときに、出入口水温差が判定値以下の場合に、電動式W/P12が停止不能になって作動し続ける故障発生と判定するようにしたので、電動式W/P12の停止要求が発生しているにも拘らず、電動式W/P12が停止不能になって作動し続ける故障を検出することができる。   In the seventh embodiment described above, when a request for stopping the electric W / P 12 is generated, if the water temperature difference at the inlet / outlet is equal to or less than the determination value, the electric W / P 12 cannot be stopped and continues to operate. Since it has been determined that a failure has occurred, it is possible to detect a failure in which the electric W / P 12 is unable to stop and continues to operate despite a request to stop the electric W / P 12.

次に、図17及び図18を用いて本発明の実施例8を説明する。但し、前記実施例7と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 8 of the present invention will be described with reference to FIGS. However, description of the substantially same parts as those of the seventh embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例8では、ECU28によって後述する図18の故障診断ルーチンを実行することで、図17に示すように、電動式W/P12の停止要求が発生しているときに、出口側水温センサ21で検出した出口水温検出値の変化量が車両運転状態に応じた判定値以下の場合に、電動式W/P12が停止不能になって作動し続ける故障発生と判定するようにしている。   In the eighth embodiment, the ECU 28 executes a failure diagnosis routine shown in FIG. 18 to be described later, and as shown in FIG. 17, when the stop request for the electric W / P 12 is generated, the outlet side water temperature sensor 21. When the change amount of the outlet water temperature detection value detected in step S1 is equal to or less than the determination value corresponding to the vehicle operating state, it is determined that a failure has occurred and the electric W / P 12 cannot be stopped and continues to operate.

電動式W/P12が正常に停止されて冷却水の流量が低下すると、エンジン11での冷却水の受熱量が増加するため、エンジン11の出口水温が上昇するはずである。従って、電動式W/P12の停止要求が発生しているときに、出口側水温センサ21で検出した出口水温検出値の変化量が判定値以下の場合には、電動式W/P12が停止不能になって作動し続ける故障発生と判定することができる。   When the electric W / P 12 is normally stopped and the flow rate of the cooling water is decreased, the amount of heat received by the cooling water in the engine 11 is increased, so that the outlet water temperature of the engine 11 should be increased. Therefore, when a request for stopping the electric W / P 12 is generated, if the amount of change in the detected outlet water temperature detected by the outlet-side water temperature sensor 21 is equal to or less than the determination value, the electric W / P 12 cannot be stopped. Therefore, it can be determined that a failure has occurred and continues to operate.

以下、本実施例8でECU28が実行する図18の故障診断ルーチンの処理内容を説明する。図18に示す故障診断ルーチンでは、ステップ801で、電動式W/P12の停止要求が発生していると判定された場合に、次のステップ802で、入口側水温センサ20と出口側水温センサ21が両方とも正常であることが確認されれば、ステップ804以降の故障診断に関する処理を次のようにして実行する。   Hereinafter, the processing contents of the failure diagnosis routine of FIG. 18 executed by the ECU 28 in the eighth embodiment will be described. In the failure diagnosis routine shown in FIG. 18, when it is determined in step 801 that a stop request for the electric W / P 12 is generated, in the next step 802, the inlet-side water temperature sensor 20 and the outlet-side water temperature sensor 21. If both are confirmed to be normal, processing relating to failure diagnosis after step 804 is executed as follows.

まず、ステップ804で、出口側水温センサ21で検出した出口水温検出値の単位時間当りの変化量を算出する。
この後、ステップ805に進み、エンジン運転状態(例えば吸入空気量又は燃料噴射量)に基づいてエンジン11の発熱量をマップ又は数式等により算出し、このエンジン11の発熱量に基づいてエンジン11での冷却水の受熱量推定値をマップ又は数式等により算出する。尚、車速や外気温に応じてエンジン11での冷却水の受熱量推定値を補正するようにしても良い。
First, in step 804, the amount of change per unit time of the outlet water temperature detection value detected by the outlet side water temperature sensor 21 is calculated.
Thereafter, the process proceeds to step 805, where the heat generation amount of the engine 11 is calculated by a map or a mathematical formula based on the engine operating state (for example, the intake air amount or the fuel injection amount), and the engine 11 based on the heat generation amount of the engine 11 The estimated amount of heat received by the cooling water is calculated using a map or mathematical formula. In addition, you may make it correct | amend the heat receiving amount estimated value of the cooling water in the engine 11 according to a vehicle speed or external temperature.

この後、ステップ806に進み、エンジン11での冷却水の受熱量推定値と、冷却水の物性値(例えば比熱と密度)とに基づいて出口水温の単位時間当りの変化量推定値を算出した後、ステップ807に進み、出口水温の単位時間当りの変化量推定値又はそれよりも少し小さい値を故障判定値として設定する。   Thereafter, the process proceeds to step 806, where the estimated amount of change in the outlet water temperature per unit time is calculated based on the estimated amount of heat received by the cooling water in the engine 11 and the physical properties of the cooling water (for example, specific heat and density). Thereafter, the process proceeds to step 807, where the estimated change amount per unit time of the outlet water temperature or a value slightly smaller than that is set as the failure determination value.

この後、ステップ808に進み、出口水温検出値の単位時間当りの変化量が判定値以下であるか否かを判定する。その結果、出口水温検出値の単位時間当りの変化量が判定値以下であると判定された場合には、ステップ809に進み、電動式W/P12が停止不能になって作動し続ける故障発生と判定して、故障時の処理を行った後、本ルーチンを終了する。   Thereafter, the process proceeds to step 808, and it is determined whether or not the amount of change in the outlet water temperature detection value per unit time is equal to or less than the determination value. As a result, if it is determined that the amount of change in the outlet water temperature detection value per unit time is equal to or less than the determination value, the process proceeds to step 809, where a failure occurs where the electric W / P 12 cannot be stopped and continues to operate. After determining and performing the process at the time of failure, this routine is terminated.

これに対して、上記ステッ808で、出口水温検出値の単位時間当りの変化量が判定値よりも大きいと判定された場合には、ステップ810に進み、電動式W/P12の故障無し(電動式W/P12が停止要求に応じて正常に停止している)と判定して、本ルーチンを終了する。   On the other hand, if it is determined in step 808 that the amount of change in the outlet water temperature detection value per unit time is larger than the determination value, the process proceeds to step 810, and there is no failure of the electric W / P 12 (electric It is determined that the expression W / P12 is normally stopped in response to the stop request), and this routine is finished.

以上説明した本実施例8では、電動式W/P12の停止要求が発生しているときに、出口水温検出値の変化量が判定値以下の場合に、電動式W/P12が作動している故障発生と判定するようにしたので、電動式W/P12の停止要求が発生しているにも拘らず、電動式W/P12がが停止不能になって作動し続ける故障を検出することができる。   In the eighth embodiment described above, when a request for stopping the electric W / P 12 is generated, the electric W / P 12 is operating when the change amount of the outlet water temperature detection value is equal to or less than the determination value. Since it has been determined that a failure has occurred, it is possible to detect a failure in which the electric W / P 12 is unable to stop and continues to operate despite a request to stop the electric W / P 12. .

尚、上記各実施例1〜8では、冷却水循環回路16にサーモスタットバルブ18を設けた冷却システムに本発明を適用したが、サーモスタットバルブ18に代えて、電磁弁で構成された流路切換バルブを設けた冷却システムに本発明を適用しても良い。   In each of the first to eighth embodiments, the present invention is applied to a cooling system in which the thermostat valve 18 is provided in the cooling water circulation circuit 16. However, instead of the thermostat valve 18, a flow path switching valve constituted by an electromagnetic valve is used. The present invention may be applied to a provided cooling system.

その他、本発明は、冷却システムの構成を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。   In addition, the present invention can be implemented with various modifications within a range that does not depart from the gist, such as appropriately changing the configuration of the cooling system.

本発明の実施例1におけるエンジン冷却システム全体の概略構成図である。It is a schematic block diagram of the whole engine cooling system in Example 1 of this invention. 目標冷却水温のマップの一例を概念的に示す図である。It is a figure which shows notionally an example of the map of target cooling water temperature. 実施例1の故障診断の実行例を説明するタイムチャートである。6 is a time chart for explaining an execution example of failure diagnosis according to the first embodiment. 実施例1の故障診断ルーチンの処理の流れを説明するフローチャートである。6 is a flowchart for explaining a flow of processing of a failure diagnosis routine according to the first embodiment. 実施例2の故障診断の実行例を説明するタイムチャートである。6 is a time chart for explaining an execution example of failure diagnosis according to the second embodiment. 実施例2の故障診断ルーチンの処理の流れを説明するフローチャートである。6 is a flowchart for explaining a flow of processing of a failure diagnosis routine of a second embodiment. 実施例3の故障診断の実行例を説明するタイムチャートである。12 is a time chart for explaining an execution example of failure diagnosis of the third embodiment. 実施例3の故障診断ルーチンの処理の流れを説明するフローチャートである。10 is a flowchart for explaining a flow of processing of a failure diagnosis routine of a third embodiment. 実施例4の故障診断の実行例を説明するタイムチャートである。10 is a time chart for explaining an execution example of failure diagnosis according to a fourth embodiment. 実施例4の故障診断ルーチンの処理の流れを説明するフローチャートである。10 is a flowchart for explaining a flow of processing of a failure diagnosis routine of a fourth embodiment. 実施例5の故障診断の実行例を説明するタイムチャートである。10 is a time chart for explaining an execution example of failure diagnosis of Embodiment 5. 実施例5の故障診断ルーチンの処理の流れを説明するフローチャートである。10 is a flowchart for explaining a flow of processing of a failure diagnosis routine of the fifth embodiment. 実施例6の故障診断の実行例を説明するタイムチャートである。12 is a time chart for explaining an execution example of failure diagnosis according to the sixth embodiment. 実施例6の故障診断ルーチンの処理の流れを説明するフローチャートである。12 is a flowchart for explaining a flow of processing of a failure diagnosis routine of a sixth embodiment. 実施例7の故障診断の実行例を説明するタイムチャートである。12 is a time chart for explaining an execution example of failure diagnosis of Example 7. 実施例7の故障診断ルーチンの処理の流れを説明するフローチャートである。12 is a flowchart for explaining a processing flow of a failure diagnosis routine according to the seventh embodiment. 実施例8の故障診断の実行例を説明するタイムチャートである。10 is a time chart for explaining an execution example of failure diagnosis of an eighth embodiment. 実施例8の故障診断ルーチンの処理の流れを説明するフローチャートである。10 is a flowchart for explaining a flow of processing of a failure diagnosis routine of an eighth embodiment.

符号の説明Explanation of symbols

11…エンジン(内燃機関)、12…電動式W/P、13…ラジエータ、16…冷却水循環回路、18…サーモスタットバルブ(流路切換バルブ)、19…電動式冷却ファン、20…入口側水温センサ、21…出口側水温センサ、28…ECU(故障診断手段,実受熱量算出手段,受熱量推定手段,出口水温推定手段,入口水温推定手段,放熱量推定手段,実放熱量算出手段,故障診断禁止手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Electric W / P, 13 ... Radiator, 16 ... Cooling water circulation circuit, 18 ... Thermostat valve (flow-path switching valve), 19 ... Electric cooling fan, 20 ... Inlet side water temperature sensor , 21... Outlet side water temperature sensor, 28... ECU (failure diagnosis means, actual heat reception amount calculation means, heat reception amount estimation means, outlet water temperature estimation means, inlet water temperature estimation means, heat release amount estimation means, actual heat release amount calculation means, failure diagnosis Prohibited means)

Claims (11)

内燃機関とラジエータとの間で冷却水を循環させる電動式ウォータポンプを備えた車両用冷却システムの故障診断装置において、
前記内燃機関の冷却水入口又はその付近の冷却水温(以下「入口水温」という)を検出する入口側水温センサと、
前記内燃機関の冷却水出口又はその付近の冷却水温(以下「出口水温」という)を検出する出口側水温センサと、
前記出口側水温センサで検出した出口水温検出値と前記入口側水温センサで検出した入口水温検出値との差又は比を車両運転状態に応じた故障判定値と比較して前記電動式ウォータポンプの故障の有無を判定する故障診断手段と
を備えていることを特徴とする車両用冷却システムの故障診断装置。
In a failure diagnosis device for a vehicle cooling system comprising an electric water pump for circulating cooling water between an internal combustion engine and a radiator,
An inlet side water temperature sensor for detecting a cooling water temperature at or near the cooling water inlet of the internal combustion engine (hereinafter referred to as "inlet water temperature");
An outlet side water temperature sensor for detecting a cooling water outlet of the internal combustion engine or a cooling water temperature in the vicinity thereof (hereinafter referred to as “outlet water temperature”);
The difference or ratio between the outlet water temperature detection value detected by the outlet side water temperature sensor and the inlet water temperature detection value detected by the inlet side water temperature sensor is compared with a failure determination value according to the vehicle operating state, and the electric water pump A failure diagnosis device for a vehicle cooling system, comprising: failure diagnosis means for determining presence or absence of failure.
前記故障診断手段は、前記出口水温検出値と前記入口水温検出値との差が前記故障判定値以上の場合に前記電動式ウォータポンプの故障発生と判定することを特徴とする請求項1に記載の車両用冷却システムの故障診断装置。   2. The failure diagnosis unit determines that the electric water pump has failed when a difference between the detected outlet water temperature value and the detected inlet water temperature value is equal to or greater than the failure determination value. Fault diagnosis device for vehicle cooling system. 前記故障診断手段は、前記出口水温検出値が所定値以上の場合に前記電動式ウォータポンプの故障発生と判定する手段を有することを特徴とする請求項1又は2に記載の車両用冷却システムの故障診断装置。   3. The vehicle cooling system according to claim 1, wherein the failure diagnosis unit includes a unit that determines that a failure has occurred in the electric water pump when the detected outlet water temperature value is equal to or greater than a predetermined value. 4. Fault diagnosis device. 内燃機関とラジエータとの間で冷却水を循環させる電動式ウォータポンプを備えた車両用冷却システムの故障診断装置において、
前記内燃機関の冷却水入口又はその付近の冷却水温(以下「入口水温」という)を検出する入口側水温センサと、
前記内燃機関の冷却水出口又はその付近の冷却水温(以下「出口水温」という)を検出する出口側水温センサと、
前記出口側水温センサで検出した出口水温検出値と前記入口側水温センサで検出した入口水温検出値との差に基づいて前記内燃機関での冷却水の実受熱量を算出する実受熱量算出手段と、
前記内燃機関の運転状態から求めた発熱量と冷却水の目標流量とに基づいて前記内燃機関での冷却水の受熱量を推定する受熱量推定手段と、
前記実受熱量算出手段で算出した冷却水の実受熱量と前記受熱量推定手段で推定した冷却水の受熱量推定値とを比較して前記電動式ウォータポンプの故障の有無を判定する故障診断手段と
を備えていることを特徴とする車両用冷却システムの故障診断装置。
In a failure diagnosis device for a vehicle cooling system comprising an electric water pump for circulating cooling water between an internal combustion engine and a radiator,
An inlet side water temperature sensor for detecting a cooling water temperature at or near the cooling water inlet of the internal combustion engine (hereinafter referred to as "inlet water temperature");
An outlet side water temperature sensor for detecting a cooling water outlet of the internal combustion engine or a cooling water temperature in the vicinity thereof (hereinafter referred to as “outlet water temperature”);
An actual heat receiving amount calculation means for calculating an actual heat receiving amount of the cooling water in the internal combustion engine based on a difference between the detected outlet water temperature value detected by the outlet side water temperature sensor and the detected inlet water temperature value by the inlet side water temperature sensor. When,
A heat receiving amount estimating means for estimating a heat receiving amount of the cooling water in the internal combustion engine based on a heat generation amount obtained from an operating state of the internal combustion engine and a target flow rate of the cooling water;
Failure diagnosis for determining whether or not there is a failure in the electric water pump by comparing the actual received amount of cooling water calculated by the actual received heat amount calculating means and the estimated received amount of cooling water estimated by the received heat amount estimating means And a failure diagnosis device for a vehicle cooling system.
内燃機関とラジエータとの間で冷却水を循環させる電動式ウォータポンプを備えた車両用冷却システムの故障診断装置において、
前記内燃機関の冷却水入口又はその付近の冷却水温(以下「入口水温」という)を検出する入口側水温センサと、
前記内燃機関の冷却水出口又はその付近の冷却水温(以下「出口水温」という)を検出する出口側水温センサと、
前記内燃機関の運転状態から求めた発熱量と冷却水の目標流量とに基づいて前記内燃機関での冷却水の受熱量を推定する受熱量推定手段と、
前記入口側水温センサで検出した入口水温検出値と前記受熱量推定手段で推定した冷却水の受熱量推定値とに基づいて前記出口水温を推定する出口水温推定手段と、
前記出口側水温センサで検出した出口水温検出値と前記出口水温推定手段で推定した出口水温推定値とを比較して前記電動式ウォータポンプの故障の有無を判定する故障診断手段と
を備えていることを特徴とする車両用冷却システムの故障診断装置。
In a failure diagnosis device for a vehicle cooling system comprising an electric water pump for circulating cooling water between an internal combustion engine and a radiator,
An inlet side water temperature sensor for detecting a cooling water temperature at or near the cooling water inlet of the internal combustion engine (hereinafter referred to as "inlet water temperature");
An outlet side water temperature sensor for detecting a cooling water outlet of the internal combustion engine or a cooling water temperature in the vicinity thereof (hereinafter referred to as “outlet water temperature”);
A heat receiving amount estimating means for estimating a heat receiving amount of the cooling water in the internal combustion engine based on a heat generation amount obtained from an operating state of the internal combustion engine and a target flow rate of the cooling water;
Outlet water temperature estimating means for estimating the outlet water temperature based on the inlet water temperature detected value detected by the inlet water temperature sensor and the received heat amount estimated value of the cooling water estimated by the received heat amount estimating means;
A failure diagnosing unit that compares the detected outlet water temperature detected by the outlet-side water temperature sensor with the estimated outlet water temperature estimated by the outlet water temperature estimating unit to determine whether or not the electric water pump has failed. A failure diagnosis apparatus for a cooling system for a vehicle.
内燃機関とラジエータとの間で冷却水を循環させる電動式ウォータポンプを備えた車両用冷却システムの故障診断装置において、
前記内燃機関の冷却水入口又はその付近の冷却水温(以下「入口水温」という)を検出する入口側水温センサと、
前記内燃機関の冷却水出口又はその付近の冷却水温(以下「出口水温」という)を検出する出口側水温センサと、
前記内燃機関の運転状態から求めた発熱量と冷却水の目標流量とに基づいて前記内燃機関での冷却水の受熱量を推定する受熱量推定手段と、
前記出口側水温センサで検出した出口水温検出値と前記受熱量推定手段で推定した冷却水の受熱量推定値とに基づいて前記入口水温を推定する入口水温推定手段と、
前記入口側水温センサで検出した入口水温検出値と前記入口水温推定手段で推定した入口水温推定値とを比較して前記電動式ウォータポンプの故障の有無を判定する故障診断手段と
を備えていることを特徴とする車両用冷却システムの故障診断装置。
In a failure diagnosis device for a vehicle cooling system comprising an electric water pump for circulating cooling water between an internal combustion engine and a radiator,
An inlet side water temperature sensor for detecting a cooling water temperature at or near the cooling water inlet of the internal combustion engine (hereinafter referred to as "inlet water temperature");
An outlet side water temperature sensor for detecting a cooling water outlet of the internal combustion engine or a cooling water temperature in the vicinity thereof (hereinafter referred to as “outlet water temperature”);
A heat receiving amount estimating means for estimating a heat receiving amount of the cooling water in the internal combustion engine based on a heat generation amount obtained from an operating state of the internal combustion engine and a target flow rate of the cooling water;
An inlet water temperature estimating means for estimating the inlet water temperature based on the outlet water temperature detected value detected by the outlet water temperature sensor and the received heat amount estimated value of the cooling water estimated by the received heat amount estimating means;
A failure diagnostic means for comparing the detected inlet water temperature detected by the inlet water temperature sensor with the estimated inlet water temperature estimated by the inlet water temperature estimating means to determine whether or not the electric water pump has failed. A failure diagnosis apparatus for a cooling system for a vehicle.
内燃機関とラジエータとの間で冷却水を循環させる電動式ウォータポンプと、前記ラジエータの冷却風を発生させる電動式冷却ファンと、前記ラジエータに冷却水を循環させる流路と前記ラジエータに冷却水を循環させないバイパス流路とを切り換える流路切換バルブとを備えた車両用冷却システムの故障診断装置において、
前記内燃機関の冷却水入口又はその付近の冷却水温(以下「入口水温」という)を検出する入口側水温センサと、
前記内燃機関の冷却水出口又はその付近の冷却水温(以下「出口水温」という)を検出する出口側水温センサと、
前記ラジエータでの冷却水の放熱量を決定する要因に基づいて該ラジエータでの冷却水の放熱量を推定する放熱量推定手段と、
前記出口側水温センサで検出した出口水温検出値と前記放熱量推定手段で推定した冷却水の放熱量推定値とに基づいて前記入口水温を推定する入口水温推定手段と、
前記入口側水温センサで検出した入口水温検出値と前記入口水温推定手段で推定した入口水温推定値とを比較して前記電動式冷却ファン又は前記流路切換バルブの故障の有無を判定する故障診断手段と
を備えていることを特徴とする車両用冷却システムの故障診断装置。
An electric water pump that circulates cooling water between the internal combustion engine and the radiator, an electric cooling fan that generates cooling air for the radiator, a flow path that circulates the cooling water in the radiator, and cooling water in the radiator In a failure diagnosis apparatus for a cooling system for a vehicle having a flow path switching valve that switches between bypass flow paths that are not circulated,
An inlet side water temperature sensor for detecting a cooling water temperature at or near the cooling water inlet of the internal combustion engine (hereinafter referred to as "inlet water temperature");
An outlet side water temperature sensor for detecting a cooling water outlet of the internal combustion engine or a cooling water temperature in the vicinity thereof (hereinafter referred to as “outlet water temperature”);
A heat radiation amount estimating means for estimating a heat radiation amount of the cooling water in the radiator based on a factor for determining a heat radiation amount of the cooling water in the radiator;
Inlet water temperature estimation means for estimating the inlet water temperature based on the outlet water temperature detection value detected by the outlet water temperature sensor and the heat radiation amount estimation value of the cooling water estimated by the heat radiation amount estimation means;
Failure diagnosis that compares the detected inlet water temperature detected by the inlet-side water temperature sensor with the estimated inlet water temperature estimated by the inlet water temperature estimating means to determine whether the electric cooling fan or the flow path switching valve is defective. And a failure diagnosis device for a vehicle cooling system.
内燃機関とラジエータとの間で冷却水を循環させる電動式ウォータポンプと、前記ラジエータの冷却風を発生させる電動式冷却ファンと、前記ラジエータに冷却水を循環させる流路と前記ラジエータに冷却水を循環させないバイパス流路とを切り換える流路切換バルブとを備えた車両用冷却システムの故障診断装置において、
前記内燃機関の冷却水入口又はその付近の冷却水温(以下「入口水温」という)を検出する入口側水温センサと、
前記内燃機関の冷却水出口又はその付近の冷却水温(以下「出口水温」という)を検出する出口側水温センサと、
前記出口側水温センサで検出した出口水温検出値と前記入口側水温センサで検出した入口水温検出値との差に基づいて前記ラジエータでの冷却水の実放熱量を算出する実放熱量算出手段と、
前記ラジエータでの冷却水の放熱量を決定する要因に基づいて該ラジエータでの冷却水の放熱量を推定する放熱量推定手段と、
前記実放熱量算出手段で算出した冷却水の実放熱量と前記放熱量推定手段で推定した冷却水の放熱量推定値とを比較して前記電動式冷却ファン又は前記流路切換バルブの故障の有無を判定する故障診断手段と
を備えていることを特徴とする車両用冷却システムの故障診断装置。
An electric water pump that circulates cooling water between the internal combustion engine and the radiator, an electric cooling fan that generates cooling air for the radiator, a flow path that circulates the cooling water in the radiator, and cooling water in the radiator In a failure diagnosis apparatus for a cooling system for a vehicle having a flow path switching valve that switches between bypass flow paths that are not circulated,
An inlet side water temperature sensor for detecting a cooling water temperature at or near the cooling water inlet of the internal combustion engine (hereinafter referred to as "inlet water temperature");
An outlet side water temperature sensor for detecting a cooling water outlet of the internal combustion engine or a cooling water temperature in the vicinity thereof (hereinafter referred to as “outlet water temperature”);
An actual heat release amount calculating means for calculating an actual heat release amount of the cooling water in the radiator based on a difference between an outlet water temperature detection value detected by the outlet side water temperature sensor and an inlet water temperature detection value detected by the inlet side water temperature sensor; ,
A heat radiation amount estimating means for estimating a heat radiation amount of the cooling water in the radiator based on a factor for determining a heat radiation amount of the cooling water in the radiator;
Comparing the actual heat dissipation amount of the cooling water calculated by the actual heat dissipation amount calculating means and the estimated heat dissipation amount of the cooling water estimated by the heat dissipation amount estimating means, the failure of the electric cooling fan or the flow path switching valve A failure diagnosis device for a vehicle cooling system, comprising: failure diagnosis means for determining presence or absence.
前記電動式ウォータポンプの停止要求が発生しているときに前記故障診断手段による故障診断を禁止する故障診断禁止手段を備えていることを特徴とする請求項1乃至8のいずれかに記載の車両用冷却システムの故障診断装置。   9. The vehicle according to claim 1, further comprising failure diagnosis prohibiting means for prohibiting failure diagnosis by the failure diagnosis means when a request for stopping the electric water pump is generated. Failure diagnosis device for cooling system 内燃機関とラジエータとの間で冷却水を循環させる電動式ウォータポンプを備えた車両用冷却システムの故障診断装置において、
前記内燃機関の冷却水入口又はその付近の冷却水温(以下「入口水温」という)を検出する入口側水温センサと、
前記内燃機関の冷却水出口又はその付近の冷却水温(以下「出口水温」という)を検出する出口側水温センサと、
前記電動式ウォータポンプの停止要求が発生しているときに前記出口側水温センサで検出した出口水温検出値と前記入口側水温センサで検出した入口水温検出値との差が車両運転状態に応じた判定値以下の場合に前記電動式ウォータポンプが停止不能となって作動し続ける故障発生と判定する故障診断手段と
を備えていることを特徴とする車両用冷却システムの故障診断装置。
In a failure diagnosis device for a vehicle cooling system comprising an electric water pump for circulating cooling water between an internal combustion engine and a radiator,
An inlet side water temperature sensor for detecting a cooling water temperature at or near the cooling water inlet of the internal combustion engine (hereinafter referred to as "inlet water temperature");
An outlet side water temperature sensor for detecting a cooling water outlet of the internal combustion engine or a cooling water temperature in the vicinity thereof (hereinafter referred to as “outlet water temperature”);
The difference between the detected outlet water temperature detected by the outlet-side water temperature sensor and the detected inlet water temperature detected by the inlet-side water temperature sensor when a stop request for the electric water pump is generated depends on the vehicle operating condition. A failure diagnosis device for a cooling system for a vehicle, comprising: failure diagnosis means for determining that a failure has occurred in which the electric water pump cannot be stopped and continues to operate when the value is less than a determination value.
内燃機関とラジエータとの間で冷却水を循環させる電動式ウォータポンプを備えた車両用冷却システムの故障診断装置において、
前記内燃機関の冷却水入口又はその付近の冷却水温(以下「入口水温」という)を検出する入口側水温センサと、
前記内燃機関の冷却水出口又はその付近の冷却水温(以下「出口水温」という)を検出する出口側水温センサと、
前記電動式ウォータポンプの停止要求が発生しているときに前記出口側水温センサで検出した出口水温検出値の変化量が車両運転状態に応じた判定値以下の場合に前記電動式ウォータポンプが停止不能となって作動し続ける故障発生と判定する故障診断手段と
を備えていることを特徴とする車両用冷却システムの故障診断装置。
In a failure diagnosis device for a vehicle cooling system comprising an electric water pump for circulating cooling water between an internal combustion engine and a radiator,
An inlet side water temperature sensor for detecting a cooling water temperature at or near the cooling water inlet of the internal combustion engine (hereinafter referred to as "inlet water temperature");
An outlet side water temperature sensor for detecting a cooling water outlet of the internal combustion engine or a cooling water temperature in the vicinity thereof (hereinafter referred to as “outlet water temperature”);
The electric water pump is stopped when the change amount of the outlet water temperature detected value detected by the outlet side water temperature sensor is equal to or less than a determination value according to the vehicle operating state when the electric water pump stop request is generated. A failure diagnosis device for a vehicle cooling system, comprising: failure diagnosis means for determining that a failure has occurred and continues to operate.
JP2008235811A 2008-09-15 2008-09-15 Failure diagnosis device of cooling system for vehicle Pending JP2010065671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008235811A JP2010065671A (en) 2008-09-15 2008-09-15 Failure diagnosis device of cooling system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008235811A JP2010065671A (en) 2008-09-15 2008-09-15 Failure diagnosis device of cooling system for vehicle

Publications (1)

Publication Number Publication Date
JP2010065671A true JP2010065671A (en) 2010-03-25

Family

ID=42191452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008235811A Pending JP2010065671A (en) 2008-09-15 2008-09-15 Failure diagnosis device of cooling system for vehicle

Country Status (1)

Country Link
JP (1) JP2010065671A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235228A (en) * 2010-04-29 2011-11-09 现代自动车株式会社 Apparatus for controlling water pump of hybrid vehicle and method thereof
JP2012007598A (en) * 2010-05-26 2012-01-12 Toyota Motor Corp On-board lubricant supply device
JP2012047121A (en) * 2010-08-27 2012-03-08 Mitsubishi Electric Corp Control device of electric water pump
DE102011108203A1 (en) * 2011-07-20 2012-05-31 Daimler Ag Diagnostic method for switchable water pump of cooling system of combustion engine of motor vehicle for error indication of malfunction of switchable water pump, involves carrying out error indication when certain conditions are satisfied
KR101171907B1 (en) * 2010-05-26 2012-08-07 기아자동차주식회사 Apparatus for diagnosis of clutch water pump and method thereof
GB2501699A (en) * 2012-04-30 2013-11-06 Gm Global Tech Operations Inc Refining electric thermostat duty cycle by estimating engine inlet temperature
KR101526419B1 (en) * 2013-12-16 2015-06-11 현대자동차 주식회사 Method and system for diagnosting system for cooling power electronic components of hybrid vehicle
JP2017057746A (en) * 2015-09-15 2017-03-23 株式会社デンソー Diagnostic device
DE102017117844A1 (en) 2016-09-09 2018-03-15 Subaru Corporation Cooling device for vehicles
US10519875B2 (en) 2015-07-28 2019-12-31 Denso Corporation Diagnostic device
JP2021038717A (en) * 2019-09-04 2021-03-11 愛三工業株式会社 Evaporated fuel treatment device
CN113606125A (en) * 2021-08-27 2021-11-05 东风商用车有限公司 Cooling water pump diagnosis method and device and electronic equipment
CN114251170A (en) * 2020-09-21 2022-03-29 现代自动车株式会社 Method for preventing engine overheating based on coolant temperature and engine system thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102235228A (en) * 2010-04-29 2011-11-09 现代自动车株式会社 Apparatus for controlling water pump of hybrid vehicle and method thereof
JP2012007598A (en) * 2010-05-26 2012-01-12 Toyota Motor Corp On-board lubricant supply device
KR101171907B1 (en) * 2010-05-26 2012-08-07 기아자동차주식회사 Apparatus for diagnosis of clutch water pump and method thereof
JP2012047121A (en) * 2010-08-27 2012-03-08 Mitsubishi Electric Corp Control device of electric water pump
DE102011108203A1 (en) * 2011-07-20 2012-05-31 Daimler Ag Diagnostic method for switchable water pump of cooling system of combustion engine of motor vehicle for error indication of malfunction of switchable water pump, involves carrying out error indication when certain conditions are satisfied
GB2501699B (en) * 2012-04-30 2017-06-07 Gm Global Tech Operations Llc Controlling a duty cycle on an electric thermostat
GB2501699A (en) * 2012-04-30 2013-11-06 Gm Global Tech Operations Inc Refining electric thermostat duty cycle by estimating engine inlet temperature
KR101526419B1 (en) * 2013-12-16 2015-06-11 현대자동차 주식회사 Method and system for diagnosting system for cooling power electronic components of hybrid vehicle
US10519875B2 (en) 2015-07-28 2019-12-31 Denso Corporation Diagnostic device
JP2017057746A (en) * 2015-09-15 2017-03-23 株式会社デンソー Diagnostic device
DE102017117844A1 (en) 2016-09-09 2018-03-15 Subaru Corporation Cooling device for vehicles
US10773569B2 (en) 2016-09-09 2020-09-15 Subaru Corporation Cooling apparatus for vehicle
JP2021038717A (en) * 2019-09-04 2021-03-11 愛三工業株式会社 Evaporated fuel treatment device
CN114251170A (en) * 2020-09-21 2022-03-29 现代自动车株式会社 Method for preventing engine overheating based on coolant temperature and engine system thereof
CN114251170B (en) * 2020-09-21 2024-03-26 现代自动车株式会社 Method for preventing engine from overheating based on temperature of cooling liquid and engine system thereof
CN113606125A (en) * 2021-08-27 2021-11-05 东风商用车有限公司 Cooling water pump diagnosis method and device and electronic equipment

Similar Documents

Publication Publication Date Title
JP2010065671A (en) Failure diagnosis device of cooling system for vehicle
US7757649B2 (en) Controller, cooling system abnormality diagnosis device and block heater determination device of internal combustion engine
JP4661767B2 (en) Failure diagnosis device for engine cooling system
JP3932035B2 (en) Abnormality diagnosis device for cooling system of internal combustion engine
JP5251844B2 (en) Cooling device abnormality determination device and cooling device abnormality determination method
JP3849707B2 (en) In-cylinder injection internal combustion engine control device
JP4561529B2 (en) Failure detection system for internal combustion engine cooling system
JP3896288B2 (en) Cooling system temperature estimation device
JP4482901B2 (en) Exhaust heat recovery device abnormality diagnosis device
JP5354088B2 (en) Sensor abnormality detection device and block heater mounting determination device
JP2010112321A (en) Abnormality diagnostic device for vehicle cooling system
JP5152595B2 (en) Control device for vehicle cooling system
JP3419225B2 (en) Thermostat failure detector for engine cooling system
JP2010071080A (en) Abnormality diagnosis device of vehicle cooling system
JP5308626B2 (en) Cooling system failure diagnosis device for internal combustion engine
JP2010007631A (en) Method and device for detecting failure of thermostat
JP2006336626A (en) Failure detection system of cooling device of internal combustion engine
JP2007009846A (en) Failure diagnostic method for thermostat and cooling device for engine
JP5101960B2 (en) Failure diagnosis apparatus and failure diagnosis method
JP2008298059A (en) Cooling system abnormality diagnosis device and block heater determination device of internal combustion engine
JP5858026B2 (en) Internal combustion engine failure diagnosis apparatus and internal combustion engine failure diagnosis method
JP2004278341A (en) Failure detector of cooling device for internal combustion engine
JP4677973B2 (en) Failure diagnosis device for engine cooling system
JP2010071079A (en) Abnormality diagnosis device of vehicle cooling system
JPH11117799A (en) Failure detector for engine cooling system