JP2010065083A - Two-photon absorbing polymerizable composition and optical device - Google Patents

Two-photon absorbing polymerizable composition and optical device Download PDF

Info

Publication number
JP2010065083A
JP2010065083A JP2008230264A JP2008230264A JP2010065083A JP 2010065083 A JP2010065083 A JP 2010065083A JP 2008230264 A JP2008230264 A JP 2008230264A JP 2008230264 A JP2008230264 A JP 2008230264A JP 2010065083 A JP2010065083 A JP 2010065083A
Authority
JP
Japan
Prior art keywords
compound
photon absorption
group
polymerizable composition
polymerizable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008230264A
Other languages
Japanese (ja)
Other versions
JP5344553B2 (en
Inventor
Masaaki Ozawa
雅昭 小澤
Kei Yasui
圭 安井
Keisuke Odoi
啓祐 大土井
Shiyoshi Yokoyama
士吉 横山
Shinichiro Inoue
振一郎 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Nissan Chemical Corp
Original Assignee
Kyushu University NUC
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nissan Chemical Corp filed Critical Kyushu University NUC
Priority to JP2008230264A priority Critical patent/JP5344553B2/en
Publication of JP2010065083A publication Critical patent/JP2010065083A/en
Application granted granted Critical
Publication of JP5344553B2 publication Critical patent/JP5344553B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a two-photon absorbing polymerizable composition that can produce an optical device having a high refractive index with high sensitivity, to provide an optical device produced by photolithography using the two-photon absorbing polymerizable composition and to provide a method for manufacturing the optical device. <P>SOLUTION: The two-photon absorbing polymerizable composition includes (a) a polymerizable compound, (b) a polymer compound containing a dithiocarbamate group and (c) a two-photon absorbing compound. A photocuring method using the composition is provided. An optical device structure using the composition is provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高い屈折率を有し、光を照射することにより硬化する性質を有する2光子吸収重合性組成物に関するものである。さらに、その2光子吸収重合性組成物を用いた光デバイス、およびその製造方法に関するものである。   The present invention relates to a two-photon absorption polymerizable composition having a high refractive index and a property of curing when irradiated with light. Furthermore, the present invention relates to an optical device using the two-photon absorption polymerizable composition and a method for producing the same.

光リソグラフィーは、高分子光導波路、高分子光ファイバー、光表示材料、回折格子、フォトニック結晶、マイクロリアクターなどの種々の光デバイスを作製する方法として有用である。光リソグラフィーは、微小な径のレーザーを感光性材料に走査させることにより、レーザー照射部位において材料に含まれる開始剤が励起状態に移行して光化学反応を起こし、その部位が特異的に硬化され、これにより、感光性材料内部にパターンを形成する技術である。
従来広く利用されてきた光リソグラフィーは、主に1光子吸収反応を利用した1光子リソグラフィーと呼ばれるものである。この1光子リソグラフィーとしては、現在最も一般的に用いられているアルゴンイオンレーザーやHe−Cdレーザーを用いるレーザーリソグラフィー法が挙げられ、主に1次元又は2次元の素子の作製に利用されている。
Optical lithography is useful as a method for producing various optical devices such as polymer optical waveguides, polymer optical fibers, optical display materials, diffraction gratings, photonic crystals, and microreactors. In photolithography, by scanning a photosensitive material with a laser with a small diameter, the initiator contained in the material shifts to an excited state at the laser irradiation site to cause a photochemical reaction, and the site is specifically cured, This is a technique for forming a pattern inside the photosensitive material.
Conventionally widely used photolithography is called one-photon lithography mainly utilizing one-photon absorption reaction. As this one-photon lithography, a laser lithography method using an argon ion laser or a He—Cd laser, which is most commonly used at present, is used, and it is mainly used for manufacturing a one-dimensional or two-dimensional element.

近年、2光子吸収と呼ばれる非線形光学現象を利用したリソグラフィー法が提案されている。
2光子吸収とは、化合物が2つの光子を同時に吸収して励起される現象、すなわち、化合物の吸収帯が存在しないエネルギー領域で、2つの光子を同時に吸収し励起状態へと電子が遷移する現象である。通常、物質は励起エネルギーに相当するエネルギーの1光子を吸収して励起され、このエネルギーに満たないエネルギーの光子は吸収されない。しかし光の強度が非常に強い場合には、2つの光子エネルギーの和が励起エネルギーに相当する2光子が、同時に吸収されることがある(非共鳴2光子吸収)。この性質を利用すると、光をレンズで絞り込んだ焦点内部のみで光反応を起こすことができ、空間の任意の位置を選択して励起状態を作ること、例えばリソグラフィー等に利用することができる。
In recent years, a lithography method using a nonlinear optical phenomenon called two-photon absorption has been proposed.
Two-photon absorption is a phenomenon in which a compound is excited by absorbing two photons at the same time, that is, a phenomenon in which two photons are absorbed at the same time in an energy region where there is no absorption band of the compound and an electron transitions to an excited state. It is. Usually, a substance is excited by absorbing one photon having an energy corresponding to the excitation energy, and a photon having an energy less than this energy is not absorbed. However, when the intensity of light is very strong, two photons in which the sum of two photon energies corresponds to the excitation energy may be absorbed simultaneously (non-resonant two-photon absorption). If this property is utilized, a light reaction can be caused only within the focal point where light is narrowed down by a lens, and an arbitrary state in the space can be selected to create an excited state, for example, lithography.

このような2光子吸収を利用した2光子リソグラフィーは、その基本原理は前記1光子吸収反応を利用したレーザーリソグラフィーと同じである。しかしながら、2光子吸収反応を利用した2光子リソグラフィーは、非共鳴2光子吸収の空間分解能が非常に高いという特徴を生かして、最も光密度が高い集光点のみで光化学反応を起こすことができる。すなわち、非常に微細な空間で重合反応(硬化)を起こさせることで、微細な3次元構造を高精度に作成することが可能となる。したがって、2光子リソグラフィーは多次元素子の製造に適したリソグラフィーといえる。
特に、一般的な1光子吸収のレーザーリソグラフィーでは1μmの精度が限界であるのに対して、2光子リソグラフィーでは0.5μm以下の精度で樹脂を硬化させることが可能である。そのため、近年、各種光デバイスを作製する方法として、2光子リソグラフィーが注目されてきている。
The basic principle of such two-photon lithography using two-photon absorption is the same as that of laser lithography using the one-photon absorption reaction. However, two-photon lithography using a two-photon absorption reaction can cause a photochemical reaction only at a condensing point having the highest light density, taking advantage of the feature that the spatial resolution of non-resonant two-photon absorption is very high. That is, by causing a polymerization reaction (curing) in a very fine space, a fine three-dimensional structure can be created with high accuracy. Therefore, it can be said that the two-photon lithography is suitable for manufacturing a multidimensional element.
In particular, the accuracy of 1 μm is the limit in general one-photon absorption laser lithography, whereas the resin can be cured with an accuracy of 0.5 μm or less in two-photon lithography. Therefore, in recent years, two-photon lithography has attracted attention as a method for producing various optical devices.

さて前述のように、非共鳴2光子吸収は光の強度が非常に強い場合に起こり得る現象、換言すれば非常に起こりにくい現象と言え、例えば2光子吸収の起こり易さを示す2光子吸収断面積は非常に小さく、1GM(1GM=1×10-50cm4 molecule-1 photon-1)程度である。従って、非共鳴2光子吸収を利用した種々の応用においても、いずれも感度は極めて低いことから、高出力のレーザー光源を必要とし、これが2光子吸収を利用する上で大きな障害となっている。 As described above, non-resonant two-photon absorption is a phenomenon that can occur when the intensity of light is very strong, in other words, a phenomenon that is very unlikely. For example, two-photon absorption breakage that indicates the ease of two-photon absorption. The area is very small, about 1 GM (1 GM = 1 × 10 −50 cm 4 molecule −1 photon −1 ). Therefore, in various applications using non-resonant two-photon absorption, the sensitivity is extremely low, and thus a high-power laser light source is required, which is a great obstacle to using two-photon absorption.

近年、効率よく2光子を吸収する化合物、すなわち2光子吸収断面積の比較的大きな化合物−2光子吸収化合物−と、光重合性化合物等を用いた2光子リソグラフィー法が提案されている。
例えば、光重合開始剤とウレタンアクリレート化合物を用いて2光子吸収重合する方法(非特許文献1)や、フルオレン系色素とアリルアミン系重合開始剤を用いてアクリルモノマーを2光子吸収重合する方法(非特許文献2)が提案されている。さらに、高感度な2光子吸収重合を行うために、2光子吸収断面積の比較的大きい特定の2光子吸収化合物を利用した方法(特許文献1)や、色素を含有し、光重合性高分子化合物としてエステル系デンドリマーを利用した光硬化性樹脂(特許文献2)が報告されている。
In recent years, a two-photon lithography method using a compound that efficiently absorbs two-photons, that is, a compound having a relatively large two-photon absorption cross section—a two-photon absorption compound—and a photopolymerizable compound has been proposed.
For example, a two-photon absorption polymerization method using a photopolymerization initiator and a urethane acrylate compound (Non-Patent Document 1), or a two-photon absorption polymerization method using a fluorene dye and an allylamine polymerization initiator (non-photon absorption polymerization) Patent Document 2) has been proposed. Furthermore, in order to perform highly sensitive two-photon absorption polymerization, a method using a specific two-photon absorption compound having a relatively large two-photon absorption cross-section (Patent Document 1), a dye, and a photopolymerizable polymer A photocurable resin using an ester dendrimer as a compound (Patent Document 2) has been reported.

さて、高い屈折率を有する硬化物は、各種光デバイスを作製した際に物性及び性能面で反射率や回折効率を高める等の大きな付加価値を与えるため、有機高分子材料の光学的価値を高めることが可能になり、産業上の利用において非常に期待されている。従って、より高い屈折率、具体的には例えば1.6(D線)を超えるような高屈折率を有する硬化物を高感度に得ることができれば、より高性能な光表示材料、回折格子、フォトニック結晶などの光デバイスが作製可能になると期待されている。
しかしながら、上述の2光子吸収を利用した2光子リソグラフィーに用いられる光硬化性樹脂組成物は、一般に光化学反応を起こす多官能のモノマー又はオリゴマーと、光化学反応を開始させるための重合開始剤より構成され、これまでに知られている光化学反応を起こす多官能のモノマー又はオリゴマーは、屈折率が1.5程度(D線)のものが用いられており、2光子吸収反応を利用して得られた硬化物の屈折率も1.5程度に留まっていた。
特開2003−73410号公報 特開2003−327645号公報 S.Maruo et al.,Oppt.Lett.,1997年、22巻、132項 K.D.Belfield et al.,J.Am.Chem.Soc.,2000年、122巻、1217項
A cured product having a high refractive index increases the optical value of an organic polymer material because it gives great added value such as increasing the reflectance and diffraction efficiency in terms of physical properties and performance when manufacturing various optical devices. It is possible and it is highly expected in industrial use. Therefore, if a cured product having a higher refractive index, specifically, a high refractive index exceeding, for example, 1.6 (D line) can be obtained with high sensitivity, a higher performance optical display material, diffraction grating, It is expected that optical devices such as photonic crystals can be manufactured.
However, the photocurable resin composition used in the above-described two-photon lithography utilizing two-photon absorption is generally composed of a polyfunctional monomer or oligomer that causes a photochemical reaction and a polymerization initiator for initiating the photochemical reaction. The known polyfunctional monomers or oligomers that cause photochemical reactions are those having a refractive index of about 1.5 (D-line), and were obtained using a two-photon absorption reaction. The refractive index of the cured product remained at about 1.5.
JP 2003-73410 A JP 2003-327645 A S. Maruo et al. , Opt. Lett. 1997, Vol. 22, paragraph 132 K. D. Belfield et al. , J .; Am. Chem. Soc. 2000, 122, 1217

前述したように、従来提案されている2光子リソグラフィーに用いられる硬化性樹脂組成物から得られる硬化物の屈折率は1.5程度であり、高屈折率を有する硬化物とはいえないものであった。そして高屈折率な有機高分子材料を使用し、高感度に2光子リソグラフィーが可能な光硬化性樹脂組成物に関する報告はこれまでになされていない。   As described above, the refractive index of the cured product obtained from the curable resin composition used in the conventionally proposed two-photon lithography is about 1.5, and cannot be said to be a cured product having a high refractive index. there were. There has been no report on a photocurable resin composition that uses an organic polymer material having a high refractive index and can perform two-photon lithography with high sensitivity.

本発明は、上記の事情に鑑みなされたものであって、高屈折率な光デバイスを高感度に得ることが可能な2光子吸収重合性組成物を提供することを目的とする。さらに本発明は、上記の2光子吸収重合性組成物を用いた光リソグラフィーによって得られる光デバイス、およびその製造方法を提供することを目的とする。   This invention is made | formed in view of said situation, Comprising: It aims at providing the two-photon absorption polymeric composition which can obtain a high refractive index optical device with high sensitivity. Furthermore, an object of the present invention is to provide an optical device obtained by photolithography using the above two-photon absorption polymerizable composition, and a method for producing the same.

本発明者らは、上記目的を達成するため、鋭意検討を重ねた結果、重合性化合物、ジチオカルバメート基含有高分子化合物及び2光子吸収化合物を含有する組成物をなし、該組成物に2光子吸収が生ずるレーザー光を照射することにより、得られる硬化物が高い屈折率を有し、しかも微細構造の硬化物を形成できることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the inventors of the present invention made a composition containing a polymerizable compound, a dithiocarbamate group-containing polymer compound and a two-photon absorption compound, and the composition contains two-photons. The present invention was completed by finding that the cured product obtained has a high refractive index and can form a cured product having a fine structure by irradiation with a laser beam that causes absorption.

すなわち本発明は第1観点として、(a)重合性化合物、(b)ジチオカルバメート基含有高分子化合物及び(c)2光子吸収化合物、を含有することを特徴とする2光子吸収重合性組成物、
第2観点として、前記(b)ジチオカルバメート基含有高分子化合物のゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量が、500ないし200,000である、第1観点記載の2光子吸収重合性組成物、
第3観点として、前記(b)ジチオカルバメート基含有高分子化合物が分枝状高分子である、第1観点又は第2観点に記載の2光子吸収重合性組成物、
第4観点として、前記(b)ジチオカルバメート基含有高分子化合物が式(1)で表される分枝状高分子である、第3観点記載の2光子吸収重合性組成物、
That is, as a first aspect of the present invention, there is provided a two-photon absorption polymerizable composition comprising (a) a polymerizable compound, (b) a dithiocarbamate group-containing polymer compound and (c) a two-photon absorption compound. ,
As a second aspect, the two-photon absorption polymerization according to the first aspect, wherein the weight average molecular weight of the (b) dithiocarbamate group-containing polymer compound measured in terms of polystyrene by gel permeation chromatography is 500 to 200,000. Sex composition,
As a third aspect, the (b) two-photon absorption polymerizable composition according to the first aspect or the second aspect, wherein the dithiocarbamate group-containing polymer compound is a branched polymer,
As a fourth aspect, the two-photon absorption polymerizable composition according to the third aspect, wherein the (b) dithiocarbamate group-containing polymer compound is a branched polymer represented by the formula (1),

(式中、R1は水素原子又はメチル基を表し、R2及びR3は、それぞれ独立して、炭素原
子数1ないし5のアルキル基、炭素原子数1ないし5のヒドロキシアルキル基又は炭素原子数7ないし12のアリールアルキル基を表し、又は、R2とR3は互いに結合し、窒素原子と共に環を形成していてもよく、A1は式(2)又は式(3)を表し、nは繰り返し単
位構造の数であって2ないし100,000の整数を表す。)
(In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 and R 3 each independently represents an alkyl group having 1 to 5 carbon atoms, a hydroxyalkyl group having 1 to 5 carbon atoms, or a carbon atom. Represents an arylalkyl group of formula 7 to 12, or R 2 and R 3 may be bonded to each other to form a ring with a nitrogen atom, A 1 represents formula (2) or formula (3), n is the number of repeating unit structures and represents an integer of 2 to 100,000.)

(式中、A2はエーテル結合又はエステル結合を含んでいても良い炭素原子数1ないし3
0の直鎖状、枝分かれ状又は環状のアルキレン基を表し、Y1、Y2、Y3及びY4は、それぞれ独立して、水素原子、炭素原子数1ないし20のアルキル基、炭素原子数1ないし20のアルコキシ基、ニトロ基、ヒドロキシル基、アミノ基、カルボキシル基又はシアノ基を表す。)
第5観点として、前記(a)重合性化合物がエチレン性不飽和結合を有する重合性化合物である、第1観点ないし第4観点の何れか一項に記載の2光子吸収重合性組成物、
第6観点として、前記(a)重合性化合物がカチオン重合性の部位を有する重合性化合物である、第1観点ないし第4観点の何れか一項に記載の2光子吸収重合性組成物、
第7観点として、第1観点ないし第6観点の何れか一項に記載の2光子吸収重合性組成物を含有するワニス、
第8観点として、第7観点記載のワニスから作製される薄膜、
第9観点として、第1観点ないし第6観点の何れか一項に記載の2光子吸収重合性組成物に、そこに含有する(c)2光子吸収化合物が有する線形吸収帯より長波長で、かつ、線形吸収の存在しない波長のレーザー光を照射して誘起された2光子以上の多光子吸収を利用して、該2光子吸収重合性組成物を重合させることを特徴とする光硬化方法、
第10観点として、第1観点ないし第6観点の何れか一項に記載の2光子吸収重合性組
成物を、2光子吸収重合により硬化させることによって得られる光デバイス構造体に関する。
(In the formula, A 2 has 1 to 3 carbon atoms which may contain an ether bond or an ester bond.
0 represents a linear, branched or cyclic alkylene group, and Y 1 , Y 2 , Y 3 and Y 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or the number of carbon atoms. 1 to 20 alkoxy groups, nitro groups, hydroxyl groups, amino groups, carboxyl groups or cyano groups are represented. )
As a fifth aspect, the two-photon absorption polymerizable composition according to any one of the first aspect to the fourth aspect, in which the polymerizable compound (a) is a polymerizable compound having an ethylenically unsaturated bond,
As a sixth aspect, the two-photon absorption polymerizable composition according to any one of the first aspect to the fourth aspect, in which the polymerizable compound (a) is a polymerizable compound having a cationic polymerizable site,
As a seventh aspect, a varnish containing the two-photon absorption polymerizable composition according to any one of the first aspect to the sixth aspect,
As an eighth aspect, a thin film produced from the varnish described in the seventh aspect,
As a ninth aspect, the two-photon absorption polymerizable composition according to any one of the first to sixth aspects has a longer wavelength than the linear absorption band of the (c) two-photon absorption compound contained therein, And the photocuring method characterized by polymerizing the two-photon absorption polymerizable composition using multiphoton absorption of two or more photons induced by irradiating a laser beam having a wavelength having no linear absorption,
As a tenth aspect, the present invention relates to an optical device structure obtained by curing the two-photon absorption polymerizable composition according to any one of the first to sixth aspects by two-photon absorption polymerization.

本発明の2光子吸収重合性組成物は非常に高感度であり、2光子吸収リソグラフィーの実施にあたり、高出力のレーザー光源を必要としない。
また本発明の組成物は、該2光子吸収リソグラフィーにより高い屈折率を有する硬化物を得ることができ、しかも分解能0.5μm以下という高分解能で高精度な造形物を得ることができる。
The two-photon absorption polymerizable composition of the present invention has very high sensitivity, and does not require a high-power laser light source when performing two-photon absorption lithography.
Further, the composition of the present invention can obtain a cured product having a high refractive index by the two-photon absorption lithography, and can obtain a high-resolution and highly accurate shaped article with a resolution of 0.5 μm or less.

そして本発明の光硬化方法によれば、従来の1光子吸収のレーザーリソグラフィーと同様の原理を用い、高出力のレーザー光源やマスク及びパターン等を使用せずに、微細構造を有する造形物を得ることができる。   According to the photocuring method of the present invention, a shaped article having a fine structure is obtained by using the same principle as that of conventional one-photon absorption laser lithography without using a high-power laser light source, a mask, a pattern, or the like. be able to.

さらに本発明の光デバイス構造体は、上述したように非常に高精度で且つ高い屈折率を有する構造体であるため、高性能な光表示材料、回折格子、フォトニック結晶などの光デバイスを製造に応用することができる。   Furthermore, since the optical device structure of the present invention is a structure having very high accuracy and a high refractive index as described above, optical devices such as high-performance optical display materials, diffraction gratings, and photonic crystals are manufactured. It can be applied to.

本発明の2光子吸収重合性組成物は、(a)重合性化合物、(b)ジチオカルバメート基含有高分子化合物及び(c)2光子吸収化合物を含み、さらに(d)光重合開始剤を含んでも良い。以下、各成分について詳細に説明する。   The two-photon absorption polymerizable composition of the present invention includes (a) a polymerizable compound, (b) a dithiocarbamate group-containing polymer compound and (c) a two-photon absorption compound, and further includes (d) a photopolymerization initiator. But it ’s okay. Hereinafter, each component will be described in detail.

[(a)重合性化合物]
本発明における重合性化合物は、後述する(c)2光子吸収化合物の作用によって重合する重合性の部位を分子内に1個以上、好ましくは1個ないし6個有する化合物であれば特に制限はない。光重合による硬化を促進するためには、2個ないし6個の重合性の部位を分子内に有する化合物を使用することが好ましい。
前記重合性の部位を有する化合物としては、ラジカル重合性の部位であるエチレン性不飽和結合を有する化合物、あるいは、カチオン重合性の部位であるビニルエーテル構造、ビニルチオエーテル構造、エポキシ環やオキセタン環等の環状エーテル構造等を有する化合物を挙げることができる。
[(A) Polymerizable compound]
The polymerizable compound in the present invention is not particularly limited as long as it is a compound having 1 or more, preferably 1 to 6 polymerizable sites in the molecule to be polymerized by the action of (c) the two-photon absorption compound described later. . In order to promote curing by photopolymerization, it is preferable to use a compound having 2 to 6 polymerizable sites in the molecule.
Examples of the compound having a polymerizable moiety include a compound having an ethylenically unsaturated bond which is a radical polymerizable moiety, or a vinyl ether structure, a vinyl thioether structure, an epoxy ring or an oxetane ring which is a cationic polymerizable moiety. Examples include compounds having a cyclic ether structure and the like.

なお、本発明における「重合性化合物」の意味するところは、所謂高分子物質でない化合物である。従って、狭義の単量体化合物だけでなく、二量体、三量体、オリゴマーや反応性高分子をも包含するものである。
なお本発明に用いる重合性化合物として、低粘度、良溶解性、低揮発性のものを使用することが好ましい。
以下、重合性化合物の具体例を挙げるが、これら化合物に限定されるものではない。
The term “polymerizable compound” in the present invention means a compound that is not a so-called polymer substance. Therefore, it includes not only a narrowly-defined monomer compound but also a dimer, trimer, oligomer or reactive polymer.
In addition, it is preferable to use a low viscosity, a good solubility, and a low volatility as a polymeric compound used for this invention.
Hereinafter, although the specific example of a polymeric compound is given, it is not limited to these compounds.

上記のラジカル重合性の部位であるエチレン性不飽和結合を有する化合物としては、例えば、不飽和カルボン酸、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル化合物、脂環族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル化合物、芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル化合物、脂肪族ポリヒドロキシ化合物及び脂環族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル化合物、脂肪族ポリヒドロキシ化合物及び芳香族ポリヒドロキシ化合物等の多価ヒドロキシ化合物と不飽和カルボン酸及び多価カルボン酸とのエステル化反応により得られるエステル化合物、脂肪族ポリアミン化合物と不飽和カルボン酸とのアミド化合物等が挙げられる。
この中でも好ましいものとして、不飽和カルボン酸、又は、上記不飽和カルボン酸との各種エステル化合物のうち炭素原子数2ないし6のオキシアルキレン基を3ないし20個
有するエステル化合物が挙げられる。ここで炭素原子数2ないし6のオキシアルキレン基とはすなわち、オキシエチレン基、オキシプロピレン基、オキシブチレン基等であり、これらの基はヒドロキシ基及びハロゲン等で置換されていても良い。
Examples of the compound having an ethylenically unsaturated bond, which is a radical polymerizable moiety, include unsaturated carboxylic acids, ester compounds of aliphatic polyhydroxy compounds and unsaturated carboxylic acids, and alicyclic polyhydroxy compounds and unsaturated compounds. Ester compound with saturated carboxylic acid, ester compound of aromatic polyhydroxy compound and unsaturated carboxylic acid, aliphatic polyhydroxy compound, ester compound of alicyclic polyhydroxy compound and unsaturated carboxylic acid, aliphatic polyhydroxy compound And ester compounds obtained by esterification reaction of polyvalent hydroxy compounds such as aromatic polyhydroxy compounds with unsaturated carboxylic acids and polyvalent carboxylic acids, and amide compounds of aliphatic polyamine compounds and unsaturated carboxylic acids. .
Among these, an unsaturated carboxylic acid or an ester compound having 3 to 20 oxyalkylene groups having 2 to 6 carbon atoms among various ester compounds with the unsaturated carboxylic acid is mentioned. Here, the oxyalkylene group having 2 to 6 carbon atoms is an oxyethylene group, an oxypropylene group, an oxybutylene group or the like, and these groups may be substituted with a hydroxy group, a halogen or the like.

前記不飽和カルボン酸としては、2−アクリロイロキシエチルコハク酸、2−アクリロイロキシエチルフタル酸等が挙げられる。また、これらのアクリル酸エステル化合物のアクリレート部分をメタクリレートに代えたメタクリル酸エステル化合物、同様にイタコネートに代えたイタコン酸エステル化合物、クロトネートに代えたクロトン酸エステル化合物、及びマレエートに代えたマレイン酸エステル化合物等も挙げられる。   Examples of the unsaturated carboxylic acid include 2-acryloyloxyethyl succinic acid and 2-acryloyloxyethyl phthalic acid. In addition, methacrylic acid ester compounds in which the acrylate portion of these acrylic acid ester compounds is replaced with methacrylates, similarly itaconic acid ester compounds in place of itaconate, crotonic acid ester compounds in place of crotonate, and maleic acid ester compounds in place of maleate And so on.

前記脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル化合物のうち、炭素原子数2ないし6のオキシアルキレン基を3ないし20個有する重合性化合物としては、エトキシ変性ペンタエリスリトールテトラアクリレート(平均エトキシ付加量としては2.4モル、4モル等が挙げられる)、プロポキシ変性ペンタエリスリトールテトラアクリレート(平均プロポキシ付加量としては4モル、10モル等が挙げられる)、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、エトキシ変性トリメチロールプロパントリアクリレート(平均エトキシ付加量としては3モル、6モル等が挙げられる)、プロピレングリコールジグリシジルエーテルのアクリル酸付加物等が挙げられる。また、その他の脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル化合物としては、2−ヒドロキシ−3−フェノキシプロピルアクリレート、3−クロロ−2−ヒドロキシプロピルアクリレート、トリプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、ジトリメチロールプロパンテトラアクリレート、1,6−ヘキサンジオールジアクリレート、ポリブタンジオールジアクリレート等のアルキレングリコールジアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、グリセロールアクリレート等のアクリル酸エステル化合物も挙げることが出来る。また、これらのアクリル酸エステル化合物のアクリレート部分をメタクリレートに代えたメタクリル酸エステル化合物、同様にイタコネートに代えたイタコン酸エステル化合物、クロトネートに代えたクロトン酸エステル化合物、及びマレエートに代えたマレイン酸エステル化合物等も挙げられる。   Among the ester compounds of aliphatic polyhydroxy compounds and unsaturated carboxylic acids, polymerizable compounds having 3 to 20 oxyalkylene groups having 2 to 6 carbon atoms include ethoxy-modified pentaerythritol tetraacrylate (average ethoxy addition). Examples include 2.4 mol and 4 mol), propoxy-modified pentaerythritol tetraacrylate (average propoxy addition amount includes 4 mol and 10 mol), dipentaerythritol pentaacrylate, dipentaerythritol hexa Examples thereof include acrylate, ethoxy-modified trimethylolpropane triacrylate (average ethoxy addition amount includes 3 mol and 6 mol), and acrylic acid adduct of propylene glycol diglycidyl ether. Other ester compounds of aliphatic polyhydroxy compounds and unsaturated carboxylic acids include 2-hydroxy-3-phenoxypropyl acrylate, 3-chloro-2-hydroxypropyl acrylate, tripropylene glycol diacrylate, and trimethylolpropane. Alkylene glycol diacrylates such as triacrylate, trimethylolethane triacrylate, ditrimethylolpropane tetraacrylate, 1,6-hexanediol diacrylate, polybutanediol diacrylate, pentaerythritol diacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate And acrylate compounds such as glycerol acrylate. In addition, methacrylic acid ester compounds in which the acrylate portion of these acrylic acid ester compounds is replaced with methacrylates, similarly itaconic acid ester compounds in place of itaconate, crotonic acid ester compounds in place of crotonate, and maleic acid ester compounds in place of maleate And so on.

前記脂環族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル化合物のうち、炭素原子数2ないし6のオキシアルキレン基を3ないし20個有する重合性化合物としては、エトキシ変性水添ビスフェノールAジアクリレート(平均エトキシ付加量は4モルが挙げられる)等が挙げられる。その他の脂環族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル化合物としては、トリシクロデカンジメタノールジアクリレート等が挙げられる。また、これらのアクリル酸エステル化合物のアクリレート部分をメタクリレートに代えたメタクリル酸エステル化合物、同様にイタコネートに代えたイタコン酸エステル化合物、クロトネートに代えたクロトン酸エステル化合物、及びマレエートに代えたマレイン酸エステル化合物等も挙げられる。   Among the ester compounds of the alicyclic polyhydroxy compound and the unsaturated carboxylic acid, the polymerizable compound having 3 to 20 oxyalkylene groups having 2 to 6 carbon atoms includes ethoxy-modified hydrogenated bisphenol A diacrylate ( The average ethoxy addition amount is 4 moles). Examples of ester compounds of other alicyclic polyhydroxy compounds and unsaturated carboxylic acids include tricyclodecane dimethanol diacrylate. In addition, methacrylic acid ester compounds in which the acrylate portion of these acrylic acid ester compounds is replaced with methacrylates, similarly itaconic acid ester compounds in place of itaconate, crotonic acid ester compounds in place of crotonate, and maleic acid ester compounds in place of maleate And so on.

前記芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル化合物のうち、炭素原子数2ないし6のオキシアルキレン基を3ないし20個有する重合性化合物としては、エトキシ変性ビスフェノールAジアクリレート(平均エトキシ付加量としては3モル、4モル、10モル、20モル等が挙げられる)、プロポキシ変性ビスフェノールAジアクリレート、エトキシ−プロポキシ変性ビスフェノールAジアクリレート(平均エトキシ、プロポキシ付加量としては18モル等が挙げられる)、エトキシ変性ビスフェノールFジアクリレート(平均エトキシ付加量としては4モル等が挙げられる)、プロポキシ変性ビスフェノールFジアクリレート、エトキシ−プロポキシ変性ビスフェノールFジアクリレート等が挙げられる。その他の芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステ
ル化合物としては、ビスフェノールAジアクリレート、ビスフェノールFジアクリレート、ヒドロキノンジアクリレート、レゾルシンジアクリレート、p−ビス(β−アクリロイロキシエチルチオ)キシリレン、及びピロガロールトリアクリレート等及びこれらのエトキシ、プロポキシ変性物が挙げられる。また、これらのアクリル酸エステル化合物のアクリレート部分をメタクリレートに代えたメタクリル酸エステル化合物、同様にイタコネートに代えたイタコン酸エステル化合物、クロトネートに代えたクロトン酸エステル化合物、及びマレエートに代えたマレイン酸エステル化合物等も挙げられる。
Among the ester compounds of the aromatic polyhydroxy compound and the unsaturated carboxylic acid, the polymerizable compound having 3 to 20 oxyalkylene groups having 2 to 6 carbon atoms includes ethoxy-modified bisphenol A diacrylate (average ethoxy addition). 3 moles, 4 moles, 10 moles, 20 moles, etc.), propoxy modified bisphenol A diacrylate, ethoxy-propoxy modified bisphenol A diacrylate (average ethoxy, propoxy addition amount includes 18 moles, etc.) ), Ethoxy-modified bisphenol F diacrylate (the average ethoxy addition amount is 4 mol), propoxy-modified bisphenol F diacrylate, ethoxy-propoxy-modified bisphenol F diacrylate, and the like. Other ester compounds of aromatic polyhydroxy compounds and unsaturated carboxylic acids include bisphenol A diacrylate, bisphenol F diacrylate, hydroquinone diacrylate, resorcin diacrylate, and p-bis (β-acryloyloxyethylthio) xylylene. And pyrogallol triacrylate and the like, and ethoxy and propoxy-modified products thereof. In addition, methacrylic acid ester compounds in which the acrylate portion of these acrylic acid ester compounds is replaced with methacrylates, similarly itaconic acid ester compounds in place of itaconate, crotonic acid ester compounds in place of crotonate, and maleic acid ester compounds in place of maleate And so on.

前記脂肪族ポリヒドロキシ化合物及び芳香族ポリヒドロキシ化合物等の多価ヒドロキシ化合物と不飽和カルボン酸及び多価カルボン酸とのエステル化反応により得られるエステル化合物としては、必ずしも単一物では無いが代表的な具体例を挙げれば、アクリル酸及びフタル酸とエチレングリコールの縮合物、アクリル酸及びマレイン酸とジエチレングリコールの縮合物、アクリル酸及び安息香酸とトリメチロールプロパンの縮合物、アクリル酸及びテレフタル酸とペンタエリスリトール及びジペンタエリスリトールの縮合物、アクリル酸及びアジピン酸とブタンジオール及びグリセリンの縮合物等が挙げられる。   The ester compound obtained by the esterification reaction of a polyvalent hydroxy compound such as the aliphatic polyhydroxy compound and aromatic polyhydroxy compound with an unsaturated carboxylic acid and polyvalent carboxylic acid is not necessarily a single substance, but is representative. Specific examples include condensates of acrylic acid and phthalic acid and ethylene glycol, condensates of acrylic acid and maleic acid and diethylene glycol, condensates of acrylic acid and benzoic acid and trimethylolpropane, acrylic acid and terephthalic acid and pentane. Examples include condensates of erythritol and dipentaerythritol, and condensates of acrylic acid and adipic acid with butanediol and glycerin.

本発明に用いられるエチレン性不飽和結合を有する化合物のその他の例としては、多価イソシアネートとヒドロキシアルキル不飽和カルボン酸エステルとの反応によって得ることができるウレタン化合物や、多価エポキシ化合物とヒドロキシアルキル不飽和カルボン酸エステルとの反応によって得ることができる化合物や、リン酸基を有する多価アクリレート及びメタクリレートを挙げることができる。さらに、例えば、エチレン−ビスアクリルアミド等のアクリルアミド化合物、フタル酸ジアリル等のアリルエステル化合物、及びジビニルフタレート等のビニル基含有化合物等が有用である。   Other examples of the compound having an ethylenically unsaturated bond used in the present invention include a urethane compound that can be obtained by a reaction between a polyvalent isocyanate and a hydroxyalkyl unsaturated carboxylic acid ester, a polyvalent epoxy compound, and a hydroxyalkyl. Mention may be made of compounds obtainable by reaction with unsaturated carboxylic acid esters, polyvalent acrylates and methacrylates having a phosphate group. Further, for example, acrylamide compounds such as ethylene-bisacrylamide, allyl ester compounds such as diallyl phthalate, and vinyl group-containing compounds such as divinyl phthalate are useful.

本発明においては、エチレン性不飽和結合を有する化合物としては、特にアクリル酸エステル化合物又はメタクリル酸エステル化合物が特に好ましい。
これらのエチレン性不飽和結合を有する化合物は単独で用いてもよいし、必要に応じて二種以上を混合して用いてもよい。
In the present invention, the compound having an ethylenically unsaturated bond is particularly preferably an acrylic ester compound or a methacrylic ester compound.
These compounds having an ethylenically unsaturated bond may be used alone or in combination of two or more as required.

上記カチオン重合性の部位であるビニルエーテル構造を有する重合性化合物としては、例えば、ビニル−2−クロロエチルエーテル、ビニルノルマルブチル−エーテル、トリエチレングリコールジビニルエーテル、1,4−シクロヘキサンジメタノールジビニルエーテル、トリメチロールエタントリビニルエーテル、及びビニルグリシジルエーテル等を挙げることができる。   Examples of the polymerizable compound having a vinyl ether structure which is a cationically polymerizable site include vinyl-2-chloroethyl ether, vinyl normal butyl ether, triethylene glycol divinyl ether, 1,4-cyclohexanedimethanol divinyl ether, Examples thereof include trimethylolethane trivinyl ether and vinyl glycidyl ether.

上記エポキシ環を有する重合性化合物としては、例えば、ジグリセロールポリジグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、1,4−ビス(2,3−エポキシプロポキシパーフルオロイソプロピル)シクロヘキサン、ソルビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、レゾルシンジグリシジルエーテル、1,6−へキサンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、フェニルグリシジルエーテル、p−ターシャリーブチルフェニルグリシジルエーテル、アジピン酸ジグリシジルエーテル、o−フタル酸ジグリシジルエーテル、ジブロモフェニルグリシジルエーテル、1,2,7,8−ジエポキシオクタン、1,6−ジメチロールパーフルオロヘキサンジグリシジルエーテル、4,4’−ビス(2,3−エポキシプロポキシパーフルオロイソプロピル)ジフェニルエーテル、2,2−ビス(4−グリシジルオキシフェニル)プロパン、3,4−エポキシシクロヘキシルメチル−3’,4’−エポキシシクロヘキサンカルボキシレート、3,4−エポキシシクロヘキシルオキシラン、2−(3,4−エポキシシクロヘキシル)−3’,4’−エポキシ−1,3−ジオキサン−5−スピロシクロヘキサン、1,2−エチレンジオキシ−ビス(3,4−エポキシシクロヘキシルメタン)、4’,5’−エポキシ−2’−メチルシクロヘキ
シルメチル−4,5−エポキシ−2−メチルシクロヘキサンカルボキシレート、エチレングリコール−ビス(3,4−エポキシシクロヘキサンカルボキシレート)、ビス−(3,4−エポキシシクロヘキシルメチル)アジペート、及びビス(2,3−エポキシシクロペンチル)エーテル等を挙げることができる。
Examples of the polymerizable compound having an epoxy ring include diglycerol polydiglycidyl ether, pentaerythritol polyglycidyl ether, 1,4-bis (2,3-epoxypropoxyperfluoroisopropyl) cyclohexane, sorbitol polyglycidyl ether, trimethylol. Propane polyglycidyl ether, resorcin diglycidyl ether, 1,6-hexanediol diglycidyl ether, polyethylene glycol diglycidyl ether, phenyl glycidyl ether, p-tertiary butyl phenyl glycidyl ether, adipic acid diglycidyl ether, o-phthalic acid Diglycidyl ether, dibromophenyl glycidyl ether, 1,2,7,8-diepoxyoctane, 1,6-dimethylol perful Rhohexanediglycidyl ether, 4,4′-bis (2,3-epoxypropoxyperfluoroisopropyl) diphenyl ether, 2,2-bis (4-glycidyloxyphenyl) propane, 3,4-epoxycyclohexylmethyl-3 ′, 4'-epoxycyclohexanecarboxylate, 3,4-epoxycyclohexyloxirane, 2- (3,4-epoxycyclohexyl) -3 ', 4'-epoxy-1,3-dioxane-5-spirocyclohexane, 1,2- Ethylenedioxy-bis (3,4-epoxycyclohexylmethane), 4 ′, 5′-epoxy-2′-methylcyclohexylmethyl-4,5-epoxy-2-methylcyclohexanecarboxylate, ethylene glycol-bis (3 4-epoxycyclohexanecarboxylate) Bis- (3,4-epoxycyclohexylmethyl) adipate, bis (2,3-epoxycyclopentyl) ether, and the like.

上記オキセタン環を有する重合性化合物としては、例えば、3−エチル−3−ヒドロキシメチルオキセタン、3−エチル−3−(フェノキシメチル)オキセタン、3,3−ジエチルオキセタン、及び3−エチル−3−(2−エチルヘキシロキシメチル)オキセタン等のオキセタン環を一つ有する化合物、1,4−ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ベンゼン、ビス(1−エチル(3−オキセタニル))メチルエーテル、及びペンタエリスリトールテトラキス(3−エチル−3−オキセタニルメチル)エーテル等のオキセタン環を二つ以上有する化合物を挙げることができる。   Examples of the polymerizable compound having an oxetane ring include 3-ethyl-3-hydroxymethyloxetane, 3-ethyl-3- (phenoxymethyl) oxetane, 3,3-diethyloxetane, and 3-ethyl-3- ( Compounds having one oxetane ring such as 2-ethylhexyloxymethyl) oxetane, 1,4-bis {[(3-ethyl-3-oxetanyl) methoxy] methyl} benzene, bis (1-ethyl (3-oxetanyl) And compounds having two or more oxetane rings such as methyl ether and pentaerythritol tetrakis (3-ethyl-3-oxetanylmethyl) ether.

これら重合性化合物は単独で用いても良いし、必要に応じて二種以上を混合して用いてもよい。   These polymerizable compounds may be used alone or in combination of two or more as required.

[(b)ジチオカルバメート基含有高分子化合物]
本発明の2光子吸収重合性組成物に用いるジチオカルバメート基を有する高分子化合物としては、例えば、下記式(1)で表される分枝状の高分子化合物、あるいは、下記式(4)で表される線状の高分子化合物が挙げられる。
[(B) Dithiocarbamate group-containing polymer compound]
Examples of the polymer compound having a dithiocarbamate group used in the two-photon absorption polymerizable composition of the present invention include a branched polymer compound represented by the following formula (1) or the following formula (4). The linear polymer compound represented is mentioned.

上記式(1)又は式(4)において、R1は水素原子又はメチル基を表し、R2及びR3
は、それぞれ独立して、炭素原子数1ないし5のアルキル基、炭素原子数1ないし5のヒドロキシアルキル基又は炭素原子数7ないし12のアリールアルキル基を表し、また、R2とR3は互いに結合し、窒素原子と共に環を形成していてもよく、nは繰り返し単位構造の数であって2ないし100,000の整数を表す。
In the above formula (1) or formula (4), R 1 represents a hydrogen atom or a methyl group, and R 2 and R 3
Each independently represents an alkyl group having 1 to 5 carbon atoms, a hydroxyalkyl group having 1 to 5 carbon atoms or an arylalkyl group having 7 to 12 carbon atoms, and R 2 and R 3 are It may be bonded to form a ring with a nitrogen atom, and n is the number of repeating unit structures and represents an integer of 2 to 100,000.

上記炭素原子数1ないし5のアルキル基としては、メチル基、エチル基、イソプロピル基、t−ブチル基、シクロペンチル基、ノルマルペンチル基等が挙げられる。
上記炭素原子数1ないし5のヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。
上記炭素原子数7ないし12のアリールアルキル基としては、ベンジル基、フェネチル基等が挙げられる。
Examples of the alkyl group having 1 to 5 carbon atoms include a methyl group, an ethyl group, an isopropyl group, a t-butyl group, a cyclopentyl group, and a normal pentyl group.
Examples of the hydroxyalkyl group having 1 to 5 carbon atoms include a hydroxymethyl group, a hydroxyethyl group, and a hydroxypropyl group.
Examples of the arylalkyl group having 7 to 12 carbon atoms include a benzyl group and a phenethyl group.

また、R2とR3が互いに結合し、それらと結合する窒素原子と共に形成する環としては、四ないし八員環が挙げられ、そして環としてメチレン基を四ないし六個含む環が挙げられる。また、酸素原子又は硫黄原子と、四ないし六個のメチレン基を含む環も挙げられる。
2とR3が互いに結合し、それらと結合する窒素原子と共に形成する環の具体例としては、ピペリジン環、ピロリジン環、モルホリン環、チオモルホリン環、ホモピペリジン環等が挙げられる。
In addition, examples of the ring formed by combining R 2 and R 3 together with the nitrogen atom bonded thereto include a 4- to 8-membered ring, and a ring containing 4 to 6 methylene groups as the ring. Moreover, the ring containing an oxygen atom or a sulfur atom, and four to six methylene groups is also mentioned.
Specific examples of the ring formed by combining R 2 and R 3 together with the nitrogen atom bonded to them include a piperidine ring, a pyrrolidine ring, a morpholine ring, a thiomorpholine ring, and a homopiperidine ring.

上記式(1)又は(4)において、A1は下記式(2)又は式(3)で表される構造を
表す。
In the above formula (1) or (4), A 1 represents a structure represented by the following formula (2) or formula (3).

上記式(2)及び式(3)中、A2はエーテル結合又はエステル結合を含んでいてもよ
い炭素原子数1ないし30の直鎖状、分枝状又は環状のアルキレン基を表し、Y1、Y2、Y3及びY4は、それぞれ独立して、水素原子、炭素原子数1ないし20のアルキル基、炭素原子数1ないし20のアルコキシ基、ハロゲン原子、ニトロ基、ヒドロキシル基、アミノ基、カルボキシル基又はシアノ基を表す。
In the above formulas (2) and (3), A 2 represents a linear, branched or cyclic alkylene group having 1 to 30 carbon atoms which may contain an ether bond or an ester bond, and Y 1 , Y 2 , Y 3 and Y 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a halogen atom, a nitro group, a hydroxyl group or an amino group. Represents a carboxyl group or a cyano group.

上記直鎖状アルキレン基の具体例としては、メチレン基、エチレン基、ノルマルプロピレン基、ノルマルブチレン基、ノルマルヘキシレン基等が挙げられる。また分枝状アルキレン基の具体例としては、イソプロピレン基、イソブチレン基、2−メチルプロピレン基等が挙げられる。
また環状アルキレン基としては、炭素数3ないし30の単環式、多環式、架橋環式の環状構造の脂環式脂肪族基が挙げられる。具体的には、炭素数4以上のモノシクロ、ビシクロ、トリシクロ、テトラシクロ、ペンタシクロ構造等を有する基を挙げることができる。以下に脂環式脂肪族基における、脂環式部分の構造例(a)ないし(s)を示す。
Specific examples of the linear alkylene group include a methylene group, an ethylene group, a normal propylene group, a normal butylene group, and a normal hexylene group. Specific examples of the branched alkylene group include isopropylene group, isobutylene group and 2-methylpropylene group.
Examples of the cyclic alkylene group include alicyclic aliphatic groups having a monocyclic, polycyclic or bridged cyclic structure having 3 to 30 carbon atoms. Specific examples include groups having a monocyclo, bicyclo, tricyclo, tetracyclo, pentacyclo structure or the like having 4 or more carbon atoms. The structural examples (a) to (s) of the alicyclic moiety in the alicyclic aliphatic group are shown below.

また上記Y1、Y2、Y3及びY4における炭素原子数1ないし20のアルキル基としては、メチル基、エチル基、イソプロピル基、シクロヘキシル基及びノルマルペンチル基等が挙げられる。
炭素原子数1ないし20のアルコキシ基としては、メトキシ基、エトキシ基、イソプロポキシ基、シクロヘキシルオキシ基及びノルマルペンチルオキシ基等が挙げられる。
ハロゲン原子としてはフッ素原子、塩素原子、臭素原子及びヨウ素原子である。
上記Y1、Y2、Y3及びY4としては、水素原子又は炭素原子数1ないし20のアルキル基が好ましい。
Examples of the alkyl group having 1 to 20 carbon atoms in Y 1 , Y 2 , Y 3 and Y 4 include methyl group, ethyl group, isopropyl group, cyclohexyl group and normal pentyl group.
Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, isopropoxy group, cyclohexyloxy group, and normal pentyloxy group.
The halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
Y 1 , Y 2 , Y 3 and Y 4 are preferably a hydrogen atom or an alkyl group having 1 to 20 carbon atoms.

本発明で用いられるジチオカルバメート基を有する高分子化合物は、ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量Mwが500ないし5,000,000であり、好ましくは1,000ないし1,000,000であり、より好ましくは2,000ないし500,000であり、最も好ましくは3,000ないし200,000である。
また、分散度Mw(重量平均分子量)/Mn(数平均分子量)としては1.0ないし7.0であり、又は1.1ないし6.0であり、又は1.2ないし5.0である。
The polymer compound having a dithiocarbamate group used in the present invention has a weight average molecular weight Mw measured in terms of polystyrene by gel permeation chromatography of 500 to 5,000,000, preferably 1,000 to 1,000. 1,000, more preferably 2,000 to 500,000, and most preferably 3,000 to 200,000.
Further, the dispersity Mw (weight average molecular weight) / Mn (number average molecular weight) is 1.0 to 7.0, 1.1 to 6.0, or 1.2 to 5.0. .

なお後述するように、本発明においては、上記ジチオカルバメート基を有する高分子化合物を用いて2光子吸収重合性組成物とし、該組成物を用いて感光層を形成し、光硬化させて光デバイス構造体を得る。このとき、感光層形成における作業性の向上、すなわち該組成物の支持体への塗布性を向上させるには、該組成物が低粘度であることが好ましい。従って、該組成物に含まれる上記ジチオカルバメート基を有する高分子化合物は分枝状高分子化合物であること、すなわち、上記式(1)で表される高分子化合物であることが好ましい。
上記ジチオカルバメート基を有する高分子化合物は、例えばKoji Ishizu,Akihide Mori,Polymer International 50,906−910(2001)、Koji Ishizu,Takeshi Shibuya,Akihide Mori,Polymer International 51,424−428(2002)、Koji Ishizu,Yoshihiro Ohta,Journal of Materials Science Letters,22(9),647−650(2003)に記載の方法で製造することができる。
As will be described later, in the present invention, the above polymer compound having a dithiocarbamate group is used to form a two-photon absorption polymerizable composition, a photosensitive layer is formed using the composition, and photocured to form an optical device. Get a structure. At this time, in order to improve the workability in forming the photosensitive layer, that is, to improve the coating property of the composition on a support, the composition preferably has a low viscosity. Therefore, the polymer compound having a dithiocarbamate group contained in the composition is preferably a branched polymer compound, that is, a polymer compound represented by the formula (1).
The polymer compound having a dithiocarbamate group is, for example, Koji Ishizu, Akihide Mori, Polymer International 50, 906-910 (2001), Koji Ishizu, Takeshi Shibuya, Akihide Mori, 28 It can be produced by the method described in Ishizu, Yoshihiro Ohta, Journal of Materials Science Letters, 22 (9), 647-650 (2003).

[(c)2光子吸収化合物]
本発明における2光子吸収化合物は、効率よく2光子を吸収する化合物、すなわち2光子吸収断面積が比較的大きい化合物を指し、特に限定されることなく公知の化合物を使用できる。2光子リソグラフィーを行う際に、2光子吸収化合物は2光子を吸収し、その励起エネルギーによって、重合性化合物とジチオカルバメート基含有高分子化合物の光架橋反応を引き起こし、硬化物が生成する。
[(C) Two-photon absorption compound]
The two-photon absorption compound in the present invention refers to a compound that efficiently absorbs two photons, that is, a compound having a relatively large two-photon absorption cross-sectional area, and a known compound can be used without particular limitation. When performing two-photon lithography, the two-photon absorbing compound absorbs two photons, and the excitation energy causes a photocrosslinking reaction between the polymerizable compound and the dithiocarbamate group-containing polymer compound, thereby generating a cured product.

2光子吸収化合物としては、例えば、光応用技術・材料事典(発行所:株式会社産業技術サービスセンター、発行日:2006年4月26日、483ページ)に記載されている下記(1)〜(21)の2光子吸収色素が挙げられる。   Examples of the two-photon absorption compound include the following (1) to (1) described in the Optical Application Technology / Material Encyclopedia (issue: Industrial Technology Service Center, Inc., issue date: April 26, 2006, page 483). 21) the two-photon absorption dye.

あるいは2光子吸収化合物として、特開2003−73410号公報に記載される、一般式(1);
2−(−CR4=CR3−)m−C(=O)−(−CR1=CR2−)n−X1 ・・・(1)
(式中、X1およびX2は置換もしくは無置換のアリール基、または置換もしくは無置換のヘテロ環基を表し、同一でもそれぞれ異なってもよく、R1、R2、R3およびR4はそれぞれ独立に、水素原子、または置換基を表し、R1、R2、R3およびR4のうちのいくつかが互いに結合して環を形成してもよく、nおよびmが2以上の場合、複数個のR1、R2、R3およびR4は同一でもそれぞれ異なってもよく、nおよびmはそれぞれ独立に1〜4の整数を表す。)
で表される化合物、例えば同文献の化合物番号(1)ないし(140)で表される化合物等を挙げることができる。
さらに2光子吸収化合物として、J. Mater. Chem., 2003,13,1575-1581に記載の以下の化合物を挙げることができる。
Or as a two-photon absorption compound, the general formula (1) described in JP-A-2003-73410;
X 2 -(-CR 4 = CR 3- ) m -C (= O)-(-CR 1 = CR 2- ) n -X 1 (1)
(Wherein, X 1 and X 2 represent a substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group, which may be the same or different, and R 1 , R 2 , R 3 and R 4 are Each independently represents a hydrogen atom or a substituent, and some of R 1 , R 2 , R 3 and R 4 may be bonded to each other to form a ring, and n and m are 2 or more The plurality of R 1 , R 2 , R 3 and R 4 may be the same or different, and n and m each independently represent an integer of 1 to 4.)
Examples thereof include compounds represented by compound numbers (1) to (140) in the same literature.
Further, examples of the two-photon absorption compound include the following compounds described in J. Mater. Chem., 2003, 13, 1575-1581.

2光子吸収化合物は単独で用いてもよいし、必要に応じて二種以上を混合して用いてもよい。   Two-photon absorption compounds may be used alone or in admixture of two or more as required.

[(d)光重合開始剤]
本発明においては、前記(a)〜(c)成分に加えて、(d)光重合性開始剤を含有していても良い。
(d)光重合開始剤としては、300〜550nmの紫外線領域の波長を吸収し、前記(a)重合性化合物の重合を開始することができる機能を有する化合物であれば特に限定はない。
前記(a)重合性化合物として、前記のラジカル重合性の部位であるエチレン性不飽和結合を有する化合物を使用する場合、光重合開始剤としては露光時に活性ラジカルを生成する光ラジカル重合開始剤が好ましい。
また、前記(a)重合性化合物として前記のカチオン重合性の部位であるビニルエーテル構造、エポキシ環又はオキセタン環等を有する化合物を使用する場合、光重合開始剤としては露光時にルイス酸あるいはブレンステッド酸を生成する光酸発生剤が好ましい。
[(D) Photopolymerization initiator]
In the present invention, in addition to the components (a) to (c), (d) a photopolymerizable initiator may be contained.
(D) The photopolymerization initiator is not particularly limited as long as it is a compound having a function of absorbing a wavelength in the ultraviolet region of 300 to 550 nm and initiating polymerization of the (a) polymerizable compound.
When the compound having an ethylenically unsaturated bond which is the radical polymerizable site is used as the polymerizable compound (a), a photo radical polymerization initiator that generates an active radical at the time of exposure is used as the photo polymerization initiator. preferable.
Further, when the compound having a vinyl ether structure, an epoxy ring or an oxetane ring, which is the cationic polymerizable site, is used as the polymerizable compound (a), a Lewis acid or Bronsted acid is used as a photopolymerization initiator at the time of exposure. Photoacid generators that generate are preferred.

前記光ラジカル重合開始剤としては、露光時に活性ラジカルを生成する化合物であれば特に限定されないが、例えば、ベンゾイン系化合物、α−アミノアルキルフェノン系化合物、チオキサントン系化合物、アゾ系化合物、アジド系化合物、ジアゾ系化合物、o−キノンジアジド系化合物、アシルホスフィンオキサイド系化合物、オキシムエステル系化合物、有機過酸化物、ベンゾフェノン類、ビスクマリン、ビスイミダゾール化合物、チタノセン化合物、チオール化合物、ハロゲン化炭化水素化合物、トリクロロメチルトリアジン化合物、あるいはヨードニウム塩化合物、スルホニウム塩化合物などのオニウム塩化合物
等が用いられる。
光ラジカル重合開始剤は単独で用いてもよいし、必要に応じて二種以上を混合して用いてもよい。
The photo radical polymerization initiator is not particularly limited as long as it is a compound that generates an active radical at the time of exposure. For example, a benzoin compound, an α-aminoalkylphenone compound, a thioxanthone compound, an azo compound, an azide compound , Diazo compounds, o-quinonediazide compounds, acylphosphine oxide compounds, oxime ester compounds, organic peroxides, benzophenones, biscoumarins, bisimidazole compounds, titanocene compounds, thiol compounds, halogenated hydrocarbon compounds, trichloro Methyltriazine compounds or onium salt compounds such as iodonium salt compounds and sulfonium salt compounds are used.
A radical photopolymerization initiator may be used alone or in combination of two or more as required.

前記チタノセン化合物は、特に限定はされないが、具体的には、ジシクロペンタジエニル−チタン−ジクロリド、ジシクロペンタジエニル−チタン−ビスフェニル、ジシクロペンタジエニル−チタン−ビス(2,3,4,5,6−ペンタフルオロフェニル)、ジシクロペンタジエニル−チタン−ビス(2,3,5,6−テトラフルオロフェニル)、ジシクロペンタジエニル−チタン−ビス(2,4,6−トリフルオロフェニル)、ジシクロペンタジエニル−チタン−ビス(2,6−ジフルオロフェニル)、ジシクロペンタジエニル−チタン−ビス(2,4−ジフルオロフェニル)、ビス(メチルシクロペンタジエニル)−チタン−ビス(2,3,4,5,6−ペンタフルオロフェニル)、ビス(メチルシクロペンタジエニル)−チタン−ビス(2,3,5,6−テトラフルオロフェニル)、ビス(メチルシクロペンタジエニル)−チタン−ビス(2,6−ジフルオロフェニル)、及びジシクロペンタジエニル−チタン−ビス(2,6−ジフルオロ−3−(1H−ピロール−1−イル)−フェニル)等を挙げることができる。   The titanocene compound is not particularly limited, and specifically, dicyclopentadienyl-titanium-dichloride, dicyclopentadienyl-titanium-bisphenyl, dicyclopentadienyl-titanium-bis (2,3 , 4,5,6-pentafluorophenyl), dicyclopentadienyl-titanium-bis (2,3,5,6-tetrafluorophenyl), dicyclopentadienyl-titanium-bis (2,4,6) -Trifluorophenyl), dicyclopentadienyl-titanium-bis (2,6-difluorophenyl), dicyclopentadienyl-titanium-bis (2,4-difluorophenyl), bis (methylcyclopentadienyl) -Titanium-bis (2,3,4,5,6-pentafluorophenyl), bis (methylcyclopentadienyl) -titanium-bis 2,3,5,6-tetrafluorophenyl), bis (methylcyclopentadienyl) -titanium-bis (2,6-difluorophenyl), and dicyclopentadienyl-titanium-bis (2,6-difluoro) -3- (1H-pyrrol-1-yl) -phenyl) and the like.

ベンゾイン系化合物としては、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン等を挙げることができる。   Examples of benzoin compounds include benzoin ethyl ether, benzoin isobutyl ether, 2,2-dimethoxy-1,2-diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, and 2-hydroxy-2-methyl-1-phenylpropane. -1-one etc. can be mentioned.

α−アミノアルキルフェノン系化合物としては、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパン−1−オン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン等を挙げることができる。
チオキサントン系化合物としては、チオキサントン、1−クロロチオキサントン、2−クロロチオキサントン、1−クロロ−4−プロポキシチオキサントン、2−メチルチオキサントン、2−イソプロピルチオキサントン、2,4−ジエチルチオキサントン等を挙げることができる。
Examples of α-aminoalkylphenone compounds include 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpho And linophenyl) -butan-1-one.
Examples of the thioxanthone compound include thioxanthone, 1-chlorothioxanthone, 2-chlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, 2,4-diethylthioxanthone, and the like.

アシルホスフィンオキサイド系化合物としては、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド等を挙げることができる。   Examples of the acylphosphine oxide compound include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide.

オキシムエステル系化合物としては、1,2−オクタンジオン−1−(4−(フェニルチオ)−2−(O−ベンゾイルオキシム))、エタノン−1−(9−エチル−6−(2−メチルベンゾイル)−9H−カルバゾール−3−イル)−1−(O−アセチルオキシム)等を挙げることが出来る。   Examples of oxime ester compounds include 1,2-octanedione-1- (4- (phenylthio) -2- (O-benzoyloxime)) and ethanone-1- (9-ethyl-6- (2-methylbenzoyl). And -9H-carbazol-3-yl) -1- (O-acetyloxime).

アジド系化合物としては、p−アジドベンズアルデヒド、p−アジドアセトフェノン、p−アジド安息香酸、p−アジドベンザルアセトフェノン、4,4’−ジアジドカルコン、4,4’−ジアジドジフェニルスルフィド、2,6−ビス(4’−アジドベンザル)−4−メチルシクロヘキサノン、及びα−シアノ−4,4’−ジベンゾスチルベン等を挙げることができる。   Examples of the azide compounds include p-azidobenzaldehyde, p-azidoacetophenone, p-azidobenzoic acid, p-azidobenzalacetophenone, 4,4′-diazidochalcone, 4,4′-diazidodiphenyl sulfide, 2, Examples thereof include 6-bis (4′-azidobenzal) -4-methylcyclohexanone and α-cyano-4,4′-dibenzostilbene.

アゾ系化合物としては、2,2’−アゾビス(2−アミノジプロパン)塩酸塩、4,4’−アゾビス(4−シアノ吉草酸)、2,2’−アゾビス〔N−(2−カルボキシエチル)−2−メチルプロピオンアミジン〕、ジメチル2,2’−アゾビスイソブチレート、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、1,1’−アゾビス(シ
クロヘキサン−1−カルボニトリル)、2,2’−アゾビス{2−メチル−N−〔2−(1−ヒドロキシブチル)〕プロピオンアミド}、2,2’−アゾビス〔2−メチル−N−(2−ヒドロキシエチル)−プロピオンアミド〕、2,2’−アゾビス〔2−(5−メチル−2−イミダゾリン−2−イル)プロパン〕塩酸塩、2,2’−アゾビス〔2−(2−イミダゾリン−2−イル)プロパン〕塩酸塩、2,2’−アゾビス〔2−(2−イミダゾリン−2−イル)プロパン〕硫酸塩、2,2’−アゾビス〔2−(3,4,5,6−テトラヒドロピリミジン−2−イル)プロパン〕塩酸塩、2,2’−アゾビス{2−〔1−(2−ヒドロキシエチル)−2−イミダゾリン−2−イル〕プロパン}塩酸塩、2,2’−アゾビス〔2−(2−イミダゾリン−2−イル)プロパン〕等を挙げることができる。
Examples of the azo compound include 2,2′-azobis (2-aminodipropane) hydrochloride, 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis [N- (2-carboxyethyl). ) -2-methylpropionamidine], dimethyl 2,2′-azobisisobutyrate, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobis {2-methyl-N- [2- (1-hydroxybutyl) )] Propionamide}, 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) -propionamide], 2,2′-azobis [2- (5-methyl-2-imidazoline-2- Il) propane] Acid salt, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] hydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] sulfate, 2 , 2'-azobis [2- (3,4,5,6-tetrahydropyrimidin-2-yl) propane] hydrochloride, 2,2'-azobis {2- [1- (2-hydroxyethyl) -2- Imidazolin-2-yl] propane} hydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] and the like.

ジアゾ系化合物としては、1−ジアゾ−2,5−ジエトキシ−4−p−トリルメルカプトベンゼンボロフルオリド、1−ジアゾ−4−N,N−ジメチルアミノベンゼンクロリド、及び1−ジアゾ−4−N,N−ジエチルアミノベンゼンボロフルオリド等を挙げることができる。   Examples of the diazo compound include 1-diazo-2,5-diethoxy-4-p-tolylmercaptobenzeneborofluoride, 1-diazo-4-N, N-dimethylaminobenzene chloride, and 1-diazo-4-N. , N-diethylaminobenzeneborofluoride and the like.

o−キノンジアジド系化合物としては、1,2−ナフトキノンジアジド(2)−4−スルホン酸ナトリウム塩、1,2−ナフトキノンジアジド(2)−5−スルホン酸エステル、及び1,2−ナフトキノンジアジド(2)−4−スルホニルクロリド等を挙げることができる。   Examples of o-quinonediazide compounds include 1,2-naphthoquinonediazide (2) -4-sulfonic acid sodium salt, 1,2-naphthoquinonediazide (2) -5-sulfonic acid ester, and 1,2-naphthoquinonediazide (2 ) -4-sulfonyl chloride and the like.

ベンゾフェノン類としては、例えばベンゾフェノン、4,4’−ビスジエチルアミノベンゾフェノン、1,4−ジベンゾイルベンゼン、10−ブチル−2−クロロアクリドン、2−ベンゾイルナフタレン、4−ベンゾイルビフェニル、4−ベンゾイルジフェニルエーテル、3,3’,4,4’−テトラ(ターシャリーブチルパーオキシカルボニル)ベンゾフェノン等を挙げることができる。   Examples of benzophenones include benzophenone, 4,4′-bisdiethylaminobenzophenone, 1,4-dibenzoylbenzene, 10-butyl-2-chloroacridone, 2-benzoylnaphthalene, 4-benzoylbiphenyl, 4-benzoyldiphenyl ether, 3,3 ′, 4,4′-tetra (tertiary butyl peroxycarbonyl) benzophenone and the like can be mentioned.

ビスクマリンとしては、例えば3,3’−カルボニルビス(7−(ジエチルアミノ)−2H−クロメン−2−オン)等が挙げられ、これはみどり化学株式会社でBC(CAS[63226−13−1])として市販されている。
ビスイミダゾール化合物としては、2,2’−ビス(o−クロロフェニル)−4,5,4’,5’−テトラキス(3,4,5−トリメトキシフェニル)1,2’−ビスイミダゾール、及び2,2’−ビス(o−クロロフェニル)4,5,4’,5’−テトラフェニル−1,2’−ビスイミダゾール等を挙げることができる。
Biscumarins include, for example, 3,3′-carbonylbis (7- (diethylamino) -2H-chromen-2-one) and the like, which is a product of BC (CAS [63226-13-1] manufactured by Midori Chemical Co., Ltd. ).
Examples of the bisimidazole compound include 2,2′-bis (o-chlorophenyl) -4,5,4 ′, 5′-tetrakis (3,4,5-trimethoxyphenyl) 1,2′-bisimidazole, and 2 , 2'-bis (o-chlorophenyl) 4,5,4 ', 5'-tetraphenyl-1,2'-bisimidazole and the like.

前記光酸発生剤としては、露光時にルイス酸あるいはブレンステッド酸を生成する化合物であれば特に限定されないが、例えば、ジアリルヨードニウム塩化合物、トリアリールスルホン酸塩化合物、ジアゾニウム塩化合物などのオニウム塩化合物、及び鉄アレーン錯体化合物等を挙げることができる。光酸発生剤は単独で用いてもよいし、必要に応じて二種以上を混合して用いてもよい。   The photoacid generator is not particularly limited as long as it is a compound that generates a Lewis acid or a Bronsted acid upon exposure. For example, an onium salt compound such as a diallyl iodonium salt compound, a triaryl sulfonate compound, or a diazonium salt compound , And iron arene complex compounds. A photo-acid generator may be used independently and may mix and use 2 or more types as needed.

ジアリルヨードニウム塩化合物としては、例えば、ジフェニルヨードニウム、4,4’−ジクロロジフェニルヨードニウム、4,4’−ジメトキシジフェニルヨードニウム、4,4’−ジターシャリーブチルジフェニルヨードニウム、(4−メチルフェニル)[4−
(2−メチルプロピル)フェニル]ヨードニウム、及び3,3'−ジニトロフェニルヨードニウム等のヨードニウムのテトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアルセネート、及びヘキサフルオロアンチモネート等が挙げられる。
Examples of the diallyliodonium salt compound include diphenyliodonium, 4,4′-dichlorodiphenyliodonium, 4,4′-dimethoxydiphenyliodonium, 4,4′-ditertiarybutyldiphenyliodonium, (4-methylphenyl) [4-
(2-methylpropyl) phenyl] iodonium, iodonium tetrafluoroborate such as 3,3′-dinitrophenyliodonium, hexafluorophosphate, hexafluoroarsenate, and hexafluoroantimonate.

トリアリールスルホン酸塩化合物としては、例えば、トリフェニルスルホニウム、4−ターシャリーブチルトリフェニルスルホニウム、トリス(4−メチルフェニル)スルホニウム、トリス(4−メトキシフェニル)スルホニウム、及び4−チオフェニルトリフェニ
ルスルホニウム等のスルホニウムのテトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアルセネート、及びヘキサフルオロアンチモネート等を挙げることができる。
Examples of the triarylsulfonate compound include triphenylsulfonium, 4-tertiarybutyltriphenylsulfonium, tris (4-methylphenyl) sulfonium, tris (4-methoxyphenyl) sulfonium, and 4-thiophenyltriphenylsulfonium. And the like, such as tetrafluoroborate of sulfonium such as hexafluorophosphate, hexafluoroarsenate, and hexafluoroantimonate.

鉄アレーン錯体化合物としては、例えば、ビスシクロペンタジエニル−(η6−イソプロピルベンゼン)−鉄(II)ヘキサフルオロホスフェート等が挙げられる。   Examples of the iron arene complex compound include biscyclopentadienyl- (η6-isopropylbenzene) -iron (II) hexafluorophosphate.

[2光子吸収重合性組成物]
本発明の2光子吸収重合性組成物は、(a)重合性化合物、(b)ジチオカルバメート基含有高分子化合物及び(c)2光子吸収化合物、所望により(d)光重合開始剤を含み、これら(a)〜(d)成分を任意の混合比で混合することによって得ることができる。
(a)重合性化合物は、(b)ジチオカルバメート基含有高分子化合物100質量部に対して、1〜100質量部の割合で使用することが好ましい。(a)重合性化合物が100質量部を超える場合は高い屈折率を得ることができなくなり、また1質量部未満の場合は十分な硬化物を得るためには長い露光時間を要することとなり好ましくない。
(c)2光子吸収化合物は、(b)ジチオカルバメート基含有高分子化合物100質量部に対して、0.01〜10質量部の割合で使用することが好ましく、0.1〜5質量部の割合で使用することがさらに好ましい。
また、(d)光重合開始剤が含まれる場合には、(b)ジチオカルバメート基含有高分子化合物100質量部に対して、0.01〜10質量部の割合で使用することが好ましく、0.1〜5質量部の割合で使用することがさらに好ましい。
[Two-photon absorption polymerizable composition]
The two-photon absorption polymerizable composition of the present invention comprises (a) a polymerizable compound, (b) a dithiocarbamate group-containing polymer compound and (c) a two-photon absorption compound, and optionally (d) a photopolymerization initiator, These components (a) to (d) can be obtained by mixing at an arbitrary mixing ratio.
(A) The polymerizable compound is preferably used at a ratio of 1 to 100 parts by mass with respect to 100 parts by mass of the (b) dithiocarbamate group-containing polymer compound. (A) When the polymerizable compound exceeds 100 parts by mass, a high refractive index cannot be obtained, and when it is less than 1 part by mass, a long exposure time is required to obtain a sufficient cured product. .
(C) The two-photon absorption compound is preferably used at a ratio of 0.01 to 10 parts by mass with respect to 100 parts by mass of the (b) dithiocarbamate group-containing polymer compound. More preferably, it is used in proportions.
Further, when (d) a photopolymerization initiator is included, it is preferably used in a proportion of 0.01 to 10 parts by mass with respect to 100 parts by mass of the (b) dithiocarbamate group-containing polymer compound. More preferably, it is used at a ratio of 1 to 5 parts by mass.

なお、本発明の2光子吸収重合性組成物において、上記の構成成分に対して十分な溶解度を持つ有機溶剤を含むことができる。使用できる有機溶剤としては、例えば、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート等のセロソルブ系溶剤、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、ジプロピレングリコールジメチルエーテル等のプロピレングリコール系溶剤、酢酸ブチル、酢酸アミル、酢酸エチル、ジエチルオキサレート、ピルビン酸エチル、エチル−2−ヒドロキシブチレート、エチルアセトアセテート、乳酸メチル、乳酸エチル、3−メトキシプロピオン酸メチル等のエステル系溶剤、ブタノール、ヘプタノール、ヘキサノール、ジアセトンアルコール、フルフリルアルコール等のアルコール系溶剤、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン等のケトン系溶剤、テトラヒドロフラン、ジオキサンなどのエーテル系溶剤、γ−ブチルラクトン等のラクトン系溶剤、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等の高極性溶剤、ジクロロメタン、1,2−ジクロロエタン、クロロホルムなどのハロゲン化炭化水素、あるいはこれらの混合溶剤、さらには、これらにトルエン、キシレン等の芳香族炭化水素を添加したもの等が挙げられる。
これら有機溶剤使用の割合は、本発明の2光子吸収重合性組成物の総質量に対して、通常、質量比で0.1ないし10倍程度の範囲である。
In addition, the two-photon absorption polymerizable composition of the present invention can contain an organic solvent having sufficient solubility for the above components. Examples of organic solvents that can be used include cellosolv solvents such as methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monobutyl ether, propylene glycol monomethyl ether acetate, Propylene glycol solvents such as propylene glycol monoethyl ether acetate, propylene glycol monobutyl ether acetate, dipropylene glycol dimethyl ether, butyl acetate, amyl acetate, ethyl acetate, diethyl oxalate, ethyl pyruvate, ethyl-2-hydroxybutyrate, ethyl Acetoacetate, methyl lactate, ethyl lactate, 3-methoxypropio Ester solvents such as methyl acid, alcohol solvents such as butanol, heptanol, hexanol, diacetone alcohol, furfuryl alcohol, ketone solvents such as methyl isobutyl ketone, cyclohexanone, methyl amyl ketone, ether solvents such as tetrahydrofuran and dioxane Lactone solvents such as γ-butyllactone, highly polar solvents such as dimethylformamide, dimethylacetamide, N-methylpyrrolidone, halogenated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, or mixed solvents thereof, These include those obtained by adding aromatic hydrocarbons such as toluene and xylene.
The proportion of these organic solvents used is usually in the range of about 0.1 to 10 times by mass ratio with respect to the total mass of the two-photon absorption polymerizable composition of the present invention.

さらに本発明の2光子吸収重合性組成物には、バインダー、酸化防止剤、光安定剤、熱安定剤、増感剤、可塑剤、潤滑剤、連鎖移動剤、または色素などの各種添加剤を必要に応じて添加してもよい。バインダーは光リソグラフィー前の組成物の成膜性、均一性などを調整する目的で使用できる。   Further, the two-photon absorption polymerizable composition of the present invention contains various additives such as a binder, an antioxidant, a light stabilizer, a heat stabilizer, a sensitizer, a plasticizer, a lubricant, a chain transfer agent, or a dye. You may add as needed. The binder can be used for the purpose of adjusting the film formability and uniformity of the composition before photolithography.

本発明の2光子吸収重合性組成物は、例えば支持体上に塗布し、必要に応じて乾燥することにより感光層を形成することができる。感光層の厚さとしては、例えば1ないし1,000μm程度が適当である。続いて、感光層上に支持体、あるいは酸素遮断のための保
護層を設けることもできる。これら支持体や保護層は、本発明の2光子吸収重合性組成物で構成される感光層が露光重合するために、光を透過させる場合には透明な物質である必要がある。
The two-photon absorption polymerizable composition of the present invention can be formed on a support, for example, and dried as necessary to form a photosensitive layer. A suitable thickness of the photosensitive layer is, for example, about 1 to 1,000 μm. Subsequently, a support or a protective layer for blocking oxygen can be provided on the photosensitive layer. These support and protective layer need to be a transparent substance in order to transmit light because the photosensitive layer composed of the two-photon absorption polymerizable composition of the present invention undergoes exposure polymerization.

上記支持体としては、透明なガラス板、アクリル板、ポリエチレンテレフタレートフィルム、ポリエチレンフィルムなどが用いられる。透明な樹脂フィルムとして、ポリエチレンテレフタレートフィルム、ポリエチレンフィルムなどが用いられる。塗布方法としては、直接滴下する方法に加え、従来公知の方法、例えば、回転塗布、ワイヤーバー塗布、ディップ塗布、エアーナイフ塗布、ロール塗布、ブレード塗布、カーテン塗布、及びスピンコート等を用いることができる。
上記保護層としては、酸素による感度低下や保存安定性の劣化等の悪影響を防止するための公知技術、例えば、水溶性ポリマー等を塗布して用いることもできる。
As the support, a transparent glass plate, an acrylic plate, a polyethylene terephthalate film, a polyethylene film, or the like is used. As the transparent resin film, a polyethylene terephthalate film, a polyethylene film, or the like is used. As a coating method, in addition to a direct dropping method, a conventionally known method such as spin coating, wire bar coating, dip coating, air knife coating, roll coating, blade coating, curtain coating, and spin coating may be used. it can.
As the protective layer, a known technique for preventing adverse effects such as a decrease in sensitivity due to oxygen and deterioration in storage stability, for example, a water-soluble polymer can be applied and used.

本発明の2光子吸収重合性組成物を用いて光リソグラフィーを行うには、前述の通り、まず、当該組成物をガラス板などの適当な支持体上に塗布するなどして薄膜を形成し、次いで、その薄膜に対してレーザー露光を行う。またレーザー露光後に、未反応の部分を屈折率の異なる樹脂、例えば光硬化性樹脂組成物で置換することもできる。
レーザー光源としては、例えばアルゴンイオンレーザー(458nm、488nm、514.5nm)、クリプトンイオンレーザー(647.1nm)、Nd:YAGレーザー(532nm)、Nd:YVO4レーザー(532nm)、InGaNレーザー(405nm)、He−Cdレーザー(325nm、442nm)、近赤外フェムト秒Ti−サファイアレーザー(700〜1,000nm)、近赤外フェムト秒ファイバーレーザー等が使用される。
なお、好ましいレーザー照射強度は使用する光学装置によって異なるが、レーザーの照射強度が弱いと硬化不足となり、露光部分が細く弱くなり、波打つような形状となることがある。またレーザーの照射強度が強いと十分に硬化して露光部分が強固になるが、所望の大きさ(太さ)より太くなることがある。後述する実施例において使用した図1で表される光学装置を用いた系においては、対物レンズ7直近におけるレーザーの強度が8〜12mWであることが好ましい。
In order to perform photolithography using the two-photon absorption polymerizable composition of the present invention, as described above, first, a thin film is formed by coating the composition on a suitable support such as a glass plate, Next, laser exposure is performed on the thin film. Further, after the laser exposure, the unreacted portion can be replaced with a resin having a different refractive index, for example, a photocurable resin composition.
As a laser light source, for example, an argon ion laser (458 nm, 488 nm, 514.5 nm), a krypton ion laser (647.1 nm), an Nd: YAG laser (532 nm), an Nd: YVO4 laser (532 nm), an InGaN laser (405 nm), A He—Cd laser (325 nm, 442 nm), a near infrared femtosecond Ti-sapphire laser (700 to 1,000 nm), a near infrared femtosecond fiber laser, or the like is used.
The preferred laser irradiation intensity varies depending on the optical device used. However, if the laser irradiation intensity is weak, curing is insufficient, the exposed portion becomes thin and weak, and may have a wavy shape. Further, when the intensity of laser irradiation is high, it is sufficiently cured and the exposed portion becomes firm, but it may be thicker than a desired size (thickness). In the system using the optical device shown in FIG. 1 used in Examples described later, the laser intensity in the immediate vicinity of the objective lens 7 is preferably 8 to 12 mW.

上述のように、本発明の2光子吸収重合性組成物は2光子リソグラフィーに使用することができる。そして2光子リソグラフィーは1光子リソグラフィーと比較して、特定の部分のみを硬化させることができる、すなわち、高精度のパターンを形成可能であるため、より精密で高集積化された多次元素子である光デバイスの製造に使用することができる。
しかも本発明の2光子吸収重合性組成物より得られる硬化物(造形物)は高い屈折率を有するため、各種光デバイスに使用した際、該デバイスの物資及び性能面で大きな付加価値を与えることができる。
従って本発明の2光子吸収重合性化合物、並びに該光組成物を用いた光硬化方法並びに該組成物より得られる光デバイス構造体は、具体的には、高分子光導波路、高分子光ファイバー、光表示材料、回折格子、フォトニック結晶、マイクロリアクターなどの微細な光デバイスに有効に利用することができる。
As described above, the two-photon absorption polymerizable composition of the present invention can be used for two-photon lithography. The two-photon lithography is capable of curing only a specific portion as compared with the one-photon lithography. In other words, the two-photon lithography is a more precise and highly integrated multidimensional element because a high-precision pattern can be formed. It can be used for the manufacture of optical devices.
Moreover, since the cured product (molded article) obtained from the two-photon absorption polymerizable composition of the present invention has a high refractive index, when used in various optical devices, it gives great added value in terms of materials and performance of the device. Can do.
Therefore, the two-photon absorption polymerizable compound of the present invention, the photocuring method using the photocomposition, and the optical device structure obtained from the composition are specifically polymer optical waveguide, polymer optical fiber, optical It can be effectively used for fine optical devices such as display materials, diffraction gratings, photonic crystals, and microreactors.

以下に実施例を掲げて本発明をさらに詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

<参考例1:N,N−ジエチルジチオカルバミルメチルスチレンの合成>
2Lの反応フラスコに、クロロメチルスチレン[AGCセイミケミカル(株)製、CMS−14(商品名)]120g、N,N−ジエチルジチオカルバミド酸ナトリウム3水和物[関東化学(株)製]181g、アセトン1,400gを仕込み、撹拌下、40℃で1
時間反応させた。反応後、析出した塩化ナトリウムを濾過して除き、その後エバポレーターで反応溶液からアセトンを留去させ、反応粗粉末を得た。この反応粗粉末をトルエンに再溶解させ、トルエン/水系で分液後、−20℃の冷凍庫内でトルエン相から目的物を再結晶させた。再結晶物を濾過、真空乾燥して、白色粉末の目的物206g(収率97%)を得た。液体クロマトグラフィーによる純度(面百値)は100%であった(融点56℃)。
Reference Example 1: Synthesis of N, N-diethyldithiocarbamylmethylstyrene
In a 2 L reaction flask, chloromethylstyrene [manufactured by AGC Seimi Chemical Co., Ltd., CMS-14 (trade name)] 120 g, sodium N, N-diethyldithiocarbamate trihydrate [manufactured by Kanto Chemical Co., Ltd.] 181 g , 1400 g of acetone was charged, and 1 at 40 ° C. with stirring.
Reacted for hours. After the reaction, the precipitated sodium chloride was removed by filtration, and then acetone was distilled off from the reaction solution with an evaporator to obtain a reaction crude powder. This reaction crude powder was redissolved in toluene, and after separation in a toluene / water system, the target product was recrystallized from the toluene phase in a −20 ° C. freezer. The recrystallized product was filtered and vacuum-dried to obtain 206 g of the desired product as white powder (yield 97%). The purity (area percentage) by liquid chromatography was 100% (melting point 56 ° C.).

<参考例2:ジチオカルバメート基を分子末端に有するスチレン系ハイパーブランチポリマー(HPS)の合成>
300mLの反応フラスコに、参考例1で調製したN,N−ジエチルジチオカルバミルメチルスチレン108g、トルエン72gを仕込み、撹拌して淡黄色透明溶液を調製した後、反応系内を窒素置換した。この溶液の真ん中から100Wの高圧水銀灯[セン特殊光源(株)製、HL−100]を点灯し、内部照射による光重合反応を、撹拌下、室温で12時間行なった。次にこの反応液をメタノール3,000gに添加してポリマーを高粘度な塊状状態で再沈させた後、上澄み液をデカンテーションで除いた。さらにこのポリマーをテトラヒドロフラン300gに再溶解した後、この溶液をメタノール3,000gに添加してポリマーをスラリー状態で再沈させた。このスラリーを濾過し、真空乾燥して、白色粉末の目的物48gを得た。
Reference Example 2: Synthesis of Styrenic Hyperbranched Polymer (HPS) Having Dithiocarbamate Group at Molecular Terminal>
A 300 mL reaction flask was charged with 108 g of N, N-diethyldithiocarbamylmethylstyrene and 72 g of toluene prepared in Reference Example 1 and stirred to prepare a pale yellow transparent solution, and then the inside of the reaction system was purged with nitrogen. A 100 W high-pressure mercury lamp (manufactured by Sen Special Light Source Co., Ltd., HL-100) was turned on from the middle of this solution, and a photopolymerization reaction by internal irradiation was performed at room temperature for 12 hours with stirring. Next, this reaction liquid was added to 3,000 g of methanol to reprecipitate the polymer in a highly viscous lump state, and then the supernatant liquid was removed by decantation. Furthermore, after this polymer was redissolved in 300 g of tetrahydrofuran, this solution was added to 3,000 g of methanol to reprecipitate the polymer in a slurry state. This slurry was filtered and vacuum-dried to obtain 48 g of the desired product as a white powder.

得られた目的物(HPS)のゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量Mwは20,900、分散度Mw/Mnは4.9であった。元素分析の結果は、炭素64.6%、水素7.4%、窒素5.0%、硫黄25.3%であった。熱重量分析より、5%重量減少温度は248℃であった。得られたHPSは式(5)で表される構造を有する(波長589nm(NaD線)における屈折率:1.685)。   The obtained target product (HPS) had a weight average molecular weight Mw of 20,900 and a dispersity Mw / Mn of 4.9 as measured by gel permeation chromatography in terms of polystyrene. The results of elemental analysis were carbon 64.6%, hydrogen 7.4%, nitrogen 5.0% and sulfur 25.3%. From the thermogravimetric analysis, the 5% weight loss temperature was 248 ° C. The obtained HPS has a structure represented by the formula (5) (refractive index at a wavelength of 589 nm (NaD line): 1.585).

<参考例3:N,N−ジエチルジチオカルバミルエチルメタクリレートの合成>
2Lの反応フラスコに、クロロエチルメタクリレート[ランカスター社製]100g、N,N−ジエチルジチオカルバミド酸ナトリウム3水和物[関東化学(株)製]178g、アセトン1,100gを仕込み、撹拌下、40℃で14時間反応させた。反応後、析出した塩化ナトリウムを濾過して除き、その後エバポレーターで反応溶液からアセトンを留去させ、反応粗粉末を得た。この反応粗粉末を1,2−ジクロロエタンに再溶解させ、1,2−ジクロロエタン/水系で分液後、1,2−ジクロロエタン相から1,2−ジクロロエタンを留去させて黄色液体の目的物171g(収率97%)を得た。液体クロマトグラフィーによる純度(面百値)は96%であった。
Reference Example 3: Synthesis of N, N-diethyldithiocarbamylethyl methacrylate
A 2 L reaction flask was charged with 100 g of chloroethyl methacrylate [manufactured by Lancaster], 178 g of sodium N, N-diethyldithiocarbamate trihydrate [manufactured by Kanto Chemical Co., Ltd.], and 1,100 g of acetone. The reaction was carried out at ° C for 14 hours. After the reaction, the precipitated sodium chloride was removed by filtration, and then acetone was distilled off from the reaction solution with an evaporator to obtain a reaction crude powder. This reaction crude powder was redissolved in 1,2-dichloroethane, and after separation in a 1,2-dichloroethane / water system, 1,2-dichloroethane was distilled off from the 1,2-dichloroethane phase to give 171 g of the desired product as a yellow liquid. (Yield 97%) was obtained. The purity (area percentage) by liquid chromatography was 96%.

<参考例4:ジチオカルバメート基を分子末端に有するアクリル系ハイパーブランチポリマー(HPEMA)の合成>
300mlの反応フラスコに、N,N−ジエチルジチオカルバミルエチルメタクリレー
ト90g、トルエン90gを仕込み、撹拌して淡黄色透明溶液を調製した後、反応系内を窒素置換した。この溶液の真ん中から100Wの高圧水銀灯[セン特殊光源(株)製、HL−100]を点灯させ、内部照射による光重合反応を、撹拌下、室温で5時間行った。次にこの反応液をメタノール3,000gに添加してポリマーを高粘度な塊状状態で再沈させた後、上澄み液をデカンテーションで除いた。さらにこのポリマーをテトラヒドロフラン400gに再溶解させた後、この溶液をメタノール5,000gに添加してポリマーをスラリー状態で再沈させた。このスラリーを濾過し、真空乾燥して、白色粉末の目的物44gを得た。ゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量Mwは43,200、分散度Mw/Mnは2.9であった。元素分析は、炭素50.8%、水素7.6%、窒素5.1%、硫黄25.6%であった。熱重量分析より5%重量減少温度は186℃であった。得られたHPEMAは式(6)で表される構造を有する(波長589nm(NaD線)における屈折率:1.611)。
<Reference Example 4: Synthesis of acrylic hyperbranched polymer (HPEMA) having dithiocarbamate group at molecular end>
A 300 ml reaction flask was charged with 90 g of N, N-diethyldithiocarbamylethyl methacrylate and 90 g of toluene to prepare a pale yellow transparent solution by stirring, and then the inside of the reaction system was purged with nitrogen. A 100 W high-pressure mercury lamp (manufactured by Sen Special Light Source Co., Ltd., HL-100) was turned on from the middle of this solution, and a photopolymerization reaction by internal irradiation was performed at room temperature for 5 hours with stirring. Next, this reaction liquid was added to 3,000 g of methanol to reprecipitate the polymer in a highly viscous lump state, and then the supernatant liquid was removed by decantation. Further, this polymer was redissolved in 400 g of tetrahydrofuran, and then this solution was added to 5,000 g of methanol to reprecipitate the polymer in a slurry state. This slurry was filtered and vacuum-dried to obtain 44 g of the desired product as a white powder. The weight average molecular weight Mw measured by gel permeation chromatography in terms of polystyrene was 43,200, and the degree of dispersion Mw / Mn was 2.9. The elemental analysis was 50.8% carbon, 7.6% hydrogen, 5.1% nitrogen, and 25.6% sulfur. From the thermogravimetric analysis, the 5% weight loss temperature was 186 ° C. The obtained HPEMA has a structure represented by the formula (6) (refractive index at a wavelength of 589 nm (NaD line): 1.611).

<2光子リソグラフィー>.
2光子リソグラフィーは図1に示す光学装置を使用した。本光学装置は、光源1より近赤外フェムト秒レーザー(波長700〜800nm、周波数80MHz、パルス幅100フェムト秒未満)を矢印A方向にミラー2に向けて照射する。2光子リソグラフィーにおいては、2光子吸収過程で700〜800nmの波長を有する光子を同時に2個吸収するため、半波長である350〜400nmの紫外線領域の波長の吸収を励起できる。ミラー2に照射されたレーザーは、レンズ3を通過した後、ピンホール4内を通過する。続いて、前記レーザーはレンズ5を通過し、ミラー6によって分光される。分光された一部のレーザーは対物レンズ7(倍率100倍、開口数NA=0.9)へ向けて照射される。対物レンズ7は、図中矢印B方向に上下移動することによって、レーザーの集光点を調節する。集光点が調節されたレーザーは、試料8が塗布された基板9へ照射される。基板9はxyzステージ10上に配置されており、PC制御ステッピングモーターの採用によりx、y、z方向にそれぞれ高精度に移動することが可能であるため、試料8に対して3次元的な照射を行い、硬化反応を進めることができる。なお、ミラー6を介した基板9の反対側には、レンズ11及びCCDカメラ12が配置されており、試料8に対する硬化反応の様子を観察しながら、対物レンズ7及び基板9を移動させることができる。
<Two-photon lithography>.
The two-photon lithography used the optical apparatus shown in FIG. This optical device irradiates a near-infrared femtosecond laser (wavelength 700 to 800 nm, frequency 80 MHz, pulse width less than 100 femtoseconds) from the light source 1 toward the mirror 2 in the direction of arrow A. In two-photon lithography, two photons having a wavelength of 700 to 800 nm are absorbed simultaneously in the two-photon absorption process, so that absorption in the ultraviolet region of 350 to 400 nm, which is a half wavelength, can be excited. The laser irradiated on the mirror 2 passes through the pin 3 after passing through the lens 3. Subsequently, the laser passes through the lens 5 and is split by the mirror 6. A part of the divided laser beam is irradiated toward the objective lens 7 (magnification 100 times, numerical aperture NA = 0.9). The objective lens 7 adjusts the condensing point of the laser by moving up and down in the direction of arrow B in the figure. The laser whose focusing point is adjusted is irradiated onto the substrate 9 on which the sample 8 is applied. Since the substrate 9 is disposed on the xyz stage 10 and can move with high precision in the x, y, and z directions by adopting a PC control stepping motor, the sample 8 is three-dimensionally irradiated. The curing reaction can be advanced. A lens 11 and a CCD camera 12 are arranged on the opposite side of the substrate 9 via the mirror 6, and the objective lens 7 and the substrate 9 can be moved while observing the state of the curing reaction on the sample 8. it can.

[実施例1:HPS含有2光子吸収重合性組成物の調製及び光造形(スペーサー成膜)]
(a)重合性化合物としてトリメチロールプロパン トリアクリレート(以下、TPTと略す)4.4mg、(b)ジチオカルバメート基含有高分子化合物として参考例2で合成したHPS 22.0mg、及び(c)2光子吸収化合物として4,4’−ビス(ジエチルアミノ)ベンゾフェノン(エチルミヒラーズケトン、以下、EMKと略す)0.2mgを混合し、各成分の重量比(a)/(b)/(c)が20/100/1となる2光子吸収重合性組成物を得た。
次いで得られた組成物に、(b)ジチオカルバメート基含有高分子化合物と同重量のγ−ブチロラクトン22.0mgを溶媒として加え、溶解させてワニスを調製した。
[Example 1: Preparation of HPS-containing two-photon absorption polymerizable composition and stereolithography (spacer film formation)]
(A) 4.4 mg of trimethylolpropane triacrylate (hereinafter abbreviated as TPT) as the polymerizable compound, (b) 22.0 mg of HPS synthesized in Reference Example 2 as the dithiocarbamate group-containing polymer compound, and (c) 2 As a photon absorbing compound, 0.2 mg of 4,4′-bis (diethylamino) benzophenone (ethyl Michler's ketone, hereinafter abbreviated as EMK) is mixed, and the weight ratio (a) / (b) / (c) of each component is A two-photon absorption polymerizable composition of 20/100/1 was obtained.
Next, 22.0 mg of γ-butyrolactone having the same weight as the dithiocarbamate group-containing polymer compound (b) was added as a solvent to the obtained composition and dissolved to prepare a varnish.

図2に示すように、予め洗浄したスライドガラス上に、スペーサーとして約3mm×5mmに加工した厚さ7.5μmのポリイミドフィルム2片を、長辺を対向させて約5mm間隔で置き、そのスペーサー上に約10mm×5mmのカバーガラスを配した。次いで、スライドガラスとカバーガラスとの空隙の開口部に、0.45μmのフィルターを通した前記ワニスをピペットで滴下することで毛細管現象により空隙にワニスを注入し、試験セルを作製した。   As shown in FIG. 2, two 7.5 μm-thick polyimide films processed to about 3 mm × 5 mm as spacers are placed on a pre-cleaned glass slide with the long sides facing each other at intervals of about 5 mm. A cover glass of about 10 mm × 5 mm was arranged on the top. Next, the varnish was injected into the gap by capillary action by dropping the varnish through a 0.45 μm filter into the opening of the gap between the slide glass and the cover glass, thereby preparing a test cell.

この試験セルに、前記光学装置を用いて波長740nm、周波数80MHz、パルス幅100フェムト秒において、対物レンズ7直近での照射強度が8mWとなるようにレーザーを照射し、微細3次元構造の光造形を試みた。
レーザー照射後、γ−ブチロラクトンで未反応組成物を洗浄し、カバーガラスを外した。得られた微細3次元構造を有する光硬化物を光学顕微鏡により観察したところ、所望の微細3次元構造が形成されていることを確認した。
This test cell was irradiated with a laser so that the irradiation intensity in the immediate vicinity of the objective lens 7 would be 8 mW at a wavelength of 740 nm, a frequency of 80 MHz, and a pulse width of 100 femtoseconds using the optical device, and the optical modeling of a fine three-dimensional structure. Tried.
After laser irradiation, the unreacted composition was washed with γ-butyrolactone, and the cover glass was removed. When the obtained photocured material having a fine three-dimensional structure was observed with an optical microscope, it was confirmed that a desired fine three-dimensional structure was formed.

形成したパターンを、図3に模式的に示す。詳細には、第1層として図3水平方向100μm間に線幅約350nmのストライプを2μm間隔で形成し、そのストライプ上に、第2層として図3奥行方向200μm間に線幅約350nmのストライプを10μm間隔で、さらにそのストライプ上に、第3層として第1層と位相を1μmずらし互い違いになるように線幅約350nmのストライプを2μm間隔で形成し、最上部に第4層として第2層と同一のストライプが配された微細3次元構造が形成されていた。
観察した光硬化物の光学顕微鏡画像を図4に示す。
The formed pattern is schematically shown in FIG. More specifically, stripes having a line width of about 350 nm are formed at intervals of 2 μm between 100 μm in the horizontal direction in FIG. 3 as the first layer, and stripes having a line width of about 350 nm between the depths of 200 μm in FIG. Are formed on the stripes, and stripes having a line width of about 350 nm are formed at intervals of 2 μm so that the phase is shifted by 1 μm from the first layer as the third layer, and the second layer is formed as the fourth layer on the top. A fine three-dimensional structure in which the same stripe as the layer was arranged was formed.
The optical microscope image of the observed photocured product is shown in FIG.

[実施例2〜24]
実施例1において、(a)、(b)、(c)の重量比及びスペーサー厚を、表1に示す値に変更した以外は実施例1と同様に行った。結果を表1に示す。何れの例においても、所望の微細3次元構造が形成されていた。
[Examples 2 to 24]
In Example 1, it carried out similarly to Example 1 except having changed the weight ratio and spacer thickness of (a), (b), (c) into the value shown in Table 1. The results are shown in Table 1. In any example, a desired fine three-dimensional structure was formed.

[比較例1〜2]
実施例1において、(a)、(b)、(c)の重量比及びスペーサー厚を、表1に示す値に変更した以外は実施例1と同様に行った。結果を表1に示す。何れの例においても、光硬化は起こらず所望の微細3次元構造は形成できなかった。
[Comparative Examples 1-2]
In Example 1, it carried out similarly to Example 1 except having changed the weight ratio and spacer thickness of (a), (b), (c) into the value shown in Table 1. The results are shown in Table 1. In any of the examples, photocuring did not occur and a desired fine three-dimensional structure could not be formed.

[実施例25:HPS含有2光子吸収重合性組成物の調製及び光造形(スピンコート成膜)]
(a)重合性化合物としてTPT 39.0mg、(b)ジチオカルバメート基含有高分子化合物として参考例2で合成したHPS 19.5mg、及び(c)2光子吸収化合物としてEMK 0.6mgを混合し、各成分の重量比(a)/(b)/(c)が200/100/3となる2光子吸収重合性組成物を得た。
次いで得られた組成物に、(b)ジチオカルバメート基含有高分子化合物と同重量のトルエン19.5mgを溶媒として加え、溶解させてワニスを調製した。
[Example 25: Preparation of HPS-containing two-photon absorption polymerizable composition and stereolithography (spin coating film formation)]
(A) 39.0 mg of TPT as a polymerizable compound, (b) 19.5 mg of HPS synthesized in Reference Example 2 as a polymer compound containing a dithiocarbamate group, and (c) 0.6 mg of EMK as a two-photon absorption compound were mixed. A two-photon absorption polymerizable composition having a weight ratio (a) / (b) / (c) of each component of 200/100/3 was obtained.
Next, 19.5 mg of toluene having the same weight as that of the polymer compound containing (b) dithiocarbamate group was added as a solvent to the obtained composition and dissolved to prepare a varnish.

0.45μmのフィルターを通した前記ワニスを、2,000rpm、30秒間で予め洗浄したガラス基板上にスピンコートを行い、薄膜を形成した。この薄膜を加熱乾燥せずに、そのまま試験セルとした。
この試験セルに、実施例1と同様にレーザーを照射し、微細3次元構造の光造形を試みた。
レーザー照射後、トルエンで未反応組成物を洗浄し、得られた微細3次元構造を有する光硬化物を光学顕微鏡により観察したところ、所望の微細3次元構造が形成されていることを確認した。
The varnish that passed through a 0.45 μm filter was spin-coated on a glass substrate previously washed at 2,000 rpm for 30 seconds to form a thin film. This thin film was used as it was as a test cell without being dried by heating.
This test cell was irradiated with a laser in the same manner as in Example 1 to attempt optical modeling of a fine three-dimensional structure.
After laser irradiation, the unreacted composition was washed with toluene, and the obtained photocured product having a fine three-dimensional structure was observed with an optical microscope. As a result, it was confirmed that a desired fine three-dimensional structure was formed.

[実施例26〜31]
実施例25において、(a)、(b)、(c)の重量比を表2に示す値に変更した以外は実施例25と同様に行った。結果を表2に示す。何れの例においても、所望の微細3次元構造が形成されていた。
[Examples 26 to 31]
In Example 25, it carried out like Example 25 except having changed the weight ratio of (a), (b), (c) into the value shown in Table 2. The results are shown in Table 2. In any example, a desired fine three-dimensional structure was formed.

[比較例3]
実施例25において、(a)、(b)、(c)の重量比を表2に示す値に変更した以外は実施例25と同様に行った。結果を表2に示す。比較例1〜2と同様、光硬化は起こらず所望の微細3次元構造は形成できなかった。
[Comparative Example 3]
In Example 25, it carried out like Example 25 except having changed the weight ratio of (a), (b), (c) into the value shown in Table 2. The results are shown in Table 2. As in Comparative Examples 1 and 2, photocuring did not occur and the desired fine three-dimensional structure could not be formed.

[実施例32:HPEMA含有2光子吸収重合性組成物の調製及び光造形(スペーサー成膜)]
(a)重合性化合物としてTPT 132.9mg、(b)ジチオカルバメート基含有高分子化合物として参考例4で合成したHPEMA 332.2mg、及び(c)2光子吸収化合物としてEMK 6.6mgを混合し、各成分の重量比(a)/(b)/(c)が40/100/2となる2光子吸収重合性組成物を得た。
次いで得られた組成物に、(b)ジチオカルバメート基含有高分子化合物と同重量のプロピレングリコールモノメチルエーテルアセテート(以下、PGMEAと略す)332.2mgを溶媒として加え、溶解させてワニスを調製した。
[Example 32: Preparation and stereolithography (spacer film formation) of HPEMA-containing two-photon absorption polymerizable composition]
(A) 132.9 mg of TPT as a polymerizable compound, (b) 332.2 mg of HPEMA synthesized in Reference Example 4 as a polymer compound containing a dithiocarbamate group, and (c) 6.6 mg of EMK as a two-photon absorption compound were mixed. A two-photon absorption polymerizable composition in which the weight ratio (a) / (b) / (c) of each component was 40/100/2 was obtained.
Next, 332.2 mg of propylene glycol monomethyl ether acetate (hereinafter abbreviated as PGMEA) having the same weight as the (b) dithiocarbamate group-containing polymer compound was added as a solvent to the resulting composition and dissolved to prepare a varnish.

調製したワニスを用いて、スペーサー厚を25μmとした以外は実施例1と同様に試験セルを作製後、実施例1と同様にレーザーを照射し、微細3次元構造の光造形を試みた。
レーザー照射後、PGMEAで未反応組成物を洗浄し、カバーガラスを外した。得られた微細3次元構造を有する光硬化物を光学顕微鏡により観察したところ、所望の微細3次元構造が形成されていることを確認した。光学顕微鏡画像を図5に示す。
Using the prepared varnish, a test cell was prepared in the same manner as in Example 1 except that the spacer thickness was 25 μm, and then laser irradiation was performed in the same manner as in Example 1 to attempt optical modeling of a fine three-dimensional structure.
After laser irradiation, the unreacted composition was washed with PGMEA, and the cover glass was removed. When the obtained photocured material having a fine three-dimensional structure was observed with an optical microscope, it was confirmed that a desired fine three-dimensional structure was formed. An optical microscope image is shown in FIG.

[実施例33〜41]
実施例32において、(a)、(b)、(c)の重量比及びスペーサー厚を、表3に示す値に変更した以外は実施例32と同様に行った。結果を表3に示す。何れの例においても、所望の微細3次元構造が形成されていた。
[Examples 33 to 41]
In Example 32, it carried out like Example 32 except having changed the weight ratio and spacer thickness of (a), (b), (c) into the value shown in Table 3. The results are shown in Table 3. In any example, a desired fine three-dimensional structure was formed.

[比較例4〜5]
実施例32において、(a)、(b)、(c)の重量比及びスペーサー厚を、表3に示す値に変更した以外は実施例32と同様に行った。結果を表3に示す。何れの例において
も、光硬化は起こらず所望の微細3次元構造は形成できなかった。
[Comparative Examples 4 to 5]
In Example 32, it carried out like Example 32 except having changed the weight ratio and spacer thickness of (a), (b), (c) into the value shown in Table 3. The results are shown in Table 3. In any of the examples, photocuring did not occur and a desired fine three-dimensional structure could not be formed.

[実施例42:HPEMA含有2光子吸収重合性組成物の調製及び光造形(スピンコート塗膜)]
(a)重合性化合物としてTPT 35.0mg、(b)ジチオカルバメート基含有高分子化合物として参考例4で合成したHPEMA 17.5mg、及び(c)2光子吸収化合物としてEMK 0.5mgを混合し、各成分の重量比(a)/(b)/(c)が200/100/3となる2光子吸収重合性組成物を得た。
次いで得られた組成物に、(b)ジチオカルバメート基含有高分子化合物と同重量のトルエン17.5mgを溶媒として加え、溶解させてワニスを調製した。
[Example 42: Preparation of HPEMA-containing two-photon absorption polymerizable composition and stereolithography (spin coat film)]
(A) 35.0 mg of TPT as a polymerizable compound, (b) 17.5 mg of HPEMA synthesized in Reference Example 4 as a polymer compound containing a dithiocarbamate group, and (c) 0.5 mg of EMK as a two-photon absorption compound were mixed. A two-photon absorption polymerizable composition having a weight ratio (a) / (b) / (c) of each component of 200/100/3 was obtained.
Next, 17.5 mg of toluene having the same weight as (b) the dithiocarbamate group-containing polymer compound was added as a solvent to the obtained composition and dissolved to prepare a varnish.

調製したワニスを用いて、実施例25と同様に試験セルを作製後、実施例1と同様にレーザーを照射し、微細3次元構造の光造形を試みた。
レーザー照射後、トルエンで未反応組成物を洗浄し、得られた微細3次元構造を有する光硬化物を光学顕微鏡により観察したところ、所望の微細3次元構造が形成されていることを確認した。
Using the prepared varnish, a test cell was prepared in the same manner as in Example 25, and then laser irradiation was performed in the same manner as in Example 1 to attempt optical modeling of a fine three-dimensional structure.
After laser irradiation, the unreacted composition was washed with toluene, and the obtained photocured product having a fine three-dimensional structure was observed with an optical microscope. As a result, it was confirmed that a desired fine three-dimensional structure was formed.

[実施例43〜45]
実施例42において、(a)、(b)、(c)の重量比を表4に示す値に変更した以外は実施例42と同様に行った。結果を表4に示す。何れの例においても、所望の微細3次元構造が形成されていた。
[Examples 43 to 45]
In Example 42, it carried out similarly to Example 42 except having changed the weight ratio of (a), (b), (c) into the value shown in Table 4. The results are shown in Table 4. In any example, a desired fine three-dimensional structure was formed.

[比較例6]
実施例42において、(a)、(b)、(c)の重量比を表4に示す値に変更した以外は実施例42と同様に行った。結果を表4に示す。比較例4〜5と同様、光硬化は起こらず所望の微細3次元構造は形成できなかった。
[Comparative Example 6]
In Example 42, it carried out similarly to Example 42 except having changed the weight ratio of (a), (b), (c) into the value shown in Table 4. The results are shown in Table 4. As in Comparative Examples 4 to 5, photocuring did not occur and a desired fine three-dimensional structure could not be formed.

[実施例46:屈折率の評価]
(a)重合性化合物としてTPT 500mg、(b)ジチオカルバメート基含有高分
子化合物として参考例2で合成したHPS 1,000mg、及び(c)2光子吸収化合物としてEMK 10mgを混合し、各成分の重量比(a)/(b)/(c)が50/1
00/1となる2光子吸収重合性組成物を得た。
次いで得られた組成物に、シクロヘキサノン3.54gを溶媒として加え、溶解させてワニスを調製し、シリコン基板上に300rpm×5秒間、2,500rpm×30秒間でスピンコートした後、50℃で5分間、80℃で10分間乾燥し薄膜を形成した。
得られた薄膜について、入射角分光エリプソメーター(J.A.Woollam社製、M−2000VI)を用いて、膜厚及び屈折率を測定した。結果を表5に示す。
[Example 46: Evaluation of refractive index]
(A) 500 mg of TPT as a polymerizable compound, (b) 1,000 mg of HPS synthesized in Reference Example 2 as a polymer compound containing a dithiocarbamate group, and (c) 10 mg of EMK as a two-photon absorption compound were mixed. Weight ratio (a) / (b) / (c) is 50/1
A two-photon absorption polymerizable composition of 00/1 was obtained.
Next, 3.54 g of cyclohexanone was added as a solvent to the obtained composition and dissolved to prepare a varnish. After spin coating on a silicon substrate at 300 rpm × 5 seconds and 2,500 rpm × 30 seconds, 5 ° C. at 5 ° C. The film was dried at 80 ° C. for 10 minutes for 10 minutes to form a thin film.
About the obtained thin film, the film thickness and the refractive index were measured using the incident angle spectroscopic ellipsometer (JA Woollam company make, M-2000VI). The results are shown in Table 5.

[実施例47〜48]
実施例46において、(a)、(b)、(c)の重量比を表5に示す値に変更した以外は実施例46と同様に行った。結果を表5に示す。
[Examples 47 to 48]
In Example 46, it carried out like Example 46 except having changed the weight ratio of (a), (b), (c) into the value shown in Table 5. The results are shown in Table 5.

[実施例49〜51]
実施例46において、(a)、(b)、(c)の重量比を表5に示す値に変更し、加えて形成した薄膜を20分間のUV照射により硬化させた以外は実施例46と同様に行った。結果を表5に示す。
[Examples 49 to 51]
In Example 46, the weight ratio of (a), (b), (c) was changed to the values shown in Table 5, and the thin film formed in addition was cured by UV irradiation for 20 minutes. The same was done. The results are shown in Table 5.

[比較例7:屈折率の評価]
TPT 10.0mg、ナノ学会第6会大会講演予稿集(2008年5月),p173記載のハイパーブランチポリマー100.0mg、及びEMK 0.1mgを混合した。
得られた組成物について、アッベ屈折計2T(株式会社アタゴ製)を用いて屈折率を測定したところ、波長589nm(NaD線)での屈折率は1.476であった。結果を表5に示す。
[Comparative Example 7: Evaluation of refractive index]
TPT 10.0 mg, Nano Society Society 6th Conference Proceedings Collection (May 2008), hyperbranched polymer 100.0 mg described in p173, and EMK 0.1 mg were mixed.
About the obtained composition, when the refractive index was measured using Abbe refractometer 2T (product made from Atago Co., Ltd.), the refractive index in wavelength 589nm (NaD line | wire) was 1.476. The results are shown in Table 5.

本発明による2光子吸収重合性組成物は高分子光導波路、高分子光ファイバー、光表示材料、回折格子、フォトニック結晶、マイクロリアクターなどの微細な光デバイスに有効に利用することができる。   The two-photon absorption polymerizable composition according to the present invention can be effectively used for fine optical devices such as polymer optical waveguides, polymer optical fibers, optical display materials, diffraction gratings, photonic crystals, and microreactors.

図1は、実施例で用いた光学装置を表す模式図である。FIG. 1 is a schematic diagram illustrating an optical device used in the examples. 図2は、実施例1で用いた試験セルの作製手順を示す模式図である。FIG. 2 is a schematic diagram showing a procedure for producing the test cell used in Example 1. 図3は、実施例1で作製した微細3次元構造のパターンを示す模式図である。FIG. 3 is a schematic diagram showing a pattern of a fine three-dimensional structure produced in Example 1. 図4は、実施例1で作製した微細3次元構造の光学顕微鏡画像である。FIG. 4 is an optical microscope image of a fine three-dimensional structure produced in Example 1. 図5は、実施例32で作製した微細3次元構造の光学顕微鏡画像である。FIG. 5 is an optical microscope image of a fine three-dimensional structure produced in Example 32.

Claims (10)

(a)重合性化合物、(b)ジチオカルバメート基含有高分子化合物及び(c)2光子吸収化合物、を含有することを特徴とする2光子吸収重合性組成物。 A two-photon absorption polymerizable composition comprising (a) a polymerizable compound, (b) a dithiocarbamate group-containing polymer compound, and (c) a two-photon absorption compound. 前記(b)ジチオカルバメート基含有高分子化合物のゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量が、500ないし200,000である、請求項1記載の2光子吸収重合性組成物。 The two-photon absorption polymerizable composition according to claim 1, wherein the weight average molecular weight of the (b) dithiocarbamate group-containing polymer compound measured by gel permeation chromatography in terms of polystyrene is 500 to 200,000. 前記(b)ジチオカルバメート基含有高分子化合物が分枝状高分子である、請求項1又は請求項2に記載の2光子吸収重合性組成物。 The two-photon absorption polymerizable composition according to claim 1 or 2, wherein the (b) dithiocarbamate group-containing polymer compound is a branched polymer. 前記(b)ジチオカルバメート基含有高分子化合物が式(1)で表される分枝状高分子である、請求項3記載の2光子吸収重合性組成物。
(式中、R1は水素原子又はメチル基を表し、R2及びR3は、それぞれ独立して、炭素原
子数1ないし5のアルキル基、炭素原子数1ないし5のヒドロキシアルキル基又は炭素原子数7ないし12のアリールアルキル基を表し、又は、R2とR3は互いに結合し、窒素原子と共に環を形成していてもよく、A1は式(2)又は式(3)を表し、nは繰り返し単
位構造の数であって2ないし100,000の整数を表す。)
(式中、A2はエーテル結合又はエステル結合を含んでいても良い炭素原子数1ないし3
0の直鎖状、枝分かれ状又は環状のアルキレン基を表し、Y1、Y2、Y3及びY4は、それぞれ独立して、水素原子、炭素原子数1ないし20のアルキル基、炭素原子数1ないし20のアルコキシ基、ニトロ基、ヒドロキシル基、アミノ基、カルボキシル基又はシアノ基を表す。)
The two-photon absorption polymerizable composition according to claim 3, wherein the (b) dithiocarbamate group-containing polymer is a branched polymer represented by the formula (1).
(In the formula, R 1 represents a hydrogen atom or a methyl group, and R 2 and R 3 each independently represents an alkyl group having 1 to 5 carbon atoms, a hydroxyalkyl group having 1 to 5 carbon atoms, or a carbon atom. Represents an arylalkyl group of formula 7 to 12, or R 2 and R 3 may be bonded to each other to form a ring with a nitrogen atom, A 1 represents formula (2) or formula (3), n is the number of repeating unit structures and represents an integer of 2 to 100,000.)
(In the formula, A 2 has 1 to 3 carbon atoms which may contain an ether bond or an ester bond.
0 represents a linear, branched or cyclic alkylene group, and Y 1 , Y 2 , Y 3 and Y 4 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or the number of carbon atoms. 1 to 20 alkoxy groups, nitro groups, hydroxyl groups, amino groups, carboxyl groups or cyano groups are represented. )
前記(a)重合性化合物がエチレン性不飽和結合を有する重合性化合物である、請求項1ないし請求項4の何れか一項に記載の2光子吸収重合性組成物。 The two-photon absorption polymerizable composition according to any one of claims 1 to 4, wherein the polymerizable compound (a) is a polymerizable compound having an ethylenically unsaturated bond. 前記(a)重合性化合物がカチオン重合性の部位を有する重合性化合物である、請求項1ないし請求項4の何れか一項に記載の2光子吸収重合性組成物。 The two-photon absorption polymerizable composition according to any one of claims 1 to 4, wherein the polymerizable compound (a) is a polymerizable compound having a cationic polymerizable moiety. 請求項1ないし請求項6の何れか一項に記載の2光子吸収重合性組成物を含有するワニス。 A varnish containing the two-photon absorption polymerizable composition according to any one of claims 1 to 6. 請求項7記載のワニスから作製される薄膜。 A thin film produced from the varnish according to claim 7. 請求項1ないし請求項6の何れか一項に記載の2光子吸収重合性組成物に、そこに含有する(c)2光子吸収化合物が有する線形吸収帯より長波長で、かつ、線形吸収の存在しない波長のレーザー光を照射して誘起された2光子以上の多光子吸収を利用して、該2光子吸収重合性組成物を重合させることを特徴とする光硬化方法。 The two-photon absorption polymerizable composition according to any one of claims 1 to 6, wherein (c) the two-photon absorption compound contained therein has a longer wavelength than the linear absorption band of the two-photon absorption compound, and linear absorption. A photocuring method comprising polymerizing the two-photon absorption polymerizable composition by utilizing multiphoton absorption of two or more photons induced by irradiation with a laser beam having a wavelength that does not exist. 請求項1ないし請求項6の何れか一項に記載の2光子吸収重合性組成物を、2光子吸収重合により硬化させることによって得られる光デバイス構造体。 An optical device structure obtained by curing the two-photon absorption polymerizable composition according to any one of claims 1 to 6 by two-photon absorption polymerization.
JP2008230264A 2008-09-08 2008-09-08 Two-photon absorption polymerizable composition and optical device Expired - Fee Related JP5344553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008230264A JP5344553B2 (en) 2008-09-08 2008-09-08 Two-photon absorption polymerizable composition and optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008230264A JP5344553B2 (en) 2008-09-08 2008-09-08 Two-photon absorption polymerizable composition and optical device

Publications (2)

Publication Number Publication Date
JP2010065083A true JP2010065083A (en) 2010-03-25
JP5344553B2 JP5344553B2 (en) 2013-11-20

Family

ID=42190947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008230264A Expired - Fee Related JP5344553B2 (en) 2008-09-08 2008-09-08 Two-photon absorption polymerizable composition and optical device

Country Status (1)

Country Link
JP (1) JP5344553B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225383B1 (en) 2010-05-11 2023-06-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for producing three-dimensional structures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429410A (en) * 1987-07-25 1989-01-31 Mitsubishi Petrochemical Co Ultraviolet radiation-curing self-adhesive composition
JPH03119014A (en) * 1989-10-03 1991-05-21 Mitsubishi Petrochem Co Ltd Negative type dry film photoresist composition
JP2005085350A (en) * 2003-09-08 2005-03-31 Fuji Photo Film Co Ltd Optical information recording method and optical information recording medium
WO2006101003A1 (en) * 2005-03-18 2006-09-28 National University Corporation The University Of Electro-Communications Photosensitive composition containing organic fine particles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429410A (en) * 1987-07-25 1989-01-31 Mitsubishi Petrochemical Co Ultraviolet radiation-curing self-adhesive composition
JPH03119014A (en) * 1989-10-03 1991-05-21 Mitsubishi Petrochem Co Ltd Negative type dry film photoresist composition
JP2005085350A (en) * 2003-09-08 2005-03-31 Fuji Photo Film Co Ltd Optical information recording method and optical information recording medium
WO2006101003A1 (en) * 2005-03-18 2006-09-28 National University Corporation The University Of Electro-Communications Photosensitive composition containing organic fine particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3225383B1 (en) 2010-05-11 2023-06-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for producing three-dimensional structures

Also Published As

Publication number Publication date
JP5344553B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5008080B2 (en) Photosensitive composition containing organic fine particles
CN103764699B (en) Optical element material and manufacture method thereof
JP5857014B2 (en) Curable composition for photoimprint, pattern forming method and pattern
US9012127B2 (en) Thermoreversible network scaffolds and methods of preparing same
TWI464189B (en) Hardened resin composition
JP6621948B2 (en) Curable composition for imprint, cured product, pattern forming method, lithography method, pattern, and mask for lithography
KR102041929B1 (en) Photosensitive resin comopsition and cured pattern formed from the same
JP3985821B2 (en) Curable fluorine-containing resin composition and optical member obtained by curing the same
JP5963837B2 (en) Composition for volume hologram recording material and volume hologram recording medium
KR102021613B1 (en) Photosensitive resin composition
KR20130024795A (en) Curable resin composition
JP5344553B2 (en) Two-photon absorption polymerizable composition and optical device
JPWO2009110603A1 (en) Measurement method of diffusion coefficient in polymer thin film by single fluorescent molecule detection method
JP5408704B2 (en) Photosensitive composition containing metal nanoparticle-dithiocarbamate group-containing polymer composite
JP2010260945A (en) Vinylcyclopropane compound having low polymerization shrinkage and method for polymerizing the same
WO2021100654A1 (en) Compound, polymerizable composition, polymer, holographic recording medium, optical material and optical component
WO2009119576A1 (en) Photosensitive composition for forgery preventive hologram and forgery preventive hologram medium
JP5284866B2 (en) Photosensitive composition containing vinylcyclopropane compound
JP2007137998A (en) Curable composition and optical material obtained by curing the same
KR20120060150A (en) Colored photosensitive resin composition
JP6507683B2 (en) Resin composition and optical member
JP6471390B2 (en) Composition for volume hologram recording material containing hyperbranched polymer containing triazine ring
KR102179308B1 (en) Photocurable omposition, method for manufacturing micro-structure and micro-structure manufactured thereby
KR20130097110A (en) Photosensitive resin composition
WO2020050321A1 (en) Volume hologram-recording material composition containing triazine ring-containing hyperbranched polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees